LOS ANGELES COUNTY FLOOD CONTROL DISTRICT #### HYDRAULIC DIVISION # REPORT TO H. E. HEDGER, CHIEF ENGINEER BIENNIAL REPORT ON HYDROLOGIC DATA SEASONS 1945-46 AND 1946-47 PAUL BAUMANN, ASSISTANT CHIEF ENGINEER FINLEY B. LAVERTY, CHIEF - HYDRAULIC DIVISION AUGUST 2, 1948 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT LOS ANGELES 14, CALIFORNIA H. E. HEDGER CHIEF ENGINEER August 2, 1948 751 8. FIGUEROA ST. ROOM 403 FILE NO. BUBJECT 2-20 Eiennial Report on Hydrologic Data Seasons of 1945-46 and 1946-47 All Districts Honorable Board of Supervisors Los Angeles County Flood Control District 501 Hall of Records Los Angeles 12, California Gentlemen: There is transmitted herewith for your files the Los Angeles County Flood Control District's Biennial Report on Hydrologic Data for the Seasons of 1945-46 and 1946-47. This report is the sixteenth of a series of annual or biennial reports which have been published covering twenty years of records. This report includes data collected and compiled by the District's Hydraulic Division on precipitation, evaporation, runoff, dam operation, ground water and conservation. These data are basic for hydrologic study, planning, design, and operation of flood control and conservation projects. The value of continuing the collection, compilation, and publication of this type of data cannot be overestimated, due to its widespread use by the Listrict and also by an ever increasing number of interested public and private agencies and individuals. The District wishes to record its appreciation of the valuable cooperation rendered by the various individuals and organizations who have furnished data and have served as observers. Yours truly, H. E. Hedger Chief Engineer #### Los Angeles County Flood Control District Hydraulic Division July 30, 1948 2-20 Biennial Report on Hydrologic Data Seasons of 1945-46 and 1946-47 Mr. H. E. Hedger Chief Engineer Los Angeles County Flood Control District Los Angeles 14. California Dear Mr. Hedger: Transmitted herewith is the "Biennial Report on Hydrologic Data" for the seasons 1945-46 and 1946-47. This report includes data collected and compiled by the Hydraulic Division of the District which are presented as follows: - 1. Precipitation - 2. Evaporation - 3. Runoff - 4. Dam Operation - 5. Conservation and Ground Water Precipitation records include the monthly records of 427 stations in 1945-46 and 420 stations in 1946-47, of which 93% and 96% respectively furnished complete seasonal records. Three hundred twelve stations have a continuous record for fifteen years or longer, of which 16 stations have a continuous record for over fifty years. Intensity records were obtained from 88 recording rain gages. Comparative intensities of rainfall for periods varying from five minutes to 24 hours and including storm totals and maximum intensities of record for ten representative stations are included in this report. The rainfall for the seasons 1945-46 and 1946-47 was 88% and 92% of normal respectively for the County. No major storms were experienced although 20 storms occurred in 1945-46 and 24 in 1946-47. Although rainfall for the 1946-47 season was only slightly below normal, the major portion of this rain, 10.43 inches, fell during November and December 1946. Only 2.31 inches of rain was recorded during the following nine months from January through September 1947. This period of drought for the Los Angeles Area was the driest of record for any similar period during the last 75 years. Seasonal rainfall distribution throughout the County is shown by the following relation to the 75 year normal indices for four areas of the County: | | | % of N | ormal | |----|--------------------------|---------|---------| | | | 1945-46 | 1946-47 | | 1. | San Gabriel Mt. Area | 91 | 98 | | 2. | Valley and Coastal Plain | 81 | 89 | | 3. | Santa Monica Mts. | 82 | 84 | | 4. | Desert Area | 93 | 92 | Seasonal amounts of snowfall for three mountain locations are also included in this report. The depths of snowfall ranged from 42 to 87 inches at the various locations. The greatest depth was measured at Big Pines Recreation Camp. Evaporation records were received from 24 stations each month. Amounts varied from a maximum of 100.00 inches at Big Tujunga Dam in 1945-46 to a minimum of 29.58 inches at the District's Puente Hills station in 1946-47. Runoff records presented include streamflow measurements, mean daily runoff, and storm hydrographs compiled from the District's water stage recorders. During 1945-46 and 1946-47 the District operated 70 recording streamflow stations located on the main streams and tributary channels. Twenty-four of these stations are in the Los Angeles River drainage area, 21 are in the San Gabriel River drainage area, and 16 are located in the Rio Hondo drainage area. Records obtained from these stations are supplemented by the records of the 13 stations operated by the U. S. Geological Survey, Water Resources Branch, and 2 stations operated by the Survey in cooperation with the Los Angeles District, Corps of Engineers, which are also included in this publication. Cooperative assistance was given by the District in making measurements at these stations, while the District in turn received cooperation at several stations from the Corps of Engineers. Runoff for the seasons was below normal throughout the District and storm flows were moderate. Dam operation data included in this report show daily reservoir water surface elevation, storage, and amount of inflow and outflow for 14 dams operated by the District. These dams control 409 square miles of mountain drainage with a total controlled storage of 88,289 acre feet at spillway lip elevation. Two tabulations giving pertinent data for the seasons for four debris dams and 23 debris basins owned and operated by the District are included in the report. Reclamation of storage capacity in District reservoirs and debris basins during these seasons obtained by sluicing and excavation operations, amounted to 335,851 cubic yards in 1945-46 and 225,990 cubic yards in 1946-47. Water conservation and collection of ground water data continued as an important phase of the work of the District due to the increased draft upon various underground basins. Cooperative studies of serious ground water depletion in a few basins and contamination from industrial wastes are being continued. Included in this report are ground water maps of the several primary basins showing approximate high and low seasonal ground water conditions. These maps are compiled from data taken in more than 1370 wells during the annual spring and fall well measurements. Key well measurements taken monthly by the District were reduced to the form of hydrographs, and 12 of these have been included in the report to show the fluctuations in the more important basins. The investigation of the intrusion of sea water into the West Coastal Basin was continued during 1945-46 and 1946-47. This was carried on by the United States Geological Survey with whom the District and several municipalities are cooperating. A similar study was completed in July 1947 for the South Coastal Basin by the United States Geological Survey in cooperation with the City of Long Beach Water Department, the Orange County Flood Control and Water Districts, and this District. The purpose of these investigations is to determine the probable course of sea water intrusion and how best to retard and possibly repel it. Conservation of water by absorption in various stream channels and reservoirs amounted to 203,518 acre feet during the seasons. Water conservation of 52,551 acre feet in 1945-46 and 63,165 acre feet in 1946-47 was effected by off-channel spreading grounds. A total runoff of 126,300 acre feet in 1945-46 and 158,860 acre feet in 1946-47 wasted into the ocean as measured on Coyote Creek at Del Amo Street, on the San Gabriel River at Spring Street, on the Los Angeles River at State Street, and on Ballona Creek at Sawtelle Boulevard. We wish to thank the many individuals and agencies who have cooperated by furnishing an appreciable part of the precipitation data and other records included in this report. Respectfully submitted, Finley B. Laverty Chief - Hydraulic Division Recommended Paul Baumann Assistant Chief Engineer ## TABLE OF CONTENTS SECTION I: PRECIPITATION | AGE | |--|----------------|--|--|--|----------------------|--|--|--------------------------------|-----------------|----------------------------------|-------------------|----------------------|--------------------------------------|----|--------|-----|---|---|------|---|--------| | FOREWORD. | | | | | | • | | | | | • | | | | | | | | | | 1 | | SUMMARY . | | | | | | | | | | | • | | • | | | | • | | | | 1 | | DISTRIBUTI | ON OF | GAGES . | | | | | | | | | | | | | | | • | | | | 2 | | USES OF PR | ECIPIT | TATION DA | ATA | | | | | | | | | | | | | | | | | | 4 | | SOURCE AND | NUMBE | R OF REC | ORDS. | | | | | | | | • | | | | | | | | | • | 4 | | | | Ownershi
ete Seas | | | | | | | | | | | | | | | | | | | 5
5 | | AVERAGE RA | INFALL | INDICES | FOR L | OS A | NGE | LES | CO | UNT | Υ | | • | | | • | | | • | • | | | 6 | | COMPARATIV | E RAIN | FALL | | | | | | | | | | | | | | | | | | | 7 | | | Compa | rison of | Rainf | all | by S | Sta | tio | ns | • | | | | | | | • | | | | • | 7 | | MAXIMUM AN | D MINI | MUM RAIN | FALL. | | | | | | | | | | | | | | | | | | 7 | | SUMMARY OF | SNOWF | ALL | | | | • | | • | | | • | | | • | | • | , | | | | 8 | | COOPERATIO | N OF R | RAINFALL | OBSERV | /ERS | | | | | | | | | | | | | | | | • | 8 | | RESPONS IB II | LITY. | | | | | | | | | | | • | • | | | | | |
• | | 8 | | TABLES AND | MAPS | Table
Table
Table
Table
Table
Map I |
 V
 V | ACTIVE COMPARA SEASONA RAIN GA 75 YEAR LOCATIO SEASO | ATIVE MAL 1946
AL 1946
AGE STA
R SEASO
ON OF A | AXIM
5-46
5-47
ATION
ONAL
ACTIV
5-46 | MON' MON' LOCAL RAII | RAII
THL'
THL'
CAT
NFAI
AIN | NFAI
Y RA
Y RA
I ON
LL
GA | LL
AIN
AIN
IND
GES | IN
FA
IFA | TEN
LL
LL

ES.
ND | SUN
SUN
SUN | MMA
MMA
·
· | ES
ARY
ARY
•
•
•
• | IN | 11
 | NCH | | • |
 | |
24 | | Map 1 | | | N 1946 | -47 | | • | SE | CT 1 | ON | f1: | E | VA | POR | ΑТ | 101 | 1 | | | | | | | | | | FOREWORD. | | | | | | | | | | | • | | | • | | | | | | | 31 | | SUMMARY OF | SEASO | NAL EVAP | ORATIC | N. | | | | | | | | | | | | | | | | | 31 | | LOCATION A | ND NUM | BER OF S | TATION | ıs . | | • | | | | | | | | | | | • | | | | 31 | | LENGTH OF I | RECORD | | | | | | | | | | | | | | | | • | | | |
32 | | EQUIPMENT | | | | . . . | | | | | | | • | | | | | | | | | | 32 | | CONVERSION | FACTO | RS | | | | • | | | | | | | | | | | | | | | 33 | | | SECTION II: EVAPORA | TION (cont'd) | |--|---|-------------------| | Table VII
Table VIII | EVAPORATION RECORDS IN | INCHES | | | SECTION III: | RUNOFF | | FOREWORD | | | | SUMMARY | | | | EXTENT AND METHOD | OF COLLECTING DATA | | | II. Types of III. Types of IV. Records o (1) Sta (2) Lis (3) Mea (4) Hyd V. United St Branch, VI. Staff Gag VII. Miscellan VIII. Percolati | Channels | 47
 | | X. Limitatio | ns | | | | | | | | | | | | | | | | | 50 | | MAP IV - Gaging St | ation Locations | | | GAGING STATION REC | ORDS | | | Recorder Stat | ion Data (Arranged Alph | abetically) | | F.C. NO. STATIO | N | LOCATION PAG | | F152-R ALISO U1-R ARROYO P277-R ARROYO F38B-R BALLON F120-R BIG DA U9-R BIG DA F274-R DALTON F111B-R BIG TU F168-R BIG TU | SECO
SECO
A CREEK
LTON CREEK
LTON CREEK | near Short Street | ## GAGING STATION RECORDS (cont'd) | F. C. NO. | STATION | LOCATION | PAGE | |-----------|--------------------------|------------------------------|------| | E286-R | TUJUNGA WASH | below Hansen Dam | . 82 | | F20B-R | TUJUNGA WASH | at Glen Oaks Boulevard | | | F 105-R | TUJUNGA WASH | at Magnolia Boulevard | | | F106-R | | at Magnolia Boulevard | | | F 270-R | CALABASAS CREEK | at Ventura Boulevard | | | F108-R | CASTAIC CREEK | at Highway 126 | | | F37B-R | COMPTON CREEK | near Greenleaf Drive | 95 | | F41C-R | COYOTE CREEK | at Del Amo Street | 98 | | F265-R | DOMINGUEZ CHANNEL | at Carson Boulevard | | | F53-R | DUME CREEK | at Roosevelt Highway | | | U2 • R | EATON CREEK | above Mouth of Canyon | | | F271-R | EATON WASH | below Eaton Wash Dam | | | F104-R | EATON EASH | at Ellis Lane | | | | FISH CREEK | above Mouth of Canyon | | | U12-R | HAINES CREEK | above Mouth of Canyon | | | F287-R | LA TUNA CREEK | at Belmont Country Club | | | F149-R | LIMEKILN WASH | at Devonshire Avenue | | | F65B-R | LITTLE DALTON CREEK | above Mouth of Canyon | | | L1-R | LITTLE BACTON CREEK | above Little Rock Dam | | | U3-R | LITTLE ROCK CREEK | above Sierra Madre Dam | | | F67B-R | LITTLE SANTA ANTIA CREEK | below Sierra Madre Dam | | | F267-R | LITTLE SANTA ANTIA CREEK | at Woodland Avenue | | | F19-R | LITTLE TUJUNGA WASH | at Foothill Boulevard | | | F31-R | LIVE OAK CREEK | near Mouth of Canyon | | | F5B-R | LOS ANGELES RIVER | below Sepulveda Boulevard | | | F266-R | LOS ANGELES RIVER | at Mariposa Street | | | F57C-R | LOS ANGELES RIVER | above Arroyo Seco | | | F34B-R | LOS ANGELES RIVER | at Firestone Boulevard | | | F180-R | LOS ANGELES RIVER | at Pacific Coast Highway | | | F130-R | MALIBU CREEK | at Crater Camp | | | F83-R | MISSION CREEK | at San Gabriel Boulevard | | | F22-R | MONROVIA CREEK | above Sawpit Creek | | | F195-R | MONROVIA STORM DRAIN | at Peck Road | | | F181-R | MONTEBELLO STORM DRAIN | above Rio Hondo | | | F118B-R | PACOIMA CREEK | below Pacoima Dam | | | F16-R | PACOINA WASH | at Parthenia Street | | | F40-R | PUDD INGSTONE CREEK | below Puddingstone Dam | | | F280-R | RIO HONDO DIVERSION | below Santa Fe Dam | | | F192-R | RIO HONDO | at Lower Azusa Road | | | F64-R | RIO HONDO | above Mission Bridge | | | F45-R | RIO HONDO | at Stewart & Gray Road | | | U14-R | ROCK CREEK | above Mouth of Canyon | | | U6-R | ROGERS CREEK | above Mouth of Canyon | | | F82C-R | RUBIO WASH | at Glendon Way | | | U15-R | SAN ANTONIO CREEK | above Edison Co. Power Plant | | | F151-R | SAN ANTONIO CREEK | at Mouth of Canyon | | | U10-R | SAN DIMAS CREEK | at Mouth of Canyon | | | F218-R | SAN DIMAS WASH | below Puddingstone Diversion | | | F209-R | | below San Gabriel Dam No. 2 | | #### GAGING STATION RECORDS (cont'd) | F.C. NO. | STATION | LOCATION | PAGE | |-----------------|---|----------------------------------|-------| | 1.C. NO. | | | | | P3-R | | above Forks | | | P4B-R | SAN GABRIEL RIVER - EAST FORK | above Forks | | | F250-R | SAN GABRIEL - AZUSA CONDUIT | at weir below S. G. Dam No. I. | . 229 | | F220-R | SAN GABRIEL - AZUSA CONDUIT | at Garcia Canyon | . 231 | | | SAN GABRIEL - AZUSA CONDUIT | • | | | | DIVERSION | from Storage of Morris Dam | . 233 | | U8-R | SAN GABRIEL RIVER | below Morris Dam | | | S100A-R | SAN GABRIEL - AZUSA DUARTE | | | | | TUNNEL DIVERSION | at Mouth of Canyon | 238 | | F 190- R | SAN GABRIEL RIVER | at Foothill Boulevard | | | E281-R | SAN GABRIEL RIVER | below Santa Fe Dam | | | F261B-R | SAN GABRIEL RIVER | at Valley Boulevard | | | F263-R | SAN GABRIEL RIVER | at Beverly Boulevard | | | F262-R | SAN GABRIEL RIVER | at Florence Avenue | | | F42-R | SAN GABRIEL RIVER | at Spring Street - Long Beach. | | | F48-R | SAN JOSE CREEK | at Workman Mill Road | | | г46-К
U4-R | SANTA ANITA CREEK | above Santa Anita Dam | | | F260B-R | SANTA ANTTA CREEK | | | | F92B-R | | at Foothill Boulevard | | | | SANTA CLARA RIVER | at Highway 99 | | | F278-R | SAWPIT CREEK | below Sawpit Dam | | | U5-R | SAWPIT CREEK | below Monrovia Canyon | | | F185-R | SEPULVEDA CREEK | at Charnock Road | | | F43-R | SYCAMORE UPPER STORM DRAIN | above Solway Street | | | F44-R
F276-R | SYCAMORE LOWER STORM DRAIN | at Adams Square | . 2/8 | | F2/0-R | THOMPSON CREEK SPREADING GROUNDS INTAKE | at Thompson Creek Dam | 201 | | F32B-R | | | | | F54-R | THOMPSON CREEK
TOPANGA CREEK | below Thompson Creek Dam | . 282 | | F252 - R | | above Mouth of Canyon | | | | VERDUGO CHANNEL | at Estelle Avenue | | | F 47- R | WALNUT CREEK | at Covina Boulevard | . 289 | | Staff | Gage Data (Arranged Alphabetic | ally) | | | F.C. NO. | STATION | LOCATION | PAGE. | | r.c. No. | STATION | LOCATION | FAGL | | F 116- S | ARROYO DITCH | below Headgate | . 293 | | F 58- S | ARROYO SECO | at Avenue 26 | 294 | | F 87- S | BANTA DITCH | at Head of Pipeline | | | F143-S | BIG ROCK CREEK | above Pallette Creek | | | F183-S | BIG ROCK CREEK | at Palmdale - Victorville Road | | | F285-S | BURBANK WESTERN STORM DRAIN | at Riverside Drive | | | F61-S | COLD CREEK | at Crater Camp | | | F141-S | ELIZABETH LAKE CREEK | above Dry Gulch | | | F112-S | MILL CREEK | above Big Tujunga Creek | | | F 13 5-S | NEWHALL CREEK | at Ridge Route Highway | | | F196-S | PACOINA CREEK | at Maclay Avenue | | | F197-S | PACOINA CREEK | at Arleta Street above Spr. Grd. | | | F122-S | PALLETTE CREEK | at Big Rock Creek | | | F93-S | SANTA CLARA RIVER | above Lang R. R. Station | | | F137B-S | SANTA CLARA RIVER | | | | 113/0-3 | SANTA CLARA RIVER | 8 miles West of Castaic Junction | 1 500 | ## GAGING STATION RECORDS (cont'd) | F.C. NO. | STATION | LOCAT | ION | PAGE | |---|--|-------------------------|--|---| | | SANTA MONICA CREEK
SANTA MONICA CREEK
SANTIAGO CREEK | above
below
above | Rustic Canyon | 300
301
301 | | RISIN | G WATER at Whittier Narrows | | | | | F.C. NO. | STATION | | LOCATION | PAGE | | F84-S
F84-S
F85-S
F86-S | RIO HONDO (FACTOR "D") TRI-CITY OUTFALL SEWER (FACTOR EL MONTE SEWER (FACTOR "F") TEMPLE DITCH (FACTOR "I") RINCON DITCH (FACTOR "J") CATE DITCH (FACTOR "K") STANDEFER DITCH (FACTOR "N" SAN GABRIEL RIVER (FACTOR "GRAPH OF MEAN MONTHLY FLUCTUM | OR "E'') | near Junct. with Rio Hondo. above Head of Pipeline above Head of Pipeline below Sluice Gate below Headgate below Standefer Ditch | 302
303
304
305
306
307
308 | | Miscel | llaneous Stations | | | | | F.C. NO. | STATION | | LOCATION | PAGE | | LOS ANGELES
RIO HONDO [| EEK DRAINAGE AREA
S RIVER DRAINAGE AREA
DRAINAGE AREA
L RIVER DRAINAGE AREA | | at miscellaneous points at miscellaneous points at miscellaneous points at miscellaneous points | 313
314 | | Perco | lation Data | | | - | | Table IX - | Percolation Reaches | | 1 | PAGE | | SANTA ANITA
SAN GABRIEL
RIO HONDO I
LITTLE DALT
BIG DALTON
SAN DIMAS V | EEK | BASIN | | 320
320
320
321
321
321 | | Table X - Y | YEARLY DISCHARGE SUMMARY (All | years | of Record, All Stations) | 323 | | STREAM | 1 | | | | | ALISO WASH.
ARROYO SECO
BALLONA CRE | SH | | | 323
323
323 | # TABLE X - YEARLY DISCHARGE SUMMARY (cont'd) | STREAM | E. |
---|----| | DALTON WASH | 3 | | BIG TUJUNGA CREEK and MOUNTAIN TRIBUTARIES | 3 | | TUJUNGA WASH | 4 | | BROWNS CANYON CREEK | 4 | | CALABASAS CREEK | 4 | | CASTAIC CREEK | 4 | | CENTINELA CREEK | 4 | | COMPTON CREEK | 4 | | COYOTE CREEK | 4 | | DOMINGUEZ CHANNEL | 4 | | DUME CREEK | 4 | | EATON WASH | 4 | | LA TUNA CREEK | 5 | | LIMEKILN WASH | 5 | | LITTLE DALTON CREEK | | | LITTLE ROCK CREEK | | | LITTLE SANTA ANITA CREEK | | | LITTLE TUJUNGA CREEK | | | LIVE OAK CREEK | | | LOS ANGELES RIVER | | | MALIBU CREEK | | | MONROVIA CREEK | | | MONROVIA STORM DRAIN | | | MONTEEELLO STORM DRAIN | | | PACOIMA CREEK and WASH | | | PUDD INGSTONE CREEK | | | RIO HONDO | | | RUBIO WASH | | | SAN ANTONIO CREEK | | | SAN DIMAS WASH | | | SAN GABRIEL RIVER and MOUNTAIN TRIBUTARIES | | | SAN GABRIEL - AZUSA CONDUIT | | | SAN GABRIEL - AZUSA - DUARTE TUNNEL DIVERSION | | | SAN JOSE CREEK | | | SANTA ANITA CREEK and WASH | | | SANTA CLARA RIVER | | | SAWPIT CREEK and WASH | | | SEPULVEDA CREEK | | | SYCAMORE UPPER STORM DRAIN | | | SYCAMORE LOWER STORM DRAIN | 0 | | THOMPSON CREEK | | | TOPANGA CREEK | 1 | | VERDUGO CHANNEL | | | WALNUT CREEK | | # SECTION IV: DAM OPERATION DAMS, DEBRIS DAWS, AND DEBRIS BASINS | PAGE | |---------------------------|------------------|-------|-----|------|------|-----|----|-----|-----|-----|----|-----|-----|-----|-----|----|---|---|---|---|------------| | FOREWORD | 333 | | FLOOD CONTROL AND | 333 | | DEBRIS DAMS | 334 | | DEBRIS BASINS | 334 | | PURPOSE | 335 | | OPERATION | 335 | | SLUICING OPERATION | 335 | | RECORDS | 336 | | COMPLETE ANNUAL RE | 337 | | RESPONSIBILITY | 337 | | , • | | | | - | | • | · | | • | • | • | | • | | · | • | | • | | | | | DAM OPERATION RECO | ORDS | PAGE | | PACCIMA | 338 | | BIG TUJUNGA. | 341 | | DEVIL'S GATE | 344 | | EATON WASH . | | | | | | • | • | | • | •/ | • | | • | • | • | • | • | • | ٠ | • | 347 | | BIG SANTA AN | 350 | | SAWPIT | | • • | • • | • | • | • | • | | • | • | • | | • | • | • | ٠ | • | • | • | • | 353 | | SAN GABRIEL N | NO. 2. | • • | • • | • | • | • | • | | • | • | • | • • | • | • | • | • | • | • | ٠ | ٠ | 356 | | SAN GABRIEL N | 359 | | BIG DALTON . | 362
365 | | SAN DIMAS
PUDDINGSTONE | 368 | | PUDD INGSTONE | 371 | | LIVE OAK | 374 | | THOMPSON CREE | 377 | | HAMILTON BOWL | 380 | | Table VI | | | | | | | | | , | | | | | | | | | | | | | | Table XI - YEARLY | RESERV
Dams). | | | | | | | | • | | | | | | | | | • | | | 383 | | PI I | Jans). | • • | • • | • | • | • | • | • • | • | • | • | • • | • | • | • | • | • | • | • | • | 303 | | | SECT I | ON V: | GI | ROUN | ND V | √AΤ | ER | AN | D V | ۱AT | ER | СО | NSE | ER۱ | /AT | 10 | N | PAGE | | FOREWORD | | | | | | | | | | • | | | | | | | | | | | 387 | | SEASONAL DATA AND | MAPS. | 387 | | COOPERATIVE INVEST | 388 | | NEW FACILITIES | 389 | | RESPONSIBILITY | 389 | # SECTION V: GROUND WATER AND WATER CONSERVATION (contid) | PAGE | |--| | Table XII RESERVOIR AND CHANNEL ABSORPTION | | GRAPHS FOR KEY WELLS | | SAN FERNANDO VALLEY BASINS. RAYMOND BASIN | | GROUND WATER MAPS OF SAN FERNANDO VALLEY | | GROUND WATER MAPS OF SAN GABRIEL VALLEY | | GROUND WATER MAPS OF COASTAL PLAIN | | GROUND WATER MAPS OF SANTA CLARA VALLEY | | GROUND WATER MAPS OF ANTELOPE VALLEY | #### PRECIPITATION #### FOREWORD This report includes the eighteenth and nineteenth seasons of similar seasonal reports. It contains precipitation data for the season in summarized form. It is published to provide current basic data for reference and to inform those interested public and private agencies and individuals of further precipitation data which may be found in the District's files. The District's "season" includes the period between October 1st and September 30th, which conforms with the water year as used by the United States Geological Survey, Water Resources Branch. #### SUMMARY SEASON 1945-46 For the second consecutive season precipitation was generally below normal throughout the District, the county average being 88% of the 75 year normal. The season's precipitation, as compared to the 75 year normal for various representative stations, is shown in the tabulation under "Comparative Rainfall" on page 7. Precipitation was slightly above normal in the San Antonio Canyon drainage area and along the upper rim of the San Gabriel Canyon drainage area. No major storms occurred during the 1945-46 season. Rainfall intensities were moderate generally throughout the District with but a few stations recording more than one inch in one hour. Camp LeRoy (Hoegee's) in the Santa Anita Canyon recorded 1.70 inches in one hour December 21. Two summer storms occurred in July which produced heavy intensities for short periods on the north slopes of the San Gabriel Mountains. The first storm occurred July 18 and produced a heavy downpour for 2 hours at the Andersen Ranch, southwest of Valyermo about 3 miles, where 0.73 of an inch in 15 minutes, and 1.78 inches in one hour were recorded. The second storm, July 24, produced 1.42 inches in 15 minutes and 1.66 inches in one hour at Big Pines Park. Twenty storms occurred during 1945-46 season which produced rainfall of 0.01 inch or more with rain occurring 39 days at Camp Singer (Opid's) in the mountains and 34 days at the Los Angeles United States Weather Bureau Station in the valley (5 p.m. reading.) #### SEASON 1946-47 The average precipitation for the County was again below the 75 year normal for the third consecutive season with an index of 92; however, the San Gabriel Mountains had an index of 98. While no unusually heavy storms occurred during the season, precipitation for October, November and December was considerably above normal with approximately 88% of the seasons total falling during this period. November rainfall was the greatest of record for this month, averaging about 600% of the November normal. The last nine months of the season, January through September, were the driest of the 75 years of record. Rainfall intensities were generally light with a few scattered heavy showers of short duration. Twenty-four storms occurred during the 1946-47 season which produced rainfall of 0.01 inch or more with rain occurring 39 days at Camp Singer (Opid's) in the mountains and 36 days at the Los Angeles United States Weather Bureau Station in the valley (5 p.m. reading). Isohyetals for the seasons 1945-46 and 1946-47 are shown on Maps I and II, pages 25 and 27 respectively. The 75 Year Normal Isohyetal Map is Map III, page 29. #### DISTRIBUTION OF GAGES Location and distribution of gages are very important factors in the value of rainfall data. The location of any one station must be chosen carefully as the rain catch can vary considerably in short distances due to obstructions such as trees, buildings, and topography. Subsequent to 1927, the District has made considerable progress in securing a representative coverage of the County as shown by the following figures: Number of stations reporting to the Los Angeles County Flood Control District | Season | 1926-27 | • | | • | • | • | • | 79 | |--------|---------|---|---|---|---|---|---|-----| | Season | 1945-46 | | • | | • | • | • | 427 | | Season | 1946-47 | | | | | | | 420 | The following tabulation shows the number of stations for which the District has records for periods of 15 years or more. | | 15 to | 49 yrs. | 50 yrs. | and over | |--------------------------------|--------|---------|---------|----------| | 19 | 945-46 | 1946-47 | 1945-46 | 1946-47 | | Continuous records | 218 | 226 | 12* | 13* | | Broken records | 48 | 60 | | | | Adjacent to Los Angeles County | 10 | | 3 | 3 | | TOTAL | 276 | 296 | 15 | 16 | The District has a better distribution of gages in the valley and foothill areas than in the mountains as more cooperative observers are available. Practically a maximum possible coverage of the mountain area has been obtained until additional resident observers are available or satisfactory automatic reporting equipment is developed for locations which have difficult access. Station locations are shown on Maps I and II, pages 25 and 27; and Table V, page 19. Annual inspection trips were made in the fall of 1945 and 1946, at which time the location and condition of each gage was checked. Helpful suggestions and instructions were given to observers to assist in obtaining more accurate and complete records. Supplies for the entire season were furnished at this time, thus saving considerable mailing cost. The annual trips also provide an opportunity to investigate locations for new stations and to secure cooperative observers. Where observers are available, automatic recording raingages are located in areas which will furnish the most representative intensity data for rainfall analyses and computations. During the 1945-46 season 28 of
these gages were in the mountains and 31 were in the valley area, and during the 1946-47 season the numbers were 29 and 32 respectively. In general each automatic gage is operated in conjunction with a standard 8" U.S.W.E. type gage placed nearby as a check. ^{*}IN SOME CASES THE STATION WAS MOVED A SHORT DISTANCE, OR IN CASE OF INACTIVITY ANOTHER STATION IN THE IMMEDIATE LOCALITY HAS BEEN SUBSTITUTED TO GIVE A CONTINUOUS LONG TIME RECORD. #### USES OF PRECIPITATION DATA - 1. In operation of District Dams. - 2. In calculation of flood flows for design purposes. - 3. In water conservation studies. - 4. By public and private agencies for flood control, irrigation and water supply or related investigations. - 5. Court cases. The District furnishes rainfall data to many outside agencies and individuals, among which are: United States Weather Bureau War Department, Corps of Engineers, United States Army United States Forest Service United States Geological Survey - Water Resources Branch State of California, Division of Water Resources City of Los Angeles Pasadena Water Department Southern California Edison Company Los Angeles County Surveyor and Engineer Forester and Fire Warden Road Department Ventura County San Bernardino County Precipitation, evaporation, temperature, and other data furnished to the District by the above and other agencies greatly augment the data received and compiled during the season. #### SOURCE AND NUMBER OF RECORDS The tabulation which follows shows the number, type and ownership of rain-gages: | RAIN GAGE OWNERSHIP AND TYPE | | | N | MBER OF | GAGES | | |-------------------------------------|---------|------------------|-------------|-------------|-----------------------------|-------------| | | | | | | Total | | | • | | | 1945-
46 | 1946-
47 | 19 45-
4 6 | 1946-
47 | | (a) Los Angeles County | | | | | | | | Flood Control District | | | | | | | | Standard | 8" D | iameter | 234 | 236 | | | | Non-recording Special | 8.81 | ,, ,, | 15 | 16 | | | | Automatic-Fergusson Type | 9" C | apacity | 31 | 31 | | | | Automatic-Fergusson Type | 12" | ** | 13 | 13 | | | | Automatic-Friez Type | 30" | " | 1 | 1 | | | | Automatic-Friez Type | 12" | n | 4 | 6 | | | | Automatic-Stevens Type Q | 12" | ** | 6 | 6 | | | | Automatic-Stevens Type Q | 24" | ,, | 2 | 2 | | | | Automatic-Remote Recording | | | | | | | | Tipping Bucket | | | 1 | 1 | | | | Automatic-Fuller Type | 3" Ca | apacity (Office) | 1 | 1 | 308 | 311 | | (b) Outside Agencies and Individual | ls | | | | | | | Standard | 8" Di | ameter | 140 | 137 | | | | Various Types, Non-recording | | | 19 | 14 | | | | Automatic - Various sizes and | types | | 27 | 28 | 186 | 179 | | | | TOTAL | | | 494 | 490 | | Less Std. | . 8" (v | with Automatics) | | | -67* | -70* | | Total Stations from which the | Distri | ct receives rec | ords | | 427 | 420 | The District owns 63% of all gages from which records are received each month. The remainder are privately owned as shown above and are cooperative with the District. | COMPLETE SEASONAL REPORTS | Seas | on 1945-46 | 1946-47 | |---------------------------------|-------|------------|---------| | Flood Control District Stations | | 239** | 250** | | Private Stations | | 161 | 153 | | | TOTAL | 400 | 403 | ^{*}REPRESENTS NUMBER OF STANDARD GAGES AT AUTOMATIC RAINGAGE STATIONS DEDUCTED FROM TOTAL NUMBER OF GAGES TO AGREE WITH THE NUMBER OF RECORDS PUBLISHED. ^{**}WHEN A STATION HAS BOTH A DISTRICT GAGE AND A PRIVATE GAGE, IT IS CONSIDERED A FLOOD CONTROL DISTRICT STATION. The preceding tabulation shows the number of stations which furnished complete records or records which could be completed by estimates from adjacent stations for not more than 10% of the total seasonal amount. Thus out of 427 stations reporting during the season 1945-46 and 420 stations reporting during the 1946-47 season, 93% and 96% respectively, furnished complete records. Table I presents a complete list of the automatic rain gages which were active during the seasons 1945-46 and 1946-47, with the length of active record included. #### AVERAGE RAINFALL INDICES FOR LOS ANGELES COUNTY Table VI, page 24, presents the 75 year seasonal indices for Los Angeles County and selected areas within the County. Seasonal indices are the ratios of seasonal rainfall to seasonal normal expressed as a percentage. Indices furnish a more convenient and satisfactory measure for comparing seasonal rainfall in different localities, than do the actual amounts expressed in inches. The County indices have been obtained by computing the weighted average indices of 7 representative areas in the County. The indices of each area were obtained by averaging the indices of representative long time stations, known as Master Stations, for that area. The method of calculating these indices varied somewhat from methods previously used. Individual figures vary appreciably from corresponding figures previously published. It should be kept in mind that these indices are relative only and are not applicable to any specific area in the County, being derived from data reflecting valley, mountain and desert conditions. An Isohyetal Map for the 75 year seasonal normal is shown on Map III, page 29, of this report. #### COMPARATIVE RAINFALL Eight locations used in previous reports have again been compared. These represent stations with long time records in the coastal, valley, foothill and mountain areas in Los Angeles County. #### Comparison of Rainfall by Stations | Sta. | Name | Elev. | Yrs.
Re-
cord | 75 Yr.
Normal
Inches | 1945-
46
Inches | % of
75 Yr.
Normal | 1946-
47
Inches | % of
75 Yr.
Normal | |------|-----------------------------|-------|---------------------|----------------------------|-----------------------|--------------------------|-----------------------|--------------------------| | 224 | Long Beach | 80 | 53 | 13.14 | 11.22 | 85 | 11.86 | 90 | | 577E | Los Angeles (U.S.W.B.) | 417* | 7 5 | 15.62 | 11.07 | 71 | 13.08 | 84 | | 610B | Pasadena | 864 | 7 5 | 20.66 | 16.50 | 80 | 20.94 | 101 | | 587 | Mouth of San Antonio Canyon | 2500 | 43 | 28.57 | 26.10 | 91 | 29.16 | 102 | | 60A | Camp LeRoy (Hoegee's) | 2750 | 22 | 43.68 | 33.00 | 76 | 3 8.35 | 88 | | 53A | Colby's Ranch | 3500 | 50 | 31.93 | 26.83 | 84 | 27.91 | 87 | | 57B | Camp Singer (Opid's) | 4350 | 30 | 42.32 | 38.43 | 91 | 41.82 | 99 | | 338A | Mount Wilson Observatory | 5650 | 43 | 37.81 | 33.2 5 | 88 | 40.99 | 108 | #### MAXIMUM AND MINIMUM RAINFALL The following tabulation presents maximum and minimum rainfall amounts in Los Angeles County for the period of this report using 5 p.m. Pacific Standard Time, standard gage readings only. | Sta. | Station | Minim
<u>Seasor</u>
1945-46 | | Maxii
<u>Seaso</u>
<u>1945-46</u> | | Maxim
<u>Day</u>
1945-46 1 | 7 | <u>Date</u> | |-------|---------------------------------------|-----------------------------------|------|---|-------|----------------------------------|------|-------------| | 456 | Antelope Valley
Museum-Piute Butte | 4.29 | 3.92 | | | | | | | 28 3A | Crystal Lake-East | | | | | | | • | | | Pine Flats | | | 38 . 4 8 | | | | | | 402C | Cedar Springs | | | | 43.95 | | 8.07 | 11/13/46 | | 60A | Camp LeRoy (Hoegee's) | | | | | 7.97 | | 12/22/45 | Table II, page 10, shows a comparison of maximum intensities for ten representative stations in the District during the seasons and the maximum intensities of record. ^{*151} FEET ABOVE GROUND, 6TH AND MAIN STREET STATION. Tables III and IV, pages 11 and 15, present monthly and seasonal rainfall amounts for stations from which the District received records during the seasons 1945-46 and 1946-47. #### SUMMARY OF SNOWFALL Snowfall at three high mountain stations is shown as follows: | Sta. No. | Location | Elev. | Season 1945-46
Amt. Inches | Season 1946-47
Amt. Inches | |----------|----------------------------|----------|-------------------------------|-------------------------------| | 82 | Table Mountain | 7500 Ft. | 49 | 77 | | 83 | Big Pines Recreation Camp | 5860 Ft. | 65 | 87 | | 283a | Crystal Lake-E. Fine Flats | 5740 Ft. | 42 | 4 7 | The following tabulation shows snow survey data for the San Antonio and Rock Creek Watersheds: | Snow Survey Course | Date | Density % | Water Content
Inches Depth | Date | Density % | Water Content
Inches Depth | |----------------------|--------|-------------|-------------------------------|---------|-----------|-------------------------------| | Mt. San Antonio | 4/3/46 | 44.9 | 18.8 | 4/1/47 | 55.2 | 12.8 | | Upper Ice House Cyn. | 4/4/46 | 33.0 | 19.8 | 3/31/47 | 52.0 | 22.3 | | Islip #3 | 4/9/46 | 42.2 | 20.9 | 4/3/47 | 44.9 | 13.1 | #### COOPERATION OF RAINFALL OBSERVERS Observers have continued their valuable cooperation with the District in the collection of these data, as indicated by the fact that in 1945-46, 93% and in 1946-47, 96% of all observers reporting each month to the District, have sent in complete reports for the two 12-month periods. We wish to express our appreciation to the many agencies and individuals who have so freely cooperated with us in the collection of these data and by so doing have made such a complete report possible. #### RESPONSIBILITY Collection of rainfall and evaporation data during 1945-46 was accomplished by Mr. J. W. Luce and Mr. R. E. Lindsay, and during 1946-47 by Mr. R. E. Lindsay, Data in this report have been compiled by Mr. R. E. Lindsay, in charge, Precipitation Section. This work was done under the immediate supervision of Mr. Walter J. Wood, Assistant Chief, Hydraulic Division. TABLE I ACTIVE AUTOMATIC RAIN GAGES SEASONS 1945-46, 1946-47 | F.C.
NO. | NAME OF STATION | ELEV.
U.S.G.S. | TYPE AND CAPAC | ITY | WATERSHED | PERIOD OF RECORD | |-----------------------------
--|-------------------|---|------------------------------|---|---| | 6
10 | TOPANGA GUARD STATION
BEL AIR | 747 | FERGUSSON | 9" | TOPANGA CREEK
STONE CANYON | 8/18/30 TO DATE | | 11C | UPPER FRANKLIN RESERVOIR | 540
867 | n n | 9** | FRANKLIN CREEK | 1/4/29 TO DATE
9/29/37 TO DATE | | 15
33A - E | VAN NUYS WAREHOUSE
PACOINA DAM | 695 | u
11 | 9"
9" | L. A. RIVER PACOIMA CREEK | 8/18/30 TO DATE
9/22/30 TO DATE | | 46C-E | BIG TUJUNGA DAM | 1500
2290 | STEVENS | 12" | BIG TUJUNGA | 12/9/40 TO DATE | | 47A
47C | CLEAR CREEK
CLEAR CREEK | 3100
3125 | FERGUSSON | 12"
12" | ADJULUT DIB
ADJULUT DIB | 11/2/28 TO NOV. 1949
NOV. 1945 TO DATE | | 52C | WATERMAN GUARD STATION | 3125
3290 | | 12" | ARROYO SECO | 1/15/26 TO DATE | | 5 3 A | SLEEPY HOLLOW RANCH (COLBY'S) | 3500 | SPECIAL TIPPING BUCKET
REMOTE CONTROL GAGE | • | BIG TUJUNGA | 4/19/26 TO JAN. 1928 | | 54 | LOOMIS RANCH - ALDER CREEK | 4050 | FERGUSSON | 9" | BIG TUJUNGA | 2/14/41 TO DATE
11/24/31 TO DATE (1 | | 57B-E | CAMP SINGER (OPID'S CAMP) | 4350 | • •• | 12" | SAN GABRIEL, WEST FORK | 12/14/25 TO OATE | | 60A
70 | CAMP LE ROY (HOEGEE'S) ROGER'S CANYON - DALTON | 2750
800 | ***
** | 12" | BIG SANTA ANITA CREEK
SAN GABRIEL RIVER | 11/11/26 TO DATE
12/4/26 TO DATE | | 83 | BIG PINES RECREATION PARK | 6860 | • •• | 12" | DESERT | 12/1//25 10 DATE | | 85D
87 | CAMP BALDY GUARD STATION
SAN DIMAS GUARD STATION | 4300
1500 | STEVENS FLOAT GAGE | 12"
6" (PRIVATE) | SAN ANTONIO CREEK
SAN DIMAS CREEK | 11/11/27 TO DATE
12/11/25 TO 11/23/20 | | | | | | | | OCT. 1942 TO DATE | | 92
108B | CLAREMONT - POMONA COLLEGE
EL MONTE - FIRE STATION | 1190
301 | FERGUSSON | 9"
9" | SANTA ANA RIVER
RIO HONDO | 12/2/27 TO DATE
10/11/38 TO DATE | | 1248 | BOUQUET CANYON RESERVOIR - L.A.W.D. | 3000 | STEVENS | 9" (PRIVATE) | BOUQUET CANYON AND SANTA CLARA RIVER | 11/11/31 TO DATE* | | 150
156 | MONROVIA FALLS
LA MIRADA - STD. OIL CO. | 1800
86 | FERGUSSON
STEVENS | 12"
12" | SAWPIT CREEK
COYOTE CREEK | 2/4/28 TO DATE
4/19/46 TO DATE | | 158 | TANBARK FLATS | 2750 | FRIEZ TIPPING BUCKET | (PRIVATE) | SAN DIMAS CREEK | 1/16/29 TO DATE | | 178
179B | AZUSA - GRIFFITH
SIERRA MADRE - CARTER | 545
1125 | FERGUSSON | 9" | SAN GABRIEL RIVER
RIO HONDO | 1/1/31 TO DATE
6/24/41/ TO DATE | | 201 | PUENTE HILLS - ALTA MIRA RANCH | 860 | " | 9" | SAN JOSE CREEK | 9/15/38 TO 12/1/38 | | 210B | BRAND PARK | 1250 | STEVENS | 1.2" | L. A. RIVER | 12/19/40 TO DATE
12/27/28 TO DATE | | 213 | LOS ANGELES - HANCOCK PARK | 177 | FERGUSSON | 9** | L. A. RIVER | 1/13/29 TO DATE | | 228B
235B | BEVERLY HILLS - CITY HALL
HENNINGER FLATS | 255
2550 | " | 9"" (PRIVATE)
12" | BALLONA CREEK
EATON WASH | 10/14/31 TO DATE
12/30/29 TO DATE | | 257 | GRIFFITH PARK NURSERY | 750 | | 9" | L. A. RIVER | 11/12/30 TO DATE | | 259C | CHATSWORTH PATROL STATION | 1254 | | 9"
9" | DEVIL'S CREEK | 8/17/37 TO DATE | | 261-E
268-E | ACTON - MELLEN TORRANCE - SO, CAL, EDISON CO. SUB. STA | 3075 | STEVENS | 12" | SANTA CLARA RIVER LAGUNA - DOMINGUEZ | 11/27/30 TO DATE
3/19/40 TO 8/29/46 | | 269B | DIAMOND BAR RANCH - HORSE CAMP | 760 | FR1EZ | 1.2" (PRIVATE) | BREA CANYON | 12/3/41 TO DATE | | 280B
283A | FLINTRIDGE FIRE STATION
CRYSTAL LAKE • EAST PINE FLATS | 1325
5740 | FERGUSSON
STEVENS | 9"
24" | ARROYO SECO
SAN GABRIEL, NORTH FORK | 7/26/30 TO DATE
11/26/35 TO DATE | | 291 | LOS ANGELES - 96TH AND CENTRAL
PASADENA - CAL. TECH. | 1:21 | FERGUSSON
FERGUSSON | 12" (PRIVATE) | L. A. RIVER
ALHAMBRA WASH | 10/6/30 TO DATE
12/13/30 TO DATE | | 303CD
311B | PASADENA METEOROLOGICAL STATION | 745
918 | FRIEZ TIPPING BUCKET | 9"
(PRIVATE) | | 1/22/31 ⊤0 7/32 | | | | | | | | 10/23/34 TO 9/14/38*
10/1/38 TO DATE* | | 322 | MUNZ VALLEY RANCH | 2600 | FRIEZ | 9" (PRIVATE) | DESERT | 10/28/42 TO 10/46 | | 334 - E | SAN GABRIEL BAM #2
MOUNT WILSON - AIRMAYS STATION | 2335 | FERGUSSON | 12" | SAN GABRIEL RIVER
SAN GABRIEL - SANTA ANITA | 1/14/32 TO DATE
3/29/32 TO DATE | | 338B
352 | LECHUZA PATROL STATION | 5709
1530 | | 12 ''
9''' | ARROYO SEQUIS AND TRANCAS CANYON | 11/28/34 TO DATE | | 356B | PACIFIC COLONY | 685 | TDIE7 | 9" | SAN JOSE CREEK | 3/30/38 TO DATE | | 357
367 | SAN FERNANDO P. H. #3 UPPER HAINES CANYON | 1248
3450 | FRIEZ
FRIEZ | 12"
30" (PRIVATE) | UPPER SAN FERNANDO RESERVOIR BIG TUJUNGA | 12/4/45 TO DATE
1/13/33 TO DATE | | 372 | SAN FRANCISQUITO POWER HOUSE #2 | 1580 | FERGUSSON | 9"" | SANTA CLARA RIVER | 5/25/44 TO DATE | | 373
379B | BRIGGS TERRACE
SAN GABRIEL EAST FORK | 2310
1600 | FRIEZ
FRIEZ | 12"
12" | VERDUGO WASH
SAN GABRIEL RIVER | 11/28/33 TO DATE
1·2/8/37 TO 8/38 | | | | | | | | 2/14/46 TO DATE | | 380
415 | EL SERENO
SIGNAL HILL - CITY HALL | 553
115 | FERGUSSON | 9" | L. A. RIVER
COASTAL | 11/1/34 TO DATE
3/15/37 TO DATE | | 419 | MOUNT GLEASON | 5450 | ** | 12" | PACOIMA AND SANTA CLARA RIVERS | 9/21/37 TO DATE
11/3/37 TO DATE | | 425B
433 | SAN GABRIEL DAM #1
ALTADENA - FARNSWORTH PARK | 1481
1710 | " | 12" | SAN GABRIEL RIVER
RUBIO WASH | 9/14/38 TO DATE | | 434 | MALIBU HEADQUARTERS | 800 | * | 9" | MALIBU CREEK | 10/27/43 TO DATE | | 43 5
43 6B | MONTE NIDO CANYON
HANSEN DAM | 600
1005 | STEVENS FLOAT | 9"
12" (PRIVATE) | COLD AND MALIBU CREEKS TUJUNGA WASH | 11/19/43 TO DATE
10/30/40 TO DATE | | 445B | LIVE OAK CANYON DAM | 1510 | STEVENS | 12** | LIVE OAK WASH | 3/20/40 TO DATE | | 446 | ALISO CANYON - SANTA SUSANA MTS.
BALDWIN HILLS | 2367 | FR1EZ
STEVENS | 12" | L. A. RIVER BALLONA CREEK | 7/2/40 TO DATE
12/19/40 TO DATE | | 461
465B | SEPULVEDA DAM | 392
675 | FRIEZ | 12"
12" (PRIVATE) | L. A. RIVER | 10/23/45 TO DATE | | 466B | PACOTIMA CANYON | 3225 | FERGUSSON | 12" | PACOIMA CREEK | 1/16/41 TO DATE
10/18/41 TO DATE | | 470
471 | TUJUNGA - MILL CREEK
LITTLE TUJUNGA - GOLD CREEK | 4600
2750 | FRIEZ
FRIEZ | 30" (PRIVATE) | BIG TUJUNGA
LITTLE TUJUNGA | 10/30/41 TO DATE | | 477 | SANTA ANITA - SPRING CAMP | 4650 | STEVENS | 24" | SANTA ANITA CREEK | 11/25/41 TO DATE | | 486
492 | COLDWATER CANYON - WIDMAN RANCH
CHILAO - STATE HIGHWAY MAINTENANCE STA | 3865
5275 | FERGUSSON | 9""
12 " | SAN GABRIEL - CATTLE CANYON
SAN OABRIEL RIVER, WEST FORK | 9/22/43 TO DATE
10/10/44 TO DATE | | 493 | SAND CANYON | 1780 | FRIEZ | 12" | 5ANTA CLARA RIVER | 11/8/46 TO DATE | | 495
517 | LOS ANGELES - 8TH AND FIGUERCA ANDERSEN RANCH - BURKHART | 335
4700 | FULLER FLOAT TYPE
FERGUSSON | 9" | L. A. RIVER PALLETT CREEK | 2/7/44 TO DATE
12/17/43 TO DATE | | 565 | LONG BEACH - 16TH AND CHESTINUT | 13 | BELFORT TIPPING BUCKET | (PRIVATE) | COASTAL | 11/8/24 TO DATE | | 577E
577F | U.S.W.B 6TH AND MAIN
LOS ANGELES - U.S.W.B. | 417
548 | FRIEZ
FRIEZ TIPPING BUCKET | 12" (PRIVATE)
(PRIVATE) | | 2/19/97 TO DATE**
3/1/40 TO DATE | | 683 | SUNSET RIDGE GUARD STATION | 2110 | FRIEZ | 12" (PRIVATE) | ARROYO SECD - L. A. RIVER | 10/16/45 TO DATE | | 699
700 | LOS ANGELES - 30TH AND TRINITY STREETS
LOS ANGELES - SLAUSON AND LONG BEACH B | 208 | FERGUSSON | 12" (PRIVATE
12" (PRIVATE | COMPTON CREEK COMPTON CREEK | 10/9/40 TO 7/8/47
10/28/40 TO 7/8/47 | | 718 | ONE THOUSAND OAKS | 176
870 | STEVENS | 12" (PRIVATE) | ARROYO CONEJO | 7 TO 1/47* | | 722 | DEL SUR - GODDE RANCH | 2760 | FERGUSSON | 9" (PRIVATE) | ANTELOPE VALLEY | 10/27/42 TO DATE** | | 723
724 | STONE CANYON - SAN FERNANDO VALLEY BIG DALTON - MONROE CANYON - FLUME X | 835
1775 | STEVENS FLOAT STEVENS | 9" (PRIVATE)
6" (PRIVATE) | | 10/43 TO DATE
3/15/39 TO DATE | | 725 | BIRMINGHAM HOSPITAL | 722 | FRIEZ | 12" (PRIVATE) | L. A. RIVER | 8/4/44 TO DATE | | 726 | ANGELES CREST - U.S.F.S. GUARD STATION | 2300 | FRIEZ
FRIEZ | 12" (PRIVATE) | ARRÓYO SECO - L. A. RIVER | 10/16/45 TO DATE | | 735
736 | BELL CANYON BIG DALTON CANYON - VOLFE CANYON | 915
3100 | FR 1EZ
FERGUSSON | 12" (PRIVATE | L. A. RIVER BIG DALTON CANYON | 1/15/46 TO DATE
3/2/39 TO 6/46 | | 740 | SAN DIMAS CANYON - FERN CANYON #1 | 5200 | FERGUSSON | 12" (PRIVATE | SAN DIMAS CREEK | 10/12/36 TO 7/16/46 | | 741
743 | SAN DIMAS CANYON - UPPER EAST FORK
BIG DALTON - BELL CANYON | 2750 | STEVENS | 6" (PRIVATE) | | 10/4/34 TO 6/46
9/33 TO 8/46 | | 743 | SANDBERG AIRWAYS | 3100
4517 | FRIEZ | 12" (PRIVATE) | SANTA CLARA RIVER | 4/2/32 TO DATE*** | | 748 | NEWHALL - C.A.A. AIRWAY COMM. STATION | 1206 | FRIEZ | 12" (PRIVATE | SANTA CLARA RIVER | 7/1/29 TO DATE*** | | 749
750 | BURBANK AIRPORT
PALMDALE - C.A.A. AIRMAY COMM. STATION | 699 | FRIEZ
FRIEZ | 12" (PRIVATE) | DESERT | 9/20/31 TO DATE*** | | 1003 | van alden debris basin | 875 | FERGUSSON | 9" | LOS ANGELES RIVER | 11/1/34 TO DATE***
2/4/46 TO 9/29/47 | | 1005 | SAN PEDRO CITY RESERVOIR | 150 | FERGUSSON
STEVENS | 9" | 9AN PEDRO HARBOR
LAGUNA DOMINGUEZ | 3/7/46 TO DATE
8/29/46 TO DATE | | 1006
1008 | LA FRESA - SO. CAL. EDISON CO. SUBSTA. | 65 | | 12" | | | NOTE: SUFFIX A, B, C DENOTES FIRST, SECOND, OR THIRD LOCATION OF STATION IN SAME LOCALITY UNDER NEARLY SAME CONDITIONS. -E, INDICATES EVAPORATION TANK AT STATION. THE DISTRICT ALSO HAS RECORDS OF SEVERAL AUTOMATIC CAGES AT STATIONS WHICH ARE NOW INACTIVE. THESE RECORDS ARE AVAILABLE IN OUR FILES. (1) - PREVIOUS RECORD BY U.S.W.B. MANYIN GAGE STATENING DEC. 1916 TO 11/24/31. - CHARTS OR REPRODUCTIONS ARE NOT IN DISTRICT FILES. *** - HOURLY AMOUNTS PUBLISHED IN U.S.W.B. HYDROLOGIC BULLETIN SOUTH PACIFIC DISTRICT. #### TABLE 11 COMPARATIVE MAXIMUM RAINFALL INTENSITIES IN INCHES SEASON 1945-46,
1946-47 AND MAXIMUM OF RECORD FOR SELECTED STATIONS #577E-LISWB #15 VAN NUYS #303 CAL TECH. PASADENA #178 AZLEA #261 ACTON #6 TOPANGA #92 POMONA #578 CAMP #60A CAMP CENTRAL BLDG. LAND CRIFFITH GABRIEL DAM #1 MELLEN COLLEGE SINGER (OPID'S) LE ROY CLAREMONT (HOEGEE'S) LOS ANGELES WAREHO ISE 1945+ NAX OF RECORD 1945-MAX OF RECORD 1945 MAX OF 1945-MAX OF RECORD 1945-MAX OF RECORD 1945-MAX OF 1945-MAX OF RECORD 1945-MAX OF RECORD 1945-MAX OF RECORD 1945-MAX OF RECORD RECORD RECORD 5 MiN. .24 3/30 ,22 3/30 .17 12/21 AMT. DATE .09 3/28 .17 12/21 ,18 7/24 .22 12/21 .18 12/23 .61 3/30 .32 12/21 10 MIN. .13 .25 3/30 .22 2/3 .28 2/3 .30 7/24 .22 12/23 .74 3/30 .42 12/21 .49 12/21 .30 12/21 2/3 .34 2/3 .34 7/24 .27 12/23 .80 3/30 .38 12/21 ,27 12/21 .58 12/21 AMT. .65 12/21 :18 .42 2/3 2/3 30 MIN. AVT. .57 2/3 -66 7/24 .94 3/30 1.04 .44 12/21 .48 12/21 12/21 12/21 12/23 2/3 1 HR. AVIT .70 12/21 1.14* .73 7/24 1.26 .48 12/23 1.14 3/30 1.73 .56 .48 2/3 DATE 12/21 12/21 12/21 2/3 1.71 .92 2/3 2 HRS .77 12/23 AMT. DATE .80 .93 12/21 1.17 1.73* .86 7/24 1.74 2.65 12/21 2/3 1.53 1.16 3 HRS. 2.19* 12/21 .90 7/24 1.03 2.55 12/21 3.26 12/21 1.14 1.82 12/21 AMT. DATE 2/3 4 HRS. 1.57 12/21 2.62* 2.11 1.22 1.40 AMT. DATE ,90 7/24 2.99 3/30 3,91 1,31 12/21 1.18 2/3 5 HPS. AMT. 1.27 2/3 1.39 2,01 3.10* .92 7/24 2.27 1.31 3,36 3/30 4.22 1.54 2/3 12/21 12 HRS. .97* 3/30 AMT. DATE 2.24 3.60 12/22 5.43* 12/22° 3,78 12/22° 2.32 12/22° 5.86 3/30 6.44 12/22° 2/3 4,58 12/22° 3.90 12/22 9.48 24 HRS. 5.83 1.57 3.43 9,07 1.81 7.14 12/22 3/30 DATE 3/30 9 12/229 12/22 STORM TOTAL 8.20 12/21 12/23 13.01 12/21 -12/23 AUTO. 2.45** 10.48 6.36 15.78 16,65 AMT. 12/21-12/21 -12/23 12/20 12/21-12/20-12/23 12/20-12/23 12/21-12/23 13,25 12/21 12/23 16.76 STD. 6.42 15.44 4.73 2.92 10.95 DATE 12/21-12/21 12/20-12/21 12/23 12/20 12/23 12/20 12/23 12/21 1946-1946-1946 47 .23 12/5 .08 11/23 .18 2/17 .60 4/5/26 .11 12/26 1.17 4/5/26 .10 11/20 5 MIN. AMT. .12 -29 -40 .33 .26 11/13 .45 3/3/41 .43 12/27/36 ,32 3/3/43 1/14/08 11/13 12/6/46 DATE 12/15/38 2/11/36 8/26/35 12/6 10/3 10 MIN. AMT. DATE .16 .65 2/18/14 .24 .43 1.8/40 .13 .28 2/17 .62 4/5/26 .15 12/26 .29 .70 11/13 2/20/41 .46 12/6/46 .43 10/3 1.18 .19 11/20 .57 12/27/36 .29 11/13 1.40 11/11/44 .41 8/26/35 .46 12/6 12/25 12/5 4/5/26 3/3/43 15 MIN. .20 12/26 .47 12/6 1.18 4/5/26 ,22 12/25 .81 2/18/14 .25 12/5 .50 12/17/40 .17 11/23 .68 4/5/26 .44 8/26/35 .40 11/13 .90 2/20/41 48 3/4/43 .47 10/3 .25 11/20 .69 12/27/36 .53 11/11/44 .34 2/17 11/13 3/3/43 DATE .88 12/28/41 .27 11/23 30 MIN. AMT. .40 12/25 1.14 2/18/14 .2700 -51 .96 4/5/26 .23 .66 10/1/32 .66 11/13 1.16 .47 12/6 .58 10/17/34 .69 11/13 1.52 4/5/26 .44 11/20 1.06 3/4/43 ° .60 11/13 1.08 3/3/43 DATE 11/13 10/17/34 2/17 12/26 1 HR. AMT 1.51 2/18/14 45.00 1.26 .28 1,60 .53 2.21 4/5/26 1.73 12/21/45 1.03 11/13 1.70 3/3/43 .65 12/25 .41 11/23 .90 11/13 .94 1/22/43 .97 11/13 .75 11/20 2/17 DATE 11/13 12/28/41 10/17/34 1/22/43 12/28 8/24/35 12/27 1.53 11/13 .81 °° .58 11/23 1,32 2/17 2,34 1/22/43 .47 12/26 2.72 12/31/33 .76 11/13 1.63 1/22/43 3.83 1,50 2.88 3/2/38 1.14 2,36 3/4/43° 2 HRS. AVT. DATE 1.09 1.99 2/18/14 1.50 1/22/43 1,73 11/13 4/5/25 12/25 1.13°° 2.13 11/13 1/22/43 4.53 2.23 4.00 1.60 3,02 .72 11/23 .61 12/26 1.48 8/24/35 3.70°° 1/22/43 1'.21 1/1/34 1/22/43 11/13 11/13 12/31/33 11/13 4/5/26 11/20 3/2/38 12/25 12/31/33 1,22 1,3600 4.32 1/22/43 1.57 1/22/43 1.80 11/13 4.50°° 1/22/43 2.96 2.34 5.54 2.87 11/20 5,38 3/2/38 1.86 12/25 3.80 12/31/33 2,67 2.79 4 HRS. 2,07 .71 12/26 AMT. 1.30 3/2/39 DATE 12/25 11/13 1/22/43 11/13 1/1/349 11/20 4.55 12/31/33 5,30 1/22/43 .79 12/26 1.82 2.12 5.30% 3.25 2.75 11/20 6.67 3/2/38 3.37 11/20 6.48 1/22/43 2.18 12/25 2.45 11/20 1,29 5 HPS. 1.59 3.06 3/2/38 1.58 ** 3.08 1/22/43 .84 11/23 2.98 1/1/34° 1/22/43 11/13 1/22/43 DATE 12/25 13,36 1/23/43 3.18 12/25 7.98 12/31/33 10.05 1/22/43 2.16 °° 5.29 11/13 ° 1/1/34° 1.36 12/26° 6.00 1/1/34° 41.10 11/20 1.35 3.14 3.07 9.69 4.55 4.78 11/20 5.44 11/20 12 HPS. 1.87 AMT. DATE 1/23/439 1/23/43° 11/20 00 12/31/33 11/139 3/2/38 12/269 3,95 11,26 12/26° 1/1/34° 26,12 1/23/43° 22.00 1/23/43 3.21°° 11/13 10,19 1/1/34 4.10 17.81 4.41 3.25 13.44 11/20° 1/1/34 2.41 11/13¤ 8.03 1/22/43 7.86 11/1/34 24 HPS. AMT. DATE 2.80 7.36 1/1/34 ° 1/23/43 11/139 1/23/439 STORM TOTAL 5.29 10.70 12.81 32,45 37.42 6:29 13,62 6.36 iNC. INC. 4.31 12.13 6.84 24,07 2.98 AUTO. FOOT-NOTE 1/21 • 1/23/43 11/11-11/14 1/21 - 1/23/43 11/11-11/14 11/10-11/14 1/21 -1/23/43 11/11-11/11-11/14 1/21-1/23/43 11/10-1/21-12/30/33 1/1/34 12/23-DATE 12/30/33-1/1/34 1/21 11/11 1/23/43 1/23/43 12/27 37.34 1/21-23/43 33,95 9.65 6.45 13.86 12.57 6.69 12/18 5.40 17.38 5.20 10.66 25.08 3.30 9,67 3/2-10/84 7.02 11/11-11/14 5.69 11.31 STD 12/23-12/27 11/10-11/14 1/21-23/43 11/10-11/14 12/18-23/21 11/11-11/11-1/21-12/17- STA, GOA CAMP LE ROY (HOEGEE'S) STORMS OF 11/10 - 14/47 AND 12/23/47 WERE NOT RECORDED. INTENSITIES 9-KMN UP TO 24 HPS. MAY HAVE BEEN EXCEEDED. 11/14 12/27 PARTILY INTERPOLATED FROM CONTROL HOUSE GAGE. PEN STICKING, MADUNT WAS PROBABLY EXCEEDED. DATE AT END OF PERIOD. INTERPOLATED VALUE FROM NEARBY STATION. TABLE III SEASONAL 1945-46 MONTHLY RAINFALL SUMMARY RAINFALL RECORDS IN INCHES | STA
NO. | STATION | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | SEAS
TOTA | |--------------|---|----------------|-------------------------|-----------------|-------------|---------------|---------------|-------------|------------|--------------|-------------|-----------|------------|----------------| | 2 | ESCONDIDO CANYON
SEMINOLE HOT SPRINGS | .58
.75 | .23 | 7.73
8.44 | .44 | 1.45 | 4.24
6.63 | .26
,12 | 0 | 0 | 0 | 0 | 0 | 14.9 | | 5B | CALABASAS | .69 | .16 | 6.62 | .40 | 1.41 | 5.10 | .21 | .O3 | 0 | 0 | 0 | 0 | 14.6
19.8 | | 6
9 | TOPANGA PATROL STATION
SEPULVEDA & CHASE - LARSON | .70
.59 | .34 | 11.46
5.39 | ,28
,20 | 1.74 | 4.88
3.40 | .41
.63 | .08
T | 0 | T | o | 0 | 11.3 | | 10
11C | BEL AIR
UPPER FRANKLIN RESERVOIR | .79 * | .28 *
.27 | 6.94* *
6.71 | .21 • | 1.94* | 4.12*
4.85 | .50
.48 | T
O | 0 | 0 | 0 | 0
T | 14.7 | | 12 | FRANKLIN & MULHOLLAND PATROL #1 | .99 | .30 | 6.52 | .22 | 1.96 | 5.03 | .50 | .08 | ō | Ō | ō | .02 | 15.6 | | 13 | NO. HOLLYWOOD BLIX ROSCOE - MERRILL | .79
.94 | .20
.35 | 5.37
4.53 | .16 | 1.70
1.37 | 4.26
4.48 | .58
.73 | 0
•11 | 0 | .15 | 0 | .01
T | 13.2 | | 15 | VAN NUYS - WAREHOUSE
SEPULVEDA & MULHOLLAND PATROL #2 | .69 | .33 | 4.95 | .22 | 1.57 | 4.01
4.70 | .65
.58 | .01 | 0 | T
0 | 0 | 0 | 12.3 | | 17
18 | ADOHR DAIRY | .78
.68 | .38 | 8.08
5.89 | .32 | 1.92 | 4.35 | .40 | 0 | ō | ō | o | 0 | 13.2 | | 20B | GIRARD RESERVOIR
BRANT RANCHO - GIRARD | .67
.66 | .12 | 7.61
6.42 | .36
.36 | 1.65
1.14 | 5.39
3.35 | .25 | .16 | 0 | 0 | 0 | 0 | 16.2 | | 23-E | CHATSWORTH RESERVOIR CHATSWORTH | .88 | .26 | 6.44 | .33 | .94 | 3.08 | .22 | .08 | - † · · · | .01 | 0 | 0 | 12.2 | | 24C
25B | NORTHRIDGE - ANDREWS | .97
1,21 | .21 | 7.19
5.69 | .43
.35 | 1.08 | 3.34
3.30 | .23
.38 | .32 | 0 | O
T | 0 | 0
.30 | 13.7
12.4 | | 27B
28 | PACOIMA - RADDATZ RANCH
SAN FERNANDO LEMON ASSOCIATION | N.I.
.92 | .29 | 5.46 | .24 | 1.19 | 3.59 | .54 | .20 | N.I. | 0
-01 | 0 | 0
T | INC. | | 29B | GRANADA - PUMP PLANT: | 1.04 | .31 | 6.72 | .23 | 1.06 | 4.83 | .31 | .05 | 0 | T | 0 | 0 | 14.5 | | 30
32C-E | SYLMAR
NEWHALL - SOLEDAD DIVISION HEADQUARTERS | 1.17 | .56
.38 | 6.34
6.60 | .28
.16 | 1.26
2.06 | 4.65
5.07 | .45
.52 | .18
0 | 0 | O
T | T
0 | 0 | 14.8
15.9 | | 33A'-E | PACOIMA DAM
CHAPPEL RANCH - HANSEN HEIGHTS | 1.41 | .36
.40 | 6138
4.69 | .24 | 1.38 | 5.77
4.43 | .83
1.04 | .37 | 0 | .12 | 0 | 0 | 16.8
13.5 | | 39B | SUNSET DAM | 1.02 | .25 | 5.80 | .18 | 1.82 | 6.14 | .78 | .16 | Ť | 0 | 0 | •52 | 16.6 | | 42
43A | REDONDO - CITY HALL PALOS VERDES - ADMINISTRATION BUILDING | .43
.37 | .46
.25 | 3.85
4.18 | .33
.43 | .56
.47 | 3.42
3.91 | .53
.17 | .03
0 | 0 | 0 | 0 | 0 | 9.6 | | 43B
44 | PALOS VERDES - GOLF COURSE
POINT VICENTE LIGHT HOUSE | .42 | .50
.42 | 4.03
3.41 | .31 | .85
.55 | N C | .48 | .05 | C
O | 0 | R C | 0 | INC.
8.7 | | 46D-E | BIG TUJUNGA DAM | 1.10 | ₄4 6 | 9.25 | .17 | 3.43 | 9.81 | .92 | 0 | 0 | Ö | 0 | 0 | 25.1 | | 47A
47C | CLEAR CREEK
CLEAR CREEK | 1.45
1.45* | .51
.51* | 10.67
12.31 | .16 | 2.98
3,12 | 12.06 | .80
.93 | .15
.15 | 0*
0 | .02•
.02 | Q•
O | .51
.33 | 29.3
29.6 | | 48
49 | OAK WILDE
ALTADENA - CHIESA | 1.63 | .54 | 11.31 | .20 | 3.02 | 9.59 | .82 | .25 | o
T | Т | 0 | .17 | 27.5 | | 50B | LA CANADA - ARROYO SECO DIVISION HEADQUARTERS | .66 | .28 | 7.49
7.98 | .15 | 2.39 | 5.85
5.98 | .71 | .13 | - | .01
T | 0 | •04 | 17.9 | | 51
52E | FALLING SPRINGS (LA CIENEGA)
SWITZERS CAMP | 2.93
N.I. | .81 | 15.10 | .28 | 3.55 | 10.54 | .63 | 0 | 0 | 0 | 0
N.1. | .21 | 34.0
INC. | | 52C | WATERMAN GUARD STATION | 1.25 | .66 | 12.03 | .23 | 3.13 | 11.06 | .90 | .23 | 0 | .05 | 0 | .92 | 30.4 | | 53A
54 | SLEEPY HOLLOW RANCH (COLBY'S) LOOMIS RANCH - ALDER CREEK | 2.06 | .36 | 6.10 | .30 | 1.69 | 9.28
7.40 | .82 | 0 | 0 | .30 | .09 | .15 | 26.8
19.6 | | 56
57B-E | CAMP KOLE (VALLEY FORGE LODGE) CAMP SINGER (OPID'S) | 2.65
2.84 | N
,70 | 0
15.86 | R E | C
3.88 | | R D | .21* | 0 | .10 | 0 | | INC.
38.4 | | 60A | CAMP LE ROY (HOEGEE'S) | 1.38 | .57 | 17.13 | .54 | 2.38 | 10.02 | .45 | .25 | 0 | .23 | 0 | .14
.05 | 33.0 | | 62
63B-E | BIG SANTA ANITA GUARD STATION BIG SANTA ANITA DAM | 1.62 | .19 | 11.27 | .39* | 2.10** | 7.86
5.58 | .40* | .25* | 0 | ,06 | 0 0 | .10 | 24.3 | | 66
67B | SIERRA MADRE - PEGLER RANCH
MONROVIA - CITY HALL | .81 | .23 | 7.89 | .25* | 1.68
| 5.27 | .40 | 0 | 0 | 0 | 0 | Т | 16.5 | | 68B | SAWPIT DAM | .82
.98 | .10
.24 | 8.54
10.47 | .30 | 1.67 | 4.40
6.22 | .33
.76 | .05
.28 | 0 | .09 | 0 | .10 | 16 .4 | | 69
70 | SAWPIT CANYON (HOGBACK) ROGER'S CANYON - DALTON | 1.75 | .23 | 11.47 | .48 | 2.47 | 6.98
4.82 | .85
.58 | .62 | 0 | .06 | 0 | •10
•10 | 25.0 | | 73 | GLENDORA - ENGLEWILDE RANCH | 1.44 | .30 | 11.97 | .27 | 2.34 | 5.62 | .67 | .16 | 0 | Ō | 0 | .16 | 22.9 | | 76B
82 | SAN GABRIEL DAM #1 CAMP. TABLE MOUNTAIN | 1.82 | .45
.17 | 13.92
6.17 | .47
.10 | 2.81
.74 | 8.74
2.71 | .57
.66 | .09
.02 | 0 | .13
1.41 | .09 | .13 | 29.13
14.6 | | 83
85B | BIG PINES RECREATION PARK CAMP BALDY GUARD STATION | 3.21 | .40 | 10.27 | .18 | 1.66 | 7.21 | 1.13 | .04 | 0 | 1.75 | T | .02 | 25.9 | | 87 | SAN DIMAS GUARD STATION | 3.04 *
1.30 | .50*
.31 | 14.77 | .40
.47 | 3.78
1.81 | 10.41
5,54 | .71
.65 | .29
.15 | 0 | .15
.04 | 0 | .70
.29 | 22.18 | | 89 • E
90 | SAN DIMAS DAM
ELDER RANCH (BRYDON RANCH) | 1.04
.82 | .29 -
.28 | 9.64
7.49 | .40
.33 | 1.79
1.70 | 5.30
5.16 | .66
.64 | .04
0 | 0 | .01
0 | 0 | .20
.12 | 19.3 | | 91 | INDIAN HILL - CLAREMONT | N | 0 | R | E | С | 0 | R D | | 0.* | T* | 0* | .38 | INC. | | 92
93 | POMONA COLLEGE - CLAREMONT
CLAREMONT - FIRE STATION | .71
.78 | .12 | 6.57
6.71 | .41 | 1.52 | 3.92
4.06 | .49
.46 | .11 | 0 | .01 | 0 | .78
.74 | 14.63
15.05 | | 94 | CHARTER OAKS - FIELDS RANCH
SAN DIMAS - SAN JOSE DIVISION HEADQUARTERS | .91 | .23 | 7.81
7.31 | .33 | 1.24 | 4.67
4.31 | .42 | .05
0 | 0 | 0 | 0 | .52
.40 | 16.18 | | 95
96-E | PUDD INGSTONE DAM | 1.45 | .15 | 7.13 | .27 | 1.27 | 4.04 | .38 | .12 | 0 | 0 | Ö | .17 | 14.98 | | 98
99 | AZUSA - HIBSCH
AZUSA - FOOTHILL RANCH | 1.03 | .15 | 9.26
9.48 | .31
.17 | 1.85 | 4.86
4.89 | .43
.43 | .04 | 0 | 0 | 0 | 0 | 17.93
17.46 | | 01 | WEST COVINA - HURST RANCH | .53 | .28 | 6.96 | .20 | 1.48 | 4.17 | .34 | .05 | 0 | 0 | 0 | 0
.63 | 14.0
13.1 | | 02B
04 | WALNUT - SOUTH HILLS PATROL STATION
NO. WHITTIER HEIGHTS - COLE RANCH | .44 | .13 | 5.14
6.50 | .50
.24 | 1.87 | 5.35 | .53 | 0 | Ö | 0 | 0 | .28 | 13.7 | | 05
06 | E. WHITTIER - SHARPLES RANCH
WHITTIER - CITY HALL | .24 | .19
.17 | 6.37
5.10 | .19
.11 | 1.86 | 4.19
4.13 | .40 | .02
.03 | 0 | 0 | 0 | .25
.20 | 11.66 | | 07B | DOWNEY - FIRE STATION | .24 | .15 | 3.45
5.94 | .21 | .81
1.38 | 4.63
4.60 | .52 | 0 | 0 | 0 | 0 | .30
0 | 10.3 | | 08B
09C | EL MONTE - FIRE STATION
WEST ARCADIA | .49 | .11 | 6.75 | .15 | 1,39 | 4.30 | .38 | 0 | 0 | 0 | - Ö | <u> </u> | 13.94 | | 10 | ALHAMBRA - CITY HALL
SO. PASADENA - CITY HALL | .66
.55 | .24 | 6.49
7.16 | .16
.22 | 1.62°
1.65 | 5.64
4.79 | .58
.51 | .03
0 | 0 | 0 | Ö | Ť | 15.4 | | 14 | ROSECRANS RANCH - GARDENA | .35 | N | 0 | R | E | C 0 | R | D | 0 | 0 | 0 | т | INC.
9.6 | | 16B
17B | INGLEWOOD - FIRE STATION #1
COMPTON - FIRE STATION | .33
.26 | .21 | 4.10 | .20
.26 | .69
.52 | 3.63
4.36 | .46 | .03 | 0 | 0 | 0 | 0 | 10.1 | | 18B | WILMINGTON | .18 | .32 | 3.96 | .28 | .68 | 3.56 | .59
.52 | 0 | 0 | 0 | 0 | 0
T | 9.5 | | 19D
20 | SAWTELLE - SOLDIER'S HOME
VINCENT PATROL STATION | .58
.77 | .43 | 6.35
1.89 | .23
.19 | 1.42
.96 | 3.27
2.81 | .54 | .20 | Ó | .87 | .02 | 0 | 8.4 | | 21
22B | LANCASTER - UNION HIGH SCHOOL
LEONIS VALLEY - RITTER RANCH | 1.32 | T
•08 | 2.06
5.16 | T
.05 | .67
1.54 | .93
4.53 | .03 | .10 | 0 | .44
0 | T
0 | .05
0 | 5.60
12.50 | | 24B | BOUQUET CANYON RESERVOIR | .96 | .28 | 6.19 | .27 | 2.03 | 6.01 | .47 | .55 | 0 | .62 | 0 | 0 | 17.3 | | 25
26 | SAN FRANCISQUITO CANYON POWER HOUSE #1 VENICE-CITY YARDS | 1.18
.51 | .01
.48 | 7.05
4.67 | .34
.14 | 2.07
.98 | 5.54
2.69 | .62
.59 | .39
0 | 0 | .21
0 | 0 | 0 | 17.4 | | 27 | DRY CANYON RESERVOIR
ELIZABETH LAKE CANYON - WARM SPRINGS CAMP | 1.26 | .14 | 4.78
9.70 | .22
.24* | .86
2.25 | 2.90
7.19 | .34 | .01 | 0 | .08 | 0 | 0 | 10.5 | | 28B
30B | SANDBERG - QUATL LAKE PATROL | 1.82 | .32 | 4.03 | .61 | 1.31 | 5.29 | .26 | .37 | 0 | .17 | Ť | .05 | 14.2 | | 34
35 | SAN DIMAS - STEVENS
NORWALK | 1.30 | .20 | 8.43
4.79 | .24
.24 | 1.47 | 4.66
3.92 | .50
.37 | 0 | 0 | 0 | 0 | .25
0 | 17.0 | | 36B | HOLLYWOOD - CITY ENGINEER | •50 | .13 | 6.09 | .06 | 1.11 | 3.93 | .45 | .03 | 0 | 0 | 0 | .06 | 12.3 | | 37B
39 | CURSON CANYON L.A.W.D. 2ND & BROADWAY | .50 | .17* | 7.31 | .22 | 1.43 | 4.31 | 1.86 | .04 | 0 | 0 | 0 | .25 | 15.5 | | 40 | SAWTELLE - CITY HALL, WEST LOS ANGELES | .65 | .37 | 6.60 | .23 | 1.48 | 3.53 | .54 | .07 | 0 | 0 | T | 0 | 13.4 | | 43
44 | AZUSA - CITY PARK
SIERRA MADRE DAM | .99
1.09 | .17 | 9,11 | .22
.38 | 1.93
1.7D | 4.80
5.72 | .44
.55 | .02
.17 | 0 | 0
.02 | 0 | 0
•10 | 17.6 | | 50
55B | MONROVIA FALLS
LITTLE ROCK CREEK | 1.29 | .28 | 12.72 | .40 | 2,14 | 7.19 | .67 | .54 | 0 | .05 | 0 | .12 | 25.4 | | | | 1.46 | 0 | 1.89 | | 1.10 | 2.63 | .46 | | | | | | 8.1 | | | | | | TARLE | 111 194 | 5-46 (CO | ntinued) | | | | | | · | | |-----------------|--|-------------|-------------|---------------|-----------------|----------------|---------------|-------------|--------------|--------|------------|----------|--------------|-----------------| | STA
VO. | STATION | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | SEAS.
TOTAL | | 158
164 | TANBARK FLATS
MONROVIA - O'CONNOR | 1.22 | .52
.15 | 13.37 | .47
.25 | 2.39
1.69 | 7.52
4.57 | .65
.41 | .34 | 0 | .03
.05 | 0 | .34 | 26.85 | | 167
168 | ARCADIA PUNP PLANT
SAN GABRIEL - WATTS | .92 | .16
N.R. | 7.55 | .21
: ON TIN | 1.63 | 4.77 | .40 | .05 | ő | .06 | ŏ | .06 | 16.55 | | 169
170B | SIERRA MADRE PUMP PLANT POTRERC HEIGHTS | .88 | .28 | 8.49 | .34 | 1.62 | 5.04 | -56 | .10 | 0 | .03 | 0 | .09 | INC.
17.43 | | 171 | CHAPMAN WELLS
GLENDORA - WARREN | .45 | .12 | 5.38
7.25 | .18
.21* | 1.56 | 4.93
5.13 | .41 | .04 | 0 | 0 | 0 | 0 | 12.72
15.71* | | 174
1758 | ALTA CANYADA - LA CANADA IRRIGATION DISTRICT | 1.71 | .23
.44 | 8.41
9.15 | .24 | 1.54 | 4.52
7.24 | .53
.86 | .12 | 0 | 0 | 0 | .04
0 | 17.34 | | 176
177C | RUBIC CANYON WATER COMPANY LA CANADA - BRADFORD | .63 | .32 | 8.02 | .23 | 2.12 | 5.63
5.95 | .58
.63 | .08
.18 | 0 | 0 | 0 | .23 | 17.52 | | 178
179B | AZUSA - GRIFFITH
SIERRA MADRE - CARTER | .88 | .18 | 8.28
9.24 | .16 | 1.52 | 3.87
5.70 | .40 | .02 | 0 | 0 | 0 | .02 | 15.33 | | 1818 | BASSETT - CLIFFORD
BALDWIN PARK - LEACH | .69 | .14 | 5.82 | .18 | 1.35 | 4.16 | .38 | .03 | 0 | 0 | ŏ
o* | .04 | 12.79 | | 185 | GLENDORA - WEST | 1.74 | .17 | 10,23 | .16 | 1.86 | 5.00 | .65 | .07 | 0 | Ö | 0 | .13 | 20.14 | | 188C
192B | SAN DIMAS - MORRISON
BELL-FIRE STATION | 1.39 | .26
.18 | 7.66
3.97 | .29
.15 | 1.45
.83 | 4.48
4.20 | .45
.54 | 0
.02 | 0 | 0 | 0 | .40
0 | 16.38
10.30 | | 193
196 | COVINA #2 - TEMPLE
LA VERNE - LEADER | .86 | .13 | 6.48
7.52 | .15 | 1.19 | 4.09
4.24 | .48
.56 | .02
.07 | 0 | T
0 | 0 | .32 | 13.72
16.04 | | 198B
199B | BRAND DEBRIS BASIN
HUNTINGTON PARK - CITY YARD | .74
.48 | .76
.18 | 5.98
4.49 | .15 | 1.81* | 4.61
3.86 | .81
.47 | .05 | 0 | 0
T | 0 | 0 | 14.91 | | 200 | SAUGUS - SO, CALIF. EDISON CO. SLB STATION
PUENTE HILLS - ALTA MIRA RANCH | 1.23 | .19 | 5.42 | .07 | 1.43 | 3.56
5.14 | .27 | .02 | 0 | .42 | 0 | 0
•57 | 12.61 | | 201
205 | PUENTE - SO. CALIF. EDISON CO. SUB STATION | .35 | .18 | 6,10 | .30 | 1.12 | 4.18 | .32 | .03 | 0 | 0 | 0 | .39 | 12,97 | | 206
208 | VALENCIA HEIGHTS ARTESIA-BARR LUNBER COMPANY | .57
.05 | .15
.16 | 6.10
4.94 | .26
.19 | 1.32 | 4,23
3,41 | .34
.50 | .05.*
.06 | 0 | 0 | 0 | 0
.10 | 13.02 | | 209B
210B | BIG TUJUNGA EDISON ROAD
BRANO PARK | .29 | .43
.23 | 12.86
5.94 | .19 | 2.83
1.79 | 11.13
5.19 | 1.04
.65 | 0
•07 | 0 | 0 | 0 | 0 | 29.77
14.99 | | 213
215B | LOS ANGELES - HANCOCK PARK BELLFLOWER FIRE STATION | .62 | .14 | 5.60
4.38 | .12 | .90 | 3.89 | .48 | .02 | 0 | 0 | 0 | .06 | 11.77 | | 216
217 | GLENDALE - JONES
WATTS - JORDAN HIGH SCHOOL | .88
N | .21 | 6.30
R | .17
E | 1.90
C 0 | 4.57
R | .65
D | Ť | ő | Ť | 0 | Ť | 14.68 | | 218 | TORRANCE - GENERAL PETROL, CORPORATION | . 42 | .48 | 3.72 | .35 | .78 | 3.74 | .56 | 0 | 0 | 0 | 0 | 0.* | 10.05 | | 219
221B | PACOIMA WAREHOUSE - COUNTY FORESTRY PACOIMA WASH - DUCKWORTH RANCH | 1,25
N | .28 | 4.80
R | .23
E | 1.64 | 4.05 | .78
0 | | D 0 | N.R. | N.R. | 0 | 13.03
INC. | | 222
223B-E | | .76
1.42 | .22
.34 | 3.51
11.35 | .15
.33 | 1.24
2.14 | 3.15
6.69 | .55
.87 | .05
.32 | 0 | .02
.04 | 0 | 0
•20 | 9.65
23.70 | | 224
225 | LONG BEACH - ALAMITOS LAND COMPANY
MONTANA RANCH | .10 | .32 | 4.94
4.27 | .20 | 1.11 | 3.90
3.55 | .60
1.00 | .05*
.60 | o* | 0 • | 0.* | T.* | 11.22 | | 226
227B | BURBANK - FIRE STATION
SAN GABRIEL - GLEASON | .89
.54 | .18 | 5.71
6.56 | .14 | 1.79 | 4.79 | .72 | .08 | 0 | Ť | 0 | .06 | 14.36 | | 228B
230C | BEVERLY HILLS - CITY HALL
LIVE OAK CANYON - ELDER | .58 | .14 | 7.07 | .05 | 1.64 | 4.82
3.54 | .54
.54 | 0
T | 0 | 0 | 0 | 0
T | 14.29
13.35 | | 234 | COVINA - THORPE | .97
.75 | .16 | 7.56
6.20* | .27
.40 | 1.85
1.37** | 4.08
4.36 | .55
.50 | 0
.05• | 0 | 0 | 0 | .44
0 | 15.88
13.77 | | 235B
236 | HENNINGER FLATS
SAN FERNANDO - HUFFMAN RANCH | 1.11 | .11 | 9.65
5.95 | .38
.26
 2.39 | 7.25
4.92 | .71
.74 | .73
.24 | 0 | .02
0 | 0 | .03 | 22.38
15.18 | | 237
238 | STONE CANYON DAM:
HOLLYWOOD DAM | .89
.59 | .40 | 8.67
5.57 | .22 | 1.84 | 4.57 | .53 | .06 | 0 | 0 | Ö | .29 | 17.47 | | 240B
241A | LITTLE TUJUNGA CANYON - ODDOUS RANCH
LONG BEACH - VETERAN MEMORIAL BUILDING | 1,51 | .59 | 6.74 | .20 | 1.94 | 5.98 | 1.08 | .45 | ō | 0 | 0 | .36
0 | 12.60
18.49 | | 246B | CULVER CITY - BUS YARD | .12
.52 | .25
.37 | 4.49
4.67 | .21
T | .68
.67 | 3.33
3.26 | .51
.55 | .02
T | 0 | 0 | 0 | T
0 | 9.61 | | 250C
251 | ACTON - OLIVE VIEW CAMP
LA CRESCENTA | .77
1.01 | .13
.28 | 3.52
9.20 | .23
.20 | 1.06 | 3.62
5.86 | .50
.67 | .04 | 0 | .75 | 0 | 0 | 10.62 | | 253
254 | WESTERN AVENUE TANK L.A.W.D. PUENTE - ROWLAND RANCH | N.R. | N.R. | 4.00
6.12 | .43 | 1.15 | S 4.11 | .34 | N 0 | T | 1 N U | E | .50 | INC.
13,21 | | 255B
256B | SAN JOSE HILLS - DUNN RANCH
POMONA - FIRE DEPARTMENT | .25 | .10 | 6.12 | .60 | 1.67 | 4.70 | .40 | .03 | 0.* | 0 | o* | .09 | 13.96 | | 257 | GRIFFITH PARK NURSERY | .65
.67 | .09
.21 | 5.89
7.16 | .17 | 1.21 | 3.55
4.45 | .40
.55 | .03 | 0 | 0 | 0 | 1.02
0 | 13.01
14.61 | | 258A
258B | GRIFFITH PARK TUNNEL - MT. HOLLYWOOD GRIFFITH PARK SO. SLOPE - MT. HOLLYWOOD | .67
.75 | .22 | 6,55
6,54 | .14 | 1.36 | 4.07 | .52 | .02 | 0 | 0 | 0 | .02 | 13.57
13.78 | | 258C
259C | GRIFFITH PARK NO. SLOPE - MT. HOLLYWOOD
CHATSWORTH PATROL STATION - TWIN LAKES | .75
1.20 | .26
.23 | 6.40
8.14 | .18
.49 | 1.43 | 4,32
4,15 | .54
.61 | .02
0 | 0 | 0 | 0 | .03
0 | 13,93
16.06 | | 261-E
263A | ACTON - MELLEN
POMONA - FRATER | .96 | .21 | 2.96
6.35 | .30 | .84 | 3.36
3.86 | .53
.46 | .28 | 0 | 1.10 | 0 | .16 | 10.70 | | 265C-E | PUENTE HILLS - WEISEL RANCH | .24 | .08 | 6.05 | .26 | 1.09 | 4.03 | .40 | 0 | 0 | 0 | 0 | .31 | 12.53 | | 266
268-E | LEFFINGWELL RANCH - E. WHITTIER
TORRANCE - SO. CALIF. EDISON CO. SUB STATION | .17 | .19
.36 | 4.93
3.53 | .17
.31 | 1.02
.78 | 4.07
3.31 | .41
.42 | 0 | 0 | 0 | 0 | .20
D | 11.16
8.98 | | 269A
269B | DIAMOND BAR RANCH #1
DIAMOND BAR RANCH - HORSE CAMP | .46
.48 | .19
.21 | 6.09 | .33 | .93
.98 | 5.22
4.92 | .53
.53* | 0 | 0 | 0 | 0.* | .18 *
.18 | 13.93
13.82 | | 270 | COUNTY FARM - RANCHO LOS AMIGOS
DOMINGUEZ HILLS | .44 | .18 | 4.02 | .21 | .80 | 4.05 | .53 | .08 | 0 | 0 | 0 | .05 | 10.36 | | 271
272 | LOS ANGELES - HEADWORKS PLMP PLANT | .50
.82 | .29
.24 | 3.59
6.23 | .29
.11 | .46**
1.57 | 4.49*
4.42 | .56 | Ō | ō | ō | ō | Ť | 13.95 | | 274
275 | ACTON - HUBBARD
SAN MARINO - HUNTINGTON LIBRARY | .87
.76 | .28 | 2.39
7.55 | .39
.18 | 1.10 | 3.35
5.58 | .63
.60 | .33 | 0 | .92
0 | .15
0 | T
0 | 10.41 | | 277
278B | SAWMILL MT. RANCH
LOS ANGELES - CLARK MEMORIAL LIBRARY | 2.00 | .31 | 6.74
4.75 | .29 | 2.50
.85 | 8.77
3.48 | .45
.45 | .15 | 0 | .13 | T
0 | T
O | 21.34
10.68 | | 279A | PASADENA GLEN - KINNELOA RANCH
FLINTRIDGE FIRE STATION | .96 | .17 | 8.29 | .30 | 2.07 | 6.30 | .79 | .37 | Ť | Ť | 0 | .01
T | 19.26 | | 280B
283A | CRYSTAL LAKE - E. PINE FLAT | .67
3.65 | .31 | 7.86
15.55 | .19 | 3.02 | 6.28
13.09 | .60
.83 | 0 | 0 | 1.18 | 0 | -13
O | 38.48 | | 284
285C | PLACERITA CANYON
MT. ST. MARY'S COLLEGE | 1.64 | .55
.35 | 7.50
9.61 | .20
.24 | 1.82 | 6.57
3.53 | .59
.62 | .10 | 0 | .02
0 | ō | 0 | 16.67 | | 287
289 | GLENDORA GONSOLIDATED MUTUAL IRRIGATION COMPANY
LAGUNA - BELL SO. CALIF. EDISON CO. SUB STATION | 1.59 | .14 | 10.35 | .22
.17 | 1.89 | 4.78
5.21 | .74
.52 | .10
0 | 0 | 0 | 0 | .10
T | 19.91
11.49 | | 290 | NEWMARK - SO, CALIF, EDISON CO. SUB STATION | .46 | .19 | 4.63 | .13 | 1.04 | 3.86 | .41 | .02 | 0 | 0 | 0 | 00 | 10.74
8.62 | | 291
292-E | LOS ANGELES - 96TH & CENTRAL AVENUE
ENCINO RESERVOIR | .34 | .15 | 3.87
5.64 | .13
.23 | .78
1.33 | 3.74 | .48 | .10 | Ō | 0
T | Ō | 0 | 12.54 | | 293
294 | LOWER SAN FERNANDO RESERVOIR
SIERRA MADRE - MIRA MONTE PUMP PLANT | .88
.97 | .54
.27 | 6.38
9.12 | .27
.35 | 1.24 | 4.08
5.26 | .40
.55 | .14
.13 | 0 | .02 | 0 | 0
.12 | 13.93
18.42 | | 295F | GLENDALE - KENNEDY
LITTLE ROCK | .74 | .16 | 6.39 | .14 | 1.97 | 1.96 | .60 | .26 | 0 | .47 | 0 | .02 | 14.77 | | 299C
300A | GARRAPATA CANYON - FAILOR CANYON | .63 | .20 | 9.98 | .36 | 2.67 | 5.94 | .41 | .09 | 0 | 0 | 0 | 0 | 20.28 | | 303C
304 | PASADENA CAL TECH
SAWPIT CANYON - DEER PARK | .61
1.77 | .23 | 7.06
14.88 | .17
.58 | 1.95 | 5.35
8.91 | .59
.65 | .02 *
.64 | Ö | .08 | 0 | .12 | 30.55 | | 305 | ARROYO SEQUIS - MASON ESTATE KELLEY'S KAMP | .79
2.55 | .30 | 6.92 | .22 | 1.25 | 6.03 | .23 | .09 | 0 • | .20• | 0
0* | 1.00 | 15.86
42.10 | | 308
309 | PADUA HILLS | 1.02 | .29 | 10.50 | .43 | 2.34 | 5.29 | 1.23 | .27 | o
o | 0 | 0 | .42
T | 21.79
16.47 | | 3118
312 | PASADENA METEOROLOGICAL STATION
AZUSA PLANT - GLENDORA CONSOL, MU. IRR. CO. | .53
.85 | .15 | 9.87 | .22 | 2.04 | 5.58 | .44 | 0 | 0 | 0 | Ŏ
T | .03 | 19.18 | | 321-E
322 | PINE CANYON - PATROL STATION MUNZ VALLEY RANCH | 2.46 | 0 | 8.57
5.25 | .17 | 1.25 | 6.40
2.35 | .24
0 | 0 | 0 | 1.00 | 0 | 0 | 20.85 | | 344-E | SAN GABRIEL DAM #2 | 2.07 | .25
.13 | 13.88 | .16 | 3.70
1.56 | 13.33 | .57
.54 | .05
T | 0 | .14 | 0 | .78
O | 34.73
11.55 | | 336
338A | SILVER LAKE RESERVOIR
MT. WILSON - OBSERVATORY | 1.57 | .69 | 14.42 | .25 | 3.26 | 11.84 | .92 | .01 | 0 | .09 | 0 | , 20 | 33.29 | | 338B
339 | MT. WILSON - AIR WAYS STATION WALNUT FRUIT GROWERS ASSOCIATION | 1.82 | .71 | 12.70 | .31 | 3.98
1.28 | 11.80 | .95 | .21 | 0 | .04
0 | 0 | .30 | 13.69 | | 341 | ALISO CANYON - BLUM RANCH
UPLANDS | .96
.70 | .09 | 2,22
7,57 | .24 | 1.08 | 3.36
3.99 | .58
.69 | .14 | 0 | 1.60 | T
0 | 0
•60 | 10.27 | | 342
343B | RIVERA - TELEGRAPH ROAD | .35 | .20 | 4.76 | .17 | 1.17 | 4.33 | .52 | .03 | 0 | 0 | 0 | .05 | 11.58 | | 347 · E
348C | BALDWIN PARK EXPERIMENTAL STATION SAN GABRIEL E. FORK - HONOR CAMP #4 | 1.57 | .17 | 7.56 | .16 | 1.86 | 3.82
7.40 | .36 | .04 | 0 | .32 | 0 | .15 | 25,9 | | 349B | CAMP RINCON | 1.96 | .35 | 15.02 | .28 | 2.50 | 8.87 | .61 | .02 | 0 | . 17 | 0 | ∙53 | 30.3 | | | | | | TABLI | III 19 | 45-46 (CC | ontinued) | | | | | | | | |------------------|--|---------------|-------------|----------------|-------------------|--------------|---------------|--------------|-------------|-----------|------------|----------|-------------|--------------------| | STA
NO. | STATION | OCT. | NOV. | DEC. | JAN. | · FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | SEAS .
TOTAL | | | PALMDALE - SCHOELLER
LECHUZA PATROL STATION | .99
.85 | .02 | 2.55
7.35 | .02 | 1.00 | 2.49
5.86 | .26
.42 | 0 | 0 | .13 | T | 0 | 7.46 | | 353 8 | DUARTE - MONROVIA CITRUS ASSOCIATION | .59 | .27 | 8.66 | .25 | 2.12 | 4.50 | .35 | .04 | .02•
0 | 0 | 0 | T
0 | 16.40 ⁴ | | 355 | CAMP BALDY - BOYS CAMP
LOS ANGELES CITY COLLEGE | 2.75*
.65 | .50*
.16 | 14.83*
5.41 | .46
.11 | 3.31
1.26 | 11.01
4.19 | .78
.49 | .33 | 0 | .23
0 | 0 | 0 | 34.20
12.30 | | | SPADRA - PACIFIC COLONY
SAN FERNANDC - POWER HOUSE #3 | 1.12 | .13 | 5.30
7.84 | .17 | 1.41 | 4.32
4.63 | .39 | T | 0 | 0 | 0 | .21 | 13.05 | | 362 | EL MIRADO RANCH | .72 | .30 | 7.49 | .12 | 2.40* | 5.47 | .57 | .23
.07 | 0 | 09 | 0 | O
T | 16.07
17.23 | | 366 | HAINES CANYON - LOWER
VALYERMO - NOBLE | 1.26 | .44 | 7.94
2.50 | .22 | 2.54
1.10 | 8.92
3.65 | .86
.41 | .58 | 0 | .28 | 0 | .11 | 23.15
9.86 | | 367 | HAINES CANYON - UPPER
SAN FRANCISQUITO - POWER HOUSE #2 | 1.43 | .76
.52 | 10,28
6,24 | .02
.26
.30 | 2.63
1.62 | 10.24 | 1.07
.33 | .68 | 0 | .13 | 0 | .05 | 27.53 | | 373 E | BRIGGS TERRACE
GRIFFITH PARK ZOO | 1.13 | .46 | 8.79 | .22 | 2.33 | 7.01 | .83 | .57 | 0 | T | Ō | .05 | 14.61
21.39 | | 377D L | LAKE SHERWCGD ESTATES | .77
.85 | .26
.23 | 5.32
7.04 | ,14
,21 | 1.40 | 4.23
5.14 | .19
.29 | 0 | 0 | 0 | 0 | .06
0 | 12.37
15.54 | | 379B 5 | SAN GABRIEL - EAST FORK
EL SERENC | 1.87 | .45 | 13.11
5.95 | .38 | 2.90
1.60 | 8.32
4.78 | .60
.58 | ,23 | 0 | .33 | 0 | .05
0 | 28.24 | | 3818 | SANTA MONICA - "OUTLOOK"
HIGHLAND PARK - SAN RAFAEL HILLS | -55 | .34 | 5.52 | .26 | 1.35 | 2.87 | . 57 | .13 | 0 | Т | ō | Ť | 13.79
11.59 | | 386B Z | ZUMA CANYON - OAKLEY | .58
.93 | .30
.31 | 6.61
10.46 | .19 | 2.24
3.17 | 5.11
7.57 | .58
.29 | .04 | 0 | 0 | 0 | .01
0 | 15.66
23.17 | | 387B (| COVINA - CITY SEWAGE DISPOSAL PLANT
CLEARWATER - FIRE STATION | .71 | .20 | 7.60
3.86 | . 17 | 1.43 | 4.05 | .40 | .05 | 0 | 0 | 0 | T | 14.61 | | 389 6 | GLENDORA - BROWN | 1.64 | .19 | 11.30 | .31 | .64
1.89 | 3.85
5.37 | .60
.76 | .20
.17 | 0 | O
T | 0 | .15 | 9.88 | | | VORRIS DAM
WONTEBELLO - FIRE DEPARTMENT | 2.00
.36 | .35
.13 | 13.39
4.71 | .44 | 2.33 | 6.44
4.65 | .67
.42 | .13
T | 0 | .02
0 | 0 | 1.04 | 26.81
11.32 | | 392B A | ALTADENA - BARTON
HIGHLAND PARK - LINDSAY | -66 | .23 | 7.85 | .25 | 2.08 | 6.47 | .74 | .27 | 0 | .01 | 0 | .03 | 18.59 | | 395 C | DLIVE VIEW SANATORIUM | .56
1.46 | .26 | 6.14
7.12 | .13 | 2.16
1.38 | 4.88
5.16 | .51
.48 | .02 | 0 | 0 | 0 | T
O | 14.66
16.38 | | | PASADENA - WASHINGTON & PALM TERRACE
CEDAR SPRINGS - STATE PRISON CAMP | -60 | .24
N | 7.45
A | .25
C | 2.02
T | 5.37 | .56
V | .08 | ō | .07 | ŏ | .02 | 16.66 | | 404 G | GLENDALE - OPID | .73 | .18 | 6.21 | .16 | 1.98 | 4.21
| .68 | E 0 | 0 | 0 | 0 | .83 | INC.
14.17 | | 406C W | SOLEDAD CANYON - ECKLES
WEST AZUSA - AZUSA !RRIGATION COMPANY PLANT #6 | ·82 | .27 | 4.40
8.56 | .65
.16 | 1.96 | 6.37
4.38 | .26 | 0 | 0 | 0 | 0 | .54 | 15.27 | | 407 N | WHALL - U.S.F.S. HEADQUARTERS OLEDAD CANYON - MITCHELL | 1.28 | .56 | 7.75 | .34 | 2.00 | 6.05 | .45 | 0 | 0 | 0 | 0 | 0 | 16.10
18.43 | | 409 R | RIDGE ROUTE - STATE HIGHWAY MAINTENANCE STATION | N
1.72 | .20* | 5,53 | .12 | 1.82 | 5.50 | .41 | D | - 0 | T | | N.R. | INC. | | 410A R
411B R | RIDGE ROUTE - PARADISE RANCH
RIVERA - PICO - ROBINSON | 1.85 | .16 | 7.69
4.71 | 0 | 1.74 | 5.70 | 0 | O | 0 | 0 | 0 | .38 | 15.26*
17.52 | | 415 S | SIGNAL HILL - CITY HALL
ALTADENA - VENTURA STREET | -18 | .32 | 4.27 | .14 | 1.35 | 4.64
3.68 | .46
.59 | 0
•07 | 0 | 0 | 0
0 | .04 | 11.89 | | 417 S | HERRA MADRE - LAMANDA PARK CITRUS ASSOCIATION | .75 | .28 | 7.60 | .28 | 2.43 | 5.68 | .64 | .02 | 0 | .04 | 0 | .03 | 18.32 | | | | 2.36 | .53 | 11.59 | .13 | 2.37 | 8.96 | 1.03 | 0 | 0 | 0 | 0 | 0 | 17.07 | | | | 1.00 | .29 | 3.82
5.01 | .20* | 1.61 | 4.77
4.07 | .61*
1.01 | 0
.15 | 0 | .25*
0 | 0 | 0 | 12.91* | | | ACO!MA CANYON - WALSH RANCH | 2.00 | .31 | 10.19 | .29 | 1.85 | 8.53 | .71 | .29 | 0 | .14 | Ō | Ö | 13.21 | | | | 2.13 | .26 | 5.98
13.56 | .04 | 1.70
2.62 | 6.99
8.21 | .90
.62 | .21 | 0 | .54 | .12 | .04
.62 | 18.70
28.88 | | | OWNEY - JORDAN | .36 | .20 | 4.21 | .20 | .95 | 4.78 | .48 | T | Ō | 0 | Ō | .05 | 11.23 | | 430 S | AUGUS - STATE HIGHWAY MAINTENANCE STATION | 1.69
1.12 | .48
.25 | 11.07
5.20 | .20* | 2.91 | 10.51
3.89 | .75*
.27 | 0 | 0 | .05 •
0 | 0 *
0 | .20*
0 | 27.86*
12.20 | | | ALDWIN HILLS - NORTH SIDE
ANTA ANITA - FERN LODGE | .51
1,64 | .38
.37 | 5.10
10.69 | .22*
.53 | .75*
2.20 | 4.68
7.29 | .52
.55 | .06 | 0 | 0
.35 | 0 | 0 | 12.16*
23.79 | | 433 Al | LTADENA - FARNSWORTH PARK | -56 | .29 | 8.45* | .36 | 2.56 | 6.26 | .62 | .43 | 0 | 0 | 0 | .02 | 19.55* | | 434 M
435 M | ALIBU HDQTS L.A. CO. FORESTER & FIRE WARDEN
ONTE NIDO CANYON PATROL STATION | .68
.66 | .13 | 7.88
9.26 | .32 | 1.80* | 5.16
4.98 | .26 | 0
•04 | 0 | 0 | 0 | 0 | 16.23*
17.18 | | 436B H | ANSEN DAM | ·50 | .28 | 4.38 | .18 | 1.40 | 3.58 | 65 | .05 | 0 | 0 | 0 | 0 | 11.02 | | | AMILTON BOWL - LONG BEACH
NCING - QUIROLLO | .16
.95 | .24 | 3.95
6.96 | .17
.25 | 1.04 | 3.18
4.51 | .65
.55 | .02
.10+ | 0
0 * | 0
0 * | 0
0• | .01
0 * | 9.42
15.39* | | 4408 C | HILAO - U.S.F.S. CAMP
ALMDALE - COUNTY ROAD MAINTENANCE YARD | 3.18 | .63 | 8.48 | .23 | 2.27 | 10.09 | .92
.29 | .10 | 0 | .19 | 0 | .15
0 | 26.24
8.06 | | 442 M | ESCAL CREEK - FORT TEJON ROAD | .96 | .03
T | 1.67 | .03 | .85 | 2.71 | 1.00 | .12 | 0 | 1.23 | Ť | 0 | 8.21 | | | ATIGO CANYON ROAD AT MULHOLLAND ROAD
OLLING HILLS - PALOS VERDES | .87
.26 | .26 | 9.49
7.24 | .32
.47 | 2.14
.97 | 6.54
4.11 | .26
.10 | .06 | 0 | 0 | 0 | 0 | 19.94
13.56 | | 445B L | IVE OAK DAM | .93* | .42 | 8.67 | .25 | 1.69 | 4.27 | .51 | .23 | T
0 | 0 | 0 | .30 | 17.27*
17.88 | | | LISO CANYON - SANTA SUSANA MTS. AS FLORES PATROL STATION | .45 | .19 | 7.67
6.47 | .24 | 1.45 | 5.30
3.10 | .35 | .14 | 0 | 0 | 0 | 0 | 12.02 | | 449 EA | ATON DAM | .75 | .18 | 7.40 | .23 | 2.07 | 5.51
3.37 | .58
.04 | .14
0 | 0 | .03 | 0 | 0 | 16.89
11.99 | | | ASTAIC PATROL STATION TUDIO CITY - THAYER | 1.51
.63 | .15
.17 | 5.64
6.58 | .20 | 2.00 | 5.02 | .29 | 0 | 0 | 0 | 0 | <u>.</u> 01 | 14.92 | | 453 DE | EVIL'S GATE DAM | .58 | .25 | 7,37
5,10 | .19 | 1.05 | 3.87 | .56 | 0 12 | 0 | .02 | 0 | T | 16.60 | | 454 L0 | OS ANGELES - W. J. WOOD
ANCASTER - STATE HIGHWAY MAINTENANCE DEPARTMENT | | .04 | 2.63 | .05 | .72 | 1,16 | .28 | .26 | 0 | .40 | 0 | .03
T | 7.12
4.29* | | 456 AN | NTELOPE VALLEY MUSEUM - PIUTE BUTTE
OS ANGELES - ZALVEDES STREET | .50
.53 | .10 | 1.10
5.27 | .02 | .50
1.62 | 1.44 | .17
.49 | .11 | 0 | .35
0 | ó | .02 | 12.54 | | 458 Zt | UMA CANYON PATROL STATION | •45 | .24 | 5.58 | .44 | .70 | 3.45 | 0 | 0 • | 0 • | 1,33* | 0 * | 0 • | 10.86 | | 460 PL | LEASANT VIEW MESA - MATAY
ALDWIN HILLS - STANDARD OIL COMPANY | 1.58
.60 | .33 | 2.36
3.91 | .10* | .90
.68 | 4.93
3.48 | .35
.53 | 0 | 0 | 0 | ō | ō | 9 .75 | | 462 H | ILLCREST COUNTRY CLUB | .63 | .27 | 6.03
5.41 | .13 | 1.17 | 3.68 | .59
.56 | .06 | G
0 | 0 | 0 | T
T | 12.56 | | | AR VISTA - SOUTHERN CALIFORNIA WATER COMPANY UJUNGA CANYON HONOR CAMP #5 | ·56
1·29 | -38
-55 | 9.95 | .16 | 2.63 | 11.32 | 1.04 | .04 | 0 0 | 0 | 0 | .31 | 27.29 | | 465B SI | EPULVEDA DAM | .64*
2.23* | .18
.55 | 5.45
9.78 | .18 | 1.60 | 4.06
7.07 | .54
1.14 | 0
.70 | 0 | .11 | 0 | 0 | 23.61* | | | ICKENS DEBRIS BASIN | .91 | .28 | 7.86 | .20 | 1.91 | 5.38 | .72 | .24 | 0 | .02 | 0 | .02 | 17.54
15.50 | | 470 TI | UJUNGA - MILL CREEK | 1.54 | .21 | 5.22
8.16 | .17 | .93
1.71 | 6.35
7.92 | .59
.80 | .08 | 0 | 0 | 0 | 0 | 20.85* | | 473 A | QUA DULCE CANYON - BLACKWELL RANCH | -91 | .28 | 3.60 | .13 | 1.51 | 5.58 | .64
R D | •06 | 0 | .15
0 | 0 | 0 | 12.86
INC. | | 474 S | OUTH GATE - POLICE DEPARTMENT | .37*
1.11 | N .25 | 0
5.01 | R
.09 | E C | 3.68 | .28 | 0 _ | 0 | .34 | 0 | ō | 12.11 | | 476B TI | RIUNFO CANYON (RUESS RANCH) | .70 | .16 | 7.83 | .28 | 2.42 | N | .54 | R E | C 0 | .35 | D
0 | •47 | INC
30.78 | | 477 S | ANTA ANITA - SPRING CAMP | 1.85 | .03 | 15.06
2.44 | .43 | 1.17 | 9.34
3.69 | .38 | .12 | 0 | .74 | 0 | 0 | 9.76 | | 482 LC | OS ANGELES - U.S.C. | •50 | .24 | 4.62
8.35 | .07 | 1.23 | 3.77
4.35 | .45
.38 | 0
•05 | 0 | 0 | 0 | 0 | 15.77 | | 486 C | | .56
2.43 | .27
.41 | 12.22 | .40 | 2.17 | 8.27 | .97 | .51
C | o | .76
R | O
D | .54 | 28,68
INC. | | 487 M | ALIBU BEACH AT WINTER CANYON | .45
1.03 | .20 | 6.20
5.50 | .22 | 1.55 | 4.56 | .76 | .08 | 0 | T | 0 | 0+ | 14,15 | | 489 C | OLD CREEK - STUNTS RANCH | .66 | .26 | 9.25 | .35 | 2.10 | 5.93 | .26 | 0 | 0 | 0
.65 | 0 | 0 | 18.81
6.13 | | 490 L | ANCASTER - WILEY RANCH
ACIFIC PALISADES | .90
.57 | .20
.23 | 1.37
6.23 | 0
.23 | 1.57 | 1.32 | 0
.63 | .12
T | 0 | .65
D | o | 0 | 13.10 | | 492 CI | HILAO - STATE HIGHWAY MAINTENANCE STATION | 3.22 | .46 | 8.10 | .25 * | 1.97 | 9.83 | .87 | T | 0 | .05 | 0 0 | .11 | 24.86*
INC. | | 493 S. | AND CANYON - MAC MILLAN RANCH
ICO - CATE | N 0 | .17 | E C
4.82 | C R | D
1.29 | 7.03
4.65 | .30
.42 | 0 | 0 | 0
0 | 0 | o | 11.89 | | | ICO - CATE
OS ANGELES - 8TH & FIGUEROA | .49 | .20 | 5.41 | .07 | 1.64 | 4.17 | .43
R | .04
E | o
C | ° c | O
R | .02
D | 12.47
INC. | | 496 TI | RANCAS CANYON
LAREMONT - SLAUGHTER | .50
.88 | .29
.24 | 5.03
8.48 | .22 | 0 | 4.20 | R
.56 | .06 | 0 | 0 | 0 | .35 | 16.81 | | 498 A | NGELES CREST HIGHWAY - DARK CANYON TRAIL | 1.60 | .50 | 11.06 | .27 | 2.49 | 8.00 | .93 | .47 | 0 | 0 | 0 | .52
T | 25.84
8.24 | | 499 B | ALLONA CREEK - SAWTELLE BOULEVARD | .50
.88 | .49
.31 | 3.47
8.61 | .17 | .54
1.97 | 2.58
5.36 | .49
.57 | 0
•11 | 0 | 0 | O . | Ö | 18.13 | | X-6 E | NCINO RESERVOIR #2
RROYO SECO RANGER STATION | -81 | . 36 | 8.74 | .27 | 2.60 | 6.68 | .74 | .41 | 0 | 0
3.10 | 0 | .09
0 | 20.70 | | | NDERSON RANCH (BURKHART) | 1.91 | _01 | 4.47 | .11 | 1.01 | 6.01 | .58 | .06 | · · | 2.10 | | - | | | | | | | TABL | 5 111 194 | 5-46 (CO | ntinued) | | | | | | | | |--------------------------------------|--|-----------------|--------------|----------------|--------------|---------------|---------------|-------------|---------------|----------|-------------|-----------|------------|----------------------------| | STA
NO. | STATION | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | SEAS.
TOTAL | | 529 | CHINO-AMERICAN BEET SUGAR COMPANY | 88 | .07 | 5.89 | .34 | .97 | 3.49 | .63 | 0 | 0 | 0 | 0 | .72 | 12.99 | | 530
534 | CONEJO RANCH
FILLMORE | .62
1.15 | .25
.36 | 5.21
7.45 | .30 | 1.35 | 3.98
4.78 | ,18
,17 | 0 | 0 | 0 | 0 | 0 | 11.89
15.70 | | 542 | FAIRMONT | 1.75 | .03 | 7.48 | .02 | 2.35 | 5.15 | .10 | .15 | 0 | .28 | T | .30 | 17.61 | | 551
557 | PORT HUENEME LIGHT HOUSE LA HABRA - CITRUS ASSOCIATION | .50
J20 | .10 | 4.65 | .15 | .90 | 3.26 | .15 * | 0 | 0 | 0 | 0 | 0 | 9.54°
9.73 | | 565 | LONG BEACH - 16TH & CHESTNUT | .14 | .24 | 4.19 | .20 | .79 | 3.43 | .56 | Υ | ō | 0 | 0 | Т | 9.55 | | 566
571 | LONG BEACH #1, 10TH & ROSWELL
LONG BEACH #6, 1st & PROSPECT | .12 | .25
.24 | 5.28
4.39 | .25
.16 | 1.40
.69 | 4.03
3.12 | .75
.61 | .10 | 0 | 0 | 0 | -01
T | 12.19
9.41 | | 575B | LONG BEACH - WEATHER BUREAU | .10 | .27 | 4.58 | .24 | .92 | 4.11 | .30 | .05 | 0 | Ō | Ö | <u>T</u> | 10.57 | | 577E
577F | LOS ANGELES - U.S.W.B 6TH & MAIN
LOS ANGELES - U.S.W.B FEDERAL BUILDING | .40
.56 | .17
.23 | 5.03
5.05 | .12 | 1.44 | 3.52
3.66 | .37 | T
.04 | 0
T | 0
T | 0 | .02 | 11.07 | | 587 | SAN ANTONIO CANYON - POWER HOUSE #1 | 1.17 | .37 | 13.26 | .52 | 2,41 | 6.61 | .86 | .29 | o o | .19 | 0 | .38 | 26-10 | | 588B | MOUNT LOWE - WURMSER MOUNTAIN SPRINGS | N | 0 | 7.40 | R
D | E
I S | С | 0
0 N | R
T I | N | D | D | | N.R. | | 589
5938 | NEWHALL RANCH | 1.18 | .24 | 7.42
6.55 | .22 | 2.32 | 4.18 | .14 | 0 | 0 | .03 | 0 | 0 | 1NC. | | 594B
597 | NEWHALL (S. P. R. R. DEPOT)
NEWBURY PARK | .97 | .20 | 6.81 | .10 | 2.44 | 5.18 | .41 | T | 0 | 0 | 0 | 0 | 16.11 | | 598 | NEENACH | .68
.86 | .27 | 5.74
3.35 | .29
.24 | 1.37
1.18 | 4.06
2.62 | .21 | 0
.18 | 0 | 0
.15 | 0 | 0 | 12.62
8.98 | | 610A
| PASADENA - MORRIS JONES | .67 | .21 | 7.30 | .30 | 2.13 | 5.87 | .57 | .15 | <u>o</u> | .04 | 0 | .06 | 17.30 | | 610B
611 | PASADENA - CITY HALL
PASADENA - ALLEN | .69 | .24
.22 | 7.02
7.59 | .24
.27 | 2.27
2.16 | 5.28
6.50 | .65
.73 | .10
.15 | 0 | .02 | 0 | .01 | 16.50
18.37 | | 612 | PASADENA - CHLORINE PLANT | .79 | .32 | 8.27 | .28 | 2.56 | 6.70 | .67 | .31 | Ö | T T | ŏ | τ | 19.90 | | 613B
617 | PASADENA - HURLBUT FIRE STATION
POMONA - ADAMSON | .62
1.04 | .29
.20 | 6.29
6.34 | .18 | 1.79
1.59 | 4.80
4.34 | .53
.39 | .05
.12 | 0 | 0 | O
T | .01 | 14.56 | | 618 | SANTA.SUSANA - WOLFF RANCH | .96 | 0 | 5.17 | .45 | 1.20 | 4.38 | .38 | 0 | 0 | - 0 | 0 | .52
0 | 12.54 | | 619
623 | SAN ANTONIO CANYON - SIERRA POWER HOUSE
SAN FERNANDO - U.S.W.B. | 1.50 | .36
.43 | 14,76
5.84 | .49 | 3.09
1.25 | 10.22 | .84 | .15
.25 | 0 | .16 | 0 | 0
T | 31.57 | | 627 | SAN GABRIEL CANYON POWER HOUSE | 1.01 | .23 | 11.08 | . 23 | 2.28 | 4.97 | -48 | .07 | 0 | 0 | 0 | .01 | 12.94
20.36 | | 629 ^C
634 ^B | SAN PEDRO - U.S.W.B.
SANTA MONICA - CITY HALL | .38 | .54 | 4.23 | .33 | .71 | 3.02 | .61 | .05 | 0 | 0 | 0 | | 9.87 | | 644 | SOMIS - SNYDER RANCH | .80 | .34
.25 | 5.03
4.88 | .26 | 1.74 | 2.91
2.66 | .52 | .10
0 | 0 | 0 | 0 | 0 | 11.40 | | 647G
650 | SUNLAND - TUJUNGA
UPLANT - 8A IRD | 1.09 | .34
.27 | 6.54 | .15 | 2.10 | 6.07 | .80 | .33 | 0 | .17 | Ó | .01 | 17.60 | | 656B | SUNLAND | .68
N.R. | N.R. | 10.00 | .42
.16 | 2.02
1.91 | 4.23
4.98 | 1,07
.53 | .24
N O | 0
R | .02
E C | 0
0 R | .53
D | 19.48
INC. | | 660
662 | OXNARD - U.S.W.B.
LONG BEACH - 37TH & GAVIOTO | .55 | .35 | 4.39 | .26 | 1.00 | 3.16 | .16 | 0 | 0 | 0 | 0* | 0 | 9.87* | | 665 | SANTA PAULA - BLANCHARD | .20
.96 | .35
.26 | 4.35
6.23 | .26
.25 | .88
1.40 | 3.90
3.65 | .66
.24 | .15
0 | 0 | 0 | 0 | T
0 | 10.75
12.99 | | 666 | LONG BEACH - SOUTH & LEMON | .32 | .30 | 3.58 | .32 | .64 | 3.90 | .66 | .09 | 0 | 0 | 0 | T | 9.81 | | 671B
672 | L.A WABASH SUB STATION, SO. CALIF. EDISON CO
EAGLE ROCK - SO. CALIF, EDISON CO. SUB STATION | .57 | .19 | 5.03 | .11 | 2.21 | 4.16 | .58
.56 | ,05
0 | 0 | O | 0 | 0 | 11.94 | | 673 | SEAL BEACH - L.A. POWER & LIGHT CORPORATION | .09 | .24 | 4.72 | .12 | ₄52 | 3.46 | .72 | .15 | 0 | 0 | ŏ | 0 | 10.02 | | 676
677 ^C | LCS ANGELES - WEST 80TH STREET PASADENA - HOFFNER | .52
.70 | .25
.27 | 4.48
7.77 | .25
.23 | 1.02 | 3.73
5.61 | .47
.40 | .07
0 | 0 | 0
•09 | 0 | T
T | 10.79
17.46 | | 678 | PASADENA - SHELDON RESERVOIR | .66 | . 24 | 8.81 | .21 | 2.87 | 6.43 | .59 | .11 | ő | .04 | ő | Ť | 19.96 | | 679
680 | PUENTE - NO. WHITTIER HEIGHTS CITRUS ASSOCIATION WESTWOOD - U.C.L.A. | .45
.74 | .34
.26 | 6,20 | .23 | 1.63 | 4.63 | .29 | .04 | 0 | 0 | 0 | -06 | 13.87 | | 681B | SANTA ANITA GUARD STATION | .93 | .24 | 5.96
9.41 | .20
.55 | 1.82 | 3.88
5.73 | 1.06 | .08
.19 | Ť | 0
•06 | 0 | .02 | 13.50 | | 683 | SUNSET GUARD STATION - U.S.F.S. | .83* | .21* | 8.94 | .25 | 2.17 | 6.84 | .80 | -58 | 0 | .03 | ō | .08 | 20.73* | | 684
685B | ARCADIA WAREHOUSE - U.S.F.S.
SOUTH PASADENA - MARSH | .83 | .17 | 7.70
6.62 | .21 | 1,59 | 4.69
5.31 | .25 | .05
0 | 0 | 0 0 0 | 0 | .09
0 | 15.61 | | 6898 | SAN MARINO - COOPER | .75 | .33 | 7.08 | .27 | 1.63 | 4.80 | .66 | 0 | 0 | 0 | 0 | 0 | 15.52 | | 691
694B | SAN ANTONIO SPREADING GROUNDS TUJUNGA CANYON GUARD STATION - U.S.F.S. | .90
1.18 | .28
.35 | 10.71
5.31 | .46
.15 | 2,10
2,27 | 5.07
6.82 | .88
.92 | .29
.26 | 0 | .03 | 0 | .25
T | 20.97
17.26 | | 695 | TUJUNGA CANYON - VALHALLA RANCH | 1.33 | .73 | 10.71 | .19 | 3.71 | 11,70 | .94 | 0 | 0 | | <u> </u> | 0 | 29.31 | | 696
699 | PASADENA - GLEN
LOS ANGELES - 30TH & TRINITY STREETS | .96
.40 | .18 | 8.42
4.77 | .34 | 2.14
1.39 | 6.38
3.91 | .69
.35 | .45
0 | 0 | .01 | 0 | .03
0 | 19.60 | | 700 | LOS ANGELES - SLAUSON & LONG BEACH AVENUES | .40 | .20 | 4,67 | .16 | 1.21 | 4.19 | .43 | ō | ō | ő | Ö | Ö | 11.26 | | 703 | GLENDALE - MC INTYRE
ALDER CREEK : PARADISE RANCH | .78
1.51 | ,21 | 6.36
6.41 | .16 | 1.96 | 4.06
6.28 | .71
.99 | .03
.42 | 0 | .04 | 0 | .02
0 | 14.29
18.16 | | 705
706 | RIVERA - HADLEY RANCH | .35 | .41 | 4.94 | 12 | 1.19 | 5.14 | .54 | 0 | 0 | 0 | 0 | 0 | 12.50 | | 707 | PASADENA - MILLARD | .86 | .27 | 8.30 | 144 | 2.58 | 5.12 | .71 | .30* | T | T | 0 | .12 | 18.70* | | 708
715 | GLENDORA - GORDAN RANCH
L.A. #2 - U.S.W.B POST OFFICE TERMINAL | 1.30 | .17
.22 | 9.93
5.63 | .25
.10 | 1.54 | 5.42
4.11 | .67
.46 | .07 | O
T | O
T | 0 | .13 | 19.48
12.64 | | 716 | L.A.W.D DUCCMMUN STREET | .52 | .18 | 5.51 | .02 | 1.41 | 3.95 | .29 | .04 | 0 | 0 | 0 | .38 | 12,30 | | 718
719 | 1000 OAKS
DUARTE - MADDOCKS RANCH | .72 | .22
.18 | 6.49
9.54 | .28
.37 | 1.28 | 3.97
4.68 | .26
0 | .08 | 0 | 0 | 0 .
0 | 0 | 13.22
17.57 | | 720 | SIMI VALLEY - SMITH RANCH | .76 | .28 | 7.07 | .37 | 1.31 | 4.50 | .36 | .18 | 0 | 0 | 0 | Ō | 14.83 | | 721 | EL MIRAGE LAKE | .43 | .05 | 1.02 | .05 | .41 | 1.44 | -23 | .06 | 0 | .18 | N.R.
O | N.R. | INC.
15.93* | | 723
724 | STONE CANYON - SAN FERNANDO VALLEY BIG DALTON - MONROE CANYON FLUME X | .76
1.40 | .32* | 7.21* | ,25 | 1.95
2.34 | 6.67 | .60
.77 | .26 | 0 | .04 | 0 | .08 | 24.13 | | 725 | 81RMINGHAM HOSPITAL | .64* | .16 | 5.05 | .17 | 1.19 | 3.06 | .47 | 0 | 0 | 0 | 0 | 0* | 10.74* | | 726 | ANGELES CREST - GUARD STATION
NEWCOMB PASS | 1.49* | .69
.60 | 11.33
19.22 | .24*
.23 | 3.20*
2.80 | 8.78
11.03 | .90
.66 | .55
.26 | 0 | 0
.07 | 0 | .15 | 27.33°
36.99° | | 727
728 | PACOIMA CANYON - CITY ROAD GAGE | 2.60* | .95 | 11.02 | .03 | 2,32 | 10.26 | 1.21 | .51 | Q | .11 | 0 | 0 | 29.014 | | 729 | MAGIC MOUNTAIN RIDGE - INDIAN CANYON | 3.67* | .50 | 10.47 | .03 | 2.13 | 9.37 | .75 | -09 | 0 | .08 | 0 | 0
•11 | 27.09°
28.67° | | 730
731 | MILLARD CANYON - DAWN MINE OAK GROVE - HEADQUARTERS - U.S.F.S. FLOOD CONTR | 1.40*
DL .73 | .40
.37 | 12.33
8.29 | .25
.29 | 2.69
2.65 | 9.92
6.23 | .95
.64 | .61 | 0 | T T | 0 | .05 | 19.45 | | 732 | ROBERTS CANYON - SAN GABRIEL WEST FORK DIVIDE | N.R. | N.R. | 18.46 | .40 | N | 0 | R | E C | 0 | R | D | | INC. | | 733 | CLOUDBURST CANYON - ARROYO SECO LOS ANGELES MUNICIPAL AIRPORT | 2.65* | | 15.26 | .19* | 3.79*
.53 | 16.36
3,29 | .87
.65 | .06
T | 0
T | | 0 | .27
.01 | 40.19 ⁴
9.82 | | 734
735 | BELL CANYON - PLATT RANCH | .46
N.I. | .18
N.I. | 4.45
N.I. | .25
INC. | 1.07 | 3,29 | .18 | Ó | Ö | o
O | o | 0 | INC. | | 736 | BIG DALTON - VOLFE CANYON | 1.16* | .43* | 12.47 | .46 | 2.77 | 7.95 | .63 | .27 | 0 | .03* | 0* | .34*
T | 26.51 | | 737
738 | UPPER SESPE - CHORO GRANDE RANCH
SATICOY WALNUT ASSOCIATION | 2.58
N | .37
0 | 9.22 | ,42
R | 1.72
E | 10.21
C C | ,22
) R | T
D | 0 | .05 | 0 | ' | 24.79 | | 739 | SANTA PAULA - LIMONIERA RANCH | .78 | .31 | 5.18 | .24 | 1.30 | 3.80 | .15 | 0 | 0 | Ť | 0 . | 0 | 11.76 | | 740 | SAN DIMAS CANYON - FERN CANYON #1
SAN DIMAS CANYON - UPPER EAST FORK | 1.50 | .50 | 12.95 | .42 | 2.94 | 8.87 | .76 | .26
1.01 | 0 | .30*
.30 | 0 | .70 | 29.20 | | 741
742B | SAN DIMAS CANYON - UPPER EAST FORK
SAN GABRIEL - FIRE DEPARTMENT | 1.28
.50 | .28 | 8.70
5.99 | .51 | 2.50
1.46 | 4.93
4.98 | .60
.57 | .01 | 0 | 0 | 0 | .69
T | 13.91 | | 743 | BIG DALTON CANYON - BELL CANYON | 1.46 | .45 | 10.89 | <u>.45</u> | 1.95 | 5.58 | .69 | .25* | 0* | *60 | 0* | .30* | 22.05 | | 746
751 | MOJAVE - BACKUS RANCH
TORRANCE - FIRE DEPARTMENT | 1.04
N. I. | T
N.1. | 2.86
N.J. | ₹
•25 | .94
.84 | 1.32
3.09 | .17
.54 | .05
T | 0 | .47
0 | 0*
0 | .05 | 6.90
INC. | | 752 | MONROV!A - GEARY | 1.16 | .28 | 8.57 | .31 | 1.93 | 4.65 | .40 | .19 | ō | .09 | 0 | .10 | 17,68 | | 000 | HUNT CANYON - BONES RANCH | 1.50* | 0*
77* | 2.02 | .14 | 1.29 | 3.15 | .55 | .23 | 0 | .10 | 0 | .02 | 8.90
40.70 | | 1001 | WEST FORK GUARD STATION TUJUNGA - TANGUAY | 2.88*
N.1. | .77*
N.I. | 15.89
5.62 | .19 | 2.27 | 15.03
7.39 | .74 | .05 | 0 | .04 | 0 | Т - | INC. | | 1003 | VAN ALDEN DEBRIS BASIN | N. I | N.I. | . N.I. | N.I. | INC | 5.37 | .38 | .08 | 0 | 0 | 0 | 0 | INC.
17.72 | | 004
1005 | MALIBU CREEK - CRATER CAMP
MINT CANYON - THE OAKS | .72
N.I. | .44
N.1. | 9.55
N.I. | .25
N. i. | 1.55
N.I. | 4.95
N.1 | .22
N.i. | .04*
N. I. | 0 | 0 | O
T | 0 | INC. | | 006 | SAN PEDRO - CITY RESERVOIR | Т. | .49 | 3.88 | .42 | .55 | 2.69 | .46 | .04 | 0 | 0 | 0 | 0 | 8.53 | | 1007 | ANGELES CREST HIGHWAY - CAMP VALCREST | N.I. | N.I. | N.I. | N.I. | N. I. | N.L. | N.I. | N.L. | N.1. | N. I. | N. I. | . 19 | INC. | LEGEND ESTIMATE FROM NEARBY STATION PARTLY ESTIMATED INC. INCOMPLETE RECORD N.I. - NOT INSTALLED N.R. - NO RECORD TABLE IV SEASONAL 1946-47 MONTHLY RAINFALL SUMMARY RAINFALL RECORDS IN INCHES | STA
NO. | STATION | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | SEAS.
TOTAL | |-----------------------|---|---------------|-----------------|---------------|---------------|-------------|--------------|-------------|-------------|------------|---------|-------------|-------------|----------------| | 2B
3 | ESCONDIDO CANYON
SEMINOLE HOT SPRINGS | .53 | 9.74
12.14 | 3.21
3.34 | .15 | .53
.72 | 1.32 | .17 | .38
0 | 0*
0 | 0*
0 | .20*
.21 | .01*
0 | 16.2
18.4 | | 5B | CALABASAS | . 29 | 6.84 | 3.36 | .21 | .35 | 1.05 | 0 | .08
.08 | 0 | 0 | .02 | 0
_01 | 12.2 | | 6
7C | TOPANGA CANYON PATROL STATION BEL-AIR BAY CLUB | .75
N
O | 10.07 | 4.89
R E | C 0 | .45
R D | | .03 | . 10 | T | 0 | .10 | 0 | INC. | | 9
10 | SEPULYEDA AND CHASE - LARSON
BEL-AIR HOTEL | .63
1.07 | 8.12
8.53 | 3.81
4.34 | .33 | .76
.95 | 1.04 | ,13
0 | .07
0 | 0 | 0 | .03 | .03 | 14.9
16.4 | | 11C | UPPER FRANKLIN RESERVOIR | 1.04 | 8.86 | 4.78 | .55 | .82 | 1.12 | Ť | .07 | т | 0 | T | .14 | 17.3 | | 12
13 | FRANKLIN-MULHOLLAND FIRE STATION
NORTH HOLLYWOOD - BLIX | 1.06
.86 | 9.01
6.58 | 5.06
4.10 | .52
.27 | .82
.48 | 1.14*
.91 | .04 | .02 | c
u | 0 | .01 | .08
0 | 17.7
13.4 | | 14 | ROSCOE - MERRILL | 1.51 | 6,78 | 4.25 | .34 | .18 | 1.51 | .25 | .07 | .03 | 0 | Т | .13 | 15.0 | | 15
17 | VAN NUYS CITY WAREHOUSE
SEPULVEDA CY. AT MULHOLLAND HWY, FIRE STATION | .59
.84 | 7.74
8.35 | 3.80
4.25 | .17 | .40
.65 | 1.24 | .08 | .09
09 | .01 | 0 | .02 | .02
T | 14.1 | | 18 | ADOHR DAIRY | .36 | 7.71 | 3.74 | .12 | .70 | .92 | 0 | .03 | 0 | 0 | 0 | 0 | 13 % | | 20B
21 | GIRARD
BRANT RANCH - GIRARD | .23 | 7,48
6,74 | 3.68 | .26 | .23 | 1.22 | 0 | .24 | 0 | 0 | .13 | 02 | 13.4 | | 23-E | CHATSWORTH RESERVOIR
CHATSWORTH | . 25 | 6.21 | 3.64 | .42 | .55 | 1.17 | T | .11 | 0 | 0 | .12 | .03 | 12.5 | | 24D
25B | NORTHRIDGE - ANDREWS | .39 | 7.15
6.59 | 3.50
3.75 | .55
.30 | 1.58 | 0
135 | 0
.07 | .48
11 | 0 | 0 | .10 | .03 | 12.7 | | 27B | PACOIMA - RADDATZ RANCH | .89 | 6.48 | 3,81 | .48 | .31 | 1.69 | .06 | .26 | ,03
T | 0 | 0 | .05 | 14.0 | | 28
29B | SAN FERNANDO LEMON ASSOCIATION
GRANADA PUMP PLANT | .77
.83 | 7.08
7.12 | 3.65
4.42 | .48
.52 | .17 | 2,11
1,62 | .13 | .27 | Ť | Ö | .05 | .10 | 14.8
15.0 | | 30
32C-E | SYLMAR
NEWHALL - SOLEDAD DIVISION HEADQUARTERS | 1.08 | 7.58 | 4.79 | .48 | .24 | 1.90 | .11 | .09 | 0
T | 0 | .04 | .21 | 16.5 | | 33A+E | PACOIMA DAM | .64
2.50 | 9.26
8.27 | 4.00
6.10 | .40 | .36
.15 | 1.09 | .33 | .61 | .12 | o o | .13 | .46 | 20,9 | | 38 | HANSEN HEIGHTS - CHAPPEL'S RANCH
SUNSET DAM | 1.50 | 6.32 | 4.34 | .36 | .30 | 1.68 | .30 | .30
.50 | 0
.26 | 0 | .07 | .14 | 15,2
18.8 | | 39B
42 | REDONDO CITY HALL | 1.54
.76 | 8.35
6.34 | 5.08
2.37 | .42
.12 | .38
.60 | .63 | .25 | .13 | 0 | ŏ | .02 | .02 | 11.2 | | 43A | PALOS VERDES ESTATES ADM. BLDG.
PALOS VERDES GOLF CLUB | .65 | 6.49 | 2.36 | .03 | .38 | .82 | .21 | .01 | 0 | 0 | 0 | T
O | 10.9 | | 43B
44 | POINT VICENTE LIGHTHOUSE | .92 | 7.65
5.15 | 2,49 | .04* | .52 | 1.06*
.37 | .25*
0 | .01* | .08 | 0 | T | Ť | 12.9 | | 46D-E | BIG TUJUNGA DAM NO. 1
CLEAR CREEK | 3.09 | 11.14 | 7.31 | .92 | .22 | 1.62 | .21 | .19 | 0 | 0
0* | .09
0* | .27 | 25.0 | | 47A
47C | CLEAR CREEK | 4.94
4.30 | 15.07
14.07 | 9.19
8.69 | 1.30*
1.29 | .82
.47 | 2.31
2.37 | .28 | .38 | 0*
0 | 0 | 0 | .30* | 34.5
32.1 | | 48 | OAK WILDE
ALTADENA - CHIESA | 4,79 | 12.57 | 10,38 | 1.63 | .99 | 2.19 | .36 | .42 | 0 | 0 | .02 | .68 | 34.0 | | 49
50B | LA CANADA - ARROYO SECO DIVISION HEADQUARTERS | 2.24 | 10.81
10.40 | 6.46
6.21 | .80 | .47
.41 | 1.65 | .46
.19 | .49
.33 | .10 | 0 | .13 | .36
.16 | 23.9
21.9 | | 51
52B | FALLING SPRINGS - LA CIENEGA
SWITZER'S CAMP | 5.38 | 13.55 | 9.18 | .80 | .87 | 2.59 | .44* | .19 | 0 | 0 | .11* | .38
.30* | 33.4
28.9 | | 52C | WATERMAN GUARD STATION | 3.96
3.99 | 12.05
13.93 | 7.99
8.23 | 1.33 | .31
.48 | 2.25
2.10 | .30 | .45* | 0 | 0 | .02* | .17 | 31.0 | | 53A
54 | COLBY RANCH - SLEEPY HOLLOW RANCH
LOOMIS RANCH - ALDER CREEK | 2.75 | 14.48 | 7.22 | .91 | .39 | 1.46 | .42 | .12 | 0 63 | 0 | .13 | .03* | 27.9 | | 57B-E | CAMP SINGER - (OPID'S) | 1.68
5.14 | 10.51
19.85 | 5.25
11.51 | .48
1.18 | .36
.53 | 1.76
2.43 | .29 | .22 | .03
0 | Ō | .12 | .03 | 21.5
41.8 | | 60A | CAMP LE ROY - (HOEGEE'S)
BIG SANTA ANITA GUARD STATION | 4.86 | 16.30 | 10.30 | 1.72 | .97 | 2.54 | .40 | .65 | 0 | 0 | .15
.10* | -46 | 38.39 | | 62
63B-€ | BIG SANTA ANITA DAM | 3.98
2.52 | 15,00 | 9,22
6,77 | .97 | .39 | 1.58 | .37 | .54*
.48 | .14* | 0 | .03 | .61 | 24.1 | | 66 | SIERRA MADRE - PEGLER RANCH
MONROVIA CITY HALL | 1.74 | 10.38 | 6.62 | .70 | .45 | 1.22* | .19* | 0 | .07* | 0 | .08* | .20* | 21.6 | | 67B
68B | SAWPIT DAM | 1.62*
3.05 | 8.76**
10.82 | 5.80
6.77 | .57
1.01 | .53
.69 | 1.17 | .13
.45 | .10
.56 | .11 | 0 | .03 | .18
.61 | 18.92
25.84 | | 69 | SAWPIT CANYON - HOGBACK
ROGER'S CANYON - DALTON | 3.61 | 13.08 | 8,58 | .93 | .84 | 1.92 | ,64 | .70 | .11 | 0 | .06 | .60 | 31.07 | | 70
73 | GLENDORA - ENGLEWILD RANCH | 2.00 | 9.28
8.59 | 6.11
4.54 | .75
.91 | .51
.48 | 1.67 | .35
.35 | .27
.47 | .03 | 0 | .05 | .16 | 21.18
19.74 | | 769 | SAN GABRIEL DAM #1 CAMP | 3.43 | 12.21 | 7.46 | 1.61 | 1.78 | 1.41 | .14 | .32 | T | 0 | .06 | .10 | 28.52 | | 82
83 | TABLE MOUNTAIN BIG PINES RECREATION PARK | 1.55 | 5.31
11.35 | 3.55
6.01 | .31
.74 | .23
.57 | 1.41 | .68
.94 | .18 | т
0 | 0 | .01
.05 | .04
.67 | 13.27 | | 85D | CAMP BALDY GUARD STATION | 5.67* | 15.93 | 7.67 | 1.21 | 1.02 | 2.39 | 1.07 | .16 | 0 | 0 | 7 | .57 | 35.69 | | 87
89-E | SAN DIMAS GUARD STATION
SAN DIMAS DAM | 3.25
3.16 | 10.10
9.19 | 4.75
4.25 | 1.09 | .98
.67 | 1.72 | ,21
.19 | .28
.24 | .04 | 0 | T
T | .15 | 22.57 | | 90 | ELDER RANCH - (BRYDON'S RANCH)
INDIAN HILL - CLAREMONT | 2.08 | 9.67 | 4.27 | 1.02 | .53 | 1.58 | .25 | 0 | 0 | 0 | 0 | .21 | 19.61 | | 91 | CLAREMONT - POMONA COLLEGE | .90 | 8.88 | 3.19 | .77 | .48* | 1.35 | .32 | .28 | .10 | 0 | .02 | .12 | 16.4 | | 93 | CLAREMONT - FIRE STATION CHARTER CARS - FIELD'S BANCH | .92 | 8.52 | 3.67 | .77 | .34 | 1.09 | .27 | .25 | .08 | 0 | .01 | .09 | 16.01 | | 94
95 | CHARTER OAKS - FIELD'S RANCH
SAN DIMAS - SAN JOSE DIVISION HEADQUARTERS | .79
.90 | 8.02
8.03 | 3.74
3.41 | .49
.47 | .47*
.63 | 2.11* | .08* | .52
.53 | .08* | 0 | .02* | .08 | 16.40 | | 96-E | PUDDINGSTONE DAM | .84 | 7.48 | 3.24 | .49 | .45 | 1.27 | .13 | .23 | .10 | 0 | .03 | .04 | 14.30 | | 98
99 | AZUSA - HIBSCH
AZUSA - FOOTHILL RANCH | 1.26 | 8.00
8.21 | 3.92
4.32 | .60
.65 | .42 | 1.54
1.71 | .21 | .14
.15 | .05
0 | 0 | .05
0 | .14 | 16.33 | | 101 | WEST COVINA - HURST RANCH | .76 | 7.57 | 3.84 | .46 | .56 | 2.10 | .28 | .36 | .02 | Ó | .03 | .06 | 16.04 | | .02B
.04 | WALNUT - SOUTH HILLS PATROL STATION
NORTH WHITTIER - COLE RANCH | .65
1.10 | 7.00
8.03 | 2.61
3.70 | .59
.76 | .40 | 1,19
1,76 | .17 | 1.11 | .02 | 0 | .07 | .07
0 | 13.8 | | 05 | EAST WHITTIER - SHARPLESS RANCH | .54 | 6.60 | 2.77 | .40 | .34 | 1.47 | .68 | .05 | Ť | 0 | .12 | .12 | 13.09 | | 06
07B | WHITTIER CITY HALL
DOWNEY - FIRE STATION | .61
.58 | 5.91
9.14 | 2.86
3.00 | .42
.17 | .32
.28 | 2.52
1.69 | .13 | .65
.14 | .07
0 | 0 | .15 | 08
.13 | 13.72 | | 088 | EL MONTE - FIRE STATION | .76 | 7.04 | 3.51 | .50 | .49 | 1.71 | .52 | .22 | ō | 0 | ō | .16 | 14.9 | | 09 ^C | WEST ARCADIA
ALHAMBRA - CITY HALL | 1.22 | 8.67
9.70 | 5.30
5.54 | .36 | 1.54 | .99 | .13 | .24 | 0 | 0 | 0 10 | .06 | 17.48 | | 11 | SOUTH PASADENA - C!TY HALL | 1.03 | 9.85 | 6.58 | .39 | .88 | .62 | .43 | .29 | .03 | ō | .10 | .16 | 20.37 | | 14
16 ^B | ROSECRAN'S RANCH - GARDENA
INGLEWOOD - FIRE STATION | .72
.68 | N.R.
6.30 | 6.22
2.62 | N.
.34 | 0
.45 | R
1.00 | .40 | c
.04 | O
T | R
O | D
0 | .09 | INC. | | 178 | COMPTON - FIRE STATION | .58 | 8.30 | 3.17 | ,20 | .45 | 1.26 | .12 | .04 | 0 | 0 | .02 | .04 | 11.92 | | 18B
19D | WILMINGTON
SAWTELLE - SOLDIER'S HOME | .55 | 5.84
8.23 | 2.67 | .25 | .84 | .78 | .72 | .04 | 0 | 0 | 0 | .05
T | 11.74 | | 20 | VINCENT PATROL STATION | .94
.31 | 4.46 | 3.80
2.44 | .56
.12 | .76
.03 | .98
.60 | .01 | .05 | 0 | 0 | 0
.08 | T
0 | 15.33 | | 21
22B | LANCASTER- UNION HIGH SCHOOL
LEONIS VALLEY - RITTER RANCH | .04 | 2.45 | 2.19 | .36 | .05 | .51 | .49 | Т | 0 | 0 | .33 | 0 | 6.42 | | 248 | BOUQUET CANYON RESERVOIR | 1.13 | 5.62
7.50 | 3.28
4.34 | 1,12 | .38 | 1.12 | .27 | .10 | 0 | 0 | .14 | .20 | 12.12 | | 25
26 | SAN FRANCISQUITO CANYON POWER HOUSE #1 VENICE - CITY YARDS | 1.49 | 8.79 | 4.38 | .77 | .62 | 1.55 | .37 | .28 | 0 | Ō | 0 | .34 | 18.59 | | 27 | DRY CANYON RESERVOIR | .75
.71 | 7.22
6.17 | 3.03
3.72 | .28
.36 | .57
.17 | .69
.62 | .04
.83 | .04 | 0 | 0 | 0
.02 | .10
.14 | 12.72 | | 28B
30B | ELIZABETH LAKE CANYON - WARM SPRINGS CAMP
SANDBERG'S - QUALL LAKE PATROL STATION | 1.36 | 8.79 | 5.30 | .78 | .85* | 2.02** | 1.56 | .21 | T | 0 | Ţ | .04 | 20.91 | | 34 | SAN DIMAS - STEVENS | .40
1.27 | 6.61
8.35 | 5.09
4.08 | .32 | .50
.35 | ,75
1,33 | .64
.10* | .05 | 0
•07 | 0 | 0 | T
.11 | 14.36
16.53 | | 35
36B | NORWALK
HOLLYWOOD - CITY ENGINEER | .68 | 5.22 | 2.14 | .22 | .26 | 1.20 | ٥ | .22 | 0 | ō | ō | 05 | 9.99 | | 39 | LOS ANGELES WATER DEPARTMENT | .82
.49 | 7.43
6.87 | 4.33
3.50 | .50
.30 | .76
.77 | 1.21
.74 | .05 | .06
.07 | 0
.02 | 0 | 0 | .09 | 15.25 | | 40 | SAWTELLE - WEST L. A. CITY HALL | 1.03 | 7.66 | 4.04 | .55 | .79 | .83 | .05 | .03 | 0 | 0 | Ť | .02 | 12.88 | | 43
44 | AZUSA - CITY PARK
SIERRA MADRE DAM | 1.25 | 7.90
11.53 | 4,21
6,67 | .63
.92 | .40*
.46 | 1.47 | .17 | .13* | 0 | 0 | .04 | .15 | 16.35 | | 50 | MONROVIA FALLS | 3,55 | 12.02 | 7.06 | 1.24 | .70 | 1.99 | .32 | .39
.80 | .41
.12 | 0 | .03
0 | .39
.70 | 25.27
28.52 | | 55B
56 | LITTLE ROCK CREEK LA MIRADA - STANDARD OIL CO. | .38 | 4.42
5.09 | 2.42 | .29 | .05* | 1,40 | .02 | .14 | 0 | . 0 | 0 | 0 | 9,12 | | 57 | EL SEGUNDO - STANDARD OIL CO. | • 59 | 5.09 | 2.05 | .24 | .14 | .83 | T | .36 | T | 0 | .25 | .06 | 9.61 | TABLE IV SEASONAL
1946-47 MONTHLY RAINFALL SUMMARY RAINFALL RECORDS IN INCHES | NO. | STATION | ост. | NOV. | DEC. | JAN. | FEB- | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | SEAS.
TOTAL | |----------------------|--|--------------|-----------------|----------------|--------------|--------------|---------------|--------------|-------------|-------------|---------|-------------|---------------|----------------| | 58 | TANBARK FLATS | 3,54 | 12,17 | 5.88 | 1.48 | 1.56 | 1.97 | .31 | .39 | .06 | 0
0* | .05
.08* | .27 | 27.68 | | 67 | ARCADIA PUMPING PLANT #1 | 2.13
1.61 | 8.80
9.49 | 5.68
5.d3 | .74
.65 | .60
.45 | 1.34 | .25 | .25* | .08 | 0 | ,12 | . 26*
. 20 | 20.32 | | 69 | SIERRA MADRE PUMPING PLANT | 1.86 | 9.88 | 6.09 | 68 | .48 | 1.09 | .23 | .15 | .09 | 0 | . 04 | , 21 | 20.82 | | 708 | POTRERO HEICHTS
CHAPMAN WELLS | 1.69 | 7,67 | 3.76
6.51 | .63
57 | .73 | 1,12 | .15 | .49 | 01 | 0 | .10 | .11 | 15.55
21.16 | | 174 | GLENDORA - WARREN | 1.61 | 7.92 | 3.83 | .69 | .45 | 1.51 | .21 | .35 | .15 | 0 | .05 | . 15 | 16.92 | | 758
76 | ALTA CANYADA LA CANADA IRR, DISTRICT
RUBIO CANYON WATER COMPANY | 2.93 | 11.46 | 7.86
6.37 | 1.33 | .36
.58 | 1.22 | .23 | .51
.47 | .26 | 0 | 0
,11 | .63
.17 | 27.67
23.14 | | 77C | LA CANADA - BRADFORD | 1.99 | 10.77 | 6.96 | .65 | .44 | 1.43 | .25 | .44 | .08 | Ö | .04 | .13 | 23,26 | | 7t | AZUSA - GRIFFITH | .70 | 7.39 | 3.71 | .42 | .46 | 1.46 | .11 | .15 | .08 | 0 | .02 | .05 | 14.55 | | 1796
1318 | SIERRA MADRE - CARTER
BASSETT - CLIFFORD | 2,09
.53 | 11.84
7.53 | 6.72
3.68 | .90
.51 | .50
.50* | 1.53 | .30 | .46
1.12 | .02 | 0 | .09
.04 | .04 | 25,12
15,59 | | 182 | BALDWIN PARK - LEACH | .90 | 7.01 | 3.76 | . 45 | .40 | 1.27 | -17* | .15* | .05* | 0. | .02* | .08* | 14.26 | | LESC
LESC | CLENDORA - WEST
SAN DIMAS - MORRISON | 1.36 | 8,25
7,96 | 3,74 | .81 | .55 | 1.41 | .16 | . 28
38 | .07 | 0* | .06 | .13 | 15.90 | | 1528 | BELL FIRE STATION | .75 | 7.98 | 2,90 | .39 | .66 | 1.32 | .08 | . 27 | G | 0 | .29 | .11 | 14.75 | | 193 | COVINA #2 - TEMPLE LA VERNE - LEADER | .64 | 7.39
8.29 | 3.24
3.54 | .44 | .62
.44* | 1.73
1.40* | .03
.15* | .34
.35* | .04
.08* | 0
0* | .02
.02* | .11 | 14.60
15.92 | | 196
1986 | BRAND DEBRIS BASIN | 1.27** | 7,62** | 4.83** | .35 | .41 | . 89 | .26 | .24 | .14 | 0 | .02 | .14 | 16.19 | | ეყნ | HUNTINGTON PARK - CITY YARD | 90 | 7.35 | 3.45 | .61 | .45 | .98 | . 12 | .15 | C | 0 | .02 | .09 | 14.13 | | 26C | SAUGUS - SO, CALIF. EDISON CG. SUB STATION
PUENTE HILLS - ALTA MIRA RANCH | -48 | 7.74 | 3.47
3.53 | .15 | .06
.25 | .68
1.57 | .34
0 | .43 | 0 | 0 | .02 | .08 | 12.97
15.71 | | 201
205 | PUENTE - 50. CALIF, EDISON CO. SUB STATION | 1.11
.74 | 7.68
7.78 | 3,17 | -53 | .47 | 2.17 | .42 | 71 | Ť | ŏ | .04 | .11 | 16.14 | | 06 | VALENCIA HEIGHTS | .72** | 6.58 | 2.92 | .61 | . 60 | 1.78 | .28* | .36* | .02* | 0 | .03* | .06* | 14,06
9,56 | | 208
2008 | ARTESTA - BARR LUMBER COMPANY
BIG TUJUNGA - EDISON ROAD | .52
2.88 | 4,71
11,23 | 2,25
7,04 | .16 | .48
.30 | 1.12 | .08 | .19* | 0
.03* | 0* | .01* | .04* | 24.50 | | 2098
2108 | BRAND, PARK | 1.60 | 8.21 | 5.17 | .34 | .42 | 1.24 | .33 | .28 | .17* | 0 | .03 | .19 | 17.98 | | 213 | LOS ANGELES - HANCOCK PARK
BELLFLOWER - FIRE STATION | .57 | 7.09 | 4.17
2.11 | .60 | .77 | 1.05 | .07 | .09 | 0 | 0 | 0 | .10 | 14.51 | | 215B
216 | GLENDALE - JONES | 1,28 | 6,56
9,22 | 5.51 | .40 | .35 | 1.01 | .26 | .21 | 0 | 0 | 0 | .17 | 18.36 | | 217 | WATTS - JORDAN HIGH SCHOOL | .48 | 5.68 | 2,93 | .11 | .26 | 1.41 | .06 | ,32 | 0* | 0* | 0* | 0* | 11.25 | | 219
218 | PACOIMA - WAREHOUSE CO. FORESTRY PACOIMA WASH - DUCKWORTH RANCH | 1.35 | 7.21 | 3.80 | .44
.70 | .15 | 1.84
1.48* | 0
.26* | .20
.50* | .06* | 0 | 0
.07 | .05
.27 | 15.04
19.40 | | 221B
222 | LANKERSHIM GENERATING PLANT | 2.48 | 7.47
5.14 | 5.95**
3.20 | .18 | .25 | .89 | .15 | .21 | .01 | 0 | .01 | 0 . | 10.75 | | 2238-E | EIG DALTON DAM | 4.04 | 10,42 | 5.06 | 1.27 | .78 | 2.27 | .65 | .60 | .20 | 0 | -07 | .37 | 25.73 | | 25 | MONTANA RANCH
BURBANK - FIRE STATION | ,52
.00 | 5.13
7.60 | 1.97
4.36 | .14 | .60
.35 | 1.09 | .03 | .13 | 0
.11 | 0 | .02
0 | .03 | 9.66
15.53 | | 225
22 7 8 | SAN GABRIEL - GLEASON | .90
1.17 | 9.01 | 5.31 | .50 | .99 | .65 | .21 | .27 | .11 | ŏ | .10 | . 12 | 18.44 | | 2288 | BEVERLY HILLS - CITY HALL | .79 | 8.19 | 4.48 | .50 | 1.02 | .96 | T | ,06 | 0 | 0 | T
0 | .10 | 16.10 | | 236C
234 | LIVE OAK CANYON - ELDER
COVINA - THORPE | 1.03 | 7.91
6.93** | 3,31
3,20 | .72
.54 | .59
.60 | 1.23 | .23
.07* | .22 | .04* | 0* | .C6* | .08* | 14.09 | | 2353 | HENNICER FLATS | 3.39 | 13.16 | 7.26 | 1.00 | .58 | 2.11 | .46 | 1.09 | .28 | 0 | .09 | .67 | 30.29 | | 236 | SAN FERNANDO - HUFFMAN HANCH
STONE CANYON DAM | 2,51 | 8.04
8.71 | 5.62
4.70 | .63
.61 | .16 | 1,55* | .26 | .53
.03 | .06
.04 | 0 | 0 | .31 | 19.67
16.99 | | 237
228 | HOLLYWOOD DAM | 1,25 | 7.77 | 5.34 | .44 | .81 | 1.17 | .23 | .06 | .04 | 0 | .01 | .13 | 17.25 | | 240B | LITTLE TUJUNGA CANYON - ODDCUS RANCH | 2.43 | 8.39 | 4.57 | .92 | .32 | 1.31 | .23 | .38 | 07*
T | 0* | .05* | .50 | 19.77 | | (41 2 | LONG BEACH - VETERAN'S MEMORIAL BUILDING
CULVER CITY - BUS YARD | .34 | 7.73
6.09 | 2,18
3,33 | .20
.31 | .47
.45 | .õ0
.76 | .04
0 | .06
.05 | 0 | 0 | .02
T | .02 | 11.86
11.79 | | 246B
250C | ACTON - OLIVE VIEW CAMP | .68
"53** | 4.52 | 2.85 | .22 | Ť | .40 | .30 | Ť | 0 | 0 | .01 | 0 | 8.83 | | 251 | LA CRESCENTA | 2.62 | 10.57 | 6.53 | 1,18 | .30 | 1.93 | .25 | .44 | .12 | 0 | .03 | .22 | 24.19
16.99 | | 254
255A | PUENTÉ - ROWLANO RANCH
NT. SAN ANTONIO COLLEGE - SPADRA | .74*
.69 | 6.53
7.03 | 3,78
2,98 | .58
.51 | .48*
.42 | 3.11 | .52 | .70
.14 | .03 | 0 | .08 | .08 | 13.68 | | 256B | POMONA - FIRE STATION | .65 | 7.46 | 2.66 | .32 | .32 | .95 | -02 | .20 | .02 | 0 | 07 | .06 | 12,73 | | 25.7 | GRIFFITH PARK NURSERY | 1.08** | 8,98 ** | 4,58 | _42 | .62 | 1,34 | .10 | .15* | 0 | 0 | | .18 | 17.45 | | 258A
256B | GRIFFITH PARK - TUNNEL GRIFFITH PARK - SOUTH SLOPE, MOUNT HOLLYWOOD | .94
1.01 | 8.55
8.19 | 5.05
5.00 | .46
.46 | .86 | 1.15 | .28 | .15 | ő | ŏ | Ť | .20 | 17.30 | | 258C | GRIFFITH PARK - NORTH SLOPE, MOUNT HOLLYWOOD | 1.08 | 9.03 | 5.44 | .48 | .86 | 1,23 | .30 | .15 | 0 | 0 | T | . 22 | 18.79 | | 259 C | CHATSWORTH PATROL STATION - TWIN LAKES
ACTON - MELLEN | .49
.84 | 7.08
4.69 | 4.73
2.97 | .40
.09 | .67
.10 | 1,42
.61 | .26 | .27 | 0 | 0 | .06
T | .11 | 15,49
9,47 | | 261-⊏
263A | POMONA - FRATER | .79 | 7.35 | 3,00 | ,33 | .42 | 1,00 | Ť | .18 | .01 | 0 | .23 | .03 | 13.34 | | 265C-E | PUENTE HILLS - WEISEL RANCH | 1.13 | 6.87 | 2.32 | .53 | .34 | 1.08 | 0 | .42 | 0 | 0 | .09 | .07 | 12.85 | | 266 | LEFFINGWELL RANCH - EAST WHITTIER
DIAMOND BAR RANCH NO. 1 | .71
N O | 6.64
R E | 2.67
c n | .36
R D | .54
.45* | .82
1.04 | 0
.23 | .02 | 0 | 0 | 0 | 0
.18 | 11 · 76 | | 269A
269B | DIAMOND BAR RANCH - HORSE CAMP | .62 | 8.21 | 2.79 | .71 | .45 | .70 | .17 | .33 | 0 | 0 | 0 | .18 | 14.16 | | 270 | COUNTY FARM - RANCHO LOS AMIGOS | .63 | 9.16 | 2.82 | .17 | .29 | 1.65 | .09 | -14 | 0 | 0 | .12 | .09 | 15.16 | | 271
272 | DOMINGUEZ HILLS L. A HEADWORKS PUMPING PLANT | .82 | 6 19
8.76 | 2.60
5.54 | .20* | .60 | 1.45 | .23
T | .10
.12 | 0 | 0 | 0 | .07 | 12.26 | | 274 | ACTON - HUBBARD | .69 | 4.51 | 2.64 | .12 | .04 | .52 | .06 | .15 | 0 | 0 | 0 | .05 | 8.78 | | 275 | SAN MARINO - HUNTINGTON LIBRARY | 1.60 | 10.22 | 7.23 | .43 | 1.05 | .83 | .24 | .32 | .06 | 00 | .12 | 12 | 22.22 | | 277
2 7 8₿ | SAWMILL MOUNTAIN RANCH | .95
.65 | 8.50
6.45 | 5.66
3.19 | .35 | .55
.73 | 1.08 | ,80
0 | 0 | 0 | 0 | 0 | ,10 | 17.89 | | 279A | PASADENA GLEN - KINNELOA RANCH | 3.01 | 11.70 | 6.87 | .84 | .50 | 1.77 | .36 | .73 | .31 | 0 | .15 | .47 | 26.71 | | 28CB | FLINTRIDGE FIRE STATION | 1.96 | 10.70 | 7.26 | .51 | .58 | 1.03 | .34 | .40 | -07 | 0 | .02 | .17 | 23.04 | | 283A
284 | CRYSTAL LAKE - EAST PINE FLATS PLACERITA CANYON | 6.60
1.40 | 15.20 | 7,28 | .78 | .76 | 2.87 | .52
.58 | .26 | .02 | 0 | .15 | .50 | 39,18 | | 285C | MOUNT ST. MARY'S COLLEGE | 1.34 | 8.31 | 4.49 | .68 | .90 | 1.21 | 0 | .04 | 0 | 0 | 0 | .08 | 17.05 | | 287 | GLENDORA - CONSOLIDATED MUTUALIRR. CO. | 1.25 | 6.01 | 4.17 | .75 | .43 | 1.88 | .15 | . 16 | -10 | 0 | .04 | .12 | 17.06 | | 289
290 | LAGUNA - BELL - S.C.E.C. SUB STATION
NEWMARK - S.C.E.C. SUB STATION | .57
.78 | 9.10
8.53 | 3.41
3.87 | .36
.57 | .30
.61 | 1.39 | 0 | .67 | T
0 | 0 | .04 | .12 | 15.96 | | 291 | LOS ANGELES - 96TH & CENTRAL | .70 | 6.64 | 3.05 | .10 | .21 | 1.07 | .10* | .32* | 0 | 0* | 0* | 0* | 12.08 | | 292-E | ENCINO RESERVOIR | . 44 | 6,56 | 3,67 | .08 | .58 | .93 | .03 | .04 | Ť | Ō | .07 | 01 | 12,41 | | 293
294 | LOWER SAN FERNANDO RESERVOIR
SIERRA MADRE - MIRA MONTE PUMPING PLANT | .85 | 7.34
11.37 | 5.41 | .54 | .18 | 1.96 | .08 | .13 | .01 | 0 | .03 | .14 | 16.64 | | 294
295F | GLENDALE - KENNEDY | 2.00
.82 | 9.11 | 6.29
4.96 | .84
.41 | .51
.40 | 1.21 | .27 | .22 | .32 | 0 | .03 | .38 | 17.54 | | 298B | GORMAN (NEAR) . | 0 | 5.26 | 4.88 | .35 | .36 | .65 | .38* | .0* | 0* | 0. | 0* | 0. | 11.88 | | 299C
300A | LITTLE ROCK
GARRAPATA CANYON - FAILOR CANYON | .24
.75 | 3,24
9.70 | 1.61
5.08 | .08
.40 | .03 | .86
1.71 | .06 | .02 | 0 | 0 | T
10 | 0 | 6.14 | | 303C D | PASADENA - CAL-TECH | 1.48 | 9.70 | 6.73 | .50 | .84 | .92 | .22 | .09 | .04
.06* | 0* | .18
.12* | .02
.12* | 18.60
21.35 | | 364 | SAWPIT CANYON - DEER
PARK | 4.38 | 16.62 | 9.90 | 1.32 | .75 | 2.13 | .70 | .77 | .08 | 0 | .05 | .62 | 37.3 | | 305
308 | ARROYO SEQUIS - MASON ESTATE KELLY'S CAMP | .54
6.97 | 9.73
19.45** | 3.78 | .22
1.77* | .53
1.50* | 1.22 | .02 | .43 | .03 | 0 | .02 | .03 | 16.55 | | 308
309 | PADUA HILLS | 2.10 | 11.23 | 9.68
3.55 | 1.77* | 1.50* | 3,50*
1,40 | 1.57*
.49 | .23*
.45 | .08 | 0*
0 | 0*
.08 | .70
.13 | 45.37
21.98 | | 311B | PAŠADENA - METEOROLOGICAL STATION | 1.58 | 9.72 | 6.73 | .53 | .62 | .92 | .25 | .30 | .06 | 0 | .07 | .12 | 20.90 | | 312
321-E | AZUSA PLANT - GLENDORA CONSOL. MUT. IRR, CO. PINE CANYON PATROL STATION | 1.76 | 8.47 | 4,93 | .63 | .52 | 1.82 | .28 | .24 | .01 | . 0 | .05 | .13 | 18.84 | | 321-5 | MUNZ VALLEY RANCH | 1.41 | 7.60
4.57 | 5.03
3.68 | .55
.40 | .74 | 1.67
.70 | .62
.10 | .23
0 | 0 | 0 | .04 | .10
Q | 17.99 | | 334-E | SAN GABRIEL DAM NO 2 | 3.74 | 17.76 | 10.84 | .78 | .74 | 1.18 | .34 | .04 | T | Ö | .08 | .04 | 10.03
35.54 | | 336 | SILVER LAKE RESERVOIR MOUNT WILSON - OBSERVATORY | .76 | 7.30 | 4.C9 | .40 | .52 | .73 | .12 | .05 | T | o | 0 | .05 | 14.02 | | 338A
338B | MOUNT WILSON - OBSERVATORY MOUNT WILSON - AIRWAYS STATION | 4.74
5.42 | 19,90 | 11.93 | 1.09 | .57 | 1.81 | .19 | .31 | T 01 | 0 | .13 | ,32 | 40.99 | | 339 | WALNUT FRUIT GROWERS ASSOCIATION | .70 | 7.18 | 2.63 | 1.30 | .69
.40 | 1.93 | .33 | .46
.84 | .01
0 | 0 | .19 | .38 | 43.23
13.7 | | 341
342 | ALISO CANYON - BLUM RANCH | .48 | 4.66 | 2.59 | .10 | -06 | .64 | 0 | 0 | ŏ | ő | 0 | 0 | 8.53 | | | UPLAND | 1.44 | 9.42 | 3.95 | .86 | .72 | 1.45 | .47 | .28 | .09 | O | .02 | .07 | 18.7 | TABLE IV SEASONAL 1946-47 MONTHLY RAINFALL SUMMARY RAINFALL RECORDS IN INCHES | STA.
NO. | STATION | сст. | NOV. | DEC. | JAN. | FEG. | MAR. | APR. | WAY | JUNE | JULY | AUG. | SEPT, | SEAS.
TOTAL | |---------------------|---|-----------------|----------------|---------------|-------------|--------------|---------------|-------------------|--------------|------------|---------|------------|-------------|----------------| | | VERA - TELEGRAPH ROAD
ALDWIN PARK EXPERIMENTAL STATION | .57**
.91 | 7.90
7.21 | 2.81
4.12 | .25
.44 | .32 | 2.12
1.42 | .13
.23 | . 75
.15 | :01
:05 | 0 | .08
.02 | .30 | 15,24
15 03 | | 348C SA | IN GABRIEL EAST FORK - HONOR CAMP NO. 4 | 3.56
3.57 | 10.52
12.41 | 5.84
5.55 | 1.33 | 1.13 | 1.82 | .05 | . 27*
23 | T* | 6. | *05* | .13*
05 | 24.90
27,12 | | 351D PA | LMDALE | .41 | 3.37 | 2.25 | .43 | .02 | 59 | .20 | .17 | С | 0 | -21 | 0 | 7,65 | | | CHUZA PATROL STATION
IARTE-MONROVIA CITRUS FRUIT ASSOCIATION | .52
1.30 | 10.83
7.98 | 4.00
5.58 | .20 | .50 | 1.41 | .02 | .43 | .03 | 0 | .02 | .03 | 17.99
17.58 | | | MP BALDY - BOY'S CAMP
IS ANGELES JUNIOR COLLEGE | 5.92
.69 | 14.69
7.46 | 7.07
4.06 | 1.30 | .75 | 1.89 | 23
.05 | .22 | T
0 | 0 | 0 | .12 | 32.19
14.58 | | 356B SP. | ADRA - PACIFIC COLONY | .51 | 7,24 | 2.46 | ,40 | .49 | 1,28 | .05 | .24 | .02 | Ö | .06* | .08
06* | 12.81 | | | N FERNANDO POWER HOUSE NO. 3
MIRADOR RANCH | .92
1.54 | 8.01
10,83 | 5.60
6,59 | .66
.56 | .23
.91 | 1.284
.89 | .17 | .08 | .03 | 0 | O
T | .22 | 17 73
22.03 | | 364 HA | INES CANYON - LOWER
LYERMO | 2.81 | 12.87
5.89 | 6.44
2.91 | .86 | .31 | 2.26 | .24 | , BO | 0 | 0
0* | .0e | ,51
0* | 27,10
10,84 | | 367 HA | INES CANYON - UPPER | 3.96 | 14.29
8,30 | 8.04 | .97 | .29 | 2,79 | 1.63 | ,92
,12 | o o | 0 | . UE | .56 | 32,14
17,91 | | 372 SAI
373 BR | N FRANCISOUTTO POWER HOUSE #2
IGGS TERRACE - PICKEN'S CANYON | 1.06
3.21 | 8,30
12,42 | 4.13
8.17 | .90
1.32 | .73
.50 | .94
2.33 | 1.63
-41
†* | .12 | .15 | 0
G | .09 | .76
.07 | 17.91
30.13 | | 375E GR | HFFITH PARK ZOO
KE SHERWOOD ESTATES | 1.10 | 8.87
7.58 | 4.76
2.51 | .35* | .63*
.51 | 1.16* | T*
07 | .10
.26 | 0 | 0 | 0
20 | .07 | 17.05
13.03 | | 3798 SA | N GABRIEL - EAST FORK
SERENO | 3.54 | 11.11 | 7.21 | 1.39 | 1,32 | 1.44 | .33 | ,27 | 7 | 0 | .05 | .13 | 26.75 | | 381B SA | NTA MONICA - OUTLOOK | 1,22 | 8.92
6.81 | 4.51
3.11 | .39 | .58
.72 | . 75
. 74 | .15
.08 | 0
105 | 0.01 | C
C | .03 | .12 | 16.64
12.71 | | | GHLAND PARK-SAN RAFAEL HILLS
MA CANYON + OAKLEY | 1.08** | 10.25 | 6.21
4.10 | .37
.44 | . 74
. 69 | .85
1.44 | 35
0 | .22 | .05 | 0 | .03
.20 | .16
05 | 20.35
20.11 | | 387B C01 | VINA - CITY SEWAGE DISPOSAL PLANT
EARWATER - COUNTY FIRE STATION | .54 | 7.46 | 3.16 | .42 | .55 | 1.75 | .20 | .27 | .03
0 | - Š - | .01 | .07 | 14.55 | | 389 GL | ENDORA - BROWN | 1.71 | 8.14 | 4.19 | .35 | . 45 | 1.79 | .33 | .67 | .11 | 0 | . 07 | -25 | 18.21 | | | RRIS DAM
NTESELLO - FIRE DEPARTMENT | 3.15 | 10.48
7.24 | 7.32
3.47 | 1.05
.69 | 1.33
.GC | 1,86 | .38 | .38 | .02 | 0 | .C4 | .18 | 26.19
14.43 | | 3928 AL | TADENA - BARTON
GHLAND PARK - LINDSAY | 2.65 | 10.91 | 5,97 | .87 | 1.68 | 1.39 | .53 | .51 | .28 | 0 | 0 14 | 52
10 | 24.31
20.21 | | 395 OL | IVE VIEW SANITARIUM | 2.35 | 8.31 | 5.91 | .68 | .26 | 1.84 | .35 | .49 | 0 | ō | 0 | .31 | 2C.51 | | | SADENA - WASHINGTON AND PALM TERRACE
DAR SPRINGS - STATE PRISON CAMP | 2.00
3.12 | 10.50
23.11 | 7,01
12•60 | .64
1.20 | .51
.70 | 1.08
2.60 | .40
.55 | .39
T | . 13
Ť | 0 | .13
T | .19 | 23.08
43.95 | | 404 GL | ENDALE - OPID | .92 | 8.85 | 5.21 | .38 | .35 | .84 | .19 | .19 | . 07 | 0 | 0 | .17* | 17.17 | | 406C WE | LEDAD CANYON - ECKLES
ST AZUSA - AZUSA RR. CO. PLANT #6 | .89
1.18 | 5.84
7.73 | 3.78
4.07 | .31
.51 | .10
.46 | .46
.99 | .33*
.05 | .07* | .01 | 0 | .04
.10 | .08
.08 | 11.90
15.31 | | | WHALL - U.S.F.S. HEADQUARTERS
LEDAD CANYON - M!TCHELL | 1.03
N O R E | 9.51
CORD | 5.53 | .66
.15 | .56
.15 | 1.32, | .31 | 0
.04 | 0 | 0 | 0 | .17
N.R. | 19.09
INC. | | 409 R11 | DGE ROUTE STATE HWY, MAINT. STA. | .84** | 7.20 | 5,68 | 1.38 | .94** | 1.12** | .81** | .10* | 0 | 0 | T | 0 | 18.61 | | | DGE ROUTE - PARADISE RANCH
VERA - PICO - ROBINSON | .89** | 9.50
6.15 | 5.07
3.23 | .25
.50 | .81** | 1.67** | 1.30*
.19 | .15*
1.10 | 0 | 0 | 0
.15 | . 08 | 19.64
14.37 | | 415 510 | GNAL HILL - CITY HALL
TADENA - VENTURA STREET | .38 | 8.33 | 1.93 | .25 | .55 | 1.09 | .15 | .05 | 0 | 0 | .06 | .08 | 12.87 | | 417 . SII | ERRA MADRE LAMANDA PARK - CITRUS ASSOCIATION | 2,14 | 11.05 | 7.05
7.32 | .69
.60 | .54
.71 | 1.55 | .34 | .41
.35 | .13 | 0 | .11 | .31 | 24.32
24.€8 | | | NTA CLARA RIDGE - MT. GLEASON
TON - COLOMBO RANCH | 2.79 | 14.52 | 7.85 | 1.21 | .44 | 2.30 | .15
.55 | .19 | 0 | 0 | 0 | .12
0 | 29,67
11.66 | | 421B L0I | PEZ CANYON BELOW MOUTH | 1.46** | 6.68
6.94 | 3.15
4.27 | .15 | .29 | 1.95 | .16 | .26 | .05 | Ċ | .05 | .16 | 16.19 | | | COIMA CANYON - WALSH RANCH
ISO CANYON - WAGON WHEEL RANCH | 2.81
_1.06 | 10.87 | 6.87
4.65 | 1.40 | .41 | 2.20 | .58
.19 | .60 | 0 | 0 | .15 | .58
T | 26.57
19.64 | | 4258-E SA | N GABRIEL DAM #1
WNEY - JORDAN | 3.51 | 12.23 | 7.64 | 1.45 | 2.10 | 1.75 | .22 | .26 | Ť | 0 | .03 | ,12 | 29.31 | | 430 SAL | UGUS - STATE HIGHWAY MAINTENANCE STATION | .62
.48** | 9.41
7.27 | 3.04
3.46 | .21 | .45 | 1.32 | .10
.45 | .22
0 | 0
0 | 0 | .02
0 | - 11
T | 15.50 | | | LOWIN HILLS - NORTH SIDE
NTA ANITA FERN LODGE | .74
3.84 | 6.57
14.87 | 3.50
8,99 | .36
1.34 | .69
.91 | 1.51 | .06 | .12 | O* | 0* | 0*
.05 | .12* | 13.67
32.60 | | 433 AL. | TADENA - FARNSWORTH PARK | 2.73 | 11.08 | 6.84 | .90 | .44 | 2.09 | .51 | .68 | .16 | 0 | .16 | .56 | 26.15 | | | LIBU DIVISION HEADQUARTERS
NTE NIDO CANYON PATROL STATION | .15
.52 | 9.80
10.42 | 3.41
3.40 | .47
1.02 | .39
.61 | .92
1.71 | 0 | .18 | 0 | 0 | .09 | .02 | 15.43
17.87 | | 436A HAN | NSEN DAM - CONTROL HOUSE | 1.29 | 4.93 | 3.21 | .10 | .44 | 1.46 | .11 | .19 | 0 | 0 | .C1* | .01* | 11.75 | | | NSEN DAM - OFFICE
MILTON BOWL - LONG BEACH | .33 | 7.66 | 1,93 | .37 | .19 | 1.67 | .14 | .06 | 0 | - C - | .01 | .01 | 13,78 | | 440B CH | ILAO - U.S.F.S, CAMP | 2.65 | 12.69 | 6.93 | .50 | .43 | 1.85 | .73 | .12 | 0 | 0 | 08 | .13 | 26.11 | | | LMDALE - CO, ROAD MAINTENANCE YARD
SCAL CREEK - FT. TEJON ROAD | .43 | 3.77
3.40 | 2,65
2,06 | .31 | .04 | .63
1.52 | .21 | .10° | 0
6 | 0 | .18
T | O
Ü | 8.32
7.85 | | | TIGO CANYON ROAD AT MULHOLLAND ROAD
LLING HILLS - PALOS VERDES HILLS | .52 | 11.90 | 3.88 | .37 | .73 | 1.52 | .13 | .02 | 0 | 0 | .21 | .0E | 19.34 | | 4458 LIV | VE OAK DAM | .82
1.61 | 9.11
8.96 | 2.90
3.56 | .11 | .54
.62 | 1.71 | .47 | .45 | .09 | o o | ő | .13 | 18,43 | | | (SO CANYON - SANTA SUSANA MOUNTAINS
S FLORES PATROL STATION | 1,15 | 8.44
5.78 | 5,25
3,27 | .65
.18 | .68
.40 | 2.66 | . 17
T | .57 | 0 | 0 | .06 | .33 | 19.90 | | 449 EAT | TON DAM | 2.G3 | 11.22 | 6.53 | .68 | .50 | 1 07 | .31 | .44 | 10 | 0 | G | ,23 | 23,11 | | | STAIC PATROL STATION
UDIO CITY - THAYER | .65
.91* | 7.76
8.01 | 3.76
4.47 | .57
.40 | .10 | .75
1.09 | 1.06 | .06
.08* | 0 | 0 | C
.02* | 0 | 14.71
15.68 | | 453 DEV | VIL'S GATE DAM
S ANGELES - WOOD | 1.81 | 10.25 | 6.06 | .56 | .49 | 1.13 | .19 | .30 | .05 | ō | .12 | .11 | 21.07 | | 455 LAN | NCASTER - STATE HIGHWAY MAINTENANCE DEPT. | .39 | 6.65
3.48 | 3.33
2.35 | .49 | .75
.20 | 1.15 | .05
.52 | .11 | 0 | 0 | 0
,38 | .16 | 13.08 | | 456 ANT | TELOPE VALLEY MUSEUM - PIUTTE BUTTE
S ANGELES - ZALVIDEA STREET | .20 | 7.09 | 1.06 | .28 | .48 | .75 | .29 | .10
.08 | 0 | 0 | ,02 | 0 | 3.92 | | 458 ZUN | MA CANYON PATROL STATION | .50 | 9.04 | 3.72
1.91 | .08 | .53 | .86 | .12 | .36 |
.03
T | 0 | .02 | .12 | 13.73
13.59 | | | EASANT VIEW MESA - MATAY
LDWIN HILLS - STANDARD OIL FIELD OFFICE | .30
.77* | 5.85**
5.76 | 3.11** | .18* | 18*
.46 | 1.50**
.53 | .14*
.06* | 0
,12* | 0 | 0 | 0 | 0
.12 | 11.26 | | 462 HIL | LLCREST COUNTRY CLUB | .75 | 6.23 | 4.30 | .62 | .89 | .97 | т | .05 | - <u>0</u> | 0 | 0 | .07 | 11.21 | | 464 Tu3 | R VISTA - SO. CALIF. WATER CO.
JUNGA CANYON - HONOR CAMP #5 | .91
3.13 | 7.79
10.32 | 3.38
7.72 | .59
1.60 | .65
.44 | 1.19 | .02 | .05
.24 | T
.03 | 0 | .01
.08 | .08 | 14.67
25.71 | | 465A SEP | PULVEDA DAM - OFFICE
PULVEDA DAM | .42 | 5.28 | 3,27 | .06 | .38 | .72 | Т | .02 | 0 | 0 | 0 | 0 | 10.15 | | 466B PAC | COIMA CANYON - DUTCH LOUIE CANYON | 3,44 | 7.23
9.96 | 7.29 | 1,22 | .45 | 2.44 | .43 | .60 | .06 | 0 | .08 | .58 | 12.82 | | | CKENS DEBRIS BASIN
JUNGA - MILL CREEK | 2.26 | 10.12 | 6.82 | .95 | .34 | 1.81 | .30 | . 53 | .09 | 0 | T | .20 | 23,42 | | 471 LIT | TTLE TUJUNGA - GOLD CREEK | 1,12 | 8.58
10.22 | 3.98
5.10 | .41
1.10 | .21 | 1.86 | .14
T | .14
.27* | 03
0 | 0 | .04 | .03 | 16.54
21.60 | | 473 AQU
474 SQU | JA DULCE CANYON - BLACKWELL RANCH
JTH GATE - POLICE DEPARTMENT | .93
.71 | 5.37
8.54 | 4.10 | .10 | .14 | .49 | .38 | 08 | 0 | 0 | .04 | .09 | 11.72 | | 475 SAU | JGUS - NEWHALL LAND & FARMING COMPANY | .46 | 7.46 | 2.52
3.72 | .25 | .43
.17 | 1.29 | .06
.16 | 21
,14 | 0 | 0 | .05 | , 09*
0 | 14.15 | | 477 SAN | IUNFO CANYON
ITA ANITA - SPRING CAMP | .15
4.53 | 9.88
17.63 | 4.06
11.59 | .40
.82 | .52
1.55 | .93
1.62 | .08 | 0
.36 | 0 | 0 | 0 | 0 | 16.02 | | 478 VAL
479 ARC | YERMO - U.S.F.S. HEADQUARTERS ADIA - GONTER | .25 | 5.80 | 2.88 | 11 | _03 | 1.26 | .30 | 0 | 0 | 0 | .13 | .29
0 | 38.82
10.63 | | 482 LOS | ANGELES - U.S.C. | .92
.90** | 8.03
7.03 | 4.95
3.26 | .39 | .50
.98 | 1.20
.63** | .13* | .22* | C* | 0* | 0+ | .06* | 10.44 | | 484 ICE | HOUSE CANYON RESDRT | 5.10 | N | 0 | | F. | 1 | .08
E | . 20
C | 0 | 0
R | 0
D | .08 | 13,48
INC. | | 486 COL | DWATER CANYON - WIDMAN RANCH | .80
3.89 | 8.30
12,22 | 3.44
5.73 | .38
1 08 | .50
1.08 | 1.66 | .14
.73 | .22* | .08* | 0* | .01* | .07* | 15.60 | | 487 MAL | IBU BEACH AT WINTER CANYON
SLE CANYON PATROL STATION | .18 | 6.84 | 2.39 | .09 | .52 | 1.23 | Ŧ | .16 | 0 | 0 | .08 | .40 | 28.40 | | 489 COL | D CREEK - STUNT'S RANCH | 2.18** | 6.71
8.72 | 4.40
4.31 | .59
1,00 | .27*
.59 | 1.55 | 7
0 | .27 | 0 | 0 | т | .10 | 16.07 | | | CASTER - WILEY RANCH | .14 | 1.69 | 1 40 | .27 | . 05 | .46 | .39 | .13 | 0 | 0 | 0 | 0 | 17.07
4.44 | | 492 CHI | LAO - STATE HIGHWAY MAINTENANCE STATION | 2.25 | 7.32 | 3.03
7.77 | .36 | .70 | ,90
1,46 | .95 | .10* | 0 | C | 10* | 0 | 13.26 | | 193 SANI
194 PIC | D CANYON - MAC MILLAN RANCH
O - CATE | 1.70 | 9,22 | 5.94 | .20 | .15 | .63 | .95 | .07 | 0* | 0 | .12 | .14 | 26,15
18,88 | | 161 | | .74 | 6.67 | 3.22 | . 60 | .51 | 1.46 | .12 | .71 | ō | ō | .10 | .06 | 14.19 | TABLE IV SEASONAL 1946-47 MONTHLY RAINFALL SUMMARY RAINFALL RECORDS IN INCHES | STA.
NO. | STATION | oct. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | SEAS.
TOTAL | |------------------------------|---|--------------------|----------------|----------------|-------------|--------------|--------------|--------------|-------------|------------|------|------------|-------------|----------------------------------| | 495
456 | L. A EIGHTH AND FIGUEROA
TRANÇAS CANYON - KINCAID | .93
.57** | 7-25
9-09** | 3.92
2.11 | .48
.10* | .74 | .84
.73 | .04 | .19
.38* | .01
0* | 0 | .02 | .05
.01* | 14.47 | | 497 | CLAREMONT - SLAUGHTER | 1.22 | 8,36 | 3,35 | .65 | .51 | 1.31 | . 34 | .45 | .07 | 0 | 0 | -06 | 13.74
16.32 | | 498
X-6 | ANGELES CREST HIGHWAY AT DARK CANYON TRAIL
ENCINO #2 | 4.06
.85* | 12.82
9.54 | 8.41
4.34 | 1,62
.26 | . 53
. 74 | 2.60
1.66 | .60 | .72
.06 | T
T | 0 | 0
.08 | .58
T | 31.96 | | 5088 | ARROYO SECO - RANGER STATION | 2,62 | 10.83 | 6.94 | .87 | . 35 | 1.77 | 29 | .45 | .13 | 0 | т т | -47 | 17.57
24.72 | | 517
529 | ANDERSON RANCH (BURKHART RANCH) CHINO - AMERICAN BEET SUGAR CO. | .76
.51 | 7.37
7.18 | 5.34
2.76 | . 46 | .20
.41 | .80 | .03 | .02
.02 | 0 | 0 | O
T | .03 | 15.23 | | 530 | CONEJO RANCH | .42 | 6.25 | 2.30 | .12 | .25 | 1.00 | .03 | 0 | ò | ŏ | .17 | 0 | 10.55 | | 542
551 | FAIRMONT
HUENEME LIGHTHOUSE | .47 | 5.60 | 4.55
2.25 | .25 | .49 | 1.15 | .51 | .03 | 0 | 0 | 04 | .02 | 13.92 | | 557 | LA HABRA - CITRUS ASSOCIATION | .60 | 6.90 | 2.14 | ⊿3 | .31 | .91 | O
T | .61 | 0 | ő | .21 | • 04 | 9.63
12.15 | | 565
566 | LONG BEACH - CITY AUTOMATIC
LONG BEACH #1 | .27 | 7 98
574 | 1.72 | .17 | .65
.50 | .54
1.33 | .13 | .04 | 0
T | 0 | 0
T | 0
.04 | 11.50 | | 571B | LONG BEACH #6 | .46 | 4.64 | 1.76 | .14 | ,34 | .89 | .05 | 19 | o . | ő | .02 | .03 | 10.69
8.52 | | 575P | LONG BEACH WEATHER BUREAU L. A U.S.W.B 6TH & MAIN | .36 | 7 30 | 2.31 | .20 | .74 | .60 | .08 | .10 | .01
T | 0 | .04
T | .08 | 11.82 | | 577E
577F | LOS ANGELES - U.S.W.B FEDERAL BUILDING | .82
.92 | 6.52
6.04 | 3,67
3,47 | .45
.38 | .69
.86 | .68
.79 | . 04 | .15 | .02 | 0 | .01 | .06 | 13.08
12.74 | | 587 | SAN ANTONIO CANYON - POWER HOUSE #1 MOUNT LOWE | 3.57 | 14.84 | 4.83 | 1,63 | 1.98 | 1.53 | .31 | - 22 | .12 | 0 | 0 | .13 | 29.16
36.01 | | 588B , | NEWHALL RANCH | 5.41 | 15.42
8.57 | 3,64 | .37 | ,50*
,22 | .90 | .30*
.48 | .45* | 0 | 0 | 0 | ,45
0 | 14.66 | | 594B | NEWHALL | .57 | 9.48 | 4.07 | .38 | .29 | 1.10 | .36 | .04 | .04 | 0 | 0 | 0 | 16.33 | | 598
610A | NEENACH
PASADENA - JONES | .09
2.05 | 5.72
10.47 | 3,33
5,86 | .16 | :11
.49 | .34
.97 | .48
.45 | T
.43 | 0
.14 | 0 | 0
.14 | 0
.26 | 10.23 | | 610B | PASADENA - CITY HALL | 1.51 | 10.25 | 6 04 | .46 | .63 | .96 | .29 | .48 | .06 | 0 | .10 | .16 | 20.94 | | 611
612 | PASADENA - ALLEN
PASADENA - CHLORINE PLANT | 2.57
2.52 | 11.66 | 6.26
6.50 | .76
.81 | .44
.34 | 1.27 | .34
.32 | .45
.41 | .16 | 0 | .20
.09 | .25
.37 | 24.36
23.56 | | 6130 | HURLBUT FIRE STATION - PASADENA | 1.08 | 9.57 | 6.75 | .44 | .82 | .81 | .33 | .31 | .05 | 0 | .06 | .16 | 20.38 | | 617
619 | POMONA - ADAMSON
SAN ANTONIO CANYON - SIERRA POWER HOUSE | 1.32
4.84 | 8.35
16.42 | 3.39
7.12 | .41
1.40 | 1.10 | 1.17 | .09
.38 | .22 | .07 | 0 | T
T | .10 | 15,56
33,63 | | 623 | SAN FERNANDO - WEATHER BUREAU | .74 | 7.95 | 4.67 | .50 | .33 | 1.77 | .13 | .28 | T | 0 | .05 | .11 | 16.53 | | 627
629C | SAN GABRIEL CANYON - POWER HOUSE
SAN PEDRO U.S.W.B. | 1.70
.75 | 9.11
6.19 | 5.50
2.34 | .73
.24 | .50
.29 | 1.90
.85 | .36
T | .19 | .03
T | 0 | .05 | .19 | 20.26
10.74 | | 634B | SANTA MONICA - CITY HALL | . 82 | 6.36 | 3.19 | . 11 | .67 | .66 | .06 | .07 | 0 | 0 | т | .04 | 11.98 | | 647G
6508 | SUNLAND - TUJUNGA - U.S.*.B. UPLAND - BA;RD | 1,67 | 11,13 | 6.08
3.67 | 1.00 | 1.13 | 1.60 | .23 | .62 | .07 | 0 | .02 | .02 | 22.45 | | 660 | OXNARD - U.S.W.B. | .35 | 7.98 | 2.33 | .04 | .46 | .76 | 0 | .16 | 0 | 0 | .03 | .01 | 12.12 | | 662 | LONG BEACH - 37TH & GAVIOTO
LONG BEACH - SOUTH 3 LEMON | .45 | 7.52
6.85 | 2.14 | .17 | .90 | 1.13 | .06 | .18 | 0 | 0 | .02 | .07
.14 | 12.64
12.04 | | 666
6718 | LOS ANGELES - WABASH - S.C.E.CO. SUB STATION | 1.02 | 8.28 | 4.02 | .46 | ,67 | .69 | .15 | .15 | 0 | 0 | .03 | . 13 | 15.60 | | 672 | EAGLE ROCK - S.C.E. CO. SUB STATION
SEAL BEACH GAS & ELECTRIC PLANT | 1.19
.63 | 9.02
4.15 | 6.88
1.67 | .37
.22 | .68
.35 | .82
.51 | .28 | .20 | .05
T | 0 | .01 | .14
.01 | 19.63
7.74 | | 673
676 | LOS ANGELES - WEST BOTH STREET | .68 | 6.32 | 3.03 | .43 | .40 | 1.56 | .23 | .20 | Ť | ŏ | .01 | .13 | 12.99 | | 677 ^C | PASADENA - HOFFNER | 1.75 | 10.51 | 6.69 | .56 | -74 | .88 | .32 | .33 | .05 | 0 | .03 | .15 | 22.01 | | 678
679 | PASADENA - SHELDON RESERVOIR PUENTE - NO. WHITTIER HEIGHTS CITRUS ASSN. | .71 | 8.02 | 7.85
3.41 | .67 | .77 | 1.08 | .64 | .35 | .07 | 0 | .03 | .06 | 25.66
16.11 | | 680 | WESTWOOD - U.C.L.A. | 1.06 | 8.12 | 4.26 | .70 | .90 | .98 | .02 | .05 | .01 | 0 | .02
0 | .03 | 16.15
22.29 | | 681 ^B
683 | SANTA ANITA GUARD STATION
SUNSET RIDGE GUARD STATION | 2.37
2.96 | 9.30 | 6.60
8.06 | .87
1.00 | .45
.38 | 1.34 | .45
.36 | .28 | .22
0 | 0 | .14 | .41
.70 | 26.89 | | 684 | ARCADIA WAREHOUŚE - U.S.F.S. | 1.73 | 9.11 | 5.38 | .54 | .64 | 1.01 | .07 | .12 | .05 | 0 . | 0 | ,11 | 18:76 | | 685B
689B | SOUTH PASADENA - MARSH
SAN MARINO - COOPER | 1.35 | 10.36 | 6.77
6.58 | .31
.45 | 1 37 | .71
.58 | .51
.43 | .27
.38 | .02 | 0 | 0 | -13
-14 | 21.80
21.30 | | 691 | SAN ANTONIO SPREADING GROUNDS | 2,29 | 11.37 | 3.83 | 1.06 | 1.74 | 1.40 | .38 | .41 | .15 | 0 | .03 | .11 | 22.77 | | 6948
695 | TUJUNGA CANYON - U.S.F.S. GUARD STATION TUJUNGA CANYON - VALHALLA RANCH | 1.82 | 9.38
14.78 | 6.27**
7.44 | .63
.95 | .15 | 1.58 | .01 | .34 | T
0 | 0 | 0 | .37
.05 | 20.55
28.73 | | 696 | PASADENA - GLEN | 2.44 | 12,37 | 7.04 | .87 | .46 | 1.71 | .43 | .71 | .28 | 0 | .11 | .50 | 26.92 | | 699 | L. A 30TH & TRINITY STREET L. A SLAUSON & LONG BEACH AVENUES | .88**
.79 | 6.41**
7.03 | 3,65
3,55 | .58
.60 | .55
.43 | .85
1.04 | .15*
.17* | .22* | 0*
0* | 0* | .01* | .09* | 13.39
13.95 | | 700
703 | GLENDALE - MC INTYRE | 1,00 | 9.26 | 5.18 | .36 | .47 | 1.00 | .21 | 0 | .06 | ō | .02 | .12 | 17.68 | | 705 | ALDER CREEK - PARADISE RANCH | 2.86 | 9.18 | 4.69 | .94 | .32 | 1.54 | -11 | .39 | .07 | 0 | 05 |
.35 | 15,05 | | 706
715 | RIVERA - HADLEY RANCH
LOS ANGELES #2 - U.S.W.B P.D. TERMINAL BLDG, | .67
.97 | 8.14
7.48 | 3.12
3.81 | .40
.40 | .92 | 2.01
.78 | .20 | .10 | .01 | ő | .02 | .07 | 14.60 | | 716 | L. A. WATER DEPT DUCOMMUN STREET | .62 | 7.08 | 3.66 | .44 | .93 | .86 | 05 | .16 | .01 | 0 | -04 | .08 | 13,93
12,22 | | 718
719 | THOUSAND OAKS
DUARTE - MADDOCKS RANCH | .27
1.66 | 7.43
9.25 | 2.64
6.14 | .10
.62 | .37 | 1.02 | .10 | .03
.17 | .02 | 0 | .14 | .10
.24 | 20.47 | | 723 | STONE CANYON - SAN FERNANDO VALLEY | 1.10 | 8.24 | 4.95 | .35 | .62 | 1.29 | .04 | 0 | 0 | 0 | 0 | 0 | 16.59 | | 724
725 | BIG DALTON - MONROE CANYON FLUME X BIRMINGHAM HOSPITAL | 3.88
.45* | 11.08
6.33 | 5,93
3,50 | 1.28
.06 | 1.13 | 2.07
1.84 | ,62
O | .46
0 | .12 | 0 | .06
0 | .26
0 | 26,89
12,62 | | 726 | ANGELES CREST - GUARD STATION | 3.94 | 12.90 | 8.48 | 1.61 | .56 | 2.39 | .60 | .83 | .11 | 0 | .02 | .96 | 32,40 | | 727 | NEWCOMB PASS PACOIMA CANYON - CITY ROAD GASE | 3,34 | 17.40 | 11,86
6,54 | 1.24 | 1.41 | 2.62 | ,53
,45 | .56 | .24 | 0 | .13 | .53 | 42.46
27.88 | | 728
729 | MAGIC MOUNTAIN RIDGE - INDIAN CANYON | 2.92 | 11.13 | 5.97 | 1.22 | .49 | 2.18 | .35 | .46 | 0 | 0 | .08 | .34 | 25.14 | | 730 | MILLARD CANYON - DAWN MINE
OAK GROVE HEADQUARTERS - U.S.F.S. FLOOD CONTROL | 4.26 | 12.90 | 9.26 | 1.13 | .44 | 2.16 | .40 | .58 | 0
•07 | 0 | .20 | .79
.24 | 32.12
23.80 | | 731
732 | ROBERT'S CANYON - SAN GABRIEL W. FK. DIVIDE | 3,23
4,20 | 10.91
16.20 | 6.46
10.60 | .65
1.50 | .40
2.91 | 1.36 | .22
.67 | .26 | .07 | 0 | .13 | .60 | 38,99 | | 733 | ARROYO SECO - CLOUDBURST CANYON | 4.49 | 13.54 | 10.93 | .70 | .50 | 2.41 | .37
.23 | .52 | 0
T | 0 | .21 | .41 | 34.08
13.49 | | 734
735 | LOS ANGELES MUNICIPAL AIRPORT
BELL CANYON - PLATT RANCH | .80
.13* | 7.92
6.13 | 2.91
2.95 | .09
.25 | .44 | 1.02 | 0 | 0 | 0* | 0+ | .12* | 0 | 11.09 | | 737 | UPPER SESPE CHORO GRANDE RANCH | .91 | 8.06 | 7.98 | .27 | 1.07 | 1.24 | .43 | .04 | 0 | 0 | .05 | .07
T | 20.12 | | 739
742B | SANTA PAULA - LIMONE RA RANCH
SAN GABRIEL - FIRE STATION | 1.17 | 6.78
8.51 | 3,27
5,69 | .40 | 1.07 | .86 | .02 | .24 | ,16 | 0 | .36 | .12 | 12.37 | | 746 | MOHAVE - BACKUS RANCH | .15 | 2.44 | 1.54 | .08 | .17 | .42 | .09 | Ŧ | 0.0 | Ö | .13 | т | 5.02 | | 747
748 | SANDBERG ATRWAYS STATION NEWHALL - C.A.A.A.C. STATION | .36 | 4.88
8.14 | 4,89
3,29 | .13
.20 | .49
.34 | .61
.73 | .39
.28 | .01
.06 | 0
T | 0 | ,02 | T | 11.76 | | 748
749 | BURBANK - AIRPORT | .80 | 6,55 | 3,29 | .20 | .24 | 1.02 | .24 | .21 | Ť | Ō | .01 | .04 | 13.21 | | 750 | PALMDALE - C.A.A.A.C. STATION | .33 | 2.84 | 1.96 | .32 | T | .45 | .26 | .06 | 0 | 0 | .21 | T | 6.43 | | 751
752 | TORRANCE - FIRE DEPARTMENT
MONROVIA - GEARY | .28
1.58 | 5.35
9.45 | 2.48
6.02 | .14
.59 | .47
.64 | .64
1.47 | .23 | .06 | .01
.19 | 0 | .02
.08 | .02
.26 | 9.70 | | 1000 | HUNT CANYON - BONES RANCH | .35 | 4.65 | 2.72 | .31 | .06 | .96 | .06 | .04 | 0 | 0 | .06 | 0 | 9.21 | | 1001 | SAN GABRIEL - WEST FORK GUARD STATION TUJUNGA - TANGUAY | 4.44 | 20,99 | 10.34 | 2.30 | 1,02 | 1.41 | .26 | _26 | .07 | 0 | .09 | .23 | 23.08 | | 1002 | VAN ALDEN DEBRIS BASIN | 1.68 | 12.65
6.05 | 5.59
3.84 | .64
.20 | .31
.54 | .88 | 01.0 | .45
0 | .03 | 0 | .04 | .18
0 | 11.90 | | 1003 | | .55* | 10.50 | 3.48 | .99 | .84 | 1.80 | 0 | .11 | 0 | 0 | .09* | .01* | 18.37 | | 1002
1003
1004 | MALIBU CREEK - CRATER CAMP | | | | | | | .69 | | | | | | | | 1003 | MINT CANYON - THE OAKS
SAN PEDRO CITY RESERVOIR | .82
.59 | 5.63
5.42 | 3.82
2.97 | .45
.18 | .16 | .81
.82 | | .30 | 0 | 0 | .15
0 | .25
0 | 13.06 | | 1003
1004
1005
1006 | MINT CANYON - THE OAKS SAN PEDRO CITY RESERVOIR ANGELES CREST HWY, - CAMP VAL CREST | .82
.59
2.97 | 5,42
13,18 | 7.38 | .18 | .29 | 1.71 | .08 | .12* | 0 | 0. | .10+ | .15* | 10.35
26.84 | | 1003
1004
1005
1006 | MINT CANYON - THE OAKS
SAN PEDRO CITY RESERVOIR | .82
.59 | 5.42 | 2.97 | .18 | .29 | .82 | .08 | 0 | 0 | 0 | 0 | 0 | 10.35
26.84
11.16
13.79 | LEGEND # TABLE V RAIN GAGE STATION LOCATION SEASON 1945-46-47 | STA.
NO. | TYPE
GAGE | QUAD
INDEX | ELEV.
U.S.G.S. | NORTH LAT. | WEST LONG. | OBSERVER | LOCATION | |----------------|---------------|--------------------|--------------------|----------------------|------------------------|---|--| | 2B
3 | 5
5 | 22-25
34-09 | 1050
875 | 34 02 55
34 06 25 | 118 46 25
118 47 38 | COUNTY FORESTRY EMPLOYEES | UPPER ESCONDIDD CANYON SEMINOLE HOT SPRINGS - LA SIERRA CANYON AT CORNELL | | 58 | S
SA | 35-64 | 924 | 34 09 30 | 118 38 09 | TOM FARMER
CAPTAIN BARTON | 4801 EL CANON AVENUE, CALABASAS
.5 MILES SOUTH OF TOPANGA POST OFFICE | | 6
7C | s | 24-01
24-55 | 747
95 | 34 05 08
34 02 28 | 118 35 58
118 32 45 | ROY KINMAN | BEL AIR BAY CLUB, ROCSEVELT HIGHWAY | | 9
10 | SP
SA | 48-37
25-51 | 815
540 | 34 13 34
34 05 11 | 118 28 03
118 26 45 | ROBERT LARSON
FRED BANNASCH | 8535 SEPULVEDA BOULEVARD, SAN FERNANDO VALLEY
10801 CHALON RDAD, WEST LOS ANGELES | | 11C | SP A | 37-87 | 867 | 34 07 14 | 118 24 38 | F. S. PAYNE | UPPER FRANKLIN RESERVOIR | | 12
13 | S
5 | 37-86
38-34 | 1175
593 | 34 07 48
34 09 47 | 118 24 42 | CITY FIREMEN
KATIE BLIX | MULHOLLAND HIGHWAY AT FRANKLIN CANYON
1 0834 EAST BLIX, NORTH HOLLYWOOD | | 14 | SP | 49-46 | 1000 | 34 14 19 | 118 21 28 | E. S. MERRILL | NEAR MOUTH OF LA TUNA CANYON | | 15
17 | SP A
S | 37-41
37-07 | 695
1400 | 34 10 48
34 07 48 | 118 27 03
118 29 42 | FRANK CARR
CITY FIREMEN | AETNA AND VESPER STREETS, VAN NUYS
SEPULVEDA CANYON AT MULHOLLAND HIGHWAY | | 18 | S | 36-73 | 815 | 34 09 56 | 118 31 38 | E. M. SHERMAN | ADOHR DAIRY, VENTURA BOULEVARD, TARZANA | | 20B
21 | S | 35-84
36-02 | 986
876 | 34 09 07
34 10 16 | 118 36 35
118 35 56 | L.A.W.D. EMPLOYEES CARL WYNINGER | GIRARD RESERVOIR WEST OF CONAGO AVENUE, NORTH OF VENTURA BOULEVARD, BRANT RANCH - GIRARD | | 23-E | SP AP | 46-87 | 865 | 34 13 36 | 118 37 03 | L.A.W.D. EMPLOYEES | EAST END CHATSWORTH RESERVOIR | | 24D
25B | S
SP | 46-94
47-57 | 957
7 95 | 34 15 23
34 13 44 | 118 36 19
118 32 53 | TRACY HUGHES JACK ANDREWS | 10239 JORDAN AVENUE, CHASWORTH
19055 WEST PARTHENIA STREET, NORTHRIDGE | | 27B | S | 48-64 | 939 | 34 15 23 | 118 26 09 | GLEN C. RADDATZ | 14163 VAN NUYS BOULEVARD, PACOIMA | | 28
29B | s
s | 48-32
47-81 | 950
1150 | 34 16 15
34 17 02 | 118 27 54
118 30 50 | B. HANNEMAN
L.A.W.D. OPERATOR | 11030 SEPULVEDA BOULEVARD, SAN FERNANDO
MAYERLING STREET AT L.A.W.O. PUMP PLANT, GRANADA | | 30 | SP | 59-28 | 1250 | 34 18 37 | 118 28 17 | W. C. SIMONDS | SYLMAR OLIVE PACKING PLANT | | 32C-E | S
S A | 58-61 | 1243
1500 | 34 23 07
34 19 48 | 118 31 54
118 23 59 | L. A. CO. FORESTRY EMPLOYEES L. L. MOORE | INLAND HIGHWAY, 1/4 MILE NORTH OF NEWHALL
CARETAKER'S HOUSE, BELOW PACOIMA DAM | | 33A'-E | S | 60-07
49-34 | 1060 | 34 15 13 | 118 21 44 | SAM J. CHAPPEL | 10100 HELEN STREET, ROSCOE | | 39B | 18.8 | 50-19
7-15 | 1610
50 | 34 12 18
33 50 28 | 118 17 05
118 23 22 | FLOOD CONTROL EMPLOYEES
CITY CLERK | SUNSET DAM. BURBANK
ROOF OF CITY HALL, REDONDO | | 42
43A | 8.81"
SP | 7-15
7-19 | 300 | 33 50 28
33 48 00 | 118 23 22 | S. F. BERGSTROM | 75 MALAGO COVE PLAZA, PALOS VERDES ESTATES | | 43B | SP | 2-10 | 450 | 33 47 47 | 118 22 12 | GOMER SIMS | GOLF CLUB - PALOS VERDES ESTATES POINT VICENTE LIGHT HOUSE | | 44
46D - E | S
SA | 1-85
51-10 | 125
2315 | 33 44 30
34 17 31 | 118 24 38
118 11 15 | JOE MAY
D. J. ROBERTSON | WEST OF SPILLWAY, BIG TUJUNGA DAM | | 47A | SA | 51-22 | 3100 | 34 16 36 | 118 10 15 | MRS, H. H. ROGERS | 1.6 MILES UP CLEAR CREEK, FROM BIG TUJUNGA CANYON
CLEAR CREEK NEAR ANGELES FOREST HIGHWAY | | 47C
48 | SA
S | 51-22
51-15 | 3125
1800 | 34 16 45
34 14 44 | 118 10 27
118 11 00 | FLOOD CONTROL EMPLOYEES U.S.F.S. EMPLOYEES | OAK WILDE - ARROYO SECO | | 49 | SP | 40.50 | 1345 | 34 11 45 | 118 08 58 | GEORGE S. CHIESA | 221 EAST FOOTHILL, ALTADENA 2790 FOOTHILL BOULEVARD, FLINTRIDGE | | 50B
51 | 5
S | 40-10
65-69 | 1155
4010 | 34 11 48
34 18 06 | 118 11 03
117 50 20 | L. A. CO. FORESTRY EMPLOYEES MC CORD | 2790 FOOTHILL BOULEVARD, FLINTRIDGE
FALLING SPRINGS CAMP (LITTLE CIENEGA) NORTH FORK, SAN GABRIEL CANYON | | 52B | s | 51-44 | 3000 | 34 15 32 | 118 09 14 | EDGAR SWANSON | SWITZERS CAMP, ARROYO SECO | | 52C
53A | SA
SA | 51-53
62-89 | 3290
3500 | 34 18 04
34 18 04 | 118 08 37
118 06 42 | FLOOD CONTROL EMPLOYEE FLOOD CONTROL EMPLOYEE | WATERMAN GUARD STATION - ARROYO SECO
SLEEPY HOLLOW RANCH (COLBY'S), COLDWATER CANYON, BIG TUJUNGA | | 54 | SP A | 63-55 | 4050 | 34 20 30 | 118 02 56 | MRS. L. G. LOOMIS | NEAR JUNCTION NORTH AND MIDDLE FORKS, ALDER CREEK | | 56
57 P - E | S
SP A | 52-24
52-04 | 3450
4350 | 34 15 13
34 15 13 | 118 04 28
118 05 50 | GEORGE COMSTOCK J. GRIFFITH | KAMP KOLE (VALLEY FORGE LODGE), WEST FORK OF SAN GABRIEL WEST FORK SAN GABRIEL RIVER, CAMP SINGER (OPID'S) | | 57B-E
60A | SP A
SA | 52-04
52-69 | 2750 | 34 12 32 | 118 02 02 | LE ROY HAYNES | CAMP LERGY (HOEGEE'S) WINTER CREEK, SANTA ANITA CANYON | | 62 | S | 41-80 | 1950 | 34 11 28 | 118 01 05 | U.S.F.S. EMPLOYEES | SANTA ANITA CANYON, 1/4 MILE BELOW JUNCTION WITH WINTER CREEK
CARETAKER'S HOUSE - SANTA ANITA DAM | | 63B-E
66 | s
s | 41-81
41-54 | 1400
665 | 34 11 04
34 09 29 | 118 O1 11
118 O2 36 | K. A.
SHIPLEY
C. J. PEGLER | 415 EAST LIVE DAK AVENUE, SIERRA MADRE | | 67B | s | 41-95 | 600 | 34 08 57 | 118 00 02 | G. H. DUELL | ROOF OF CITY HALL, MONROVIA SAWPIT DAM | | 68B
69 | S | 42-12 | 1378
2000 | 34 10 35
34 11 10 | 117 59 15
117 57 55 | R. E. WADDICOR R. E. WADDICOR | UPPER SAMPIT CANYON, 0.5 + MILE NORTHEAST OF SAMPIT DAM | | 70 | SA | 42-93 | 800 | 34 09 48 | 117 54 17 | ROGER DALTON | MOUTH OF SAN GABRIEL CANYON | | 73
76B | s
s | 43-54
54-57 | 1200
1500 | 34 09 22
34 13 33 | 117 50 53
117 50 48 | O. H. ENGLEHART
GEORGE MIODLETON | MOUTH OF ENGLEWILDE CANYON, GLENDORA
SAN GABRIEL DAM #1 CAMP | | 76B
82 | s | 54-57
67-11 | 7500 | 34 22 53 | 117 41 05 | S. C. WARNER | TOP OF TABLE MOUNTAIN | | 83 | SA
SP A | 67-02 | 6860
4300 | 34 22 45
34 14 12 | 117 41 28
117 39 32 | HOWARD ROWE
U.S.F.S. EMPLOYEES | BIG PINES RECREATION PARK U.S.F.S. GUARD STATION, CAMP BALDY | | 850
87 | SP A
S AP | 56-46
44-33 | 1500 | 34 09 56 | 117 46 02 | U.S.F.S. EMPLOYEES | SAN DIMAS CANYON AT WEST FORK | | 89-E | 5 | 44-24 | 1350 | 34 09 05 . | 117 46 28
117 45 32 | G, W. RODGERS
CHARLES E. ELDER | SAN DIMAS CANYON BELOW DAM AT CARETAKER'S HOUSE
NORTH END OF BRYDON ROAD | | 90 | 5
S | 44-44
44-87 | 1680
1405 | 34 09 00
34 07 16 | 117 43 11 | ROBERT BALCH | 2945 INDIAN HILL ROAD, CLAREMONT | | 92 | SA | 32-90 | 1190 | 34 05 52 | 117 42 34 | E, B. WESTON | POMONA COLLEGE OBSERVATORY 221 WEST SECOND STREET, CLAREMONT | | 93
94 | S
S | 32-80
31-60 | 1165
805 | 34 05 47
34 06 00 | 117 42 59
117 50 02 | PAUL GORDON
WILL G. FIELDS | 1331 COVINA BOULEVARD, SAN DIMAS | | 95 | 5 | 43-99 | 960 | 34 06 28 | 117 48 22 | L. A. CO. FORESTRY EMPLOYEES | 114 EAST FIRST STREET, SAN DIMAS PUDDINGSTONE DAM | | 96-E | S
SP | 31-90
42-96 | 1030
602 | 34 05 30
34 08 02 | 117 48 24
117 54 14 | F. A. POLLARD
JOHN HIBSCH | 325 FOOTHILL BOULEVARD, AZUSA | | 98
99 | S | 43-06 | 615 | 34 08 00 | 117 53 37 | CHARLES STEWART | 962 FOOTHILL BOULEVARD, AZUSA | | 101 | s | 30-53 | 358 | 34 03 51 | 117 57 00
117 52 13 | HURST BROTHERS L. A. CO. FORESTRY EMPLOYEES | SOUTHEAST CORNER MERCED & ORANGE STREETS, WEST COVINA
4009 POMONA BOULEVARD, WALNUT, SOUTH HILLS PATROL STATION | | 102B | SP SP | 31-29 | 488
600 | 34 00 14
34 00 23 | 117 59 46 | JOHN THOMAS | SOUTH END OF 7TH AVENUE, NORTH WHITTIER HEIGHTS | | 105 | S | 16-64 | 215 | 33 57 33 | 118 01 49 | PETER E. SHARPLES | 1226 LAUREL AVENUE, WHITTIER CITY HALL ROOF, WHITTIER | | 106 | s
s | 16-61
15-65 | 365
118 | 33 58 53
33 56 33 | 118 02 13
118 08 10 | K. R. WARREN CO. FIRE DEPARTMENT EMPLOYEES | 224 WEST SECOND STREET, DOWNEY FIRE STATION | | 1078
1088 | SA _ | 29-62 | 301 | 34 04 27 | 118 02 08 | MARTIN SORENSON | 126 SOUTH TYLER AVENUE, EL MONTE FIRE STATION | | 109C | s | 41-27 | 455 | 34 07 25 | 118 03 02 | CARL RANDOLPH
J. W. CLAY | 538 NAOMI AVENUE, ARCADIA
NORTHWEST CORNER OF SECOND & MAIN STREETS, CITY HALL, ALHAMBRA | | 110 | S
SP | 28-70
40-48 | 485
690 | 34 05 40
34 06 58 | 118 07 43
118 09 05 | NORVAL B. KRUG | NORTHWEST CORNER MOUND & MISSION STREETS, CITY HALL, SOUTH PASADENA | | 114 | S | 14-09 | 64 | 33 54 07 | 118 17 29 | M, T, KING
CITY FIREMEN | SOUTHEAST CORNER VERMONT & ROSECRANS, GARDENA
111 EAST QUEEN STREET, INGLEWOOD FIRE STATION | | 116B | SP
S | 13-43
8-70 | 125
68 | 33 57 45
33 53 43 | 118 21 40
118 13 30 | CITY FIREMEN CHIEF D. S. WETHERBEE | FIRE STATION, COMPTON | | 117B
118B | s
s | 8-70
3-41 | 40 | 33 47 20 | 118 15 32 | E. A. BISHOP | 1251 BANNING BOULEVARD, WILMINGTON | | 119D | S | - 25-44 | 355 | 33 03 25 | 118 27 17 | J. MC CARTHY L. A. CO. FORESTRY EMPLOYEES | NATIONAL MILITARY HOME, SAWTELLE
1533 SIERRA HIGHWAY, VINCENT PATROL STATION | | 120 | s
\$ | 74-51
112-79 | 3250
2350 | 34 29 30
31 41 58 | 118 07 45
118 07 48 | E. M. HUFF | UNION HIGH SCHOOL LANCASTER | | 121
122B | - s | 98-49 | 3130 | 34 36 27 | 118 15 31 | JOHN RITTER | SOUTH OF JUNCTION - GOODE HILL ROAD WITH ELIZABETH LAKE ROAD BOUQUET CANYON RESERVOIR | | 1248 | SP AP | 84-31 | 3000
2100 | 34 35 10
34 35 20 | 118 21 40
118 27 10 | R. W. MATHEWS
STATION OPERATOR | POWER PLANT #1, UPPER SAN FRANCISQUITO CANYON | | 125
126 | SP
S | 83-40
12-41 | 17 | 33 59 18 | 118 27 33 | A. S. EDE | VENICE CITY YARDS | | 127 | SP | 70-71 | 1507 | 34 28 55 | 118 31 40 | JIM RAY
CLINTON H, BURT | DRY CANYON RESERVOIR ELIZABETHLAKE CANYON AT RADIUM HOT SPRINGS | | 128B | s
s | 95-39
106-85 | 2075
4025 | 34 36 28
34 44 37 | 118 33 40
118 42 43 | J. L. OZANNE | CHAIL LAKE COUNTY PATROS STATION | | 130B
134 | S | 44-07 | 1110 | 34 07 39 | 117 47 45 | A. L. STEVENS | 1/2 MILE NORTH OF FOOTHILL, 0.2 MILES WEST OF SAN DIMAS CN. RO., SAN DIM
801 BLOOMFIELD, NORWALK | | 135 | s | 10-30 | 83 | 33 53 50 | 118 03 58
118 19 30 | C. J. HARGITT
D. M. TRUE | 6225 SANTA MONICA BOULEVARD, HOLLYWOOD | | 136B
137B | S
S | 26 - 70
38 - 48 | 317
1125 | 34 05 28
34 06 51 | 118 21 13 | FLOOD CONTROL EMPLOYEES | EASTSIDE CURSON CANYON NEAR MULHOLLAND HIGHWAY | | 1375 | SP | 27-54 | 385 | 34 03 08 | 118 14 48 | J. JONES | SOUTHEAST CORNER SECOND & HILL STREETS, L.A.W.D. ROOF
1620 SOUTH PURDUE STREET, WEST LOS ANGELES CITY HALL | | 140 | s | 25-55 | 232 | 34 02 44
34 08 04 | 118 26 57
117 54 17 | W.B. SCOTT
CORNELIUS SMITH | CITY HALL PARK, AZUSA | | 143 | 5
5 | 42-96
41-52 | 607
1100 | 34 08 04 | 118 02 32 | B. F. MOBLEY | NEAR SIERRA MADRE DAM | | 150 | SA SA | 42-11 | 1800 | 34 11 09 | 117 59 14 | R. E. WADDICOR | MONROVIA CANYON FALLS
LITTLE ROCK CREEK, 1.5 MILES BELOW DAM | | 155B | S | 87-79 | 3035 | 34 30 18 | 118 01 40 | MARTY BRESLIN
STANDARD OIL EMPLOYEES | CENTER STREET AND LEMONT AVENUE, LA MIRADA | | 156
157 | SA
SP | 10-81
12-88 | 86
135 | 33 53 15
33 54 55 | 118 00 58
118 25 10 | LABORATORY EMPLOYEES | STANDARO OIL REFINERY. EL SEGUNDO | | 157
158 | SP AP | 55-49 | 2750 | 34 12 20 | 117.45.40 | U.S.F.S. EMPLOYEES | WEST FORK SAN DIMAS CANYON, TANBARK FLATS 432 NORTH PRIMROSE, MONROVIA | | 164
167 | SP 3" | 41-93 | 690 | 34 09 32 | 118 00 25
118 02 02 | CHARLES J. O'CONNOR
SCOTT M. LEE | AQ ORANGE GROVE AVENUE, ARCADIA PUMP PLANT | | | SP | 41-64 | 611
433 | 34 09 32
34 06 07 | 118 02 02 | RICHARD WATTS | 309 EAST LIVE OAK AVENUE. SAN GABRIEL | TABLE V BAIN GAGE STATION LOCATION SEASONS 1845-46-47 | STA,
NO. | TYPE
GAGE | QU AD
1NDEX | ELEV.
U.S.G.S | NORTH LAT | WEST LONG. | OBSERVER | LOCATION | |-------------------|----------------|------------------|----------------------|-----------------------|------------------------|--|---| | 69 | SP | 41-63 | 700 | 34 09 49 | 118 02 23 | B. F. MOBLEY | 621 SIERRA MADRE AVENUE, SIERRA MADRE PUMP PLANT | | 170B
171 | 5
S | 29-15
41-35 | 297
635 | 34 02 34
34 08 48 | 118 04 54
118 04 05 | J. M. MALNERITCH | 3651 WALNUT GROVE AVENUE, SAN GABRIEL | | 174 | SP | 43-86 | 965 | 34 07 57 | 117 49 10 | W. E. COMERFORD
BERT WARREN | 75 SOUTH MICHILLINDA AVENUE, LAMANDA PARK OLD FOOTHILL BOULEVARD 2,25 MILES EAST OF GLENDORA | | 1758 | S | 50-87 | 2020 | 34 13 40 | 118 12 42 | J. M. FICKS | ALTA CANADA AND DEL ORO DRIVE, LA CANADA | | 776
770 | SP
S | 40-61
51-09 | 1125
1255 | 34 10 55 | 118 08 16 | J. H. SCRANTON | 583 SACRAMENTO STREET, ALTADENA | | 178 | Ā | 43-09 | 545 | 34 12 12
34 06 24 | 118 11 36
117 53 58 | P. L. ERADFORD
E. B. GRIFFITH | 4607 COMMONWEALTH AVENUE, LA CANADA
SOUTH OF BONITA AVENUE, WEST OF CERRITOS AVENUE, AZUSA | | 179B | SP A | 41-52 | 1125 | 34 10 22 | 118 02 46 | PAUL N. CARTER | 666 NORTH MOUNT WILSON TRAIL ROAD, SIERRA MADRE | | 181B | s | 29-94 | 293 | 34 03 10 | 118 00 06 | R. S. CLIFFORD | VALLEY BOULEVARD AT COVINA BOULEVARD, BASSETT | | 182
185 | SP
S | 30-41
43-46 | 378
822 | 34 05 17
34 08 23 | 117 57 35
117 51 33 | S. HOWARD LEACH
L. M. WEST | 334 NORTH MAINE STREET, BALDWIN PARK
460 EAST BENNETT STREET, GLENDORA | | 188C | S | 44-08 | 1070 | 34 07 08 | 117 47 38 | WAYNE E., MORRISON | 100) SAN DIMAS CANYON ROAD, SAN DIMAS | | 928 | 8.81" | 15-12 | 145 | 34 58 47 | 118 11 18 | J. H. CARROLL | 6320 PINE STREET, BELL | | 93 | S
S | 31-21 | 575 | 34 04 57 | 117 52 28 | W. B. TEMPLE
E. W. KERR | 748 PUENTE STREET, COVINA | | 196
198B | 8.81" | 44-39
39-21 | 1054
890 | 34 06 01
34 11 04 | 117 46 07
118 16 34 | FLOOD CONTROL EMPLOYEE | 2146 THIRD STREET, LA VERNE
MOUTH OF BRAND CANYON | | 99B | 5 | 14-81 | 175 | 33 59 21 | 118 13 06 | WILL LOUGH | CITY YARD, 2886 SLAUSON AVENUE, HUNTINGTON PARK | | .00 | S | 70-27 | 1093 | 34 25 23 | 118 34 32 | A. T. BALDWIN | SO. CALIF, EDISON CO. SUB STATION, 2,5 MILES WEST OF SAUGUS | | 01 | SA
SP | 17-00
30-79 | 860
374 | 34 59 40 | 117 59 30 | HARVEY LOWERY SO, CALIF, ED, CO, EMPLOYEES | ALTA MIRA ORCHARD, 1 MILE NORTHEAST OF SUMMIT TURNBULL CN, RD. | | 05
206 | s | 30-79 | 467 | 34 00 34
34 03 19 | 117 55 46
117 54 25 | P. R. JACKSON | S. C. E. CO, SUB STATION, VALLEY BOULEVARD, 1.5 MILES EAST OF PUENTE 2024 S. AZUSA AVENUE, VALENCIA HEIGHTS | | 208 | SP 5" | 10-14 | 49 | 33 51 35 | 118 04 52 | W. S. RUSSELL | BARR LUMBER COMPANY, 1804 PIONEER BOULEVARD, ARTESIA | | .098 | 8.81" | 62-49 | 2445 | 34 18 20 | 118 09 33 | FLOOO CONTROL EMPLOYEE | BIG TUJUNGA CANYON AT EDISON ROAD | | 108 | SA
SA | 39-21 | 1250 | 34 11 19 | 118 16 21 | FLOOD CONTROL EMPLOYEE FLOOD CONTROL EMPLOYEE | SOUTHWEST SLOPE, 200 FEET ABOVE TANK, BRAND PARK HANCOCK PARK, 5801 WILSHIPE BOULEVARD, LOS ANGELES | | !13
!15B | S | 26-43
9-71 | 177
73 | 34 03 48
33 52 56 | 118 21 19
118 07 29 | CO. FIRE
DEPT, EMPLOYEES | HANCOCK PARK, 5801 WILSHIRE BOULEVARD, LOS ANGELES
917 EAST FLOWER STREET, BELLFLOWER FIRE STATION | | 16 | SP | 39-43 | 620 | 34 09 55 | 118 15 01 | J. E. JONES | 318 EAST RANDOLPH STREET, GLENDALE | | 17 | 8.81" | 14-75 | 110 | 33 56 37 | 118 13 45 | S. T. TONEY | 2265 EAST 103RD STREETS, WATTS | | 18 | S S | 7-54
48-94 | 75
955 | 33 51 11
34 15 21 | 118 20 26
118 24 27 | L. A. CO. FORESTRY EMPLOYEES | 2 MILES NORTHWEST OF TORRANCE, GENERAL PETROLEUM CORPORATION 12605 OSBORNE AVENUE, PACOIMA | | 21B | s | 59-99 | 1375 | 34 18 32 | 118 24 20 | RANCH FOREMAN | KEINER RANCH, 12500 NORTH MC CLAY STREET, SAN FERNANDO | | 22 | SP | 38-10 | 732 | 34 11 55 | 118 23 18 | STATION OPERATOR | 11845 VOSE STREET, NORTH HOLLYWOOD | | 238-E | S
S | 43-83 | 1575 | 34 10 13 | 117 48 30 | PAUL KEISER
R. E. BIXBY | CARETAKER'S HOUSE BELOW BIG DALTON DAM | | 24
25 | S | 9-85 | 30
47 | 33 46 05
33 50 35 | 118 11 35 | R. F. FELAND | FIRST STREET.PACIFIC AVENUE, LONG BEACH MONTANA RANCH, 5812 ARBOR ROAD, SOUTHWEST OF ARTESIA | | 26 | S | 38-91 | 665 | 34 10 55 | 118 18 24 | F. OLCHVARY | 125 EAST THIRD STREET, BURBANK FIRE STATION | | 278 | S | 40-99 | 487 | 34 06 32 | 118 06 19 | G. B. GLEASON | 424 NORTH MILTON AVENUE, SAN GABRIEL | | 28B | Ap
SP | 26-02 | 255 | 34 04 27 | 118 23 57 | C. VALLE RIESTRA | CITY HALL ROOF, BEVERLY HILLS | | 30C
34 | S | 31-23 | 1255
630 | 34 00 57
34 03 39 | 117 44 12
117 52 38 | C. F. ELDER
BEN F. THORPE | 4055 NORTH SAN ANTONIO AVENUE NEAR THOMPSON CREEK NEAR CAMERON AVENUE & BARRANCA STREET, WEST COVINA | | 35B | SP A | 41-10 | 2550 | 34 11 36 | 118 05 20 | L. A. CO. FORESTRY EMPLOYEES | HENNINGER FLATS | | 36 | S | 58-88 | 1455 | 34 19 12 | 118 24 59 | VERLE FOWLER | CRAIG RANCH, SAN FERNANDO, NORTH END HUBBARD AVENUE | | 37 | SP
SP | 37-49 | 725
750 | 34 06 25
34 07 04 | 118 27 13 | L.A.W.D. EMPLOYEES
L.A.W.D. EMPLOYEES | STONE CANYON DAM
HOLLYWOOD DAM | | 38
40B | S | 38-68
60-67 | 1875 | 34 19 04 | 118 19 55
118 20 02 | J. CODOUS | 5.0 MILES UP LITTLE TUJUNGA CANYON FROM OLD FOOTHILL BOULEVARD | | 41A' | SP | 4-03 | 30 | 33 46 12 | 118 11 35 | C. C. BOWERS | VETERANS MEMORIAL BUILDING, LONG BEACH | | 46B
50C | s
s | 26-18
74-04 | 75
2550 | 34 01 00
34 27 02 | 118 23 17
118 11 52 | BUS DEPOT EMPLOYEE
L, M, LUGLAN | CORNER JEFFERSON AND DUQUESNE STREETS, CULVER CITY
SOLEDAD AND ARRASTRE CANYON ROADS, ACTON | | 51 | S | 50-57 | 1565 | 34 13 28 | 118 14 24 | F. G. HALVERSEN | 2908 FOOTHILL BOULEVARD, LA CRESCENTA | | 53 | S | 13-95 | 235 | 33 56 54 | 118 18 35 | MRS. R. R. BOHMER | 9625 SOUTH WESTERN AVENUE - L.A.W.D. | | 54
55 A | 5
S | 17-50
31-55 | 466
770 | 33 59 37
34 02 51 | 117 56 30
117 50 50 | J. IR!ATE
M. P. LOWE | ROWLAND RANCH, PUENTE
SAN JOSE HILLS NEAR SPADRA | | 55B | 5 | 31-45 | 780 | 34 02 29 | 117 50 50 | MR, JACOBSON | SAN JOSE HILLS NEAR SPADRA | | 56 ^B | S | 32-44 | 882 | 34 03 26 | 117 45 64 | CHIEF DAN ZANS | FIFTH AND THOMAS STREET, POMONA | | 57
584 | SA
8.81" | 39-17
38-97 | 750
1100 | 34 07 ·12
34 07 24 | 118 17 11
118 18 11 | J. KLADLER
LOUIS STRAUSS | 2650 NORTH COMMONWEALTH AVENUE, GRIFFITH PARK NURSERY WEST OF TUNNEL, POINT OF RIDGE, GRIFFITH PARK | | 588 | 8.81" | 39-07 | 1400 | 34 07 45 | 118 17 53 | LOUIS STRAUSS | SOUTH SLOPE OF MOUNT HOLLYWOOD, GRIFFITH PARK | | 58C | 6.81" | 39-06 | 1600 | 34 07 54 | 118 17 54 | LOUIS STRAUSS | NORTH SLOPE OF MOUNT HOLLYWOOD, GRIFFITH PARK | | 59C
61-E | SA
SA | 46-92
73-30 | 125 <u>4</u>
3075 | 34 16 41
34 29 51 | 118 36 12
118 15 56 | L. A, CO, FORESTRY EMPLOYEES H. F. MELLEN | 21880 MAYON DRIVE, COUNTY FOREST PATROL STATION, TWIN LAKES PARK ESCONDIDO CANYON, NORTH BRANCH, 5,5 MILES NORTHWEST OF ACTON | | 63A | 5 | 32-56 | 778 | 34 01 54 | 117 44 26 | G. H. GRANT | 2211 SOUTH TOWNE AVENUE, POMONA | | 65C-E | S | 17-74 | 675 | 33 57 13 | 117 55 23 | P. J. WEISEL JR. | ANAHEM ROAD, I MILE NORTH OF WHITTIER BOULEVARD, PUENTE HILLS | | 66
68-E | SP
SP A | 17-06 | 353 | 33 56 25 | 117 59 35 | C. A. HEWITT
STATION OPERATOR | 1234 SANTA GERTRUDES AVENUE, WHITTIER | | 69A | S S | 7-94
18-53 | 710 | 33 51 32
33 58 09 | 118 18 33
117 50 40 | JOSE RODRIGUEZ | 190TH AND WESTERN AVENUE, SO. CALIF, EDISON CO. SUB STATION DIAMOND BAR RANCH #1, BREA CANYON ROAD | | 69B | SP AP | 18-62 | 760 | 35 58 42 | 117 49 54 | ANGEL REYES | DIAMOND BAR RANCH, HORSE CAMP | | 70 | S | 15-46 | 104 | 33 56 17 | 118 09 22 | CLYDE MDRROW | COUNTY FARM #1, 741 OLD RIVER SCHOOL ROAD, HONDO | | 71
72 | S
S | 8-63
38-94 | 195
473 | 33 51 37
34 09 21 | 118 14 01
118 18 20 | W. W. WRIGHT
O. J. SM;TH | DOMINGUEZ HILLS, 18,800 WILMINGTON BOULEVARD | | 74 | SP | 85-68 | 3250 | 34 30 50 | 118 14 10 | MRS. A. S. HUBBARD | WEST DE NORTH ENTRANCE OF GRIFFITH PARK, NEAR LOS ANGELES RIVER
MINT CANYON ROAD JUST EAST OF SUMMIT | | 75 | SP 3" | 40-87 | 670 | 34 07 41 | 118 06 40 | G. L. BROWN | HUNTINGTON ESTATES, SAN MARINO | | 77
78B | 5
5 | 108-17
26-86 | 3700 | 34 43 15 | 118 35 00 | WYN SKELTON | SAWMILL MOUNTAIN RANCH, 8.9 MILES NORTHWEST OF LAKE HUGHES | | 79A | SP SP | 41-11 | 211
1325 | 34 02 00
34 10 50 | 118 18 58
118 05 04 | ZACK'LIND
ROSS M. LOCKHART | CLARK MEMORIAL LIBRARY, 2205 WEST ADAMS, LOS ANGELES
KINNELOA RANCH, PASADENA GLEN | | 30B | SA | 40-01 | 1325 | 34 10 57 | 118 11 47 | L. A. CO. FIRE DEPT. EMPLOYEES | 1028 INVERNESS DRIVE, FLINTRIDGE FIRE STATION | | 334 | SA | 65-67 | 5740 | 34 19 35 | 117 50 14 | U.S.F.S. EMPLOYEES | CRYSTAL LAKE - EAST PINE FLAT | | 34
35C | S
S | 59-22
25-11 | 1480
1025 | 34 22 38
34 05 10 | 118 28 42 | D. F. POLLOCK MARTIN BULLINGER | PLACERITA CANYON - GAFFER RANCH | | 37 | SP | 43-36 | 782 | 34 05 10
34 08 22 | 118 28 57
117 51 54 | MARTIN BULLINGER
H. C. WARREN | MOUNT ST. MARY'S COLLEGE - SANTA MONICA MOUNTAINS
234 NORTH MICHIGAN AVENUE, GLENDORA | | 39 | 5P | 15-52 | 140 | 33 58 38 | 118 08 45 | S. C. EDISON CO. EMPLOYEES | 6301 SOUTH GARFIELD AVENUE, BELL | | 90 | S
ACO | 28-75 | 375 | 34 02 45 | 118 07 43 | S. C. EDISON CO. EMPLOYEES | LA MERCED HILLS - GARFIELD AVE. AT S. C. EDISON CO. SUBSTATION | | }1
∋2-E | SP | 14-45
36-85 | 121 | 33 57 00
34 08 56 | 118 15 25
118 30 52 | L, A, CD, EMPLOYEES L, E, SWINNEY | 96TH STREET AND CENTRAL AVENUE, LOS ANGELES | | 3 | SP | 48-11 | 1150 | 34 17 18 | 118 28 54 | L.A.W.D. EMPLOYEES | ENCINO RESERVOIR 1 MILE SOUTHWEST OF ENCINO
LOWER SAN FERNANDO RESERVOIR | | 94 | SP | 41-53 | 985 | 34 10 11 | 118 02 57 | B. F. MOBLEY | MIRA MONTE AVENUE PUMP PLANT, SIERRA MADRE | | 5F
18A | \$
5 | 39-34 | 530 | 34 09 07 | 118 15 40 | MAURICE KENNEDY | 415 WEST LEXINGTON AVENUE, GLENDALE | | 98B | S . | 105-40
105-61 | 3830
3650 | 34 47 50
34 47 18 | 118 51 07
118 49 54 | J. L. RALPHS
DEWEY RALPHS | GORMAN
NEAR GORMAN | | 99C | S | 88-26 | 2805 | 34 32 10 | 117 58 39 | MRS, LENA SCHWAB | 85TH STREET E. & AVENUE T 8. LITTLE ROCK | | OOA | SP 3" | 36-08 | 1070 | 34 07 08 | 118 35 35 | R. L. PEELER | GARRAPATA CANYON & FAILOR CANYON, TOPANGA | |)3C
)3D | SA
SA | 40 - 76 | 745 | 34 08 11 | 118 07 16 | PROF. MICHAEL AND STUDENTS | CAL. TECH. CAMPUS, CORNER OF HILL AND CALIFORNIA, PASADENA | |)4 | 5 | 40-76
42-30 | 800
2725 | 34 08 12
34 11 39 | 118 07 28
117 57 50 | PROF. MICHAEL AND STUDENTS
R. E. WAODICOR | CAL. TECH. CAMPUS, CORNER OF HILL AND CALIFORNIA, PASADENA DEER PARK, 1½ MILES ABOVE SAWPIT DAM | | 05 | S | 21-01 | 1155 | 34 05 13 | 118 53 27 | R. L. MASON | EAST FORK ARROYO SEQUIS, SOUTH OF MULHOLLAND ROAD | | 08 | SP
SP | 56-96 | 8300 | 34 13 50 | 117 36 22 | H. S. DELKER | KELLY'S KAMP, 14 MILES NORTHEAST OF ONTARIO PEAK | | 19
. 18 | SP AP | 45-05
40-43 | 1768 | 34 08 36 | 117 41 51 | KENNETH B. FORBES | 4064 PADUA AVENUE, PADUA HILLS | | 2 | SP AF | 40-43 | 918
675 | 34 09 48
34 08 51 | 118 09 28
117 54 55 | PASAGENA WATER DEPT. EMPLOYEES
PLANT OPERATOR | 1083 MENTONE STREET, PASADENA | | 1-E | s | 96-72 | 3275 | 34 40 27 | 118 25 49 | L. A. CO. FORESTRY EMPLOYEES | 1 MILE NORTHWEST DE AZUSA PATROL STATION BETWEEN ELIZABETH AND HUGHES LAKES | | 22
34-E | S AP
S A | 110-48 | 2600 | 34 42 50 | 118 21 15 | E. S. MUNZ | LANCASTER - BAILEY ROAD 14 MILES WEST OF LANCASTER | | | J M | 53+35 | 2335 | 34 14 38 | 117 57 39 | FLOOD CONTROL EMPLOYEES | SAN GABRIEL DAM #2, WEST FORK - SAN GABRIEL CANYON | | | | | | | | TABLE V | | |----------------|----------------|------------------|----------------------|----------------------|------------------------|---|--| | | | | | | R | AIN GAGE STATION LOCATION | | | STA. | TYPE
GAGE | QUAD
INDEX | ELEV
U.S.G | NORTH LAT. | WEST LONG. | SEASONS 1945-46-47 | | | 336 | SP | 39-39 | 455 | 34 06 08 | 118 15 54 | OBSERVER RESERVOIR CARETAKER | LOCATION SILVER LAKE RESERVOIR, LOS ANGELES | | 338A
338B | SP A | 52-4'7
52-37 | 5650
5709 | 34 13 27
34 13 36 | 118 03 32
118 03 57 | J. O. HICKOX
R. J. WARD | 50 FEET SOUTH OF 60" TELESCOPE, MOUNT WILSON | | 339
341 | SP
S | 31-49 | 533 | 34 00 13 | 117 51 11 | PACKING HOUSE EMPLOYEE | 1/2 MILE WEST OF 60" TELESCOPE, MOUNT WILSON AIR WAY STATION
1/2 MILE SOUTHEAST OF WALNUT, SOUTH SIDE U. P. R. R. TRACKS | | 341 | S | 74-43
45-17 | 2900
1550 | 34 27 51
34 07 13 | 118 09 25
117 40 48 | R. C. CADNUM | ALISO CANYON - EAST OF ACTON
1544 NORTH BENSON STREET, UPLAND | | 343B
347-E | SP
S | 16-04
30-30 | 144 | 33 57 12 | 118 05 48 | F. C. COLLINS | 2625 PASSONS BOULEVARD, RIVERA | | 348C | SA | 55-36 | 387
2000 | 34 05 38
34 14 10 | 117 57 39
117 45 50 | VARIOUS
K. C. ANDREWS | SCOTT PLACE, I
BLOCK WEST OF MAIN STREET, BALDWIN PARK 6 MILE NORTH NORTHEAST OF CAMP BONITA, EAST FORK SAN GABRIEL CN. | | 349B
351D | SP | 54-46
86-81 | 1530
2648 | 34 14 20
34 34 51 | 117 51 36
118 06 52 | MRS. C. M. SCHMIOT H. P. SCHOELLER | CAMP RINCON, WEST FORK SAN GABRIEL CANYON | | 352 | SA | 21-21 | 1530 | 34 04 50 | 118 52 38 | L. A. CO. FORESTRY EMPLOYEES | AVENUE O 7 BETWEEN EAST 8TH AND EAST 9TH STREETS, PALMDALE
LECHUSA PATROL STATION, 4 MILES FROM COAST ON DECKER ROAD | | 353
354D | SP
S | 42-26
56-27 | 458
4527 | 34 07 58
34 13 45 | 117 58 43
117 40 10 | E. S. HART
MR. HOLTZ | DUARTE ROAD AT BUENA VISTA STREET, DUARTE | | 355
356B | S SA | 27-01 | 335 | 34 05 21 | 118 17 34 | J, F. BALL | COW CANYON AND SAN ANTONIO CANYONS DIVIDE. 14 MILES S.W. OF CAMP BALDY LOS ANGELES CITY COLLEGE, 855 NORTH VERMONT AVENUE, LOS ANGELES | | 357 | SP | 31-95
59-08 | 685
1248 | 34 02 32
34 18 49 | 117 48 34
118 29 30 | R. S. HUTCHISON
STATION OPERATOR | SPAORA STATE HOSPITAL POWER HOUSE #3, UPPER SAN FERNANDO RESERVOIR | | 362
364 | SP
SP | 40-23
50-23 | 1025
2450 | 34 09 56 | 118 10 46 | J. D. HOFFMAN | 1475 EL MIRADOR DRIVE, PASADENA | | 366 | S | 77-45 | 3730 | 34 15 50
34 26 51 | 118 16 13
117 51 33 | FLOOD CONTROL EMPLOYEE L. F. NOBLE | 50' EAST OF U.S.G.S. GAGING STATION, HAINES CREEK 1/2 MILE NORTHWEST VALVERMO RANGER STATION, 1/2 MILE SOUTH OF BIG ROCK CR. | | 367
372 | SP A | 50-42
82-76 | 3450 | 34 16 18 | 118 15 07 | FLOOD CONTROL EMPLOYEE | AT UPPER FORK NEAR HEAD OF HAINES CANYON | | 373 | SA | 50-76 | 1580
2310 | 34 32 02
34 14 16 | 118 31 27
118 13 42 | STATION OPERATOR
L. R. BLEITZ | SAN FRANCISQUITO CANYON POWER HOUSE #2
5613 CANYON SIDE DRIVE, BRIGGS TERRACE | | 375B
377D | S
SP | 39-16
V-CO. | 650 | 34 08 02 | 118 17 18 | CHARLES H. ALLEN | GRIFFITH PARK ZOO, LOS ANGELES | | 379B | 5A | 54-86 | 1600 | 34 09 00
34 14 10 | 118 53 35
117 48 18 | T, E, MOODY GEORGE MIDDLETON | NORTH EDGE OF LAKE SHERWOOD - VENTURA COUNTY EAST FORK, 2,7 MILES ABOVE FORKS, SAN GABRIEL RIVER | | 380 | SA
5 | 28-11 | 553 | 34 04 54
34 01 06 | 118 11 02 | GEORGE P. MORGAN | 4566 BEDILLION STREET, EL SERENO | | 381B
384B | S | 25-08
40-26 | 100
825 | 34 01 06
34 06 43 | 118 29 50
118 12 02 | PAUL F. KNIEF
F. B LAVERTY | 1245 4TH STREET, SANTA MONICA
502 LAKEVIEW ROAD, PASADENA | | 386B | SP 3" | 21-71 | 1500 | 34 04 58 | 118 49 38 | R. H. OAKLEY | DUME CANYON NORTHWEST OF VERA CANYON | | 387B
388B | S S | 31-01
9-40 | 508
71 | 34 05 02
33 53 30 | 117 53 57
118 09 33 | W. A. POOLE L. A. CO. FIRE DEPT. EMPLOYEE | 227 SOUTH HOLLENBECK AVENUE, COVINA 210 NORTH PARAMOUNT BOULEVARD, CLEARWATER | | 389 | SP | 43-35 | 825 | 34 08 49 | 117 52 04 | FRANK H. BROWN | 1000' NORTH OF PENN, AND SIERRA MADRE AVENUE, GLENDORA | | 390B-E
391B | SP
5 | 43-21
28-98 | 1210
205 | 34 11 12
34 00 40 | 117 52 43
118 06 17 | FRED CHAPMAN
FIRE DEPARTMENT EMPLOYEES | MORRIS DAM, SAN GABRIEL CANYON
140 NORTH SIXTH STREET, MONTEBELLO | | 392B | SP | 40-71 | 1335 | 34 11 20 | 118 07 21 | C. W. BARTON | 1338 HULL LANE, ALTADENA | | 394
395 | S
S | 40-28
59-57 | 620
1425 | 34 07 06 | 118 10 40 | MRS. ELISABETH S, STEVENS | 6425 ELGIN STREET, HIGHLAND PARK | | 400 | 5P | 40-63 | 1000 | 34 19 31
34 10 08 | 118 26 56
118 08 12 | R, N. LOOMIS
H, J, SIEVERT | OLIVE VIEW SANITARIUM, SAN FERNANDO
WASHINGTON AND PALM TERRACE, PASADENA | | 402C | S S | 65-23 | 6800 | 34 21 03 | 117 53 00 | B. H. HENRY, SUPERINTENDENT | CEDAR SPRINGS PRISON CAMP, ANGELES CREST HIGHWAY | | 404
405 | 5 | 39-54
73-06 | 653
2250 | 34 09 29
34 26 15 | 118 14 25
118 17 38 | JOHN OPID
FRED ECKLES | 811 NORTH GLENDALE AVENUE, GLENDALE
11.7 MILES EAST OF SOLEMINT ON SOLEDAD CANYON ROAD | | 406C | s | 42-88 | 505 | 34 06 53 | 117 54 58 | OLIVER ENGLER | 710 WEST BROADWAY, WEST AZUSA | | 407
408 | 5
5 | 58-82
71-58 | 1325
1472 | 34 22 13
34 24 47 | 118 30 46
118 26 24 | RAY MC CORMICK
MRS. J. W. MITCHELL | 1 MILE SOUTHEAST OF NEWHALL - U.S.F.S. DISTRICT HEADQUARTERS | | 409 | Ś | 93-12 | 1425 | 34 40 34 | 118 48 53 | REX C. FARMER | O.4 MILE SOUTH OF SOLEDAD CANYON ROAD, 1.2 MILES W. OF JUNCTION SAND AND SOLEDAD 18 MILES NORTH OF CASTAIC JUNCTION NEW RIDGE ROUTE | | 410A
411B | S
SP | 81-13
16-11 | 2525
170 | 34 34 05
33 59 20 | 118 41 17
118 04 58 | CAROLYN DURNFORD
C. W. ROBINSON | 7 MILES NORTH OF CASTAIC, WEST SIDE OF HIGHWAY, NEW RIDGE ROUTE | | 415 | SA | 4-30 | 125 | 33 47 49 | 118 10 03 | GEORGE 1. OSBORNE | 700 SOUTH PASSONS BOULEVARD, RIVERA
SIGNAL HILL CITY HALL | | 416 | SP CP CP | 40-40 | 1170 | 34 11 28 | 118 09 28 | C. C. CURTIS | 2666 LINCOLN AVENUE, ALTADENA | | 417
419 | SP 3" | 41-05
61-92 | 742
54 5 0 | 34 08 56
34 22 26 | 118 05 42
118 12 20 | MR. LEAMAN
C. C. BREVIDORO | 150 NORTH VINEDO STREET, LAMANDA PARK
HEAD OF PACOIMA CANYON ON SANTA CLARA RIDGE, MT. GLEASON | | 420A | S | 74-07 | 3100 | 34 25 20 | 118 11 52 | C, C, BREVIDORO | 3.3 MILES SOUTH OF ACTON ON MT. GLEASON TRUCK TRAIL | | 4218
4228 | SP
S | 48-91
60-35 | 1178
2200 | 34 17 03
34 20 50 | 118 24 28
118 21 53 | WARD HINKLE
B. K. WALSH | 12559 FILMORE STREET, SAN FERNANDO VALLEY | | 423 | S | 75-08 | 3920 | 34 24 56 | 118 04 28 | EARL W. SCRIBNER | 2½ MILES ABOVE PACCIMA DAM IN PACCIMA CANYON ALISO CANYON, 1.1 MILES BY ROAD FROM ANGELES FOREST HIGHWAY | | 425B-E | sA
s | 54-39 | 1481 | 34 12 19 | 117 51 40 | FLOOD CONTROL EMPLOYEE | SAN GABRIEL DAM #1 NEAR SPILLWAY | | 427
429 | S | 15-64
51-83 | 127
4460 | 33 57 28
34 15 43 | 118 08 12
118 06 43 | L. W. JORDAN
R. O. NORTON | 751 WEST FLORENCE AVENUE, DOWNEY ANGELES CREST HIGHWAY, 0.8 MILE SOUTH OF RED BOX | | 430 | S | 70-57 | 1176 | 34 25 17 | 118 32 26 | MR. HARVEY | SAUGUS, AT STATE HIGHWAY MAINTENANCE DEPARTMENT | | 431
432 | S
SP | 26-48
52-89 | 150
2035 | 34 00 53
34 12 27 | 118 21 18
118 01 03 | J. M. DONOVAN
ED. WINDROW | 3870 SOUTH LA BREA AVENUE, BALDWIN HILLS
SANTA ANITA CANYON, FERN LODGE | | 433 | SA | 51-69 | 1710 | 34 12 07 | 118 07 53 | A. L. GOLDENBERG | FARNSWORTH PARK, ALTADENA | | 434 | SA | 34-46 | 800 | 34 07 57 | 118 45 08 | L. A. CO. DORESTRY EMPLOYEES L. A. CO. FORESTRY EMPLOYEES | MALIBU HEADQUARTERS, I MILE SOUTH OF VENTURA BOULEVARD ON CORNELL ROAD MONTE NIDO PATROL STATION, COLD CREEK NEAR MALIBU CREEK | | 435
436A | SA
SP | 23-12
49-13 | 600
1110 | 34 04 40
34 15 46 | 118 41 23
118 23 10 | U.S.E.D. EMPLOYEES | HANSEN DAM - CONTROL HOUSE | | 436B | AP
S | 49-04 | 1005 | 34 15 27
33 47 27 | 118 23 36 | U.S.E.D. EMPLOYEES J. C. VIDMAR | HANSEN DAM - OFFICE
HAMILTON BOWL, LONG BEACH | | 437
438 | S | 4-30
36-94 | 40
950 | 33 47 27
34 09 12 | 118 10 08
118 30 18 | C. E. QUIRELLO | 17151 OAK VIEW DRIVE, ENCIND | | 440B
441-E | S
S | 63-97
86-82 | 5250
2662 | 34 19 37 | 118 00 17 | ARTHUR H. MILLS JAMES R. NELAN | CHILAG, U.S.F.S. CAMP | | 442 | s | 78-53 | 3810 | 34 34 31 | 117 44 45 | E. A. EBERLE | MALMUALE, COUNTY ROAD DEPARTMENT, MAINTENANCE YARD NEAR MESCAL CREEK ON FORT TEJON ROAD, NEAR LLANO | | 443 | s | 21-80 | 1725 | 34 05 50 | 118 48 55 | W. A. BRANDENBERGER | JUNCTION LATIGO CANYON ROAD AND MULHOLLAND HIGHWAY | | 444
445B | S
SA | 2-52
44-56 | 485
1510 | 33 46 35
34 08 02 | 118 20 38
117 44 38 | L. J. EAMOE
FLOOD CONTROL EMPLOYEE | "ROLLING HILLS", PALOS VERDES HILLS LIVE OAK DAM | | 446 | SA | 58-48 | 2367 | 34 19 00 | 118 33 27 | CLARK MINER | 5.5 MILES ABOVE DEVONSHIRE STREET IN ALISO CANYON | | 447 | S 0111 | 23-65 | 138 | 34 02 43 | 118 38 17
118 05 28 | L. A. CO. FORESTRY EMPLOYEES FLOOD CONTROL EMPLOYEE | 0.7 MILE FROM COAST IN LAS FLORES CANYON AT CO. F.S. PATROL STATION EATON DAM, ALTADENA | | 449
451AB | 8.81"
s | 41-03
69-83 | 915
1066 | 34 10 08
34 27 52 | 118 36 57 | L. A. CO. FORESTRY EMPLOYEES | PATROL STATION, CASTAIC | | 452 | S | 38-05 | 637 | 34 08 25 | 118 23 40 | W, N. THAYER | 3817 MOUND VIEW AVENUE, STUDIO CITY | | 453
454 | 8.81"
S | 40-21 ·
26-86 | 1094
200 | 34 11 07
34 02 13 | 118 10 30
118 19 08 | FLOOD CONTROL EMPLOYEE W. J. WOOD | DEVILS GATE DAM, PASADENA
2210 3RD AVENUE, LOS ANGELES | | 455 | S' | 99-61 | 2395 | 34 40 57 | 118 08 03 | L. R. POTTER | LANCASTER, STATE HIGHWAY MAINTENANCE DEPARTMENT | | 456
4578 | S
S | 102-54
27-32 | 2680
400 | 34 39 02
34 04 17 | 117 50 55
118 16 04 | C. F. WILCOX
S. M. HANCOCK | ANTELOPE VALLEY MUSEUM, 22 MILES EAST, 3 MILES SOUTH OF LANCASTER 432 NORTH LAKE STREET, LOS ANGELES | | 4578
458 | 5 | 22-08 | 115 | 34 01 10 | 118 47 46 | L. A. CO. FORESTRY EMPLOYEES | RODSEVELT HIGHWAY, EAST OF WALNUT CREEK, ZUMA PATROL STATION | | 460 | S | 76-65 | 4165 | 34 26 52 | 117 56 20 | L. MATAY
STANDARD OUL EMPLOYEES | PLEASANT VIEW MESA
1 MILE NORTH OF SLAUSON AVENUE, 1-1/8 MILE SOUTHEAST BALLONA CREEK | | 461
462 | SA
S | 26-29
25-94 | 392
196 | 34 00 08
34 03 05 | 118 22 32
118 24 06 | STANDARD OIL EMPLOYEES
WILLIAM STEWART | HILLCREST COUNTRY CLUB. 10,000 PICO BOULEVARD, LOS ANGELES | | 463 | \$ | 25-78 | 92 | 34 00 49 | 118 25 32 | LEO MINNICK | 11637 CHARNOCK ROAD, SOUTHERN CALIFORNIA WATER COMPANY, MAR VISTA | | 464
465 | S
SP | 51-40 | 3300 | 34 17 59
34 09 42 | 118 09 35 | W. J. PHILLIPS
U.S.E.D. EMPLOYEES | COUNTY DETENTION CAMP #5, ANGELES FOREST HIGHWAY SEPULVEDA DAM OFFICE | | 465A
465B | AP | 37-33
37-33 | 688
675 | 34 09 42
34 10 | 118 27 59
118 28 | U.S.E.D. EMPLOYEES | SEPULVEDA DAM | | 466B | SA | 60-54 | 3225 | 34 21 07 | 118 20 38 | FLOOD CONTROL EMPLOYEE | PÁCOIMA CANYON, DUTCH LOUI CANYON | | 468-E
470 | 8.81"
SP AP | 50-77
63-10 | 1600
4600 | 34 13 15
34 23 19 | 118 13 45
118 05 26 | FLOOD
CONTROL EMPLOYEE F. C. EMPLOYEES | PICKENS DEBRIS BASIN NEAR TIE CANYON DIVIDE, MILL CREEK, TUJUNGA | | 471 | AP | 60-98 | 2750 | 34 18 57 | 118 18 02 | FLOOD CONTROL EMPLOYEES | GOLD CREEK TRUCK TRAIL, 1.2 MILES ABOVE WATTS RANCH, GOLD CREEK, LITTLE TUJUNGA | | 473 | 8.81" | 72-64 | 2050 | 34 27 24 | 118 19 59 | H. A. BLACKWELL
CHIEF J. C. GUTTING | AQUA DULCE CANYON 8437 VICTORIA AVENUE, POLICE DEPARTMENT, SOUTH GATE | | | SP | 14-94 | 127 | 33-57 35 | 118 12 32 | | NEWHALL LAND AND FARMING COMPANY OFFICE, SAUGUS | | 474
475 | SP | 70-48 | 1134 | 34 25 04 | 118 33 23 | H. METCHER | RUESS RANCH, 1 MILE ABOVE LOBO CANYON IN TRIUNFO CANYON | # TABLE V RAIN GAGE STATION LOCATION #### SEASONS 1945~46-47 | STA.
NO. | TYPE
GAGE | QUAD | ELEV.
U.S.G.S. | NORTH LAT. | WEST LONG. | OBSERVER | LOCATION | |--------------|---------------|--------------------|---------------------|-----------------------------|------------------------|--|---| | 477 | SA | 53-16 | 4650 | 34 12 57 | 117 58 48 | FLOOD CONTROL EMPLOYEE | SPRING CAMP AT HEAD OF EAST FORK - SANTA ANITA CREEK | | 478
479 | SP
8.81" | 77-45
41-78 | 3715
367 | 34 26 44
34 06 50 | 117 51 02
118 01 32 | U.S. FOREST RANGER
R. H. GONTER | U.S.F.S. HEADQUARTERS, PEAR BLOSSOM HIGHWAY, VALYERMO
138 EAST LONGDEN AVENUE, ARCADIA | | 482 | S
SP | 27-17 | 208 | 34 01 15
34 14 54 | 118 17 17 | R. M. FOX | 920 WEST 36TH PLACE, LOS ANGELES, CIVIL ENGINEERING BLDG., U.S.C.
ICE HOUSE CANYON RESORT | | 484 | S | 56-65
30-90 | 5100
522 | 34 05 48 | 117 38 20
117 54 04 | GUNNER BLOMQUIST
G, W, BURCH | 743 WEST CYPRESS AVENUE, COVINA | | 486 | SA | 55-83 | 3865 | 34 15 49 | 117 42 38 | J. W. WIDMAN | COLDWATER CANYON, 3.5 MILES ABOVE JUNCTION WITH CATTLE CANYON | | 487
488 | s
8.81" | 23-06
49-20 | 20
1450 | 34 02 02
34 17 47 | 118 41 38
118 22 29 | R. A. ALLEN L. A. CO. FORESTRY EMPLOYEE | 301 MALIBU HEIGHTS, MALIBU
DEXTER PARK, KAGEL CANYON PATROL STATION | | 489 | S | 23-40 | 1318 | 34 05 39 | 118 39 23 | J. H. STUNT | IN COLD CREEK CANYON, 3.2 MILES ABOVE MONTE NIDO PATROL STATION | | 490
491 | 5
5 | 101-42
24-75 | 2472
313 | 34 40 46
34 02 47 | 117 57 06
118 31 28 | FLETCHER WILEY
OVERTON D. PETTIT | | | 492 | SA | 63-98 | 5275 | 34 19 05 | 118 00 30 | G, H, CUTTRÍSS
GLEN SEELEY | STATE HIGHWAY MAINTENANCE STATION NEAR CHILLAD
2.7 MILES SOUTH OF SOLEDAD CANYON RD., 1/8 MILE WEST OF SAND CANYON ROAD | | 493
494 | S
S | 59-81
29-19 | 1780
181 | 34 23 15
34 00 13 | 118 24 42
118 05 08 | IRA D. CATE | 145 COLUMBIA AVENUE, PICO | | 495
496 | SA
S | 27-54
21-45 | 335
750 | 34 03 55
34 02 47 | 118 15 38
118 51 02 | FLOOD CONTROL EMPLOYEES JOE KINCAID | 751 SOUTH FIGUEROA STREET, LOS ANGELES 3 MI. WL OF MOUTH OF TRANCAS CANYON AND 1 MILE NO. OF ROOSEVELT HIGHWAY | | 495 | SP | 44-67 | 1350 | 34 07 35 | 117 43 58 | F. E. SLAUGHTER | 4652 GLEN WAY, CLAREMONT | | 498
499 | S 9 91" | 51-04 | 2800 | 34 15 30 | 118 11 45 | FLOOD CONTROL EMPLOYEES FLOOD CONTROL EMPLOYEE | ANGELES CREST HIGHWAY AT DARK CANYON TRAIL 4652 GLENWAY NEAR THOMPSON CREEK, CLAREMONT | | 508B | 8.81"
S | 12-90
51-39 | 35
1220 | 33 59 52
34 12 32 | 118 24 08
118 10 10 | U.S. FOREST RANGER | ARROYO SECO CANYON AT EL PRIETO CANYON, U.S.F.S. | | 517 | SA SE | 77-18 | 4700 | 34 25 00 | 117 53 10 | MRS. B. M. ANDERSEN | PALLETT CREEK, ANDERSEN RANCH (BURKHART RANCH) | | 529
530 | SP 3"
SP | S.B. CO.
V-CO. | 720
650 | 34 00 35
34 10 55 | 117 41 14
118 53 15 | HARRY ROBINSON
J. E. TRAYLOR | CENTRAL AND CHINO AVENUE, CHINO CONEJO RANCH, VENTURA COUNTY | | 534 | SP 3" | v-co. | 530 | 34 24 03 | 118 54 09 | RICHARD STEPHENS | FILLMORE, VENTURA COUNTY | | 542
551 | SP
SP | 109-79
V-CO. | 3050
10 | 34 42 15
34 08 38 | 118 25 40
119 12 38 | L.A.W.D. EMPLOYEES U.S. LIGHTHOUSE SERVICE EMPL. | LOS ANGELES AQUEDUCT RESERVOIR, FAIRMONT PORT HUENEME LIGHTHOUSE, VENTURA COUNTY | | 557 | SP 3" | 0-CO. | 300 | 33 55 44 | 117 56 48 | MR. BRAY | LA HABRA, CITRUS ASSOCIATION, 305 SOUTH HIATT STREET | | 565
566 | AP
SP | 44-01
4-52 | 13
15 | 33 47 15
33 46 46 | 118 11 46
118 08 36 | LONG BEACH CITY EMPLOYEES
LONG BEACH CITY EMPLOYEES | 16TH AND CHESTNUT AVENUE, LONG BEACH
10TH AND ROSWELL STREETS, LONG BEACH | | 571B | SP | 4-53 | 15 | 33 45 41 | 118 08 30 | LONG BEACH CITY EMPLOYEES | 1ST AND PROSPECT STREETS, LONG BEACH | | 575B
577E | SP
AP | 4-13
27-54 | 25
417 | 33 46 00
34 02 43 | 118 11 16
118 14 59 | R. O. BALDWIN
U.S.W.B. EMPLOYEES | ON ROOF OF CHAMBER OF COMMERCE BLDG., S.W. COR. ELM & OCEAN AVE.'S. LONG BE
CENTRAL BUILDING, 6TH AND MAIN STREETS, LOS ANGELES | | 577F | AP | 27-54 | 548 | 34 03 19 | 118 14 26 | U.S.W.B. EMPLOYEES | FEDERAL BUILDING, NORTH SPRING STREET, LOS ANGELES | | 587
588B | SP
S | 45-22
51-87 | 2500
4450 | 34 10 22
34 13 35 | 117 40 40
118 06 40 | SO. CALIF. EDISON CO. EMPLOYEES
J. W. WURMSER | S SOUTHERN CALIFORNIA EDISON COMPANY POWER HOUSE #1. MOUTH SAN ANTONIO CANYON MOUNT LOWE IN GRAND CANYON | | 589 | SP | 44-25 | 1400 | 34 08 43 | 117 46 30 | DR. BRUNIE | MOUTH OF SAN DIMAS CANYON, TOP OF HILL, EAST EDGE OF CANYON | | 593
5948 | SP
SP 3" | 68-69
58-61 | 675
1241 | 34 24 05
34 22 58 | 118 44 10
118 32 02 | MR. MC GILL
A. B. THATCHER | NEWHALL RANCH, 3.1 MILES WEST OF LOS ANGELES - VENTURA COUNTY LINE | | 597 | SP 3" | V-CO. | 710 | 34 10 40 | 118 55 17 | R. HECKMAN | 1300 NEWHALL AVENUE. NEWHALL NEWBURY PARK, VENTURA COUNTY | | 598
610 A | SP
SP | 107-91
40-73 | 3000
980 | 34 47 00
34 10 04 | 118 36 30
118 07 21 | U.S.W.B.
MORRIS JONES | NEENACH, NEAR WEST END ON LANCASTER BAILEY ROAD
1250 NORTH HOLLISTON STREET, PASADENA | | 6108 | SP | 40~55 | 864 | 34 08 55 | 118 08 36 | H. J. SIEVERT | CITY HALL, PASADENA | | 611
612 | S
SP | 40-92
51-39 | 1052
1181 | 34 10 34
34 12 27 | 118 06 23
118 10 00 | W. ALLEN
H. J. SIEVERT | 1751 NORTH PEPPER DRIVE, ALTADENA | | 6138 | SP | 40-46 | 780 | 34 07 48 | 118 09 15 | H. H. BURGESS | CHLORINE PLANT, NEAR MOUTH ARROYO SECO CANYON 900 SOUTH PASADENA AVENUE, PASADENA | | 617
618 | SP
SP | 32-23
V-CO | 870
980 | 34 04 03
34 16 43 | 117 46 23
118 43 18 | J. E. ADAMSON
J. M. FULLER | 987 NORTH WEBER STREET, POMONA 1 MILE WEST OF SANTA SUSANA, WOLFF RANCH, VENTURA COUNTY | | 619 | SP | 56-38 | 3200 | 34 12 50 | 117 40 10 | SO. CALIF. EDISON CO. EMPL. | SIERRA POWER HOUSE, SAN ANTONIO CANYON, 5.0 MILES ABOVE 21ST STREET, UPLAND | | 623 | SP
SP | 48-12
42-94 | 960
750 | 34 16 25
34 09 20 | 118 29 20
117 54 28 | BERT HANNEMAN D. C. RUDDELL | 16401 MISSION AVENUE, SAN FERNANDO
MOUTH OF SAN GABRIEL CANYON | | 629C | SP | 3-27 | 40 | 33 43 15 | 118 16 17 | U.S.W.B. | WAREHOUSE #1, LOS ANGELES OUTER HARBOR | | 634B | SP 3" | 25-08
V-CO. | 88 | 34 00 40 | 118 29 28 | MR. KOLESOFF | CITY HALL, SANTA MONICA | | 644
647G | SP | 50-03 | 300
1750 | 34 15 40
34 15 00 | 118 59 48
118 17 00 | E. A. SNYDER JR,
F. P. STEVENS | SNYDER RANCH - SOMIS
10600 MOUNTAIN AYENUE, TUJUNGA | | 650B | SP | 45-25 | 1850 | 34 08 20 | 117 40 25 | MR. BAIRD | 1455 WEST 21ST STREET, UPLAND | | 656B
660 | 8.81"
SP | 49-83
V-CO. | 1350
49 | 34 16 05
34 11 26 | 118 18 43
119 10 27 | S. ZITLOW
U.S.W.B. EMPLOYEES | 10921 O'DELL AVENUE SUNLAND OXNARD, VENTURA COUNTY | | 662 | SP | 9-27 | 71 | 33 49 28 | 118 10 14 | CITY OF LONG BEACH EMPLOYEES | 37TH AND GAVIOTO STREET, LONG BEACH | | 665
666 | SP
SP | y-co.
9-23 | 275
50 | 34 21 00
33 51 37 | 119 04 04
118 10 43 | CITY OF LONG BEACH EMPLOYEES | BLANCHARD INVESTMENT CO., SANTA PAULA, VENTURA COUNTY SOUTH AND LEMON STREETS, LONG BEACH | | 671B | SP | 27-94 | 325 | 34 03 16 | 118 12 13 | SO. CALIF. EDISON CO. EMPL. | 1006 NORTH BREED STREET, LOS ANGELES, S.C.E. CO. SUB STATION | | 672
673 | SP
SP | 40-14
4-85 | 1000
15 | 34 09 00
33 44 42 | 118 10 58
118 06 43 | SO. CALIF, EDISON CO. EMPL.
STATION OPERATOR | 7888 NORTH FIGUEROA STREET, EAGLE ROCK, S.C.E. CO, SUB STATION
SEAL BEACH, LOS ANGELES POWER PLANT, SAN GABRIEL RIVER AT OCEAN | | 676 | SP 4½" | 13-93 | 173 | 33 58 01 | 118 18 24 | H. F. PARKINSON | 1727 WEST 80TH STREET, LOS ANGELES | | 677C | SP
SP | 40-22
40-32 | 983
1047 | 34 10 19
34 10 40 | 118 10 41
118 09 57 | C. V. HOFFNER
H. J. SIEVERT | 1408 ONTARIO AVENUE, PASADENA
SHELDON RESERVOIR, PASADENA | | 678
679 | SPL. DIAL | | 310 | 34 01 15 | 117 58 37 | H. I. MORRIS | 533 9TH AVENUE, PUENTE, NORTH WHITTIER HEIGHTS CITRUS ASSOCIATION | | 680 | SP | 25-52 | 425 | 34 04 17 | 118 26 27 | U.C.L.A. STUDENTS | U.C.L.A. CAMPUS, WESTWOOD NORTH END SANTA ANITA AVENUE, ARCADIA | | 681B
683 | SP AP | 41-62
51-58 | 2110 | 34 10 20
34 12 53 | 118 01 54 | U.S. FOREST EMPLOYEES U.S.F.S. EMPLOYEES | SUNSET GUARD STATION BETWEEN MILLARD AND WEST RAVINE CANYONS | | 684 | SP | 41-65 | 518 | 34 08 47 | 118 01 58 | U.S.F.S. EMPLOYEES | ARCADIA WAREHOUSE, U.S.F.S. | | 685B | SP 3" | 40-59 | 557 | 34 06 10 | 118 08 34
118 08 03 | N. F. MARSH
CARL V. COOPER | 1934 MILAN AVENUE, SOUTH PASADENA
2814 CARLARIS ROAD, SAN MARINO | | 689B
691 | SP6"
8.81" | 40-68
45-14 | 608
2090 | 34 06 59
34 09 20 | 117 40 55 | R. L. THOMPSON | SAN ANTONIO SPREADING GROUNDS | | 694B | SP | 50-10 | 1500 | 34 17 25 | 118 17 17 | U.S.F.S. EMPLOYEES | 2.6 MILES FROM FOOTHILL BLVD. AT TUJUNGA CANYON GUARD STATION
TUJUNGA CANYON 7 MILES ABOVE FOOTHILL BOULEVARD | | 695
696 | SP
SP | 50-60
41-21 | 1850
1400 | 34 17 22
34 10 54 | 118 13 38
118 04 42 | E. G.
ULRICH
ROBERT CASAMAJOR | PASADENA GLEN | | 699 | ACO | 27-38 | 208 | 34 01 10 | 118 15 51 | MR. HUNSTOCK | 30TH AND TRINITY STREETS, LOS ANGELES
SLAUSON AND LONG BEACH AVENUES, LOS ANGELES | | 700 | ACO | 14-51 | 176 | 33 59 20 | 118 14 36
118 14 29 | MR. HUNSTOCK P. T. MC INTYRE | 3515 NORTH ADAMS, GLENDALE | | 703
705 | SP
SP 6" | 39+54
60-87 | 603
2330 | 34 09 02
34 19 48 | 118 14 29
118 19 03 | D. M. SHIFFER | CECIL B. DE MILLE RANCH, ALDER CREEK, LITTLE TUJUNGA CANYON | | 706 | SP | 15-92 | 155 | 33 58 42 | 118 06 08 | W. H. WILLIAMS | HADLEY RANCH, RIVERA | | 707 | SP 5" | 51-39
43-66 | 1325
878 | 34 12 17
34 08 10 | 118 10 01
117 50 05 | ALFRED MILLARD
GEORGE CLARK | 259 CANYON CREST ROAD, PASADENA
MILE EAST OF VALLEY CENTER AVENUE AND FOOTHILL BOULEVARD, GLENDORA | | 708 | SWB | 27-64 | 280 | 34 03 00 | 118 14 00 | U.S.W.B. EMPLOYEES | POST OFFICE TERMINAL BUILDING, LOS ANGELES | | 716 | SCW | 27 - 64
33 - 62 | 295
870 | 34 03 10
34 10 16 | 118 14 13
118 50 35 | P. MC INTYRE
R. ROPER | 410 DUCOMMUN STREET, LOS ANGELES 1000 DAKS, VENTURA COUNTY | | 718
719 | SP
SP | 33-62
42-54 | 785 | 34 09 01 | 117 56 47 | G. L. NORTON | MADDOCKS RANCH, DUARTE EAST END SIMI VALLEY, VENTURA COUNTY | | 720 | SP | 46-44 | 1200 | 34 15 36 | 118 39 36
117 37 50 | J. E. SMITH
WALTER P. MALY | EL MIRAGE LAKE | | 721
722 | SP
A | 104-66
98-77 | 2850
2760 | 34 38 20
34 37 40 | 118 13 45 | JOE GOODE | DEL SUR- GOODE RANCH | | 723 | SP AP | 37-46 | 835 | 34 08 23 | 118 27 33 | L.A. CITY WATER DEPT, EMPL
U.S.F.S. EMPLOYEES | STONE CANYON, SOUTH OF SHERMAN OAKS NEAR MOUTH OF MONROE CANYON, ABOVE BIG DALTON DAM | | 724
725 | AP
AP | 43-92
36-90 | 1775
722 | 34 10 37
34 11 <u>17</u> | 117 48 29
118 30 20 | U.S.E.D. EMPLOYEES | BIRMINGHAM HOSPITAL, NEAR VAN OWEN AND BALBOA | | 726 | S AP | 51-16 | 2300 | 34 14 00 | 118 10 30 | FLOOD CONTROL EMPLOYEE U.S.F.S. EMPLOYEE | ANGELES CREST GUARD STATION AT FALLS CANYON, ARROYO SECO
NEWCOMBS PASS | | 727 | SP
SP | 52-76
60-93 | 4160
3000 | 34 14 00
34 21 40 | 118 01 40
118 18 28 | U.S.F.S. EMPLOYEE U.S.F.S. EMPLOYEE | PACOLMA CANYON BETWEEN NEEL AND GOOSEBERRY CANYON | | 728
729 | SP | 61-10 | 4464 | 34 23 40 | 118 17 00 | U.S.F.S. EMPLOYEE | SANTA CLARA DIVIDE AT JUNCTION OF INDIAN CANYON & SANTA CLARA TRUCK TRAILS | | 730 | SP | 51-67 | 2800 | 34 13 30 | 118 07 50 | U.S.F.S. EMPLOYEE U.S.F.S. EMPLOYEE | NEAR DAWN MINE, MILLARD CANYON, ARROYO SECO OAK GROVE PARK, PASADENA | | 731
732 | SP
S | 40-30
53-77 | 1100
4150 | 34 11 50
34 13 30 | 118 (0 10
117 55 15 | FLOOD CONTROL EMPLOYEE | THE PARTY OF THE PROCESS CANNON OF W. EK. SAN GAR. AT TOOL CABIN NEAR PINE | | 732 | s | 51-94 | 5300 | 34 15 12 | 118 06 21 | U.S.F.S. EMPLOYEE | ON DIVIDE BEHALEN ROBERS CANTON & W. I 1 MI. FROM RED BOX ON MT. DISAPPOINTMENT TRUCK TRAIL IN CLOUD BURST CANYON MINES FIELD, 5901 W. IMPERIAL HIGHWAY, LOS ANGELES | | 734 | SP | 13-16 | 102 | 33 56 | 118 23 | U.S.W.B. EMPLOYEE U.S.E.D. EMPLOYEE | PLATT RANCH, NEAR BELL CANYON | | 735 | AP
SP AP | 35-40
55-09 | 91 <u>5</u>
3100 | 34 11 42
34 12 20 | 118 29 27
117 47 26 | U.S.F.S. EMPLOYEES | BIG DALTON CANYON, VOLFE CANYON
WHEELER SPRINGS, VENTURA COUNTY | | 736
737 | SP | V-CO. | 4000 | 34 35 07 | 119 19 02 | FRANK FELT
R. E. BARRETT | WHEELER SPRINGS, VENTURA COUNTY SATICOY, VENTURA COUNTY | | | SP | y-CO. | 150 | 34 16.8 | 119 09 00 | A. E. WINDELL | | #### TABLE V #### RAIN GAGE STATION LOCATION #### SEASONS 1945-46-47 | STA.
NO. | TYPE
GAGE | QUAD
INDEX | ELEV
U.S.G.S | NORTH LAT. | WEST LONG. | OBSERVER | LOCATION | |-------------|--------------|---------------|-----------------|------------|------------|------------------------------|--| | 739 | SP | V-CO. | 335 | 34 20 00 | 119 08 00 | PACKING HOUSE SUPERINTENDENT | SANTA PAULA, VENTURA COUNTY | | 740 | AP | 45-00 | 5200 | 34 12 00 | 117 41 45 | U.S.F.S. EMPLOYEES | SAN DIMAS CANYON, FERN CANYON | | 741 | AP | 44-60 | 2750 | 34 11 45 | 117 44 28 | U.S.F.S. EMPLOYEES | SAN DIMAS CANYON, UPPER EAST FORK | | 7428 | SP | 29-00 | 430 | 34 05 44 | 118 05 57 | FIRE DEPARTMENT PERSONNEL | DEL MAR NEAR MISSION STREET. SAN GABRIEL | | 743 | A | 55-29 | 3100 | 34 12 18 | 117 46 37 | U.S.F.S. EMPLOYEES | BIG DALTON CANYON, BELL CANYON | | 746 | SP | K-CO. | 2620 | 35 03 00 | 118 10 00 | MR. BACKUS | 7 MILES SOUTH OF MOHAVE, BACKUS RANCH | | 747 | SA | 106-75 | 4517 | 34 45 | 118 44 | U.S.W.B. EMPLOYEES | SANBERG AIRWAYS - TOP OF BALL MOUNTAIN | | 748 | SA | 58-50 | 1206 | 34 24 | 118 33 | U.S.W.B. EMPLOYEES | NEWHALL AIRPORT | | 749 | SA | 38-50 | 699 | 34 12 | 118 22 | U.S.W.B. EMPLOYEES | BURBANK AIRPORT | | 750 | SA | 100-18 | 2536 | 34 37 | 118 05 | U.S.W.B. EMPLOYEES | PALMDALE AIRPORT | | 751 | SP | 7-86 | 80 | 33 50 00 | 118 18 58 | FIRE DEPARTMENT PERSONNEL | TORRANCE FIRE DEPARTMENT | | 752 | S | 41-95 | 503 | 34 08 49 | 118 00 17 | J. E. GEARY | 428 W. LEMON AVE., MONROVIA | | 1000 | 5 | 87-38 | 3263 | 34 30 48 | 118 03 37 | Ł. A. BONES | HUNT CANYON 1.0 MILE SOUTH OF FORT TEJON ROAD | | 1001 | S | 52-55 | 3070 | 34, 14 40 | 118 03 00 | W. L. BURNS | WEST FORK GUARD STATION, SAN GABRIEL CANYON | | 1002 | S | 50-03 | 1605 | 34 16 03 | 118 17 50 | NORMAN TANGUAY | 7618 LE BERTHON STREET, TUJUNGA | | 1003 | A | 36-45 | 875 | 34 08 56 | 118 33 18 | FLOOD CONTROL EMPLOYEE | 3/4 MILE SOUTH OF VAN ALDEN DEBRIS BASIN | | 1004 | S | 23-02 | 470 | 34 04 47 | 118 41 57 | RALPH Z [ELKE | AT JUNCTION OF MALIBU CREEK AND COLD CREEK | | 1005 | s | 84-48 | 2350 | 34 30 47 | 118 21 31 | R. E. TAGGART | MINT CANYON AND SPADE SPRING CANYON NEARTHE OAKS | | 1006 | S | 3-05 | 150 | 33 44 37 | 118 17 47 | SAN PEDRO CITY EMPLOYEES | FIRST AND MEYLER STREET, SAN PEDRO | | 1007 | S | 64-25 | 5900 | 34 20 40 | 117 58 41 | CLAUDE R. GRAFF | CAMP VALCREST, ANGELES CREST HIGHWAY, N.E. OF CHILAO | | 1008 | SA | 7-63 | 65 | 33 52 07 | 118 19 55 | STATION OPERATORS | 17680 YUKON AVENUE., S.C.E. CO. SUB STATION, L.A. | | 1009 | s | 71-66 | 1625 | 34 26 04 | 118 26 06 | JAMES W. DYER | MINT CANYON, 1.7 MILES ABOVE SOLEDAD CANYON ROAD | | 1010 | SA | 44-93 | 2175 | 34 09 39 | 117 42 07 | W. F. NUFER | PALMER CANYON | | 1011 | S | 2-54 | 1275 | 32 45 28 | 118 20 57 | ROLAND SWAFFIELD | SAN PEDRO HILLS | | X-3A | S | 24-82 | 580 | 34 04 40 | 118 31 03 | F. CHAPPELLET | 2100 RUSTIC CANYON ROAD, RUSTIC CANYON | | X-6 | SA | 36-86 | 1240 | 34 08 15 | 118 30 57 | L. E. SWINNEY | .4 MILES SOUTH OF ENCINO RESERVOIR | | | | | | | | | | #### LEGEND REGARDING GAGE TYPE AND OWNERSHIP | S STANDARD 8" GAGE UNLESS FOLLOWED BY NUMBER SHOWING DIAMETER. | SP 3" PRIVATE GAGE OF STANDARD TYPE 3" DIAMETER. | |--|--| | OWNED BY FLOOD CONTROL DISTRICT. | DIAL GAGE REGISTERS CUMULATIVE RAINFALL ONLY. | | A FLODD CONTROL DISTRICT AUTOMATIC GAGE. | 8.81" USES GLASS GRADUATE WITH SPECIAL HENSON TYPE COLLECTOR RING. | | SP PRIVATE GAGE OF STANDARD TYPE 8" DIAMETER. | (8.81" DIAMETER.) | | SP 6" PRIVATE GAGE OF STANDARD TYPE 6" DIAMETER. | SPL SPECIAL TYPE GAGE. | | SP 5" PRIVATE GAGE OF STANDARD TYPE 5" DIAMETER. | AP PRIVATE AUTOMATIC GAGE. | | SP 4½"+ PRIVATE GAGE OF STANDARD TYPE 4½" DIAMETER. | -E INDICATES EVAPORATION PAN AT STATION | #### QUAD INDEX NUMBERS THE 'QUAD" INDEX NUMBERS ASSIGNED TO PRECIPITATION STATIONS SERVE AS A LOCATION QUIDE. THE PORTION OF THE INDEX NUMBER PRECEDING THE HYPHEN INDICATES THE NUMBER OF THE "SIX MINUTE" OR 1:24000 SCALE TOPOGRAPHIC QUADRANGLE AS PUBLISHED BY THE UNITED STATES GEOLOGICAL SURVEY. THESE "QUADS" HAVE BEEN NUMBERED FROM LEFY TO RIGHT BEGINNING WITH THE MOST SOUTH WESTERLY AND ENDING WITH THE MOST NORTH EASTERLY "QUAD" IN LOS ANGELES COUNTY. THE TWO DIGHTS FOLLOWING THE HYPHEN INDICATE THE HORIZONTAL AND VERTICAL COORDINATES RESPECTIVELY OF EACH "QUAD". THE "QUADS" HAVING BEEN DIVIDED INTO TEN EQUAL DIVISIONS BOTH HORIZONTALLY AND VERTICALLY NUMBERED FROM Q TO NINE READING FROM LEFT TO RIGHT AND TOP TO BOTTOM RESPECTIVELY. TABLE VI #### 75 YEAR SEASONAL RAINFALL INDICES FOR SELECTED AREAS IN LOS ANGELES COUNTY | SEASCN. | COASTAL
PLAIN | SAN FERNANDO
VALLEY | SAN GABRIEL
VALLEY | SAN GABRIEL
MOUNTAINS | SANTA MONICA
MOUNTAINS | SIERRA
PELONA | DESERT | COUNTY
INDEX+ | | |----------------------|------------------|------------------------|-----------------------|--------------------------|---------------------------|------------------|------------|------------------|---| | 1872-73
74 | 94
152 | 94
152 | 77
149 | 79
150 | 93
148 | 85
150 | 77
149 | 84
150 | _ | | 75
76 | 119 | !19 | 81 | 86 | 119 | 100 | 82 | 97 | | | 76
77 | 165
34 | 165
27 | 122
27 | 128
25 | 165
33 | 143
17 | 123
17 | 140
23 | | | 78 | 135 | 122 | 136 | 123 | 129 | 63 | 63 | 99 | | | 79
80 | 72
123 | 56
107 | 72
124 | 68
122 | 56
120 | 37
120 | 37
131 | 54
123 | | | 81 | 78 | 66 | 77 | 73 | 76 | 58 | 61 | 68 | | | 82
1882-83 | 61 | 57
61 | 66
74 | 68 | 63
70 | 77
54 | 79
45 | 70
60 | | | 84 | 232 | 216 | 236 | 242 | 230 | 259 | 283 | 251 | | | 85
86 | 56
145 | 55
1.40 | 56
128 | 56
139 | 57
151 | 50
167 | 55
194 | 54
159 | | | 87 | 145
83 | 83 | 78 | 85 | 83 | 106 | 123 | 98 | | | 88 | 101 | 81 | 121 | 116 | 104 | 106 | 109 | 107 | | | 89
90 | 124
164 | 1 22
1 98 | 127
191 | 130
201 | 125
144 | 132
222 | 141
230 | 131
203 | | | 91 | 91 | 77 | 103 | 98 | 98 | 91 | 97 | 94 | | | 92
1892-93 | 76
155 | 61
136 | 86
151 | 77
146 | 70 | 70 | 122 | 136 | | | 1892-93 | 48 | 38 | 55
55 | 50 | 1 32
46 | 46 | 48 | 48 | | | 95 | 104 | 110 | 120 | 119 | 101 | 90 | 59 | 94 | | | 96
97 | 59
121 |
51
111 | 53
107 | 53
107 | 55
109 | 50
101 | 106
57 | 66
96 | | | 98 | 49 | 41 | 56 | 45 | 42 | 23 | 34 | 39 | | | 99
00 | 44
60 | 27
51 | 43
55 | 31
56 | 37
58 | 28
47 | 23
82 | 34
61 | | | 01 | 103 | 104 | 113 | 101 | 100 | 109 | 95 | 103 | | | 02 | 70 | 57 | 63 | 62 | 71 | 53 | 60 | 61 | | | 1902-C3
04 | 138
56 | 118
51 | 118
55 | 115
54 | 127
58 | 108
45 | 116
38 | 118
49 | | | 05 | 121 | 132 | 125 | 119 | 125 | 135 | 129 | 127 | | | 06
07 | 139
127 | 119
143 | 124
138 | 126
137 | 122
148 | 110
164 | 118
156 | 122
147 | | | 08 | 86 | 90 | 91 | 92 | 89 | 95 | 96 | 92 | | | 09 | 118 | 105 | 122 | 111 | 113 | 93 | 81 | 101 | | | 10
11 | 83
110 | 74
118 | 88
123 | 86
133 | 83
117 | 105
148 | 107
118 | 94
126 | | | 12 | 59 | 85 | 74 | 78 | 71 | 80 | 68 | 73 | | | 1912-13
14 | 74 | 86 | 74 | 78 | 73
146 | 86
151 | 75
142 | 78
150 | | | 15 | 143
132 | 161
129 | 160
118 | 160
110 | 132 | 155 | 134 | 132 | | | 16 | 137 | 126 | 137 | 1 38 | 131 | 115 | 107 | 124 | | | 17
18 | 93
93 | 92
111 | 93
89 | 90
103 | 93
111 | 80
106 | 66
95 | 83
100 | | | 19 | 69 | 69 | 67 | 70 | 78 | 67 | 72 | 70 | | | 20
21 | 74
96 | 79
106 | 90
97 | 93
97 | 76
97 | 81
90 | 77
83 | 81
92 | | | 22 | 122 | 138 | 134 | 172 | 119 | 157 | 127 | 142 | | | 1922-23 | 71 | 71 | 75 | 83 | 70 | 83 | 72 | 76 | | | 2.4
2.5 | 46
54 | 48
60 | 53
63 | 53
63 | 44
53 | 45
54 | 58
52 | 51
56 | | | 26 | 89 | 118 | 107 | 114 | 95 | 112 | 102 | 105 | | | 27
28 | 108
81 | 125
69 | 122
73 | 106 | 104
62 | 109
60 | 110
62 | 110 | | | 29 | 75 | 72 | 75
76 | 61
67 | 62
74 | 68 | 62 | 66
69 | | | 30 | 72 | 76 | 76 | 74 | 73 | 75 | 90 | 78 | | | 31
32 | 80
109 | 91
122 | 79
110 | 76
115 | 92
109 | 100
125 | 111 | 92
122 | | | 1932-33 | 73 | 76 | 67 | 65 | 74 | 79 | 73 | 73 | | | 34 | 75 | 94 | 97 | 73 | 91 | 63 | 43 | 68 | | | 35
36 | 131
76 | 122
78 | 122
76 | 121
70 | 118
87 | 130
71 | 149
48 | 131 | | | 37 | 142 | 143 | 143 | 140 | 149 | 144 | 136 | 141 | | | 38
39 | 141
122 | 148
118 | 144
99 | 155
101 | 152
114 | 147 | 143 | 147 | | | 40 | 92 | 96 | 78 | 73 | 99 | 120
76 | 136
76 | 118
81 | | | . 41 | 219 | 235 | 199 | 183 | 227 | 225 | . 224 | 215 | | | 1942-43 | 118 | 77 | 69
144 | 70
154 | 80 | 81
149 | 160 | 80 | | | 44 | 126 | 140 | 113 | 137 | 136 | 157 | 221 . | 158 | | | 45
46 | 90
80 | 88
81 | 88
80 | 93
91 | 87
82 | 84
99 | 95 | 90 | | | 47 | 91 | 86 | 89 | 98 | 84 | 93 | 88
91 | 88
92 | | | NORMAL RAINFALL | 14.52 | 17.14 | 19.33 | 28.16 | 19.74 | 16.31 | 7.50 | 16.64 | | | 1945-46 RAINFALL | 11.62 | 13.88 | 15.46 | 25.62 | 16.19 | 16.15 | 6.60 | 14.64 | | | 1946-47 RAINFALL | 13.21 | 14.74 | 17.20 | 27.60 | 16.58 | 15.17 | 6.82 | 15.31 | | | AREA IN SQUARE MILES | 597 | 272 | 303 | 748 | 224 | 855 | 953 | 3952 | | ## EVAPORATION #### **FOREWORD** This report contains monthly and seasonal data for all active stations reporting to the District since the beginning of record. Past records of inactive stations are available in the District's files. #### SUMMARY OF SEASONAL EVAPORATION The following tabulation indicates the maximum and minimum rates of evaporation in inches at District stations for the seasons 1945-46 and 1946-47. | | <u>1945-46</u> | <u>1946-47</u> | |--------------------------------------|-------------------|----------------| | Maximum Seasonal Amt Big Tujunga Dam | 100.00 | 81.96 | | Maximum Monthly Amt Palmdale | 15.05 in August | | | Maximum Monthly Amt Big Tujunga Dam | | 14.18 in July | | Minimum Seasonal Amt San Dimas Dam | 29.75 | | | Minimum Seasonal Amt Puente Hills | | 29.58 | | Minimum Monthly Amt Camp Singer | 0.18* in February | 0.04** in Jan. | The minimum evaporation at any location in the District is largely influenced by the rainfall and sometimes by freezing weather. During some winter months a number of stations indicate water as frozen or partially frozen, thus giving an incomplete total evaporation as a result. Table VI presents monthly and seasonal evaporation data for all active stations during the seasons 1945-46 and 1946-47. Table VII presents monthly and seasonal evaporation data for all active stations since beginning of record. Daily evaporation data at most stations are available in the District's files. Evaporation tanks are normally read at 5:00 p.m. at all District stations to be consistent with the rainfall readings. ## LOCATION AND NUMBER OF STATIONS The District receives each month records from 24 evaporation stations of which the District maintains 19. Fourteen of these stations are at the largest reservoirs; the remaining 10 are distributed throughout the District. ^{*}WATER SURFACE OF PAN FROZEN FOR 21 DAYS. ^{**}WATER SURFACE OF PAN FROZEN FOR 26 DAYS. San Gabriel Dams No. 1 and No. 2 and Encino Reservoir are equipped with both land and lake pans. #### LENGTH OF RECORD The first pan was installed at Santa Anita Dam in March, 1929. By October, 1932, the District was maintaining 26 evaporation stations throughout the District. The number of stations has varied slightly since 1932 due to lack of cooperative observers, insufficient readings, and for various other reasons. The District has 20 stations with records from 13 to 17 years in length. #### **EQUIPMENT** The land pan in use by the District is 24 inches in diameter and 36 inches in depth and is sunk in the ground 33 inches, with the water surface normally at ground level. A one-quarter inch brass rod embedded in a block of concrete to hold it in a vertical position is placed in the center of the tank. This rod has a sharp point at the upper end, and serves as a reference point for water levels. Starting October 1, 1946, all District land pans were equipped with evaporation reducer screens; this tends to reduce the pan evaporation to the equivalent of lake evaporation, thus eliminating the use of conversion factors. The reducer screen is made of one-quarter inch hardware cloth and rests horizontally one and one-half inches below top of pan one and one-half inches above the water surface. From 1929 to 1938* the District's land pans were set in the ground 34 inches with the water surface maintained at ground level, 2 inches below top of pan. The lake pans in use at San Gabriel Dam No. 1 and No. 2 are 30 inches square and 18 inches deep with a 6-inch wave baffle to prevent water splashing in. The pan is floated on suitable rigging and is submerged to make the reservoir surface and water level in the pan and the water temperatures practically identical. The Los Angeles City Bureau of Water Works and Supply maintains the following stations and furnishes the District with records: ^{*}CHANGE IN SETTING WAS NOT MADE AT ALL STATIONS ON THE SAME DATE. THE APPROXIMATE DATE OF CHANGE IS DESIGNATED IN TABLE VII BY " A". | Location | Type of Pan | |------------------------------|----------------------------------| | Encino Reservoir | F.C. District Land Pan | | Encino Reservoir | U.S.W.B. Type A Land Pan | | Encino Reservoir | 30-inch Square Lake Pan | | Van Nuys Warehouse | U.S.W.B. Type A Land Pan | | Lower San Fernando Reservoir | U.S.W.B. Type A Land Pan | | Silver Lake Reservoir | U.S.W.B. Type A Land Pan on raft | | Lower Franklin Reservoir | 30-inch Square Lake Pan | The Metropolitan Water District maintains 6-foot and 4-foot diameter land pans at Morris Dam from which the District receives records. The Baldwin Park Experimental Station, which is cooperatively maintained by several agencies, including the District, is equipped with the following instruments: An eight-inch standard rain gage, maximum and minimum thermometers, hygro-thermograph, anemometer, four-foot diameter evaporation pan of the United States Weather Bureau type, six-foot diameter evaporation pan, two-foot diameter evaporation pan, and a District two-foot diameter evaporation pan. Four stations are equipped with thermographs. Most stations include maximum and minimum thermometers as standard equipment. ### CONVERSION FACTORS To compute lake evaporation, studies by the United States Department of Agriculture show that the following coefficients should be applied to the District's type land pan. | | <u>_Dat</u> | <u>e</u> | |--------------------|--------------|---------------------------| | <u>Coefficient</u> | From | | | 0.72 | 1929 | "A" as shown in Table VII | | 0.81 | " A" | October 1, 1946 | | 1.00 | October 1946 | Date | Change of coefficients on dates shown are explained under " Equipment". TABLE VII EVAPORATION RECORDS IN INCHES SEASONS 1945-46, 1946-47 | STA. | | TYPE | | | | 137 | 5-46 | | | | | | | | SEAS. | |--
--|--|--|--|---|---
--|--|--|--|--
--|--|--|---| | NO. | STAT! ON | GAGE | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 15 | VAN NUYS WAREHOUSE | L - A48 | 2.23 | 1.61 | 1.03 | 1.77 | 1.30 | 2.85 | 3.73 | 3,93 | 6.15 | 7.12 | 6.77 | 4.83 | 43.36 | | 23 | CHATSWORTH | L-24 | 4.86 | 4.36 | 2.34 | 4.29 | 2.85 | 3.40 | 3,83 | 4.35 | 7.85 | 8.95 | 8.78 | 7.58 | 63.44 | | 32 | NEWHAL L | L-24 | 5.81 | 4.54 | 2.82 | 4,16 | 2.78 | 3.78 | 4.99 | 5.41 | 8.76 | 9.25 | 9.55 | 8.00 | 69.85 | | 33 A | PACOIMA DAM | L-24 | 5.98 | 6.17 | 4.71 | 6.67 | 4.30 | 4.90 | 4.94 | 4.00 | 7.79 | 9.20 | 9.50 | 9,00 | 77.15 | | 46D | BIG TUJUNGA DAM | L-24 | 7.88 | 5.68 | 3,50 | 6.40 | 4.44. | 4.56 | 5.54 | 7.00 | 12.30 | 13.75 | 14.78 | 13.15 | 99.93 | | 57B | CAMP SINGER (OPID'S) | L - 24 | 2.61 | .83# | ,42# | .32# | .18# | 1.20# | 3.52 | 4.20** | 7.30** | 8.70 | 9,20 | 4.72 | 43,20 | | 63 | SANTA ANITA DAM | L-24 | 3.56 | 4.42 | 3.06 | 4.24 | 3.15 | 3.08 | 3,30 | 2.60 | 5.92 | 6.08 | 5.80 | 5,38 | 50.59 | | 89 | SAN DIMAS DAM | L-24 | 4.00 | 1.96 | .72 | 1.50 | .80 | 1.32 | 2.20 | 1.22 | 6.38 | 6.45 | 6.65 | 6.55 | 39.75 | | 96 | PUDD INGSTONE DAM | L-24 | 4.36 | 4.12 | 2.92 | 3,54 | 2.14 | 2.90 | 3,50 | 3,92 | 7.55 | 8.45 | 8.72 | 7.52 | 59.64 | | 223B | BIG DALTON DAM | L-24 | 4.98 | 1.04 | .74 | 1,30 | .55 | .90 | 1.46 | 1.60 | 6.14 | 8.28 | 8.69 | 6.26 | 41.94 | | 261 | ACTON - MELLEN | L-24 | 5.94 | 4.56 | 3,13 | 4,42 | 3.59 | 4.28 | 5.72 | 6.98 | 11.23 | 11.96 | 12.76 | 9.70 | 84.27 | | 265 | PUENTE HILLS - WEISEL RANCH | L-24 | 3.08 | 2.04** | 1.60** | 1.54 | 1.42 | 1.90 | 2.38 | 2.86 | 5.42 | 6.34 | 6.34 | 4.86 | 39,78 | | 292 | ENCINO RESERVOIR - F. C. | L-24 | 5.48 | 4.35 | 2.59 | 3.57 | 3.01 | 4.04 | 5.04 | 5.43 | 8.94 | 9,65 | 9.43 | 8.80 | 70.33 | | | n 19 | L-A48 | 5.23 | 4.17 | 3.11 | 4.54 | 3.53 | 5.19 | 5.50 | 5.60 | 9,24 | 10.57 | 10.65 | 9,12 | 76.45 | | | | F-36 | 4.43 | 4.28 | 3.05 | 3,70
 2.67 | 3.59 | 4.53 | 5.54 | 7.88 | 9.02 | 9.48 | 7,11 | 65.28 | | 293 | LOWER SAN FERNANDO RESERVOIR | L-A48 | 6,98 | 7,08 | 5.44 | 7.18 | 4.95 | 5.76 | 5,94 | 5.92 | 8.80 | 10.13 | 9.69 | 8,58 | 86.45 | | 321 | PINE CANYON PATROL STATION - CO. FORESTRY | L - 24 | 6.01 | 3.96 | 3,03 | 3.80 | 3.52 | 4.70 | 6.28 | 7.32 | 11.82 | 12.31 | 12.22 | 9.86 | 84.83 | | 334 | SAN GABRIEL DAM #2 | L-24 | 4.74 | 2.90 | 1.66 | 3,02 | 2.10 | 2.86 | 4.63 | 5.34 | 8.68 | 9.41 | 10.10 | 7.81 | 63.25 | | 734 | SAN GABRIEL DAM #2 | F-30 | 4.48 | 3.28 | 1.70 | 3.08 | 1.98 | INC. | R E | S E | R V | 0 1 | | DRY | INC. | | 336 | SILVER LAKE RESERVOIR | L-A48 | 3.87 | 4.07 | 2.85 | 4.31 | 2.89 | 3.80 | 3.90 | 4.36 | 5.74 | 6.22 | 6,21 | 4.74 | 52.96 | | 347 | BALDWIN PARK EXPERIMENTAL STAU.S.W.B. | | 3.97 | 3.06 | 1.96 | 2.68 | 2.26 | 3,41 | 4,14 | 4,16 | 7.30 | 8.08 | 7.78 | 6.51 | 55.31 | | | " " " " " " | L-72 | 3.57 | 2,64 | 1.71 | 2.25 | 1.91 | 3,22 | 3.96 | 4.03 | 6.95 | 7.60 | 7.43 | 6.17 | 51,44 | | | | L-24 | 4.20 | 3.04 | 2.04 | 2,45 | 2.02 | 3.31 | 4.18 | 4.62 | 7.94 | 8.64 | 8.36 | 7.42 | 58.22 | | | n h n n | L-24 | 4.15 | 3.04 | 2.03 | 2.43 | 2.02 | 3,47 | 4.15 | 4.59 | 7.95 | 8.60 | 8.99 | 7.28 | 58.81 | | 2000 | MORRIS DAM | L - 72 | | | | | | | 4.13 | | 7.24 | 7.96 | 8.48 | 6.71 | 54.37 | | 390B | MORRIS DAM | L - A48 | 3.85 | 2.90 | 1.67 | 2.63 | 2.00 | 2.88 | 4.14 | 3.91
4.06 | 8.16 | 8.74 | 8,48 | 7,39 | 59.70 | | .orn | | L-24 | 4.21 | 3.02 | 1.85 | 3.00 | | | | | | | 11.26 | 9.62 | 74.72 | | 425B | SAN GABRIEL DAM #1 | F-30 | 5.60 | 4.68 | 2.96 | 4.46 | 3.05 | 3.82 | 5.10 | 5.14 | 8.96 | 10.07 | | 8.33 | 61.54 | | | | L-24 | 4.50 | 4.13 | 2,38 | 3,66 | 2.36 | 3.02 | 3.88 | 4.30 | 7.22 | 8.30 | 9.46
15.05 | 10.15 | 90.01 | | 141 | PALMDALE - CO. ROAD MAINTENANCE YARD
PICKENS DEBRIS BASIN | L-24 | 5.84 | 3.52 | 2.91 | 3.12 | 2.88 | 4.88 | 5,90
3,14 | 8.92 | 12.68
6.05 | 14.16 | 8,50 | 7,00 | 51.97 | | 168 | LOWER FRANKLIN RESERVOIR | F-30 | 4.23 | 3.55
4.07 | 2.01 | 3.73
2.87 | 1.81 | 2.20 | 2.52 | 2.35
3.33 | 4.68 | 5.52 | 6.37 | 4.98 | 45.01 | | | | | | | | 19 | 46-47 | | | | | | | | | | | | | | | | | 46-47 | | | | | | | | 40.04 | | 15 | VAN NUYS - CITY WAREHOUSE | L-A48 | 3,15 | 1,32 | .86 | 1.63 | 1.37 | 2.70 | 4.06 | 4.85 | 4.91 | 7.67 | 6.65 | 4.64 | | | 23 | CHATSWORTH RESERVOIR | L-A48
L-24S | 3,15
5,10 | 1,32
2,90 | .86
1.74 | | | 2.70
3.14 | 4.06
4.82 | 4.85
5.30 | 4.91
5.80 | 7.67
9.30 | 6.65
8.10 | 4.64
6.75 | | | | CHATSWORTH RESERVOIR
NEWHALL - SOLEDAD DIV. HDORS. | L-24S | 5.10 | 2,90 | 1.74 | 1.63
2.86 | 1.37 | 3.14 | 4.82 | 5.30 | 5.80 | 9.30 | 8.10 | 6.75 | 57.36 | | 23
32C | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN | L-24S
L-24S | 5.10
4.27 | 2,90 | 1.74 | 1.63
2.86
1.90 | 1.37
1.55
2.15 | 3.14
2.65 | 4.82
3.58 | 5.30
5.08 | 5.80
6.12 | 9,30
8,82 | 8.10
7.45 | 6.75
6.14 | 57.36
51.58 | | 23
32C
33A' | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM | L-24S
L-24S
L-24S | 5.10
4.27
6.87 | 2,90
2,22
4,34 | 1,74
1,20
4,33 | 1.63
2.86
1.90
5.58 | 1.37
1.55
2.15
3.90 | 3.14
2.65
4.36 | 4.82
3.58
5.16 | 5.30
5.08
5.40 | 5.80
6.12
5.21 | 9,30
8,82
10,24 | 8.10
7.45
8.12 | 6.75
6.14
7.98 | 57.36
51.58
71.49 | | 23
32C
33A'
46D | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM | L-245
L-245
L-245
L-245 | 5.10
4.27
6.87
6.17 | 2,90
2,22
4,34
3,52 | 1,74
1,20
4,33
3,16 | 1.63
2.86
1.90
5.58
5.05 | 1.37
1.55
2.15
3.90
3.41 | 3.14
2.65
4.36
3.96** | 4.82
3.58
5.16
5.88 | 5.30
5.08
5.40
7.52 | 5.80
6.12
5.21
8.12 | 9.30
8.82
10.24
14.18 | 8.10
7.45
8.12
11.12 | 6.75
6.14
7.98
9.87 | 57.36
51.58
71.49
81.96 | | 23
32C
33A'
46D
578 | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) | L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96 | 2,90
2,22
4,34
3,52
40 | 1,74
1,20
4,33
3,16
,65# | 1.63
2.86
1.90
5.58
5.05 | 1.37
1.55
2.15
3.90
3.41
.32# | 3.14
2.65
4.36
3.96** | 4.82
3.58
5.16
5.88
2.72 | 5.30
5.08
5.40
7.52
N.R. | 5.80
6.12
5.21
8.12
N.R. | 9,30
8,82
10,24
14.18
N.R. | 8.10
7.45
8.12
11.12
N.R. | 6.75
6.14
7.98
9.87
5.02 | 57.36
51.58
71.49
81.96
INC. | | 23
32C
33A'
46D
578
63B | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACDIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93 | 2,90
2,22
4,34
3,52
,40
2,87 | 1,74
1,20
4,33
3,16
.65#
2,88 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82 | 3.14
2.65
4.36
3.96**
1.20**
2.94 | 4.82
3.58
5.16
5.88
2.72
3.20 | 5.30
5.08
5.40
7.52
N.R.
2.68 | 5.80
6.12
5.21
8.12
N.R.
3.40 | 9,30
8,82
10,24
14,18
N.R.
7,84 | 8.10
7.45
8.12
11.12
N.R.
6.28 | 6.75
6.14
7.98
9.87
5.02
5.16 | 57.36
51.58
71.49
81.96
INC.
47.72 | | 23
32C
33A'
46D
578
638
89 | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS, L.A. CO, FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28 | 2,90
2,22
4,34
3,52
40
2,87
1,38 | 1.74
1.20
4.33
3.16
.65#
2.88
.86 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41** | 4.82
3.58
5.16
5.88
2.72
3.20
1.96 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94** | 9,30
8,82
10,24
14,18
N.R.
7,84
8,95 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70 | | 23
32C
33A'
46D
578
638
89
96 | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTOME DAM | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56 | 2,90
2,22
4,34
3,52
.40
2,87
1,38
2,62 | 1.74
1.20
4.33
3.16
.65#
2.88
.86
2.18 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70 | 9,30
8,82
10,24
14,18
N.R.
7,84
8,95
8,28 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76 | | 23
32C
33A'
46D
578
638
89
96 | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACDIMA DAM BIG TUJUNGA DAM CAMP SINGER (P)ID 'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15 | 2,90
2,22
4,34
3,52
,40
2,87
1,38
2,62
2,23 | 1.74
1.20
4.33
3.16
.65#
2.88
.86
2.18
1.30 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28 | 9,30
8,82
10,24
14,18
N.R.
7,84
8,95
8,28
9,00 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76
46.80 | | 23
32C
33A'
46D
578
638
89
96
223B | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,02 | 1.74
1.20
4.33
3.16
.65#
2.88
.86
2.18
1.30
2.14 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74 |
3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32 | 9,30
8,82
10,24
14,18
N.R.
7,84
8,95
8,28
9,00
11,87 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76
46.80
72.09 | | 23
32C
33A'
46D
578
638
89
96
223B
261
265C | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOUMA DAM BIG TUJUNGA DAM CAMP SINGER (PPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,02 ,85 | 1.74
1.20
4.33
3.16
.65#
2.88
.86
2.18
1.30
2.14
.61 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74
.74 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36 | 3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32
3.22 | 9,30
8,82
10,24
14,18
N.R.
7,84
8,95
8,28
9,00
11,87
5,68 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76
46.80
72.09
29.58 | | 23
32C
33A'
46D
578
638
89
96
223B
261 | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,02 85 2,78 | 1,74 1,20 4,33 3,16 ,65# 2,88 ,86 2,18 1,30 2,14 ,61 1,82 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74
.74
2.48 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.20 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
6.32
3.22
5.10 | 9, 30
8, 82
10, 24
14, 18
N. R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
8, 81 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76
46.80
72.09
29.58
57.34 | | 23
32C
33A'
46D
578
638
89
96
223B
261
265C | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C. | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29
6.56 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,02 ,85 2,78 3,56 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74
.74
2.48
3.33 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.20
4.62 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02
6.56 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32
3.22
5.10
7.13 | 9, 30
8, 82
10, 24
14, 18
N.R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
8, 81
11, 75 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86
8.94 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76
46.80
72.09
29.58
57.34 | | 23
32C
33A'
46D
57B
638
89
96
223B
261
265C | CHATSWORTH RESERVOIR NEMALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29
6.56
5.64 | 2.90 2.22 4.34 3.52 40 2.87 1.38 2.62 2.23 3.02 .85 2.78 3.56 2.96** | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92
3.35 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74
.74
2.48
3.33
2.21 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.20
4.62
3.45 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02
6.56
5.53 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32
3.22
5.10
7.13
6.55 | 9, 30
8, 82
10, 24
14, 18
N.R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
8, 61
11, 75
6, 69 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.00 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86
8.94
7.11 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76
46.80
72.09
29.58
57.34
75.06 | | 23
32C
33A,
46D
578
638
89
96
23B
23B
261
265C | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACDIMA DAM BIG TUJUNGA DAM CAMP SINGER (0PID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C. | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29
6.56 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,02 ,85 2,78 3,56 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74
.74
2.48
3.33 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.20
4.62 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02
6.56 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32
3.22
5.10
7.13 | 9, 30
8, 82
10, 24
14, 18
N.R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
8, 81
11, 75 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86
8.94 | 57.36
51.58
71.49
81.96
INC.
47.72
40.70
50.76
46.80
72.09
29.58
57.34
75.06 | | 23
32C
33A,
46D
578
638
89
96
23B
23B
261
265C | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C. "" LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29
6.56
5.64
7.93 | 2.90 2.22 4.34 3.52 40 2.87 1.38 2.62 2.23 3.02 .85 2.78 3.56
2.96** 5.48 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 5.02 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92
3.35
6.83 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74
.74
2.48
3.33
2.21
4.27 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.20
4.62
3.45
5.12 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.53
6.92 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.30
6.41
5.90
6.63 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94** 4.70 4.28 8.32 3.22 5.10 7.13 6.55 6.96 | 9, 30
8, 82
10, 24
14, 18
N.R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
6, 61
11, 75
6, 69
12, 45 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.00
9.81 | 6.75 6.14 7.98 9.87 5.02 5.16 6.25 5.86 5.99 8.47 3.56 6.86 8.94 7.11 8.50 | 57.36 51.58 71.49 81.96 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 85.92 | | 23
32C
33A,
46D
578
638
89
96
1238
661
655C
992 | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACDIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTOME DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L- | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29
6.56
7.93
5.40 | 2.90 2.22 4.34 3.52 .40 2.87 1.38 2.62 2.23 3.02 .85 2.78 3.56 2.96** 5.48 | 1.74 1.20 4.33 3.16 6.5# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 5.02 | 1,63
2,86
1,90
5,58
5,05
,04#
3,72
1,50
2,56
2,73
3,02
,98
3,03
3,92
6,83 | 1.37
1.55
2.15
3.90
3.41
.328
1.60
2.40
2.04
2.74
.74
2.48
3.33
2.21
4.27 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.20
4.62
3.45
5.12 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02
6.56
5.53
6.92
5.46 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32
3.22
5.10
7.13
6.55
6.96
8.38 | 9, 30
8, 82
10, 24
14, 18
N.R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
6, 81
11, 75
6, 69
12, 45 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.00
9.81 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86
8.94
7.11
8.50 | 57.36
51.58
71.49
81.96
1NC.
47.72
40.70
50.76
46.80
72.09
29.58
57.34
75.06
85.92
69.94 | | 23
32C
33A'
46D
578
638
89
96
223B
661
665C
992 | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29
6.56
5.64
7.93
5.40
3.50 | 2.90 2.22 4.34 3.52 -40 2.87 1.38 2.62 2.23 3.02 .85 2.78 3.56 2.96** 5.48 3.20 1.48 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 5.02 | 1.63
2.86
1.90
5.58
5.05
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92
3.35
6.83 | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.04
2.74
.74
2.48
3.33
2.21
4.27 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.20
4.62
3.45
5.12 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.53
6.92 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.30
6.41
5.90
6.63 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94** 4.70 4.28 8.32 3.22 5.10 7.13 6.55 6.96 | 9, 30
8, 82
10, 24
14, 18
N.R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
6, 61
11, 75
6, 69
12, 45 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.00
9.81 | 6.75 6.14 7.98 9.87 5.02 5.16 6.25 5.86 5.99 8.47 3.56 6.86 8.94 7.11 8.50 | 57.36
51.58
71.49
81.96
1NC.
47.72
40.70
50.76
46.80
72.09
29.58
57.34
75.06
60.60
85.92
69.94
52.51 | | 23 33A' 46D 578 638 89 96 2238 (661 665c 992 | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACQIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. "" LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 |
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L- | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
5.29
6.56
5.64
7.93
5.40
6.56
7.93
7.93 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,02 85 2,76 3,56 2,96** 5,48 3,20 1,48 INC. | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 5.02 | 1.63
2.86
1.90
5.58
5.05
5.05
1.50
2.66
2.73
3.02
.98
3.03
3.92
6.83
2.60
2.20
1NC | 1.37
1.55
2.15
3.90
3.41
.32#
2.82
1.60
2.40
2.74
.74
.2.48
3.33
2.21
4.27
2.50
1.60 | 3.14
2.65
4.36
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.42
1.60
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45 | 4.82 3.58 5.16 5.88 2.72 3.20 1.96 3.52 2.32 5.10 2.66 5.53 6.92 5.46 3.88 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81
5.62 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94** 4.70 4.28 8.32 3.22 5.10 6.55 6.96 8.38 6.29 | 9, 30
8, 82
10, 24
14, 18
N. R.
7, 84
8, 95
9, 00
11, 87
5, 68
8, 81
11, 75
6, 69
12, 45
11, 08
9, 22 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.00
9.81
9.80
8.13 | 6.75 6.14 7.98 9.87 5.02 5.16 6.25 5.86 5.99 8.47 3.56 6.86 8.94 7.11 8.50 7.86 6.89 | 57, 36
51, 58
71, 49
81, 96
1NC.
47, 72
40, 70
50, 76
46, 80
72, 09
29, 58
57, 34
75, 06
60, 60
85, 92
69, 94
52, 51 | | 23
33A'
460
578
638
89
96
223B
161
165C
92 | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. "" LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SAN GABRIEL DAM #2 | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L-34S
L- |
5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.56
4.15
5.80
2.39
6.56
5.64
7.93
5.40
3.50
RES. DRY
4.51 | 2,90 2,22 4,34 3,52 .40 2,87 1,38 2,62 2,23 3,02 .85 2,78 3,56 2,96** 5,48 3,20 1,48 INC. 2,44 | 1,74 1,20 4,33 3,16 65# 2,88 86 2,18 1,30 2,14 61 1,82 2,48 2,21 5,02 1,96 1,22 1,40 2,35** | 1.63
2.86
1.90
5.58
5.05
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92
3.35
6.83
2.60
2.20
INC. | 1.37
1.55
2.15
3.90
3.41
1.32#
2.82
1.60
2.04
2.74
2.74
2.48
3.33
2.21
4.27
2.50
1.60 | 3.14 2.65 4.36 3.96** 1.20** 2.94 1.41** 2.68 1.36 3.42 1.60 4.62 3.45 5.12 3.89 2.48 | 3.58
5.16
5.86
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02
6.56
5.53
6.92
5.46
3.88 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81
5.62 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32
3.22
5.10
7.13
6.55
6.96
8.38
6.29 | 9, 30
8, 82
10, 24
14, 18
N. R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
6, 81
11, 75
6, 69
12, 45
11, 08
9, 22
7, 31 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.00
9.61
9.60
8.13 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.55
6.86
8.94
7.11
8.50
7.86
6.89 | 57.36 51.58 71.49 81.96 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 85.92 69.94 52.51 | | 23
33A'
460
578
638
89
96
223B
161
165C
92 | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACQIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. "" LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L- | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.55
4.15
5.80
2.39
5.29
6.56
7.93
5.40
7.93
5.40
7.93
7.40
7.40
7.40
7.40
7.40
7.40
7.40
7.40 | 2,90 2,22 4,34 3,52 .40 2,87 1,38 2,62 3,02 .85 2,78 3,56 2,96** 5,48 3,20 1,48 1NC 2,44 2,29 | 1.74 1.20 4.33 3.16 .654 2.88 .86 2.18 1.30 2.14 .61 1.82 2.24 5.02 1.96 1.22 1.40 2.35** | 1.63
2.86
1.90
5.58
5.05
1.50
2.66
2.73
3.02
.98
3.03
3.92
.98
3.03
3.25
6.83
2.60
2.20
1NC. | 1.37
1.55
2.15
3.90
3.41
3.28
2.82
1.60
2.00
2.04
2.74
.74
2.48
3.33
2.21
4.27
2.50
1.60 | 3.14 2.65 4.36 1.20 1.20 1.41 2.68 1.36 3.42 1.60 3.20 4.62 3.45 5.12 3.89 2.48 3.41 3.70 | 4.82
3.58
5.16
5.88
2.72
3.20
3.52
5.10
2.66
5.02
6.56
5.53
6.92
5.46
3.88
5.04
5.29 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81
5.62
5.04
5.10 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94** 4.70 4.28 8.32 3.22 5.10 7.13 6.55 6.96 8.38 6.29 | 9, 30
8, 82
10, 24
14, 18
N.R.
7, 84
8, 95
8, 28
9, 00
11, 87
5, 68
8, 81
11, 75
6, 69
12, 45
11, 08
9, 22
7, 31
9, 68 | 8.10
7.45
8.12
11.12
N.R.
6.28
6.28
7.32
7.14
10.34
4.91
7.72
9.80
9.60
9.81
9.80
8.13 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86
8.94
7.11
8.50
7.86
6.88 | 57.36 51.58 71.49 81.96 81.96 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 60.60 85.92 | | 23
33A'
460
578
638
89
96
223B
161
165C
92 | CHATSWORTH RESERVOIR NEMHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. """ LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SAN GABRIEL | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.55
5.80
2.39
5.29
5.56
7.93
7.93
7.93
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50 | 2.90 2.22 4.34 3.52 .40 2.87 1.38 2.62 2.23 3.02 2.55 2.78 3.56 2.95** 5.48 INC. 2.44 2.29 2.08 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 5.02 1.96 1.22 1.40 2.35** | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.03
3.92
3.35
6.83
2.60
2.20
INC.
3.32
2.03 | 1.37
1.55
2.15
3.90
3.41
.327
2.82
1.60
2.04
2.74
2.40
2.74
2.48
3.33
2.21
4.27
2.50
1.60 | 3.14 2.65 4.36 3.96 1.20 2.94 1.41 2.68 1.36 3.40 3.40 3.40 3.45 5.12 3.45 5.12 3.89 2.48 | 4.82
3.58
5.16
5.86
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02
6.56
5.53
6.92
5.46
3.88 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81
5.62
5.04
5.16 | 5.80
6.12
5.21
8.12
N.R.
3.40
4.94**
4.70
4.28
8.32
3.22
3.22
5.10
7.13
6.55
6.96
8.38
6.29
6.17
6.12
5.37 | 9.30 8.82 10.24 14.18 N.R. 7.84 8.95 8.28 9.00 11.87 5.68 6.81 11.75 6.69 12.69 13.87 11.08 9.22 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.14
10.34
4.91
7.72
9.80
9.80
8.13
7.10
8.14
7.31 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
7.11
8.50
7.86
6.89 | 57, 36 51, 58 71, 49 81, 96 81, 96 10, 0 47, 72 40, 70 50, 76 46, 86 72, 09 29, 58 57, 34 75, 06 85, 92 69, 94 52, 51 10, 0 54, 05 55, 89 | | 23
33A'
460
578
638
89
96
223B
161
165C
92 | CHATSWORTH RESERVOIR NEMHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA
DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. """ LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SAN GABRIEL | L-24S L-348 L-348 L-348 L-448 | 5.10
4.27
6.87
6.17
1.96
3.93
2.28
4.55
4.15
5.80
2.39
5.29
6.56
5.64
7.93
5.40
7.93
5.40
7.93
7.93
7.93
7.93
7.93
7.93
7.93
7.93 | 2.90 2.22 4.34 3.52 .40 2.87 1.38 2.62 2.23 3.02 .85 2.78 3.56 2.96** 5.48 INC. 2.44 2.29 2.08 | 1.74 1.20 4.33 3.16 .654 2.88 2.88 1.30 2.14 .61 1.82 2.21 5.02 1.96 1.22 1.43 2.17 1.49 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92
6.83
2.60
2.20
1NC.
3.32
2.03
1.72 | 1.37
1.55
2.15
3.90
3.41
.322
1.60
2.40
2.04
2.74
.74
2.48
3.33
2.21
4.27
2.50
1.60 | 3.14
2.65
3.96**
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.42
1.60
3.42
3.42
3.45
5.12
3.89
2.48
3.47
3.70
2.93
2.93
3.70
2.93
3.70
2.93
3.70
2.93
3.70
3.70
3.93
3.70
3.93
3.70
3.93
3.70
3.93
3.70
3.93
3.93
3.70
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93 | 4.82
3.58
5.16
5.88
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.02
6.56
5.53
6.92
5.46
3.88
5.04
5.29
4.47 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81
5.90
6.63
5.90
6.63 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94 4.70 4.28 6.32 3.22 5.10 6.55 6.96 8.38 6.29 6.17 6.12 5.37 5.08 | 9, 30 8, 82 10, 24 11, 18 N. R. 7, 84 8, 95 11, 87 5, 68 8, 81 11, 75 6, 75 6, 75 11, 08 9, 22 7, 31 9, 68 8, 40 8, 68 8, 40 9, 68 8, 40 8, 68 8, 40 9, 68 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.00
9.81
9.80
8.13
7.10
8.14
7.31
7.11 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86
8.94
7.11
8.50
7.66
6.86
8.94
7.11
8.50 | 57.36 51.58 71.49 81.98 81.98 81.97 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 60.60 85.92 69.94 52.51 1NC. 54.00 55.89 50.13 | | 23 33A 32C 333A 46D 578 6688 89 96 1238 1655 1692 193 121 134 136 147 | CHATSWORTH RESERVOIR NEMHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C. LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SAN GABRIEL BAN #4 BA | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.56 4.15 5.80 6.56 5.64 7.93 5.40 3.50 RES. DRY 4.51 3.90 3.60 4.61 | 2.90 2.22 4.34 3.52 .407 2.87 1.38 2.62 2.23 3.02 2.85 2.78 3.56 3.56 3.10 1.48 INC. 2.44 2.29 2.08 1.73 2.08 1.73 2.08 1.73 2.36 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.248 2.21 1.96 1.22 1.40 2.35** 1.71 1.49 1.19 | 1.63
2.86
1.90
5.55
5.05
.04#
3.72
1.50
2.73
3.02
.98
3.03
3.92
3.35
6.83
2.60
2.20
INC.
3.32
2.03
1.72
1.95 | 1.37
1.55
2.15
3.90
3.41
2.82
1.60
2.40
2.04
2.74
2.48
3.33
2.21
4.27
2.50
1.60 | 3.14
2.65
4.36
1.20**
2.94
1.41**
2.68
1.36
3.42
1.60
3.42
1.60
3.45
5.12
3.89
2.48
3.41
3.70
2.93
3.70
3.65
3.70
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.89
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3. |
4.82
3.58
5.16
5.68
2.72
3.20
1.96
3.52
2.32
5.10
2.66
5.05
6.56
5.53
6.92
5.46
3.88 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
6.41
5.90
6.63
7.81
5.62
5.04
5.10
5.10
5.16
4.36
6.16 | 5.80
6.12
5.21
8.12
N.R.
4.70
4.28
6.32
3.22
5.10
6.55
6.96
8.38
6.29
6.17
6.17
6.17
6.36
8.38
6.39 | 9.30 8.82 10.24 14.18 N.R. 7.84 8.95 9.00 11.87 6.69 12.45 11.08 9.22 7.31 9.68 8.40 8.90 9.57 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.81
9.81
7.10
8.13
7.10
8.13
7.11
8.41 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.98
6.25
6.86
5.99
8.47
7.11
8.50
7.66
6.89
4.85
5.63
5.63
6.83
6.83
6.83
6.83
6.83
6.83
6.83
6 | 57.36 51.58 71.49 81.96 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 60.60 60.60 85.92 6b.94 55.98 60.13 45.80 | | 23 33A 32C 333A 46D 578 6688 89 96 1238 1655 1692 193 121 134 136 147 | CHATSWORTH RESERVOIR NEWHALL - SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN GABRIEL DAM #2 SILVER LAKE RESERVOIR BALDMIN PARK EXPERIMENTAL STAU,S.W.B BALDMIN PARK EXPERIMENTAL STAU,S.W.B " " " -F.C. | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-448
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.55 4.15 5.80 2.39 6.56 5.64 5.64 5.69 7.93 5.40 3.50 RES. DRY 4.51 4.61 3.64 4.61 3.88 | 2.90 2.22 4.34 3.52 -40 2.87 1.38 2.62 2.23 3.02 -855 2.78 3.56 2.96* 3.10 2.44 2.29 2.08 3.10 2.47 3.10 2.47 3.10 2.47 2.36 2.20 2.36 2.36 2.36 2.36 2.36 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 5.02 1.96 1.96 1.97 1.97 1.49 1.19 1.61 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.56
2.73
3.02
9.8
3.03
3.92
6.83
2.60
2.20
1NC.
3.32
2.03
1.77
1.95
2.13 | 1,37
1,55
2,15
3,90
3,41
3,22
1,60
2,04
2,74
2,48
3,33
2,21
4,27
2,50
1,60
2,19
1,73
2,24
1,74
2,48
2,19
1,74
2,19
1,74
1,74
1,74
1,74
1,74
1,74
1,74
1,74 | 3.14
2.65
3.96**
1.20**
2.94
1.41*
2.68
1.36
3.42
1.60
3.42
1.60
3.42
3.45
5.12
3.89
2.48
3.41
3.70
2.93
3.62
2.62 | 4,82
3,58
5,16
5,88
2,72
3,20
1,96
3,52
2,32
5,10
2,66
5,02
5,53
6,92
5,46
3,88
5,04
5,29
4,47
4,09
5,26
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40
4,40 | 5.30
5.00
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81
5.62
5.04
5.10
6.16
5.26 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94 4.70 4.28 6.32 5.10 7.13 6.55 6.96 6.29 6.17 6.12 5.37 5.08 6.32 5.99 | 9, 30 8, 82 10, 24 14, 18 N, R, 7, 84 8, 95 11, 87 5, 68 8, 81 11, 75 12, 45 11, 08 9, 22 7, 31 9, 68 8, 40 9, 68 8, 69 9, 57 9, 58 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.79
9.80
9.00
9.81
9.80
8.13
7.10
8.14
7.31
8.14
7.31 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
3.56
6.86
8.94
7.11
8.50
7.86
6.89
4.88
5.63
5.53
4.88 | 57.36 51.58 71.49 81.96 1NC. 47.72 40.70 50.78 46.80 72.09 29.58 57.34 75.06 60.60 85.92 61.NC. 54.05 55.88 50.13 45.80 58.29 | | 23 33A 32C 333A 46D 578 6638 89 96 1238 1651 1655 1238 121 134 134 134 134 147 | CHATSWORTH RESERVOIR NEMHALL SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (DPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SAN GABRIEL BAN |
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L- | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.15 5.80 2.39 5.29 6.56 7.93 5.00 7.93 7.93 7.93 7.93 7.93 7.93 7.93 7.93 | 2, 90 2, 22 4, 34 3, 52 40 2, 87 1, 38 2, 62 2, 23 3, 02 , 85 2, 78 3, 20 2, 85 5, 48 INC. 2, 44 2, 29 2, 08 1, 73 2, 06 1, 73 2, 06 2, 07 2, 26 2, 27 2, 28 | 1.74 1.20 4.33 3.16 2.88 8.66 2.18 1.30 2.14 6.1 1.82 2.41 5.02 1.96 1.22 1.40 1.19 1.61 1.61 1.66 1.69 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92
2.60
1.85
2.20
1.85
2.20
1.85
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
1.95
2.20
2.20
2.20
2.20
2.20
2.20
2.20
2.2 | 1.37
1.55
2.15
3.90
3.41
.328
2.82
1.60
2.74
.74
.74
.2.48
3.33
2.21
4.27
2.50
2.40
2.40
2.48
3.33
2.21
4.27 | 3.14 2.65 3.96** 1.20** 2.94 1.41** 2.68 1.342 1.68 3.42 1.36 3.20 4.62 3.45 5.12 3.49 3.40 3.70 2.93 2.50 3.62 2.64 3.14 | 4,82
3,58
5,16
5,88
2,72
3,20
1,96
3,52
2,32
5,10
2,66
5,53
6,92
5,69
5,59
5,40
5,20
4,47
4,47
4,40
4,42
4,49 | 5.30
5.08
5.40
7.52
N.R.
2.66
2.52
3.98
4.26
7.85
2.38
6.41
5.90
6.63
7.81
5.62
5.04
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94 4.70 4.28 8.32 3.22 5.10 6.55 6.96 8.38 6.29 6.17 6.12 5.37 5.08 6.32 5.99 6.47 | 9, 30 8, 82 10, 24 14, 18 N, R, 7, 84 N, R, 18, 9, 00 11, 87 5, 88 11, 87 15, 68 11, 87 11, 65 12, 45 11, 65 12, 45 11, 68
11, 68 11, 6 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.80
8.13
7.10
8.14
7.31
7.31
7.12
8.41
7.93
8.58 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
8.47
3.56
6.88
8.94
7.11
8.50
7.66
6.99
4.88
5.63
5.53
5.63
5.63
5.63
5.63
5.63
5.63 | 57.36 51.58 71.49 81.96 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 85.92 69.94 52.51 1NC. 54.05 55.88 50.13 45.86 58.29 | | 23 33A 32C 333A 46D 578 6638 89 96 1238 1651 1655 1238 121 134 134 134 134 147 | CHATSWORTH RESERVOIR NEMHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (DPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM BIG DALTON DAM CON-MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. "" " " " " " " " " " " " " " " " " " | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.55 4.15 5.80 2.39 6.56 5.64 7.93 5.40 3.50 RES. DRY 4.51 4.01 3.94 4.61 3.88 3.94 6.16 | 2.90 2.22 4.34 3.52 4.07 1.38 2.62 2.23 3.02 2.55 2.78 3.56 3.10 2.95 5.48 3.20 1.43 1.17 2.36 1.73 2.36 2.04 2.20 3.32 | 1.74 1.20 4.33 3.16 .65# 2.88 .86 .86 2.18 1.30 2.14 .61 1.82 2.48 2.21 5.02 1.96 1.92 1.19 1.19 1.19 1.19 1.19 1.56 1.69 2.62 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.73
3.02
.98
3.03
3.92
6.83
2.60
2.20
1NC
3.32
2.03
1.77
1.95
2.17
2.55
3.85 | 1,37
1,55
2,15
3,90
3,41
3,22
1,60
2,04
2,74
2,48
3,33
2,21
4,27
2,50
1,60
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
1,73
2,19
2,19
2,19
2,19
2,19
2,19
2,19
2,19 | 3.14
2.65
3.96**
1.20**
1.41*
2.68
1.36
3.42
1.60
3.42
1.60
3.42
1.60
3.45
5.12
3.89
3.41
3.70
2.93
3.62
2.62
3.62
3.62
3.62
3.63
3.63
3.63
3.64
3.70
3.65
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3 |
4,82
3,58
5,16
5,88
2,72
3,20
1,96
3,52
2,32
5,10
2,66
5,02
5,55
6,92
5,46
3,88
5,04
5,29
4,47
4,09
5,26
4,42
4,99
5,54
4,99
5,54
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56
5,56 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.96
4.26
5.23
6.41
5.90
6.63
7.81
5.90
5.10
5.10
6.13
6.14
5.10
5.10
6.12
5.22
5.22
5.22
5.23 | 5.80 6.12 8.12 N.R. 3.40 4.94 4.70 4.28 8.32 3.22 5.10 7.13 6.55 6.96 8.38 6.29 6.17 6.12 5.37 5.08 6.32 5.99 6.47 7.74 | 9, 30 8, 82 10, 24 14, 18 N, R, 7, 84 8, 95 11, 87 5, 68 8, 81 11, 75 11, 08 9, 22 11, 87 7, 31 9, 68 8, 40 9, 57 9, 57 10, 77 13, 67 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
7.72
9.80
9.81
9.80
8.13
7.10
8.14
7.31
8.41
7.93
8.58 | 6.75
6.14
7.98
9.87
5.02
5.16
6.25
5.86
5.99
8.47
7.11
8.50
7.86
6.89
4.89
4.89
6.89
4.89
6.89
6.89
6.89
7.11
8.50
7.86
6.89
6.89
7.11
8.50
7.86
6.89
7.11
8.50
7.86
6.86
6.86
6.86
6.86
6.86
6.86
6.86 | 57.36 51.58 71.49 81.96 1NC. 47.72 40.70 50.78 46.80 72.09 29.58 57.34 75.06 60.60 85.92 61.NC. 54.05 55.88 50.13 45.80 58.23 59.83 59.83 | | 23 334 32C 3334 46D 57B 663B 89 96 223B 665C 292 293 321 334 336 347 | CHATSWORTH RESERVOIR NEMHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C. "" " LOWER SAN FERNANDO RESERVOIR PIME CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SILVER LAKE RESERVOIR BALDWIN PARK EXPERIMENTAL STAU,S.W.B. " " " " " " " " " " " " " " " " " " | L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L-24S
L- | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.15 5.29 6.56 7.93 6.56 7.93 5.00 8.50 8.50 8.50 8.50 8.50 8.50 8.50 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,02 ,85 5,48 3,20 1,48 1NC 2,44 2,29 2,08 1,73 2,36 2,04 2,20 3,20 3,20 3,20 3,20 3,20 3,20 3,20 | 1.74 1.20 4.33 3.16 2.88 8.66 2.18 1.30 2.14 6.61 1.88 2.24 1.90 1.92 1.96 1.22 1.40 1.16 1.66 1.66 1.69 1.61 1.66 1.69 2.62 2.23 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.02
.98
3.03
3.92
2.60
1NC.
2.20
1NC.
3.32
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
2.03
1.72
1.72
1.72
1.72
1.72
1.72
1.72
1.72 | 1.37
1.55
2.15
3.90
3.41
3.32
2.82
1.60
2.04
2.74
.74
.74
2.48
3.33
2.21
4.27
2.50
1.60
2.48
2.19
2.49
2.19
2.24
2.24
2.24
2.27
4.27
2.25
2.20
2.21
2.21
2.21
2.21
2.21
2.21
2.21 | 3.14 2.65 3.96** 1.20** 2.94 1.41** 2.68 1.342 1.60 1.30 3.20 4.622 3.45 5.12 3.89 2.48 3.70 2.93 2.50 3.62 2.64 3.14 3.83 |
4,82
3,58
5,16
5,88
2,72
3,20
3,52
2,32
5,10
2,66
5,53
6,92
5,53
6,92
5,44
4,47
4,09
5,26
4,47
4,49
4,49
4,49
4,56 | 5.30
5.08
5.40
7.52
N.R.
2.66
2.52
3.98
4.26
7.85
2.38
5.23
6.41
5.90
6.63
7.81
5.62
5.62
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10 | 5.80 6.12 5.21 8.12 8.12 N.R. 3.40 4.94 4.70 4.28 3.22 3.22 5.10 7.13 6.55 6.96 8.38 8.38 6.29 6.17 6.12 5.97 5.08 6.32 5.99 6.47 7.74 6.30 | 9, 30 8, 82 10, 24 14, 18 N, R, 7, 84 8, 95 8, 28 9, 00 11, 87 5, 68 11, 75 6, 69 12, 45 11, 08 9, 22 7, 31 9, 68 8, 40 8, 06 9, 57 9, 52 10, 72 13, 67 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
9.80
9.80
9.81
9.80
8.13
7.10
8.14
7.31
7.11
8.41
7.93
8.58
8.13
8.58
8.7.05
8.88
8.89
8.89
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8.99
8. | 6.75
6.14
7.98
9.87
5.02
5.18
6.25
5.86
8.47
3.56
6.88
8.47
7.11
8.50
7.86
6.89
4.88
5.63
5.53
5.24
6.21
6.21
7.86
6.25
7.86
6.25
7.86
7.86
7.86
7.86
7.86
7.86
7.86
7.86 | 57.36 51.58 71.48 81.96 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 60.60 85.92 69.94 52.51 1NC. 54.05 55.88 50.13 45.86 58.29 54.23 78.84 | | 23 32C 33A 46D 578 86 88 89 96 638 89 96 651 655 651 651 | CHATSWORTH RESERVOIR NEMHALL - SOLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C. """ LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SAN GABRIEL DAM #2 SILVER LAKE RESERVOIR BALDWIN PARK EXPERIMENTAL STAU.S.W.B. "" - F.C. MORRIS DAM SAN GABRIEL DAM #1 | L-24S | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.55 4.15 5.80 2.39 6.56 5.64 7.93 5.40 1.96 3.50 RES. DRY 4.01 3.90 3.64 4.61 3.88 3.94 6.16 5.89 4.96 | 2.90 2.22 4.34 3.52 4.34 3.52 2.87 1.38 2.62 2.23 3.02 2.78 3.56 2.96** 5.48 3.20 1.73 2.36 1.73 2.36 2.04 2.29 2.36 3.22 3.02 2.51 | 1.74 1.20 4.33 3.16 65#2.88 86 86 2.18 1.30 2.14 .61 1.82 2.48 5.02 1.96 1.92 1.40 1.19 1.19 1.61 1.56 1.69 2.62 2.21 | 1.63 2.86 1.90 5.58 5.05 .04# 3.72 1.56 2.73 3.02 .98 3.03 3.92 6.83 2.60 2.20 INC. 3.32 2.03 1.72 1.37 1.35 2.17 2.55 3.00 3.85 | 1,37
1,55
2,15
3,90
3,41
2,82
1,60
2,04
2,74
2,48
3,33
2,21
4,27
2,50
1,60
2,48
2,19
1,74
1,74
2,18
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,74
2,19
1,19
1,19
1,19
1,19
1,19
1,19
1,19 |
3.14
2.65
3.96**
1.20**
1.41*
2.68
1.36
3.42
1.60
3.42
1.60
3.45
5.12
3.89
3.41
3.70
2.93
3.45
5.12
3.89
3.41
3.70
2.94
3.42
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3.43
3 | 4,82
3,58
5,16
5,88
2,72
3,20
1,96
3,52
2,32
5,10
2,66
5,53
6,92
5,46
5,53
6,92
5,46
4,29
4,49
4,99
5,26
4,42
4,99
5,54
4,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48 | 5.30 5.08 5.40 7.52 8.7 8.2 8.98 4.26 8.252 8.41 5.90 6.63 7.81 5.90 6.63 7.81 5.04 5.16 6.12 5.64 6.12 5.65 7.86 5.90 | 5.80 6.12 8.12 N.R. 3.40 4.94 4.70 4.28 6.32 3.22 5.10 7.13 6.55 6.96 8.38 6.29 6.17 6.12 5.37 6.12 5.37 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6. | 9, 30 8, 82 10, 24 14, 18 N, R, 1, 84 8, 95 11, 87 5, 68 8, 81 11, 75 12, 45 11, 08 9, 20 11, 87 9, 68 8, 40 8, 40 8, 50 12, 45 11, 7, 31 9, 68 8, 40 8, 50 12, 7, 31 9, 68 8, 60 9, 57 10, 72 13, 57 10, 56 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.13
10.34
4.91
7.72
9.80
9.60
9.81
9.80
8.14
7.31
7.11
8.41
7.93
8.58
8.14
8.90 | 6.75
6.14
7.98
9.87
5.02
6.25
5.86
5.99
8.47
3.56
6.86
8.94
7.11
8.50
7.86
6.88
4.88
5.63
5.53
6.86
6.89
4.7.11
8.50
7.86
6.86
6.86
8.94
7.11
8.50
7.86
8.47
7.11
8.50
7.86
8.47
7.11
8.50
7.86
8.47
8.63
8.63
8.63
8.63
8.63
8.63
8.63
8.63 | 57.36 51.58 71.49 81.36 81.96 1NC. 47.72 40.70 50.76 46.80 72.09 29.58 57.34 75.06 60.60 85.92 65.94 52.51 1NC. 54.05 55.89 50.13 45.80 58.29 58.29 58.23 59.88 78.84 62.56 | | 23 32C 33A' 460 578 89 96 638 89 96 82238 8251 834 834 834 834 836 847 848 849 8441 | CHATSWORTH RESERVOIR NEMHALL SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 SAN GABRIEL DAM #3 SAN GABRIEL DAM #1 PALMBALE - CO. ROAD MAINTENANCE YARD | L-24S | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.56 4.15 5.64 7.93 5.64 7.93 5.64 7.93 3.50 RES. DRY 4.61 3.90 3.64 4.61 3.98 3.94 4.61 5.89 4.96 6.01 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,55 2,96** 5,48 INC. 2,44 2,29 2,06 1,73 2,06 2,04 2,20 3,20 3,20 3,20 3,20 3,20 3,20 3,20 | 1.74 1.20 4.33 3.16 2.88 8.66 2.18 1.30 2.61 1.82 2.44 5.02 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.03
3.92
2.60
2.20
INC.
2.20
INC.
2.33
1.72
1.72
1.73
1.75
2.17
2.50
3.85
3.85
3.85
3.85
3.85
3.85
3.85
3.85 | 1.37
1.55
2.15
3.90
3.41
3.32
2.60
2.40
2.74
7.74
2.48
3.33
2.21
4.27
2.50
2.40
2.21
4.27
2.50
2.21
4.27
2.90
2.40
2.42
2.90
2.40
2.40
2.40
2.40
2.40
2.40
2.40
2.4 | 3.14 2.65 3.96** 1.20** 2.94 1.41** 2.68 1.42 1.40** 2.68 3.20 4.62 3.45 5.12 3.45 5.12 2.93 2.48 3.41 3.70 2.93 2.50 3.62 2.64 3.14 3.83 3.10 3.10 3.72 |
4,82
3,58
5,16
5,88
2,72
3,20
3,22
2,32
2,10
6,56
6,56
6,52
5,53
6,92
5,46
5,29
4,47
4,09
5,26
4,49
4,49
4,49
4,56
4,48
4,56
4,48
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,47
4,68
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48
5,48 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.63
7.81
5.90
6.63
7.81
5.10
5.16
6.16
5.22
5.14
5.16
6.16
5.25
7.85
7.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94 4.70 4.28 6.32 3.22 5.10 7.13 6.55 6.96 8.38 6.29 6.17 6.12 6.17 6.12 6.99 6.47 7.74 6.30 6.24 | 9.30 8.82 10.24 14.18 N.R. 7.84 8.95 8.28 9.00 11.87 6.69 12.45 11.08 9.22 7.31 9.68 8.40 8.06 9.57 9.52 10.72 10.56 10.95 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
4.91
9.80
9.80
9.81
7.10
8.13
7.10
8.14
7.31
8.58
11.20
8.94
8.90
11.94 | 6.75 6.14 7.98 9.87 5.02 5.18 6.25 5.86 5.99 8.47 3.56 8.94 7.11 8.50 7.86 6.89 4.88 5.63 5.24 6.21 6.94 7.57 10.75 7.54 | 57, 36
51, 58
71, 49
81, 96
1NC.
47, 72
40, 70
50, 76
46, 80
72, 09
29, 58
57, 34
75, 06
60, 60
60, 60
60, 60
60, 60
51, 92
51, 92
51, 93
51, | | 23 32C 33A 46D 578 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | CHATSWORTH RESERVOIR NEWHALL - SOLEDAD DIV. HDDRS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN OIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON- MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - F. C. """ LOWER SAN TERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN CABRIEL DAM #2 SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 SAN GABRIEL DAM #3 SAN GABRIEL DAM #4 SAN GABRIEL DAM #1 SAN GABRIEL DAM #1 "" -F.C. MORRIS DAM SAN GABRIEL DAM #1 "" -F.C. MORRIS DAM SAN GABRIEL DAM #1 "" -F.C. PALMBALE - CO. ROAD MAINTENANCE YARD PICKENS DEBRIS BASIN | L-24S | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.55 4.15 5.80 2.39 6.56 5.64 7.93 5.40 3.50 RES. DRY 4.01 3.90 3.64 4.616 5.89 3.94 6.16 5.89 4.96 6.01 3.14 | 2.90 2.22 4.34 3.52 4.34 3.52 2.87 1.38 2.62 2.23 3.02 2.78 3.56 2.96** 5.48 3.20 1.73 2.36 1.73 2.36 2.04 2.29 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 | 1.74 1.20 4.33 3.16 65# 2.88 86 86 2.18 1.30 2.14 .61 1.82 2.41 5.02 1.96 1.92 1.40 2.35* 1.71 1.49 1.19 1.61 1.56 1.69 2.62 2.21 1.56 1.69 2.62 2.21 1.26 | 1.63 2.86 1.90 5.58 5.05 .04# 3.72 1.56 2.73 3.02 .98 3.03 3.92 6.83 2.60 2.20 INC. 3.32 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 1.72 2.03 2.20 2.20 2.20 2.20 2.20 2.20 2.2 | 1, 37
1, 55
2, 15
3, 90
3, 41
2, 82
1, 60
2, 24
2, 74
2, 48
3, 33
2, 21
4, 27
2, 50
1, 60
2, 48
2, 19
1, 143
2, 21
1, 19
1, 19
1, 19
1, 19
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 | 3.14 2.65 3.96** 1.20** 1.20** 1.4.31* 2.68 1.36 3.42 1.60 3.45 5.12 3.89 2.48 3.41 3.70 2.93 2.50 3.62 2.64 3.13 3.83 2.80 3.83 2.80 3.70 2.93 2.50 3.62 2.44 3.70 2.93 2.50 3.62 2.44 3.70 2.93 2.50 3.62 2.44 3.70 2.24 3.83 2.80 |
4,82
3,58
5,16
5,88
2,72
3,20
1,96
5,53
6,92
5,56
5,53
6,92
5,46
3,88
5,04
5,29
4,47
4,09
5,64
4,45
4,45
4,45
4,46
4,46
5,47
4,68
5,47
4,08
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48
4,48 | 5.30 5.08 5.40 7.52 8.68 2.52 8.98 4.26 7.85 2.38 5.23 6.41 5.90 6.63 7.81 5.64 5.16 4.36 6.16 5.22 5.65 7.18 5.65 7.18 5.69 8.70 8.70 8.70 | 5.80 6.12 8.12 N.R. N.R. 4.70 4.28 6.32 3.22 5.10 7.13 6.55 6.96 8.38 6.29 6.17 6.12 5.37 5.08 6.39 6.77 7.46 6.30 6.24 11.20 | 9, 30 8, 82 10, 24 14, 18 N, R, 1, 84 8, 95 11, 87 5, 68 8, 11 11, 15 11, 10 12, 45 11, 10 12, 45 11, 10 13, 10 14 15 16, 69 12, 45 11, 10 15 16, 69 17 17 18 18 18 19 18 19 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.132
7.134
4.91
7.72
9.80
9.81
9.80
8.14
7.31
7.11
8.41
7.93
8.58
8.14
7.93
8.18
8.14
7.93
8.14
8.14
7.93
8.15
8.14
7.93
8.15
8.14
7.93
8.15
8.14
7.93
8.15
8.14
7.93
8.15
8.14
7.93
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.1 | 6.75
6.14
7.98
9.87
5.02
6.25
6.25
6.25
6.86
5.99
8.47
7.11
8.50
7.66
6.86
6.86
6.86
6.86
6.86
7.11
6.25
7.11
8.50
7.66
6.25
7.11
8.50
7.66
8.44
7.11
8.50
7.66
8.44
7.17
8.63
8.44
7.57
8.63
8.63
8.63
8.63
8.63
8.63
8.63
8.63 | 57, 36
51, 58
71, 49
81, 96
1NC, .
47, 72
40, 70
50, 76
46, 80
72, 09
29, 58
57, 34
75, 06
60, 60
60, 60
60, 60
85, 92
69, 94
52, 51
1NC, 54, 05
55, 89
50, 13
45, 80
58, 29
58, 20
58, | | 23
320
33A'
46D
578
638
89 | CHATSWORTH RESERVOIR NEMHALL SCLEDAD DIV. HDORS. L.A. CO. FORESTER & FIRE WARDEN PACOIMA DAM BIG TUJUNGA DAM CAMP SINGER (OPID'S) BIG SANTA ANITA DAM SAN DIMAS DAM PUDDINGSTONE DAM BIG DALTON DAM ACTON. MELLEN PUENTE HILLS - WEISEL RANCH ENCINO RESERVOIR - P. C. LOWER SAN FERNANDO RESERVOIR PINE CANYON PATROL STATION COUNTY FORESTRY SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 SAN GABRIEL DAM #2 SAN GABRIEL DAM #3 SAN GABRIEL DAM #1 PALMBALE - CO. ROAD MAINTENANCE YARD | L-24S | 5.10 4.27 6.87 6.17 1.96 3.93 2.28 4.56 4.15 5.64 7.93 5.64 7.93 5.64 7.93 3.50 RES. DRY 4.61 3.90 3.64 4.61 3.98 3.94 4.61 5.89 4.96 6.01 | 2,90 2,22 4,34 3,52 40 2,87 1,38 2,62 2,23 3,55 2,96** 5,48 INC. 2,44 2,29 2,06 1,73 2,06 2,04 2,20 3,20 3,20 3,20 3,20 3,20 3,20 3,20 | 1.74 1.20 4.33 3.16 2.88 8.66 2.18 1.30 2.61 1.82 2.44 5.02 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.96 1.22 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 | 1.63
2.86
1.90
5.58
5.05
.04#
3.72
1.50
2.66
2.73
3.03
3.92
2.60
2.20
INC.
2.20
INC.
2.33
1.72
1.72
1.73
1.75
2.17
2.50
3.85
3.85
3.85
3.85
3.85
3.85
3.85
3.85 | 1.37
1.55
2.15
3.90
3.41
3.32
2.60
2.40
2.74
7.4
2.48
3.3
3.3
2.21
4.27
2.50
2.160
2.48
2.19
2.21
2.42
2.42
2.48
2.19
2.49
2.49
2.49
2.49
2.49
2.49
2.49
2.4 | 3.14 2.65 3.96** 1.20** 2.94 1.41** 2.68 1.42 1.40** 2.68 3.20 4.62 3.45 5.12 3.45 5.12 2.93 2.48 3.41 3.70 2.93 2.50 3.62 2.64 3.14 3.83 3.10 3.10 3.72 |
4,82
3,58
5,16
5,88
2,72
3,20
3,22
2,32
2,10
6,56
6,56
6,52
6,53
6,92
5,46
5,28
5,48
5,29
4,47
4,09
5,26
4,49
4,49
4,49
4,56
4,48
4,56
4,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48
6,48 | 5.30
5.08
5.40
7.52
N.R.
2.68
2.52
3.98
4.26
7.85
2.38
5.23
6.63
7.81
5.90
6.63
7.81
5.10
5.16
6.16
5.22
5.14
5.16
6.16
5.25
7.85
7.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85 | 5.80 6.12 5.21 8.12 N.R. 3.40 4.94 4.70 4.28 6.32 3.22 5.10 7.13 6.55 6.96 8.38 6.29 6.17 6.12 6.17 6.12 6.99 6.47 7.74 6.30 6.24 | 9.30 8.82 10.24 14.18 N.R. 7.84 8.95 8.28 9.00 11.87 6.69 12.45 11.08 9.22 7.31 9.68 8.40 8.06 9.57 9.52 10.72 10.56 10.95 | 8.10
7.45
8.12
11.12
N.R.
6.28
7.05
7.32
7.14
10.34
4.91
4.91
9.80
9.80
9.81
7.10
8.13
7.10
8.14
7.31
8.58
11.20
8.94
8.90
11.94 | 6.75 6.14 7.98 9.87 5.02 5.18 6.25 5.86 5.99 8.47 3.56 8.94 7.11 8.50 7.86 6.89 4.88 5.63 5.24 6.21 6.94 7.57 10.75 7.54 | 47.72
40.70
50.76
46.80
72.09
29.58
57.34
75.06
60.60
85.92
69.94
52.51
1NC.
54.05
55.89
50.13
45.80
58.29
54.23
54.23
54.26 | #### LEGEND L-24- LAND PAN 24" IN DIAMETER L-24S LAND PAN 24" IN DIAMETER SCREENED L-44B LAND PAN 46" IN DIAMETER, U.S.W.B. TYPE A L-72 LAND PAN 72" IN DIAMETER F-30 FLOATING PAN 30" SQUARE ESTIMATED PARTLY ESTIMATED RECORDS INCOMPLETE, PARTLY FROZEN INC. INCOMPLETE N.R. NO RECORD TABLE VIII EVAPORATION RECORDS IN INCHES MONTHLY AND YEARLY SUMMARY FOR PERIOD OF RECORD | | | | | | ST | ATION #1 | | | | | | | | |---------|------|------|------|------|------|----------|------|------|------|------|------|-------|-------| | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT, | TOTAL | | | | | | | | | | | | | | | | | 1930-31 | 3.22 | 2.80 | 1.94 | 2.15 | 1.93 | 4.47 | 3.98 | 4.38 | 5.32 | 6.36 | 4.74 | 3.31 | 44.60 | | 1931+32 | 2.34 | 1.99 | 1.30 | 1.50 | 1.18 | 3.21 | 3.62 | 3.76 | 4,50 | 4.68 | 4.20 | 2.32 | 34.60 | | 1932-33 | 2.23 | 2.53 | 1.12 | .88 | 2.08 | 2.89 | 2.34 | 3.99 | 3.82 | 4.19 | 3.26 | 2.28 | 31.61 | | 1933-34 | 2.07 | 2.04 | 1.34 | 1.71 | 1.51 | 3.05 | 3.79 | 3,91 | 2.52 | 4.46 | 4.15 | 3.53 | 34.08 | | 1934-35 | 2.44 | 1.71 | 1.34 | 1.23 | 1.53 | 2.41 | 3.69 | 4,33 | 4.71 | 5.87 | 5.75 | 4.12 | 39.13 | | 1935-36 | 2.56 | 1.04 | 1.34 | 1.57 | •90 | 2.86 | 3,70 | 4.93 | 5.09 | 5.42 | 4.84 | 3,45 | 37.70 | | 936-37 | 2.06 | 1.92 | 1.24 | 1.00 | .91 | 2.13 | 3.88 | 3.15 | 4.07 | 5.44 | 4,35 | 3.16 | 33,31 | | 1937-38 | 2.04 | .90 | 1.17 | 1.43 | 1.07 | 2.01 | 2.66 | 3.89 | 3,35 | 4.73 | 4.11 | 3.34 | 30.70 | | 938-39 | 1.92 | 2.32 | 1.43 | 1.28 | 1.61 | 1.88 | 2.69 | 3.13 | 4.05 | 4.74 | 3.87 | 3.78 | 32.70 | | 939-40 | 2,11 | 1.26 | 1.30 | .87 | 1.34 | 2.09 | 2.54 | 3.54 | 3,55 | 5.27 | 4.12 | 3.04 | 31.03 | | 940-41 | .,31 | 1.73 | 1.20 | .87 | .87 | 1.71 | 2,80 | 4.56 | 4.08 | 4.87 | 3.74 | 2.92 | 31,66 | | 1941-42 | 2.05 | 1.57 | .98 | 1.12 | 1.44 | 3.06 | 3.19 | 5.24 | 5.47 | 7,63 | 6,93 | 4.00 | 42.68 | | 1942-43 | 2.72 | 1.64 | 1.21 | 1.25 | 1.32 | 1.78 | 3.30 | 5.54 | 5.67 | 6.65 | 6.47 | 5.18 | 42,64 | | 943-44 | 2.51 | 1.68 | .82 | .93 | 1.00 | 3.39 | 4.41 | 4.30 | 5.27 | 5.79 | 5.94 | 4.14 | 41.18 | | 944-45 | 2.24 | 1.08 | 1.00 | 1,05 | 1.46 | 1.96 | 4.76 | 5.17 | 4118 | 6.54 | 6.10 | 4.70 | 40.24 | | 945-46 | 2,23 | 1.61 | 1.03 | 1.77 | 1.37 | 2.85 | 3.73 | 3.93 | 6.19 | 7.12 | 6.77 | 4.83 | 43,36 | | 1946-47 | 3.15 | 1.32 | .86 | 1.63 | 1.07 | 2.70 | 4.06 | 4.85 | 4.91 | 7.67 | 6.65 | 4.64 | 43.81 | | AVERAGE | | | .00 | | , | ,0 | 00 | 4.03 | 4.31 | 7+07 | 0.03 | 7.04 | 37.36 | | | | | | | | STA | FION #23 | 1 | | | | | - | |---------|------|------|------|--------|------|------|----------|------|------|-------|-------|-------|------| | | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTA | | 1931-32 | 7.48 | 5.24 | 3.69 | 4.10 | 3,30 | 5.90 | 7.24 | 7.62 | 8.41 | 10.10 | 10.35 | 7.36 | 80.7 | | 1932-33 | 7.66 | 7.60 | 4.31 | 4.69 | 5.42 | 6.60 | 5.70 | 8.06 | 8.30 | 10.02 | 9.52 | 6.92 | 84.8 | | 1933-34 | 6.69 | 8.12 | 2.50 | 5.46 | 2.56 | 5.32 | 7.92 | 9.40 | 6.68 | 10.42 | 9.55 | 8.68 | 83.3 | | 1934-35 | 6.42 | 3.84 | 3.73 | 3.13 | 4.32 | 2.84 | 3,67 | 4.90 | 7.02 | 10.20 | 9.85 | 8.42 | 68.3 | | 1935-36 | 7.68 | 4.86 | 4.58 | 4.98 | 2.16 | 4.74 | 5.14 | 8.42 | 9.54 | 10.62 | 10.17 | 8.46 | 81.3 | | 1936-37 | 6.10 | 6.70 | 3.46 | 2.82 | 2.44 | 4.28 | 6.12 | 5.46 | 6.98 | 10.08 | 9.75 | 8.88 | 73.0 | | 1937-38 | 6.42 | 3,78 | 5.26 | 5.87 | 2.62 | 4.54 | 5.78 | 7.68 | 7.94 | 9.60 | 9.72 | 8.96 | 78.1 | | 1938-39 | 6.64 | 7.48 | 4.20 | 3.46 | 3.83 | 3.18 | 5.04 | 7.32 | 8.90 | 10.22 | 9.94A | 8.38 | 78.5 | | 1939-40 | 7.47 | 3.64 | 3.42 | 1.96 | 2.67 | 3.70 | 4.62 | 7.59 | 8.20 | 11.35 | 10.12 | 7.68 | 72.4 | | 1940-41 | 6.22 | 5.73 | 3.08 | 1.76 | 1.62 | 2.90 | 3,46 | 7.25 | 6.92 | 8.92 | 7.53 | 6.75 | 62.1 |
 1941-42 | 5.34 | 4.38 | 2,48 | 3.28 | 3,20 | 5.16 | 3.48 | 6.34 | 7.75 | 10.54 | 9.08 | 6.96 | 67.9 | | 1942-43 | 5.70 | 4.96 | 3.39 | 3.72 | 4.04 | 2.54 | 3.92 | 6.70 | 7.78 | 9,15 | 9.05 | 7.52 | 68.4 | | 1943-44 | 5.54 | 5.55 | 2.72 | 3.92 | 2.41 | 5,50 | 5,02 | 5.22 | 6,08 | 7.98 | 9.76 | 7.15 | 66.8 | | 1944-45 | 5.18 | 3.48 | 3.46 | . 3.05 | 2.84 | 3.08 | 5.72 | 6.68 | 6.18 | 9,25 | 9.82 | 7156 | 66,3 | | 1945-46 | 4.86 | 4.36 | 2.34 | 4.29 | 2.85 | 3.40 | 3.83 | 4.35 | 7.85 | 8.95 | 8.78 | 7.58 | 63.4 | | 1946-47 | 5.10 | 2,90 | 1.74 | 2.86 | 1.55 | 3.14 | 4.82 | 5.30 | 5.80 | 9.30 | 8.10 | 6.75 | 57.3 | | STATION #32 | | | | | | | | | | | | | | |-------------|------|------|------|--------|------|------|------|------|------|-------|-------|-------|-------| | | oct. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | ŅAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-92 | 6.30 | | | | | | | | | | | | | | 1931-32 | 6,30 | 4.14 | 2.82 | 3.52 | 2.49 | 5.29 | 7.11 | 6.30 | 9.01 | 11.42 | 10.30 | 8.28 | 76.98 | | 1932-33 | 7.16 | 6.32 | 3.84 | 2.30** | 3.48 | 4.12 | 5.40 | 7.46 | 8,14 | 10.38 | 10.32 | 7.27 | 76.19 | | 1933-34 | 6.36 | 5.74 | 2.30 | 3.60 | 2.44 | 5.34 | 6.63 | 8,36 | 5,90 | 9.84 | 9.60 | 8.38 | 74.49 | | 1934-35 | 6.24 | 3,93 | 3.16 | 2.58 | 3.98 | 3.75 | 4.70 | 6.83 | 8.90 | 9.70 | 9.48 | 8.08 | 71.33 | | 1935-36 | 7.00 | 4.03 | 3.76 | 3.70 | 2.63 | 4.90 | 4.95 | 8.56 | 9.37 | 10.14 | 10.26 | 8.46 | 77.76 | | 1936-37 | 6.10 | 5.71 | 3.23 | 2.00 | 2.14 | 3.36 | 6.32 | 5.84 | 7.52 | 8.54 | 9.60 | 8.38 | 68.74 | | 1937-38 | 6.80 | 3.88 | 3.52 | 3.54 | 1.75 | 3.58 | 5.16 | 6.99 | 6.56 | 9.32 | 9.18 | 8.18 | 68.46 | | 1938-39 | 6.54 | 6.30 | 4.18 | 3.27 | 3,62 | 4.28 | 6.27 | 7.48 | 7.96 | 9.32A | 9.57 | 8.40 | 77.19 | | 1939-40 | 6.50 | 4.67 | 3.58 | 2.58 | 2.45 | 4.10 | 4.48 | 6.74 | 8.22 | 9.80 | 8,68 | 8.35 | 70.15 | | 1940-41 | 6.90 | 5.24 | 2,62 | 1.28 | 1.20 | 2.65 | 3.62 | 6.72 | 6.79 | 8.30 | 7.22 | 6.52 | 59.06 | | 1941-42 | 4.84 | 4.05 | 3.08 | 3.72 | 3,55 | 5.20 | 5.01 | 6.32 | 5.85 | 8.30 | 7.92 | 7.14 | 64.98 | | 1942-43 | 4.72 | 4.78 | 3,45 | 2.79 | 2.86 | 2.86 | 3.56 | 5.84 | 6.36 | 7.06 | 7.97 | 7.74 | 59.99 | | 1943-44 | 6.12 | 5.44 | 2.59 | 3.40 | 2.02 | 5.03 | 5.21 | 5.70 | 6.34 | 8.47 | 9.71 | 7.09 | 67.14 | | 1944-45 | 5.44 | 3.40 | 3.57 | 2.82 | 2.68 | 2.36 | 5.32 | 7.02 | 6.87 | 9.88 | 9.40 | 7.92 | 66.68 | | 1945-46 | 5.81 | 4.54 | 2.82 | 4.16 | 2,78 | 3.78 | 4.99 | 5.41 | 8.76 | 9.25 | 9.55 | 8.00 | 69.85 | | 1946-47 | 4,27 | 2.22 | 1.20 | 1.90 | 2.15 | 2.65 | 3.58 | 5.08 | 6.12 | 8.82 | 7.45 | 6.14 | 51.58 | | | | | | | | STATION | #33 | | | | | | | |----------|------|--------|------|------|------|---------|------|--------|------|-------|------|-------|-------| | | 0СТ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1930-31 | 6.07 | 7.10 | 4.46 | 2.72 | 2.98 | 7.61 | 6,50 | 5.18 | 6.85 | 9.54 | 8.58 | 8.64 | 76.23 | | 1931-32 | 7.28 | 5.93 | 2.51 | 2.33 | 1.92 | 5.44 | 6.56 | 5.28 | 7.82 | 9.28 | 9.04 | 7.83 | 71.22 | | 1932-33 | 7,29 | 7.81 | 3.36 | 3.42 | 4.32 | 5,64 | 4.94 | 5.72 | 6.21 | 9.12 | 8.10 | 6.74 | 72.67 | | 1933-34 | 6.90 | 7.28 | 3.46 | 4.62 | 2.79 | 4,99 | 6.02 | 6.27 | 3.68 | 7.70 | 7.26 | 7.69 | 68.66 | | 1934-35 | 6.20 | 3.74 | 3.33 | 2.28 | 3.12 | 2.78 | 3.16 | 3.80 | 4.72 | 6.78 | 7.42 | 6.66 | 53.99 | | 1935-36 | 5.81 | 4.29 | 3.61 | 3.34 | 1.93 | 4.22 | 4.53 | 5.51 | 5.52 | 6.70 | 7.11 | 7.98 | 60.55 | | 1936-37 | 5.56 | 5.65 | 3.08 | -74# | 1.94 | 3.82 | 5.40 | 3.92 | 4,85 | 7.17 | 6.58 | 6.99A | 55.70 | | 1937-38 | 5.59 | 3.26 | 3.04 | 3.18 | 1.84 | 3.22 | 4.22 | 3.96 | 3.92 | 6.09 | 6.70 | 7.48 | 52.50 | | 1938-39 | 6.75 | 5.90** | 5.74 | 4.67 | 4.23 | 4.27 | 6.22 | 6.33 | 8.12 | 8.88 | 8.06 | 7.76 | 76.93 | | 1939-40 | 8.75 | 6.84 | 6.18 | 2.96 | 3.41 | 4.87 | 4.68 | 6,38 | 6.69 | 10.16 | 7.40 | 6.93 | 75.25 | | 1940-41 | 7.12 | 7.00 | 4.58 | 2.80 | 2.36 | 3.93 | 3.79 | 7.15** | 5.65 | 8.64 | 6.64 | 6.08 | 65.74 | | 1941-42 | 5.74 | 6.41 | 3.39 | 4.74 | 4.16 | 5.86 | 2.96 | 5,96 | 6.72 | 8.19 | 6.82 | 6.40 | 67.35 | | 1942-43 | 5.49 | 5.78 | 4.51 | 4.73 | 4.02 | 2.80 | 3.66 | 6.38 | 6.80 | 7.26 | 6.91 | 7.27 | 65.61 | | 1943-44 | 5.30 | 5.92 | 3.42 | 3.96 | 2.36 | 5.02 | 4.11 | 4.24 | 4.22 | 6.28 | 7.08 | 4.65 | 56.50 | | 1944-45 | 4,55 | 2.97 | 3.98 | 3.11 | 2.64 | 3.16 | 4,30 | 4.58 | 3,32 | 5.64 | 7.56 | 8.30 | 54.11 | | 1945-46 | 5.98 | 6.17 | 4.71 | 6.67 | 4.30 | 4,90 | 4.94 | 4.00 | 7.79 | 9.20 | 9.50 | 9.00 | 77.16 | | 1946 -47 | 6.87 | 4.34 | 4.33 | 5.58 | 3.90 | 4.36 | 5.16 | 5.40 | 5.21 | 10.24 | 8.12 | 7.98 | 71.49 | | | | | | MONTH | Y EVAPO. | TATION A | | DJUNGA | UAM | | | | | |---------------------|------|-------|------|-------|----------|----------|------|--------|------|-------|-------|-------|----------| | below Dam in Canyon | | | | | | | | | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931+32 | 6.00 | 3.30 | .52 | .48 | .68 | 5.42 | 5.95 | 6.22 | 8.22 | 10.60 | 9.98 | 8.68 | 65.85 | | 1932-33 | 7.08 | 6.40 | 2.68 | 2.12 | 3.90 | 5.38 | 4.94 | 5.85 | 8.48 | 10.85 | 9.32 | 7.88 | 74.8 | | 1933-34 | 6.78 | 5.22 | 1.80 | 3.12 | 2.40 | 5.20 | 6.45 | 7.58 | 6.08 | 9,28 | 8.72 | 6.94 | 69.56 | | 1934-35 | 5.32 | 2.83 | 1.90 | 1.58 | 2.35 | 2,45 | 2.95 | 4.50 | 6.95 | 8.00 | 7.50 | 7.00 | 53.33 | | 1935-36 | 5.68 | 2.98 | 2.58 | 2.45 | 1.25 | 4.02 | 4.35 | 6.90 | 7.65 | 8.80 | 9.25 | 758 | 63.48 | | 1936+37 | 5.18 | 3.88 | 1.65 | .58 | 1.28 | 2.65 | 4.50 | 5.20 | 7.22 | 9.18 | 9.02 | 8.32 | .58 . 66 | | 1937-38 | 5.92 | 3.42A | 2.82 | 2.52 | 1.52 | 2.08 | 3.66 | 5.44 | 7.15 | 9.18 | 9.22 | 8.03 | 60.98 | | 1938-39 | 5.96 | 5.56 | 2.88 | 2.07 | 2.51 | 3.00 | 4.80 | 5.92 | 8.92 | 9.68 | 9.86 | 6.70 | 67.85 | | 1939-40 | 4.88 | 3.88 | 2.58 | 1.70 | 1,92 | 3.33 | 4.01 | 6.12 | 8.82 | 10.78 | 10.15 | 7.58 | 65.73 | | 1940- 41 | 6.06 | 3.86 | 1.91 | 1.47 | 1.08 | 2.24 | 2.52 | 6.72 | 9.38 | 10.25 | 10.55 | 9.80 | 63.85 | | | | | | | S | TAPION A | 46CD | | | | | | | |----------|------|------|------|------|------|----------|------|------|-------|-------|-------|-------|--------| | | | | | | a | t Dam Cr | est | | | | | | | | 1941 -42 | 6.86 | 6.92 | 2.76 | 4.20 | 4.30 | 6.69 | 4.08 | 8.02 | 9.42 | 15.08 | 13.82 | 12.12 | 94.27 | | 1942-43 | 8.48 | 6.68 | 5.06 | 4.44 | 4.29 | 3.61 | 5.98 | 9.38 | 10.58 | 13.05 | 12.92 | 13.12 | 9.7.59 | | 1943-44 | 9.35 | 6.78 | 2.20 | 3.61 | 2.13 | 5.32 | 5.42 | 6.28 | 6.94 | 10.98 | 12.29 | 8.88 | 80118 | | 1944-45 | 7,05 | 3.30 | 3,92 | 3.54 | 3.09 | 3.32 | 6.75 | 7.45 | 7.55 | 11.30 | 12.36 | 11.48 | 81.11 | | 1945-46 | 7.88 | 5.68 | 3.50 | 6.40 | 4.44 | 4.56 | 6.54 | 7.00 | 12,30 | 13.75 | 14.78 | 13.15 | 99.98 | | 1946-47 | 6.17 | 3.52 | 3.16 | 5.05 | 3.41 | 3.96. | 5.88 | 7.92 | 8.12 | 14.18 | 11.12 | 9.87 | 81.96 | | | | | | | | STATION | #57 | | | | | | | |-----------|------|-------|-------|-------|-------|---------|-------|--------|---------|-------|-------|---------|-------| | | œτ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-32 | 2.14 | 1.38# | 1.78# | FROZ | FROZ | 1.82 | 3.31 | 4.30 | 5.37 | 7.94 | 7,68 | 5.45 | 41,17 | | 1932-33 | 3.06 | 2.02 | .26# | FROZ | FROZ | _01# | 2.46 | 3.46 | 4.96 | 6.92 | 6.72 | 5.10 | 34.97 | | 1933-34 | 2.98 | 8.55 | .10# | 2.05# | 2.70# | .92 | 3.81 | 5.26 | 5.22 | 6.84 | 6.50 | 2.24 | 47.18 | | 1934-35 | 1.71 | 1.20 | .24# | .02# | .12# | .28# | 1.82 | 2.62 | 4.48 | 5.58 | 5.32 | 4.20 | 27.59 | | 1935+36 | 5.56 | 2.19 | .70# | 1.28# | .62# | 2.05# | 2.66# | 5.48 | 6.05 | 8.05 | 7.31 | 6.20 | 48.15 | | 1936-37 | 3.89 | 2.29 | .66# | FROZ | FROZ | 1.32 | 2.95 | 6.04 | 8.34 | 10.66 | 11.21 | 7.91 | 55.27 | | 1937-38 | 4.94 | 1.90 | 1.30# | .98# | .28# | 1.05# | 3.12 | 5.14 | 7.19 | 8.83 | 8.08 | 5.45 | 48.26 | | 1938-39 | 2.25 | 1.84 | .94 | .24 | FROZ | .78# | 4.28 | 5.74 | 7.68 | 8.00 | 8.04A | 3.84 | 43.60 | | 1939-40 | 2,29 | 1.12 | .60# | .15# | .26# | 1.62# | 2.54 | 5.13 | 6.82 | 8.40 | 8.09 | 4.43 | 41.46 | | 1940-41 | 2.55 | 1.10 | .30# | .04# | .09 | •79# | 1.96 | 5.42 | 5.86 | 7.40 | 5.96 | 3.98 | 35.44 | | 1941-42 | 3.21 | 2.90# | .12# | .34# | .24# | 1.38 | .78 | 4.79 | 6.60 | 8.56 | 6.78 | 5.86 | 38.99 | | 1942-43 | 2.22 | .57 | .40 | .14# | .12# | .86 | 2.40 | 5.28 | 6.20 | 8.22 | 7.93 | 6.02 ** | 40.3 | | 1943-44 | 3.08 | 1.68 | .26# | .22# | .03# | 1.52# | 3.44 | 5.27 | 5.07 | 6.72 | 7.81 | 5.77 | 40.8 | | 1944-45 | 2.87 | .42 | .42# | .06# | .40# | .32# | 4.18 | 5.34 | 6.34 | 9.10 | 7.65 | 6.20** | 43.30 | | 1945 - 46 | 2.61 | .82# | .42# | .32# | 18# | .20# | 3.52 | 4.20** | 7.30.** | 8,70 | 9.20 | 4.72 | 43.1 | | 1946-47 | 1.96 | .40 | 654 | .04# | .32# | 1.20** | 2.72 | N.R. | N.R. | N.R. | N.R. | 5.02 | INC. | | | | | | | | STATION | #63 | | | | | | | |---------|------|-------|------|------|-------|---------|------|------|------|------|-------|-------|-------| | | OCT. | NoV. | OEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1929-30 | 5.40 | 5.38 | 4.40 | 1.60 | 2.00* | 2,96 | 5.24 | 4.67 | 6.26 | 9.40 | 8.48 | 6.28 | 62.08 | | 1930-31 | 6.98 | 61.29 | 5.99 | 3.56 | 2.45 | 5.95 | 4.82 | 4.56 | 6.10 | 7.82 | 6.98 | 6.88 | 68.38 | | 1931-32 | 5.18 | 3,86 | 2.68 | 3.04 | 2.38 | 4.34 | 5.47 | 4.64 | 5.54 | 6.88 | 7.64 | 5.56 | 57.21 | | 1932-33 | 5.93 | 6.60 | 3.49 | 3.54 | 3.41 | 4.81 | 4.42 | 4.37 | 5.50 | 5.99 | 5.36 | 4.15 | 57.57 | | 1933-34 | 4.12 | 4.81 | 2.68 | 3.38 | 2.01 | 3.72 | 3.70 | 4.16 | 2.84 | 4.46 | 4.44 | 4.62 | 44.9 | | 1934-35 | 6.40 | 4.28 | 4.08 | 3.28 | 4.41 | 3.47 | 3.73 | 4.46 | 6.14 | 9.02 | 9.20 | 7.26 | 65.7 | | 1935-36 | 6.71 | 5.18 | 4.58 | 4.28 | 2.35 | 4.78 | 4.62 | 6,97 | 7.36 | 8.36 | 8.32 | 7.74 | 71.2 | | 1936-37 | 6.09 | 6.54 | 3.94 | 1.99 | 2.38 | 4.04 | 5.26 | 4.68 | 5,24 | 7.90 | 8.08 | 7.55A | 63.6 | | 1937-38 | 6.02 | 3.73 | 4.22 | 3.96 | 2.49 | 3.00 | 3.71 | 4.37 | 4.44 | 6.10 | 7.00 | 7.00 | 56.0 | | 1938-39 | 5.15
| 4.72 | 2.77 | 2.30 | 2.05 | 2.28 | 3.82 | 4.48 | 5.89 | 6.28 | 6.47 | 6.26 | 52.4 | | 1939-40 | 5.87 | 4.74 | 4.04 | 2.06 | 2.48 | 3.72 | 3.31 | 5.00 | 5.06 | 7.68 | 6.34 | 6.06 | 56.3 | | 1940-41 | 5.31 | 4.74 | 3.47 | 2.38 | 1.66 | 3.26 | 2.78 | 5.01 | 4.32 | 8.28 | 5.38 | 5.30 | 49.89 | | 1941-42 | 4.82 | 5,20 | 2.40 | 3.10 | 2.85 | 4.22 | 2.28 | 3.94 | 3.42 | 6.33 | 5.22 | 5.46 | 49.0 | | 1942-43 | 4.58 | 4.19 | 3.70 | 3.67 | 2.70 | 1.88 | 2.68 | 4.94 | 5.26 | 6.38 | 6.48 | 6.30 | 52,7 | | 1943-44 | 4.77 | 4.92 | 2.17 | 2.61 | 1.77 | 3.42 | 3.70 | 3.67 | 3,37 | 5.48 | 6.92 | 5.02 | 47.8 | | 1944-45 | 3,82 | 2.50 | 3.50 | 3.46 | 2.02 | 2.04 | 3.67 | 3.94 | 2.58 | 5.10 | 6.25 | 5.30 | 44.1 | | 1945-46 | 3.56 | 4.42 | 3.06 | 4.24 | 3.15 | 3.08 | 3.30 | 2.60 | 5.92 | 6.08 | 5,80 | 5.38 | 50.5 | | 1946-47 | 3,93 | 2.87 | 2.88 | 3.72 | 2.82 | 2.94 | 3.20 | 2.68 | 3.40 | 7.84 | 6'.28 | 5.16 | 47.7 | | | | | | | | STATIO | N #89 | | | | | | | |---------|------|------|--------|--------------|-------|--------|--------|------|--------|------|------|-------|-------| | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1934-35 | 7.28 | 2.98 | 1.68 | .64 | .58 | .65 | -64 | 1.25 | 2.78 | 3,02 | 4.87 | 5.39 | 31.7 | | 1935-36 | 5.22 | 3,23 | 1.94 | 1.86 | .78 | 2.63 | 2.62 | 4.42 | 5.31 | 6.26 | 7,26 | 7.01 | 48.5 | | 1936-37 | 5.36 | 3.79 | 1.54 | <u>.34</u> # | .90 | 2.04 | 2.80 | 3.27 | 4.75 | 7.71 | 8.46 | 7.72A | 48.6 | | 1937-38 | 6.64 | 2.85 | 2.84 | 1.58 | .48 | .94 | 1.79 | 1,54 | 1.94 | 3.26 | 4.46 | 5.25 | 33.5 | | 1938-39 | 3.88 | 4.46 | 1.68** | .60 | .61 | .60 | .97 | .98 | 1.82 | 5.70 | 4.88 | 3.94 | 30.13 | | 1939-40 | 4.64 | 4.26 | 2.64 | 1.34** | .90** | 1.70** | 1.40** | 2.58 | 4.48 | 7.00 | 7.75 | 7.80 | 46.4 | | 1940-41 | 7.96 | 5.84 | 3.82 | 1.74 | 2.44 | 2.69 | 2.80 | 6.09 | 4.64 | 8.85 | 8.40 | 8.22 | 62.4 | | 1941-42 | 5.74 | 4.96 | 2.27 | 2.72 | 1.66 | 2.46 | 2.02 | 3.85 | 5.38 | 9.20 | 9.45 | 7.42 | 57.1 | | 1942-43 | 6.20 | 5.40 | 2.82 | 1.80 | 1.20 | .96 | 1.44 | 4.48 | 6.12 | 8.40 | 8.85 | 8.85 | 56.5 | | 1943-44 | 6.02 | 3.70 | 1.52 | 1.35 | .97** | 1.02 | 1.40 | 2.85 | 4.36 | 6.28 | 7.35 | 5.50 | 42.5 | | 1944-45 | 4,42 | 1.92 | 1.42 | 1.08 | .66** | .45 | 1.92 | 1.85 | 3.52 | 7.65 | 7.82 | 7.20 | 39.9 | | 1945-46 | 4.00 | 1.96 | .72 | 1.50 | .80 | 1.32 | 2.20 | 1.22 | 6.38 | 6.45 | 6.65 | 6.55 | 39.7 | | 1946+47 | 2.28 | 1.38 | .86 | 1.50 | 1.60 | 1.41** | 1.96 | 2.52 | 4.94** | 8.95 | 7.05 | 6.25 | 40.7 | | | | | | | | STATIO | N #96 | | | | | | | |-----------|-------|------|------|------|------|--------|-------|------|-------|-------|-------|-------|------| | | œτ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTA | | 1929-30 | 7.90 | 7.73 | 5.32 | 2.29 | 2.76 | 3.60 | 4.52 | 4.64 | 6.73 | 11.65 | 10.52 | 7.37 | 75.0 | | 1930-31 | 7.43 | 3.30 | 5.24 | 3.25 | 1.67 | 5.78 | 5.27 | 5.86 | 7,29 | 10.17 | 9.16 | 8.66 | 73.0 | | 1931 - 32 | 6.04 | 3.74 | 2.32 | 2.24 | 1.60 | 4.20 | 5.47 | 5.50 | 6.65 | 9,42 | 9.30 | 6.70 | 63.1 | | 1932-33 | 6.53 | 6.76 | 3.38 | 3.30 | 3.88 | 5.32 | 5.18 | 6.16 | 7.25 | 10.06 | 9.38 | 6.58 | 73.7 | | 1933-34 | 6.99 | 7.32 | 4.18 | 4.10 | 2.68 | 4.44 | 4.74 | 8.82 | 6.39 | 9.99 | 9.67 | 8.55 | 77.8 | | 1934-35 | 6.46 | 3,67 | 3.50 | 2.72 | 2.65 | 3.32 | 3,84 | 5.73 | 6.72 | 9.48 | 9.84 | 7.68 | 65.6 | | 1935-36 | 6.68 | 5.19 | 4.35 | 3,96 | 2.46 | 3.87 | 4.66 | 7.61 | 8.60 | 10.10 | 10.78 | 9.24 | 77.5 | | 1936-37 | 7.38 | 6.72 | 3.91 | 2.35 | 2.15 | 3,33 | 5.50 | 5.76 | 7.58 | 10.24 | 9.72 | 8,95 | 73.5 | | 1937-38 | 6.96 | 4.33 | 3.88 | 3,52 | 2.18 | 3.00 | 3.82 | 4.82 | 6.50 | 9.30 | 9.76 | 8.88 | 66.9 | | 1938-39 | 7.41 | 6.34 | 4.26 | 3.00 | 3.37 | 2.98 | 5.02 | 5.85 | 8.58 | 10.12 | 8.64 | 7.64 | 73.2 | | 1939-40 | 6.33A | 4.42 | 3.86 | 2.03 | 2.60 | 3.69 | 3.80 | 4.45 | 4.79 | 7.30 | 8.30 | 6.94 | 58.5 | | 1940-41 | 6.28 | 4.92 | 5.02 | 3.72 | 2.58 | 3.66 | 3.65 | 5.95 | 5.95 | 8,34 | 7.78 | 5.62 | 64.0 | | 1941-42 | 5.32 | 5.28 | 3,36 | 3.98 | 3.08 | 4.10 | 2.88 | 4.30 | 5.02 | 7.75 | 8.40 | 6.52 | 59.9 | | 1942-43 | 6.08 | 4.30 | 3.72 | 3.38 | 3.30 | 2.95 | 3.78 | 5.68 | 7./25 | 8.72 | 7.38 | 7.42 | 63.9 | | 1943-44 | 5.60 | 4,92 | 2.02 | 2.12 | 1.96 | 2.87 | 3.52 | 4,30 | 4.99 | 6.91 | 8.00 | 51,98 | 53.1 | | 1944-45 | 4.52 | 2.60 | 3.16 | 2.55 | 2.08 | 2.06 | 3.30 | 5.48 | 4.88 | 7.43 | 7.54 | 7.12 | 52.7 | | 1945-46 | 4.36 | 4.12 | 2,92 | 3.54 | 2.14 | 2.91 | 3,50 | 3,92 | 7.55 | 8.45 | 8.72 | 7.52 | 59.6 | | 1946-47 | 4.56 | 2.62 | 2.18 | 2.66 | 2.40 | 2.68 | 3.52 | 3.98 | 4.70 | 8.28 | 7.32 | 5.86 | 50.7 | | | | | | | | MOITATE | #223 | | | | | | | |-----------|-------|------|------|------|------|---------|------|------|------|-------|-------|-------|--------| | | OCT. | NOV. | DEC. | JAN. | FEÐ. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1930-31 | 19.22 | 9.17 | 5.84 | 4.66 | 3.86 | 8.86 | 7.74 | 8.02 | 9.80 | 12.76 | 11.97 | 11.16 | 104.06 | | 1931-32 | 7.32 | 5.08 | 3.02 | 3,21 | 2.71 | 6.02 | 7.20 | 7.15 | 8.41 | 11.02 | 11.84 | 8.88 | 81 .82 | | 1932-33 | 6.78 | 7.88 | 3.10 | 4.25 | 4.35 | 6.47 | 5.51 | 6.60 | 9.39 | 10.92 | 10.22 | 7.78 | 83.25 | | 1933-34 | 8.03 | 7.99 | 3.22 | 4.52 | 2.84 | 6.42 | 7.08 | 9.42 | 6.76 | 12,15 | 11.36 | 11.02 | 90.81 | | 1934-35 | 7.02 | 3.77 | 3.52 | 2.87 | 4.16 | 3.25 | 4.42 | 5.72 | 8.30 | 10.45 | 10.42 | 7.82A | 71.72 | | 1935-36 | 6.50 | 4.12 | 3.28 | 2.88 | 1.85 | 4.05 | 4.10 | 7.00 | 8.24 | 9.32 | 9.55 | 8.45 | 69.34 | | 1936-37 | 6.22 | 5.00 | 2.92 | 1.50 | 1.92 | 3.28 | 5.75 | 5.00 | 6.60 | 9.40 | 9.40 | 8.25 | 65.24 | | 1937-38 | 6.98 | 3.80 | 3.22 | 3.40 | 2.65 | 2.12 | 2.65 | 3.45 | 6.08 | 8.95 | 8.80 | 7.53 | 59.66 | | 1938-39 | 5.28 | 4.65 | 4.08 | 2.98 | 3.48 | 2.48 | 3,55 | 4.28 | 6.32 | 7.70 | 7.88 | 6.98 | 59.62 | | 1939-40 | 4.85 | 3,75 | 2.82 | 1.55 | 2.25 | 3.22 | 2.65 | 5.58 | 6.40 | 9.85 | 8.42 | 6.78 | 58.12 | | 1940-41 | 5.02 | 2.75 | 1.74 | 1.45 | .78 | 1.88 | 2.55 | 5.18 | 5.22 | 8.50 | 6.32 | 5.65 | 47:.04 | | 1941 - 42 | 4.00 | 3.35 | 1.55 | 1.72 | 2.30 | 3.25 | 2.22 | 4.80 | 4.80 | 9.48 | 8.18 | 6.55 | 52.20 | | 1942-43 | 4.72 | 4.48 | 3.83 | 3.34 | 2.80 | 1.73 | 3,20 | 5.37 | 6.12 | 8.88 | 8.30 | 7.96 | 60.73 | | 1943-44 | 5.06 | 4.75 | 1.81 | 1.10 | 1.43 | 3.50 | 3.06 | 3.23 | 3.38 | 6.51 | 9.71 | 7.13 | 50.69 | | 1944 - 45 | 3.99 | .86 | 1.14 | 3.10 | 2.02 | .64 | 2.88 | 2.63 | 2.91 | 6.78 | 6.81 | 5.01 | 38.77 | | 1945 - 46 | 4.98 | 1.04 | .74 | 1.30 | .55 | .90 | 1.46 | 1.60 | 6.14 | 8.28 | 8.69 | 6.26 | 41.94 | | 1946 - 47 | 4.15 | 2.23 | 1.30 | 2.73 | 2.04 | 1.36 | 2.32 | 4,26 | 4,28 | 9.00 | 7.14 | 5,99 | 46.80 | | | | | | | | STATION | #261 | | | | | | | |-----------|-------|------|------|------|------|---------|-------|-------|-------|-------|-------|--------|--------| | | œτ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | NAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-32 | 6.81 | 4.32 | 2.18 | 2.64 | 1,94 | 5.88 | 6.92 | 7.80 | 10.18 | 13.38 | 13,98 | 10.94 | 86.97 | | 1932-33 | 7.89 | 6.49 | 3.13 | 3.04 | 4.42 | 6.26 | 6.86 | 7.10 | 10.19 | 12.78 | 12.29 | 10.08 | 90.53 | | 1933-34 | 8.10 | 7.46 | 3.95 | 4.62 | 3.54 | 7.18 | 9.00 | 10.90 | 9.23 | 13.80 | 13.43 | 10.35 | 101,56 | | 1934-35 | 7.71 | 4.56 | 3.92 | 2.94 | 3.99 | 4.01 | 5.38 | 8.02 | 11.80 | 13.00 | 11.67 | 10.24 | 87.24 | | 1935-36 | 7.80 | 5.54 | 4.63 | 4.75 | 2.21 | 6.00 | 6.53 | 10.12 | 11.34 | 13.04 | 13.22 | 10.82 | 96.01 | | 1936-37 | 6 .96 | 6.74 | 3.51 | 1.80 | 2.66 | 4.35 | 6,36 | 7.62 | 9.94 | 13.26 | 13.54 | 10.58A | 87.32 | | 1937-38 | 7.92 | 4.62 | 4.30 | 4.36 | 2.35 | 3.24 | 5.62 | 7.32 | 9.26 | 11.86 | 11.62 | 9.51 | 81,98 | | 1938-39 | 6.96 | 7.12 | 3.91 | 3.02 | 3.32 | 3.96 | 6.24* | 8.02 | 10.77 | 12.50 | 13.09 | 7.59 | 86.50 | | 1939-40 | 7.08 | 4.62 | 4.22 | 2.38 | 2.62 | 4.52 | 5.82 | 9.20 | 11.15 | 13.94 | 13.25 | 8.82 | 87.62 | | 1940-41 | 6.64 | 5.28 | 3.56 | 2.30 | 2.10 | 3.57 | 4.22 | 8.32 | 9.60 | 12.22 | 10.32 | 9.04 | 77.23 | | 1941 - 42 | 5.77 | 4.80 | 2.51 | 3.33 | 3.24 | 5.29 | 4.40 | 7.84 | 10.12 | 13.40 | 11.72 | 9.20 | 81.62 | | 1942-43 | 6.78 | 4.63 | 3.74 | 3.46 | 3.54 | 3.16 | 4.94 | 8.458 | 9.16 | 10.51 | 10.88 | 9.33 | 78.71 | | 1943-44 | 6.42 | 5.14 | 2.84 | 2.92 | 2.13 | 4.98 | 6.05 | 7.72 | 7.91 | 11.64 | 11.10 | 8.73 | 77.58 | | 1944-45 | 6.77 | 3.34 | 3,86 | 3.27 | 2.70 | 2.92 | 5.81 | 8.30 | 8.63 | 12.68 | 11.90 | 9.02 | 79.20 | | 1945-46 | 5.93 | 4.56 | 3.13 | 4.42 | 3.59 | 4.28 | 5.72 | 6.98 | 11.23 | 11.96 | 12.76 | 9.70 | 84.26 | | 1946-47 | 5.80 | 3.02 | 2.14 | 3.02 | 2.74 | 3.42 | 5.10 | 7.85 | 8.32 | 11.87 | 10.34 | 8.47 | 72.09 | | | | | | | 1 | STATION | #265 | | | | | | | |-----------|------|------|------|------|------|---------|--------|---------|------|------|------|-------|--------| | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931 • 32 | 4.72 | 3.22 | 1.84 | 1.16 | .80 | 2.53 | 5.58 | 4.88 | 5.78 | 6.76 | 6.90 | 5.34 | 49.51 | | 1932-33 | 4.50 | 4.90 | 2,32 | 2.26 | 3.06 | 3.20 | 3.73 | 4.95 | 5.53 | 6.50 | 6.30 | 5.21 | 52,46 | | 933-34 | 4.50 | 4.55 | 2.38 | 2.59 | 1.60 | 2.70 | 4,67 | 6.36 | 4.46 | 6.74 | 6.60 | 6,46 | 53.61 | | 934-35 | 3.87 | 2.11 | 1.52 | 1.46 | 1.84 | 1.60 | 2.60 | 4.08 | 5.19 | 6.86 | 6.92 | 5.26 | 43.31 | | 1935-36 | 4.70 | 3.08 | 2.80 | 2.50 | 1.46 | 2.70 | 3.42 | 5.64 | 5.94 | 6.88 | 7.04 | 5.74 | 51.90 | | 936-37 | 4.16 | 4.28 | 2.24 | 1.62 | 1.26 | 2.30 | 3.41 | 4.10 | 5.53 | 6.42 | 6.76 | 6.12 | 48.20 | | 937-38 | 4.30 | 2.56 | 2.97 | 2.85 | 1.60 | 2.44 | 3.47 | 4.24 | 5.04 | 6.44 | 6.80 | 6.36 | 49.07 | | 938-39 | 4.58 | 4.48 | 2.63 | 1.74 | 2.52 | 2.75 | 3.30** | 4.40**A | 5.84 | 6.24 | 5.85 | 5.35 | 49.67 | | 939-40 | 3.90 | 2.46 | 1.64 | .78 | 1.43 | 2.88 | 3.21 | 4.58 | 4.42 | 6.55 | 5.96 | 4.93 | 42.74 | | 940-41 | 3.66 | 2.47 | 1.38 | .94 | .44 | 1.84 | 2.54 | 4.76 | 4.50 | 6.01 | 5,32 | 4.34 | 38,20 | | 1941-42 | 3.42 | 2.30 | .97 | 1.63 | 1.76 | 3.61 |
2.36 | 4.68 | 4.14 | 6.84 | 5.72 | 3.80 | 41.22 | | 1942-43 | 3.18 | 2.98 | 1.38 | 1.06 | 1.60 | 1.37 | 2.60 | 4.46 | 5.05 | 5.52 | 5.68 | 4.20 | 39. 98 | | 1943 • 44 | 2.74 | 2.81 | .73 | 1.29 | .94 | 2.54 | 3.44 | 3.54 | 3.94 | 4.86 | 5.57 | 3.82 | 36.22 | | 1944-45 | 2.32 | 1.09 | 1.72 | 1.00 | 1.03 | 2.08 | 3,46 | 4.31 | 3.38 | 4.94 | 5.34 | 4.68 | 34.95 | | 945-46 | 3.08 | 2.04 | 1.60 | 1.54 | 1.42 | 1.90 | 2.38 | 2.86 | 5.42 | 6.34 | 6.34 | 4.86 | 39.74 | | 1946-47 | 2.39 | ·85 | . 61 | .98 | .74 | 1.60 | 2.66 | 2.38 | 3.22 | 5.68 | 4.91 | 3.56 | 29.58 | | | | | | | | STATION | #268 | | | | | | | |-----------|-------|------|--------|-------|------|---------|------|------|------|------|-------|-------|-------| | | œτ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-32 | 5.17 | 2.32 | 1.22 | 1,16 | 1.47 | 4.24 | 6.16 | 6.66 | 6.96 | 7.64 | 7 .60 | 5)58 | 56.18 | | 1932-33 | 4.32 | 2.52 | 1.61 | 1.18 | 2.08 | 4.12 | 4.94 | 7.10 | 6.10 | 7.03 | 7.32 | 5.43 | 53.74 | | 1933-34 | 4.34 | 2.72 | .98 | 1.10 | 1.16 | 3.78 | 5.58 | 8.01 | 5.93 | 7.89 | 7.81 | 6.64 | 55.94 | | 1934-35 | 4.58 | 1.72 | 1.12 | 40. | 1.84 | 2.80 | 3.96 | 6.06 | 6.06 | 8.15 | 7.61 | 5.88 | 50.18 | | 1935-36 | 4.90 | 2.14 | 1.32 | 1.72 | 1.76 | 3.91 | 4.48 | 7.17 | 7.64 | 8.38 | 8.00 | 6.86 | 58.28 | | 1936-37 | 4:.70 | 2.31 | 1.16 | 1.00 | 1.41 | 3.96 | 5.52 | 6.04 | 7,32 | 8.49 | 7.70 | 7.11 | 56.72 | | 1937-38 | 5.15 | 2.08 | 1.80 | 1.65 | 1.42 | 4.50 | 5.38 | 6.84 | 7.02 | 8.54 | 8.24 | 7.41 | 60.03 | | 1938-39 | 4.88 | 3.03 | 1.24** | 1.06A | 2.39 | 3.16 | 5.22 | 6.40 | 7.34 | 8,25 | 7.60 | 7.54 | 58.11 | | 1939-40 | 5.02 | 1.52 | 1.02 | .91 | 1.34 | 3.68 | 5.34 | 6.88 | 6.54 | 8.62 | 7.94 | 6.60 | 55.41 | | 1940-41 | 4,58 | 2.30 | 1.20 | .75 | .74 | 2.91 | 4.12 | 7.88 | 7.25 | 7.82 | 6.98 | 6.54 | 53.06 | | 1941 - 42 | 4.64 | 1.84 | 1.22 | .88 | 1.52 | 4.31 | 4.00 | 6.58 | 5.90 | 8.15 | 7.30 | 5,66 | 52.02 | | 1942-43 | 4.07 | 1.48 | 1.26 | 1.11 | 1.27 | 2.70 | 4.13 | 6.59 | 7.13 | 7.51 | 7.60 | 6.26 | 51.11 | | 1943-44 | 4.18 | 1.88 | 1.08 | .92 | 1.08 | 4.10 | 5.48 | 5.32 | 6.28 | 6.75 | 7.14 | 5.24 | 49.45 | | 1944-45 | 3.87 | 1.09 | 1.24 | 1.06 | 1.52 | 2.85 | 5.02 | 6.67 | 5.28 | 7.10 | 7.82 | 6.66 | 50.18 | | 1945-46 | 4.40 | 1.94 | 1.14 | 1.64 | 1.28 | 3.61 | 4.14 | 4.80 | 7.70 | 8-16 | 7.94 | 6.46 | 53.21 | | | | | | | STA | TION #2 | 92 | | | | | | | |---------|-------|------|------|------|--------|---------|------|-------|-------|-------|-------|-------|-------| | | | | | | (F.C. | 2' land | pan) | | | | | | | | | οcτ, | NOV. | DEC. | JAN, | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1932-33 | 7.58 | 7.50 | 3.84 | 4.93 | 5.30 | 7.19 | 7.07 | 9,39 | 9.14 | 11.39 | 10.79 | 8.06 | 92.17 | | 1933-34 | 7.80 | 7.57 | 3.46 | 4.96 | 3.06 | 7.30 | 9.03 | 11.34 | 7.72 | 12.14 | 10.76 | 10.93 | 96.07 | | 1934-35 | 7.84 | 4.51 | 3.80 | 2.71 | 4.29 | 3.94 | 5.58 | 7.26 | 8.98 | 11.90 | 11.98 | 9.56 | 82.34 | | 1935-36 | 7.62 | 4.82 | 3.89 | 4.21 | 2.22 | 5.32 | 6.40 | 9.84 | 10.94 | 12.18 | 12.42 | 10.58 | 90.4 | | 1936-37 | 6,75 | 6.88 | 3.48 | 3.32 | 2.58 | 4.25 | 8.38 | 7.69 | 9.44 | 13.42 | 11.56 | 10.58 | 87.34 | | 1937-38 | 8.14 | 4.44 | 4.09 | 4.54 | 2,69 | 4.37 | 6.78 | 9.32 | 8.36 | 11.70 | 12.12 | 11.36 | 87.91 | | 1938-39 | 8.26 | 6.68 | 3.95 | 3.18 | 3.89 | 4.18 | 7.79 | 8.46 | 10 AB | 12.07 | 11.73 | 10.68 | 91.36 | | 1939-40 | 8.93 | 5.58 | 4.28 | 2.08 | 3.16** | 5.28 | 7,06 | 9.46 | 9.28 | 13.70 | 10.91 | 9.90 | 89.67 | | 1940-41 | 7.51 | 5.78 | 3.13 | 1.92 | 1.65 | 3.51 | 4.44 | 9.30 | 8.88 | 10.43 | 10.00 | 8.48 | 78.02 | | 1941-42 | 6.85 | 5.66 | 2.19 | 3.20 | 3.76 | 6) 66 | 4.80 | 8.84 | 9.36 | 11.78 | 10.02 | 7.61 | 80.73 | | 1942-43 | 6.11A | 4.86 | 3.40 | 3.52 | 3.36 | 3.35 | 5.66 | 8.68 | 9.48 | 10.29 | 10.81 | 9,98 | 79.50 | | 1943-44 | 6 88 | 5.84 | 2.60 | 2.89 | 2.34 | 5.60 | 6.46 | 6.96 | 7.21 | 8.71 | 10.97 | 7.66 | 74.12 | | 1944-45 | 5.64 | 2.90 | 3.47 | 3.46 | 2.90 | 3.24 | 6.60 | 8.19 | 6.66 | 9.56 | 10.89 | 8.84 | 72.35 | | 1945-46 | 5.48 | 4.35 | 2.59 | 3.59 | 3.01 | 4.04 | 5.04 | 5.43 | 8.94 | 9.66 | 9.43 | 8.80 | 70.3 | | 1946-47 | 5.29 | 2.78 | 1.82 | 3.03 | 2.48 | 3.20 | 5.02 | 5.23 | 5.10 | 8.81 | 7.72 | 6.86 | 57.34 | | | | | | | | STATION | | NO RESE | | | | | | |---------|------|------|------|------|------|---------|----------|---------|------|-------|-------|--------|-------| | | | | | | (ü.s | .w.B. T | ype A Pa | ın) | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JŲLY | AUG. | SEPT. | TOTAL | | 1932-33 | 6.56 | 7.15 | 3,32 | 4.26 | 5.00 | 6.85 | 6.35 | 8,39 | 9.68 | 11.06 | 10.00 | 6.84 | 85.46 | | 1933-34 | 6.79 | 6.66 | 2.94 | 4.70 | 2.41 | 6.32 | 7.43 | 9,,50 | 6.36 | 10.75 | 9.41 | 8.83 | 82.10 | | 1934-35 | 7.34 | 3.25 | 2.84 | 1.82 | 2.12 | 3.44 | 5.10 | 5.98 | 8.38 | 11.66 | 11.78 | 8.15 | 71.86 | | 1935-36 | 7.04 | 3.77 | 3,24 | 3.94 | 2,59 | 4.68 | 5.74 | 8,51 | 9.67 | 11.17 | 11.06 | 9.40 | 80.81 | | 1936-37 | 5.76 | 5.41 | 2.54 | 1.78 | 2.21 | 3.71 | 7.25 | 6.32 | 7.38 | 11,36 | 10,62 | 9.19 | 73,53 | | 1937-38 | 6.73 | 3.30 | 2.99 | 3.47 | 2.09 | 5.39 | 5.99 | 7.78 | 8.28 | 10.39 | 10.78 | 9.30 | 76.49 | | 1938-39 | 6.36 | 5.24 | 3,46 | 1.93 | 4.02 | 3.32 | 6.00 | 7.30 | 8.32 | 10.67 | 9.83 | 8.53** | 74.98 | | 1939-40 | 8.46 | 3.95 | 3.26 | 1.84 | 2.81 | 4.50 | 7.14 | 7.54 | 8.11 | 10.83 | 9.23 | 8.08 | 73.75 | | 1940-41 | 6.73 | 4.21 | 1.92 | 1.53 | 1.12 | 3,33 | 2.80 | 7.82 | 8.02 | 9.66 | 8.22 | 6.98 | 62.34 | | 1941-42 | 5.80 | 4.12 | 2.45 | 2.55 | 3.82 | 6,45 | 5.02 | 7.15 | 7.77 | 11.75 | 9.41 | 7.15 | 73.44 | | 1942-43 | 5.92 | 4.64 | 3,89 | 3,47 | 3.73 | 4.08 | 5.79 | 8.16 | 8.97 | 10.04 | 9.87 | 9.53 | 78.09 | | 1943-44 | 6.42 | 5.09 | 3.09 | 2.92 | 3.27 | 6.38 | 6.25 | 6.57 | 6.83 | 9.04 | 10.97 | 7.23 | 74.06 | | 1944-45 | 5.81 | 4.03 | 3.41 | 3.32 | 3,24 | 4.09 | 7.10 | 7.69 | 6.87 | 9.87 | 9.75 | 8,98 | 74.16 | | 1945-46 | 5.23 | 4,17 | 3.11 | 4.54 | 3,53 | 5.19 | 5.50 | 5.60 | 9.24 | 10.57 | 10.65 | 9.12 | 76,45 | | 1946-47 | 6.56 | 3,56 | 2.48 | 3.92 | 3.33 | 4.62 | 6.56 | 6.41 | 7.13 | 11.75 | 9.80 | 8.94 | 75.06 | | | | | | OILII.EI | | | | RESERVO | ,IN | | | | | |-----------|------|--------|------|----------|------|----------|------|---------|------|-------|------|--------|----------------| | | | | | | ۵ | TATION # | 292 | | | | | | | | | | | | | (F | loating | Pan) | | | | | | | | | OCT, | NOV. | DEC. | JAN. | FEB. | MAR | APR. | MAY | JUNE | JÜLY | AUG. | SEPT. | TOTAL | | 1932-33 | 6.25 | 5.41 | 3,39 | 3.66+ | 3.70 | 4.79 | 5.48 | 7.26 | 7.21 | 9.28 | 9.38 | 7.16 | 72.97 | | 1933-34 | 6.02 | 5.70 | 2,86 | 3.56 | 1.79 | 4.82 | 6.89 | 8.46 | 6.12 | 9.20 | 8.87 | 8.21 | 72.50 | | 1934-35 | 6.53 | 3.38 | 2.90 | 1.64 | 2.17 | 2.63 | 3,62 | 5.60 | 7.19 | 8.98 | 8.86 | 7.28 | | | 1935-36 | 6.30 | 3.26 | 2.88 | 2,77 | 2.78 | 3.63 | 4.67 | 7.28 | 8.24 | 9.36 | 9.29 | 7.94 | 60.79 | | 1936-37 | 5,45 | 4.63 | 2.92 | 2.09 | 1.96 | 3,20 | 6.40 | 6,20 | 7.03 | 9.38 | 8.51 | 7.61 | 68.62 | | 1937-38 | 5,58 | 3.43 | 2.66 | 3.28 | 2,16 | 4,70 | 5.14 | 6.76 | 7.10 | 8.75 | 9.37 | 7.74 | 65.38 | | 1938-39 | 6.26 | 6.00 | 3.17 | 2.01 | 3,52 | 2.87 | 4,92 | 6.31 | 7.22 | 8.80 | 8.90 | 7.45** | 66.67 | | 1939-40 | 6.38 | 3.91 | 3,12 | 1.85 | 2.30 | 3,95 | 6.50 | 6.96 | 7.19 | 9.81 | 8.47 | 7.63 | 67.43 | | 1940-41 | 5.83 | 5.04 | 1.56 | 1.37 | .90 | 2.35 | 2.50 | 6.97 | 7,35 | 8.73 | 7.44 | 6.89 | 68.08
57.02 | | 1941 - 42 | 5.37 | 4.64 | 2.20 | 2.19 | 3.69 | 5.24 | 3.79 | 6.23 | 7,33 | 10.15 | 7.99 | 6.93 | 65.75 | | 1942-43 | 5.20 | 4.69 | 4.32 | 2.71 | 2.77 | 3,25 | 4.46 | 7.21 | 8.56 | 9.08 | 9.29 | 8.64 | 70.18 | | 1943-44 | 6.45 | 5.20 | 2.32 | 2.54 | 2,45 | 4.95 | 5,58 | 5.86 | 6.51 | 7.56 | 9.19 | 6.60 | 65.21 | | 1944-45 | 5.25 | 3.59 | 2.95 | 2.61 | 2.53 | 2.81 | 5.56 | 6.87 | 5.89 | 7.71 | 8.38 | 7.50 | 61.65 | | 1945-46 | 4.43 | 4.28 | 3.05 | 3.70 | 2.67 | 3,59 | 4.53 | 5.54 | 7.88 | 91.02 | 9.48 | 7.11 | 65.28 | | 1946-47 | 5.64 | 2.96** | 2.21 | 3.35 | 2.21 | 3.45 | 5.53 | 5.90 | 6.55 | 6.69 | 9.00 | 7.11 | 60.60 | | AVERAGE | | | | | | | 0.00 | 5.55 | 0.00 | 0.05 | 5.00 | 7.11 | 65.88 | | | | | | | | STATION | *202 | | | | | | | |---------|------|-------|------|------|-------------|----------|----------|------|------|-------|-------|-------------------|--------| | | | | | | | SIMITON | #293 | | | | | | | | | | | | | (U.S | 3.W.B. 1 | ype A Fe | in) | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-32 | 8.07 | 6.23 | 6.76 | 8.23 | 6.42 | 8.48 | 9.37 | 4.49 | 6.30 | 9.72 | 10,32 | 8.13 | 92.52 | | 1932-33 | 8.64 | 13.02 | 6.02 | 7.13 | 8.20 | 8.09 | 6.57 | 9.35 | 8.63 | 10.52 | 9.53 | 6. 0 2 | 102.32 | | 1933-34 | 7.95 | 13.21 | 7.70 | 8.60 | 3.41 | 8.28 | 8.18 | 9.02 | 5.99 | 10 61 | 8.96 | 8.26 | 100.17 | | 1934-35 | 7.16 | 5.20 | 5.99 | 4.75 | 5.60 | 4.90 | 5.27 | 6.22 | 7.76 | 10.07 | 9.97 | 7.47 | 80,36 | | 1935-36 | 8.54 | 6,50 | 5.84 | 5.98 | 2.27 | 5.90 | 5.92 | 8.22 | 9.82 | 9.78 | 9.78 | 8.86 | 87.41 | | 1936-37 | 6.83 | 10.20 | 6.21 | 3.26 | 5.91 | 6.34 | 8.25 | 6.11 | 8.11 | 10.50 | 9.19 | 8.18 | 90.09 | | 1937-38 | 7.20 | 3.96 | 6.51 | 7.09 | 2.50 | 4.32 | 6.15 | 7.56 | 6.91 | 9.49 | 9.40 | 8.52 | 79.61 | | 1938-39 | 6.01 | 9.88 | 8.16 | 6.26 | 5,18 | 4.61 | 6.87 | 7.64 | 9.00 | 10.01 | 9.85 | 10.37 | 93.84 | | 1939-40 | 9.82 | 6.84 | 7.28 | 2.68 | 5.03 | 6.66 | 6.85 | 8.07 | 7.72 | 10.48 | 8.50 | 7.59 | 87.52 | | 1940-41 | 8.13 | 7.93 | 5.33 | 3.54 | .91 | 4.90 | 5.06 | 9.04 | 6.85 | 9.34 | 8,20 | 7.63 | 76.86 | | 1941-42 | 7.08 | 8.13 | 6.09 | 5.84 | .91
4.86 | 7.55 | 4.74 | 7,99 | 7.99 | 11.15 | 9.12 | 8.33 | 88.87 | | 1942-43 | 7.31 | 7.69 | 5.64 | 6.05 | 6.50 | 3.01 | 5.51 | 8.24 | 8.66 | 9.77 | 9.42 | 9.29 | 87.09 | | 1943-44 | 6.74 | 8.15 | 4.46 | 5.97 | 2152 | 8,59 | 6,98 | 6.05 | 6.48 | 8.88 | 10.50 | 7.92 | 83.24 | | 1944-45 | 5.68 | 4.41 | 6.81 | 5.43 | 4.67 |
4.77 | 7.30 | 7.72 | 6.17 | 9.63 | 9.41 | 8.70 | 80.70 | | 1945-46 | 6.98 | 7.08 | 5.44 | 7.18 | 4,95 | 5.76 | 5.94 | 5.92 | 8.80 | 10.13 | 9.69 | 8.58 | 86.45 | | 1946-47 | 7.93 | 5.48 | 5.02 | 6.83 | 4.27 | 5.12 | 6.92 | 6.63 | 6.96 | 12.45 | 9.81 | 8.50 | 85.92 | | | | | | | SI | TION # | 321 | | | | | | | |---------|-------|------|------|-------|--------|--------|------|-------|-------|-------|-------|-------|------| | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTA | | 1931-32 | 6.40 | 3.84 | 1.42 | 1.78 | 2.64** | 6.70 | 8.70 | 9.35 | 11.52 | 16.30 | 15.53 | 12.42 | 96.6 | | 1932-33 | 8.67 | 6.51 | 2.96 | 1.72 | 3.48 | 5.67 | 6.35 | 7.76 | 9.82 | 12.29 | 12.25 | 10.32 | 88.3 | | 1933-34 | 8.32 | 6.20 | 3.10 | 3.96 | 3.13 | 6.43 | 8.46 | 10.61 | 8.70 | 13.08 | 12.18 | 10.06 | 94.2 | | 1934-35 | 6.51 | 3.63 | 3.19 | 2.80 | 3.39 | 3.71 | 4.85 | 7.20 | 14.08 | 12.45 | 10.52 | 9.84 | 82,1 | | 1935-36 | 7.50 | 3.94 | 2.62 | 2.64 | 2.22 | 5.14 | 6.28 | 8.88 | 10.48 | 11.55 | 11.66 | 9.40 | 82.3 | | 1936-37 | 6.44A | 4.72 | 2.54 | 1.36# | 1.68 | 3.10 | 5.60 | 6.72 | 8.48 | 12.05 | 10.78 | 8.08 | 71.5 | | 1937-38 | 5,66 | 2,92 | 3.11 | 2.48 | 1.62 | 2.62 | 4.92 | 6.00 | 8.12 | 9.72 | 9.06 | 7.22 | 63.4 | | 1938-39 | 4.53 | 3.78 | 2.56 | 1.71 | 2,52 | 3.56 | 5.04 | 6.71 | 9.36 | 10.28 | 9.72 | 6.45 | 66.2 | | 1939-40 | 5.00 | 2.68 | 1.62 | 1.34 | 2.04 | 4.05 | 5.24 | 8.33 | 9.42 | 10.14 | 10.22 | 7.70 | 67.7 | | 1940-41 | 4.70 | 2.40 | 2.10 | 1.19 | 1.22 | 2.91 | 2.92 | 6.68 | 7.74 | 10.06 | 9.54 | 7.55 | 59.0 | | 1941-42 | 4.09 | 2,46 | 1,18 | 2.66# | 2.65 | 5.00 | 5.06 | 8.30 | 11.77 | 14.08 | 11.96 | 9.05 | 78.2 | | 1942-43 | 7,24 | 4.62 | 3.18 | 2.76 | 3.04 | 3.84 | 5.52 | 10.45 | 10.15 | 12.20 | 12,00 | 10.10 | 85.1 | | 1943-44 | 6.88 | 4.88 | 4,57 | 3.00 | 3.79 | 5.47 | 6.28 | 7.88 | 8.15 | 12.32 | 12.82 | 10.92 | 86.9 | | 1944-45 | 7.40 | 3,88 | 3.06 | 3.24 | 3.52 | 2.70 | 7.37 | 9,32 | 9.74 | 12.06 | 11.47 | 9.20 | 82.9 | | 1945-46 | 6.01 | 3,96 | 3.03 | 3.80 | 3.52 | 4.70 | 6.28 | 7.32 | 11.82 | 12.31 | 12.22 | 9.86 | 84.8 | | 1946-47 | 5.40 | 3.20 | 1.96 | 2.60 | 2.50 | 3.89 | 5.46 | 7.81 | 6.38 | 11.08 | 9.80 | 7.86 | 69.9 | | | | | | | S | TATION A | 334 | | | | | | | |---------|------|------|------|--------|---------|------------|------------|-----------|-----------|-------|-------|-------|-------| | | | | | | | (LAND PA | (N) | | | | | | | | | οcτ. | NQV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1935-36 | 7.18 | 4.13 | 3.05 | 2,92 | 1.42 | 4.32 | 4,60 | 6,16 | 9.82 | 11.70 | 11.51 | 10.00 | 76.81 | | 1936-37 | 5.79 | 4,68 | 1.88 | 1.07 | 1.81 | 2.68 | 6.06 | 6.28 | 8,39 | 11.40 | 10.64 | 10,40 | 71.08 | | 1937-38 | 7.92 | 4.95 | 3.64 | 3.17 | 4.92 | 3,08 | 5.46 | 6.88 | 8.98 | 11.86 | 11.74 | 10.66 | 83.26 | | 1938+39 | 6.76 | 5.94 | 3.78 | 3.04 | 3.24 | 3.94 | 6.40 | 8.06 | 10.74 | 13.10 | 12.80 | 8.85 | 86.65 | | 1939-40 | 7.07 | 4.88 | 3.05 | 1.92 | 2.48 | 4.58 | 4.92 | 7.98 | 10.28 | 12.07 | 12,05 | 9.36 | 80.65 | | 1940-41 | 7.39 | 4.16 | 2.23 | 1.59 | 1.42 | 3.20 | 3.91 | 6.96 | 8.01 | 11.56 | 9.96 | 8.86 | 69.25 | | 1941-42 | 5.11 | 2.78 | 1.56 | 2.15 | 2.88 | 3.98 | 3,56 | 7.08 | 8.98 | 12.42 | 10.88 | 9.22 | 70.60 | | 1942-43 | 6.36 | 3.56 | 2.50 | 2.65 | 2.08 | 2.63 | 4.22 | 7.50 | 7.88 | 10.75 | 10.62 | 9.32 | 70.07 | | 1943-44 | 6.16 | 4.04 | 1.54 | 1.57** | 1.46 | 4.08 | 4.45 | 6.24 | 6.44 | 9.95 | 10.40 | 7.90 | 64.23 | | 1944-45 | 5.78 | 2.23 | 1.93 | 1.86 | 2.08 | 2.27 | 5.27 | 6.62 | 7.02 | 10.66 | 9.65 | 7.88 | 63.25 | | 1945-46 | 4.74 | 2.90 | 1.66 | 3.02 | 2.10 | 2.86 | 4.63 | 5.34 | 8.68 | 9.41 | 10,10 | 7.81 | 63.25 | | 946-47 | 3.50 | 1.48 | 1.22 | 2.20 | 1.60 | 2.48 | 3,88 | 5.62 | 6.29 | 9.22 | 8,13 | 6.89 | 52.51 | | | | | | NOTE: | A VERY | NOTICEABL | E DECREA | SE IN EVA | PORATION | | | | | | | | | | | IS EVI | DENT STAR | TING WITH | THE SEAS | ON 1940-4 | 1 | | | | | | | | | | AND IN | CREASING T | THROUGH TO | JULY 19 | 47. THIS | | | | | | | | | | | WAS DUI | E TO SMALE | CEDAR TI | REES BEIN | G PLANTED | | | | | | | | | | | WEST AN | D SOUTHWE | ST OF ST | TION, ABO | UT 20 FEE | т, | | | | | | | | | | | | TION #33
hting pa | | | | | | | |---------|------|------|--------|------|------|------|----------------------|------|------|-------|------|-------|------| | | OCT. | NOV. | DEC. | JAN. | FE8. | MAR. | APR, | MAY | JUNE | JULY | AUG. | SEPT. | TOTA | | 1936-37 | NI | N1 | NI | NI | NI | N! | NI | 4.37 | 6.69 | 8.60 | 8,28 | NR | INC. | | 1937-38 | NR | NR | NR | NR | NR | INC. | 4,30 | 5.16 | 6.02 | 8.07 | INC. | NR | INC. | | 1938-39 | NR | NR | NR | NR | INC. | 2.20 | INC. | NR | NR | NR | NR | NR | INC. | | 1939-40 | NR. | NR | NR | INC. | 1.97 | 3.90 | 4.24 | 7.36 | 8.50 | 10.36 | INC. | NR | INC. | | 1940-41 | NR | NR | 1.78** | 1.51 | 1.20 | 2,90 | 3.28 | 5.88 | 6.40 | 8.84 | 8.10 | 7.84 | INC. | | 1941-42 | 3.91 | INC. | 1.11 | 1.50 | 2.07 | 3.40 | 3,32 | 6.14 | 7.62 | 10.41 | 9.42 | INC. | INC. | | 1942-43 | NR | NR | INC. | 1.60 | 2.07 | 2.58 | 3.94 | 6.42 | 7.16 | 9.09 | 9.26 | INC. | INC. | | 1943-44 | NR | NR | INC. | 1.73 | 1.60 | 3.97 | 4.80 | 6.06 | 5.91 | 8.47 | 8.94 | 6.47 | INC. | | 1944-45 | INC. | !NC. | 1.98 | 1.90 | 1.99 | 2.23 | 5.04 | 6.28 | 6.22 | 9.00 | 8.96 | 7.19 | INC. | | 1945-46 | 4.48 | 3,28 | 1.70 | 3.08 | 1.98 | INC. | NR | NR | NR | NR | NR | NR | INC. | | 1946-47 | NR | INC. | 1.40 | INC. | NG | NR INC. | | | | |). | CNTHLY | EVAPORA | TA NOIL | SILVER | LAKE RES | SERVOIR | | | | | |---------|------|-------|--------|--------|---------|---------|-----------|----------|---------|------|------|-------|-------| | | | | | | | STATIO | N #336 | | | | | | | | | | | | | | (Float | ing' Pan) | | | | | | | | | oct. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-32 | 4.89 | 3.89 | 1.69 | 3.43 | 1.83 | 4.30 | 5.63 | 5.55 | 6.27 | 7.19 | 7.52 | 5.59 | 57.78 | | 1932-33 | 5.03 | 3.79 | 2.33 | 1.80 | 2.65 | 3.72 | 4.69 | 5.49 | 6.77 | 7.42 | 7.38 | 5.15 | 56.2 | | 1933-34 | 4.51 | 3.89 | 2.31 | 2.74 | 1.73 | 3.72 | 5.12 | 7.04 | 5.47 | 6.95 | 7.02 | 6.06 | 56.56 | | 1934-35 | 4.32 | 2.66 | 1.48 | 1.42 | 2.39 | 2.82 | 2.83 | 5.14 | 6.19 | 7.22 | 7.27 | 6.00 | 49.7 | | 1935-36 | 5.34 | 3,13 | 2.09 | 2.02 | 1.20 | 3.37 | 4.23 | 6.36 | 6.72 | 7.36 | 6.84 | 5.92 | 54.5 | | 1936-37 | 4.77 | 3.47 | 1.60 | DRY | DRY | DRY | DRY | DRY | INC. | INC. | INC. | .INC. | INC. | | 1937-38 | INC. | .INC. | INC. | 2.43 | 1.50 | 4.00 | 4.60 | 5.83 | 6.15 | 7.22 | 7.93 | 6.06 | INC. | | 1938-39 | 5.00 | 4.39 | 2.52 | 3,72 | 2.53 | 3.36 | 4.59 | 6.30 | 6.79 | 7.98 | 7.06 | 6.36 | 60.6 | | 1939-40 | 6.24 | 3.59 | 2.63 | 1.35 | 1.96 | 4.01 | 5.05 | 6.38 | 6.52 | 7.58 | 7.29 | 6.16 | 58.7 | | 1940-41 | 5.95 | 4.45 | 2.00 | 1.88 | 1.93 | 1.11 | 3.90 | 7.00 | 6.04 | 7.46 | 6.66 | 5.96 | 54.3 | | 1941-42 | 4.78 | 3.43 | 2.25 | 2.06 | 2.91 | 4.21 | 4.55 | 6.06 | 5.56 | 7.74 | 6.83 | 5.93 | 56.3 | | 1942-43 | 5.09 | 3.75 | 3,26 | 2.64 | 2.07 | 2.27 | 4.64 | 6.62 | 6.74 | 7.73 | 7.36 | 6.74 | 58.9 | | 1943-44 | 5.19 | 3.88 | 1.75 | 2.33 | 2.70 | 3.93 | 5.29 | 5.22 | 5.92 | 6.80 | 7.40 | 5.68 | 56.0 | | 1944-45 | 4.34 | 2.80 | 2.81 | 2.04 | 1.90 | 3.00 | 5.43 | 5.89 | 4.83 | 5.44 | 5.71 | 4.84 | 49.0 | | 1945-46 | 3.87 | 4.07 | 2.85 | 4.31 | 2.89 | 3.80 | 3.90 | 4.36 | 5,34 | 6.22 | 6.21 | 4.74 | 52.9 | | 1946-47 | 4.51 | 2.44 | 2.35** | 3,32 | 2.48 | 3.41 | 5.04 | 5.04 | 6.17 | 7.31 | 7.10 | 4.88 | 54.0 | | AVERAGE | | | | | | | | | | | | | 55-4 | | | | | | MONT | THLY EVA | PORATION | AT BAL | DWIN PA | RK | | | | | |---------|------|------|------|--------|----------|-----------|--------|---------|------|-------|------|--------|----------------| | | | | | | | STATION | #347 | | | | | | | | | | | | | | (24" dia. | Fan) | | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JUL.Y | AUG. | SEPT. | TOTAL | | 1933-34 | 4.62 | 3,91 | 1.73 | 1.83 | 1.81 | 4.13 | 6.05 | 8.52 | 6.51 | 9.32 | 8.30 | 7.27 | 64.00 | | 1934-35 | 4.26 | 2.66 | 2.23 | 1.70 | 2.64 | 2.90 | 4.07 | 5.70 | 7.12 | 9.13 | 8.57 | 6.41 | 57.39 | | 1935-36 | 5.28 | 2.99 | 2.19 | 2.05 | 1.89 | 3,12 | 4.05 | 7.29 | 8.11 | 8.48 | 7.80 | 6.31 | 59.56 | | 1936-37 | 4.50 | 3.41 | 1.90 | 1.29 | 1.98 | 3.34 | 5.00 | 5.11 | 7.17 | 8.96 | 8.48 | 7.36 | 58.50 | | 1937-38 | 4.84 | 2.94 | 2.44 | 2.28 | 2.02 | 3.07 | 4.31 | 6.11 | 6.85 | 8.56 | 8.24 | 7.03 | 58.69 | | 1938-39 | 5.14 | 3,91 | 2.49 | 1-91 | 2.74 | 2.93 | 4.68 | 6.34 | 8.25 | 9.04 | 8.30 | 6.95** | 62.68 | | 1939-40 | 4.65 | 2,97 | 2.37 | 1.23** | 2.34 | 3,43 | 4.54** | 6.54 | 6.99 | 9.13 | 8.21 | 6.96 | 59.36 | | 1940-41 | 5.09 | 2,92 | 1.93 | 1.47 | 1.56 | 2.96 | 3.69 | 6.85 | 6.42 | 8.22 | 7.00 | 6.46 | 54.57 | | 1941-42 | 4.71 | 3.07 | 1.78 | 1.73 | 2.03 | 3.80 | 3.29 | 5.77 | 6.17 | 9.11 | 8.19 | 6.25 | 55.90 | | 1942-43 | 5.02 | 2.88 | 3.90 | 1.81 | 1.97 | 2.17 | 3.79 | 6.35 | 7.52 | 8.83 | 8.39 | 7.20 | 59.83 | | 1943-44 | 5.17 | 3.71 | 2.04 | 1.59 | 2:.22 | 3.40 | 5.09 | 5.94 | 6.18 | 7.93 | 8.69 | 6.03 | 57.99 | | 1944-45 | 3.67 | 2.18 | 1.87 | 1.32 | 1.93 | 2.63 | 4.53 | 5,98 | 5.12 | 7.73 | 6.14 | 6.36 | 49,46 | | 1945-46 | 4.15 | 3.09 | 2.03 | 2.47 | 2.04 | 3.47 | 4.15 | 4.59 | 7.95 | 8.60 | 8.99 | 7.55 | 59.08 | | 1946-47 | 3.64 | 1.73 | 1.19 | 1.37 | 1.43 | 2.50 | 4.09 | 4.36 | 5.08 | 8.06 | 7.11 | 5.24 | 45.80
57.34 | | | | | | | | STATION | #347 | | | | | | | |------------|------|------|------|--------|----------|----------|---------|---------|------|-------|-------|-------|-------| | | | | | (F. | C. 24" d | lia. Pan | -L.A.C. | F.C.D.) | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | 5EPT. | TOTAL | | 1932-33 | 5,63 | 4.80 | 2.44 | 2.21 | 3.14 | 4.88 | 5.82 | 7.75 | 9.08 | 10.10 | 9.41 | 6,59 | 71.85 | | 1933-34 | 4.99 | 4.05 | 1.74 | 1.72 | 1.62 | 4.33 | 6.36 | 9.06 | 6.80 | 9.78 | 8.92 | 7.98 | 67,35 | | 1934-35 | 4.25 | 2.65 | 2.19 |
1.77 | 2.71 | 3.09 | 4.39 | 6.38 | 8.52 | 10.19 | 9.64 | 7.34 | 63.12 | | 1935-36 | 6.12 | 3.42 | 2.45 | 2.32 | 2.08 | 3.68 | 4.70 | 8.49 | 9.76 | 10.29 | 9.56 | 7.56 | 70,43 | | 1936-37 | 5.11 | 4.04 | 1.96 | 1.41 | 2.06 | 3.84 | 5.82 | 6.04 | 8.32 | 10.17 | 10.21 | 8.21A | 67.19 | | 1937-38 | 5.09 | 2.98 | 2.33 | 2.50 | 1.95 | 3.38 | 4.70 | 6.74 | 7.32 | 8.98 | 8.86 | 7.42 | 62.25 | | 1938-39 | 5,20 | 4.06 | 2.42 | 1.88 | 3.12 | 2.94** | 4.61 | 6.50 | 8.57 | 9.06 | 8.46 | 7.14 | 63.96 | | 1939-40 | 4.66 | 2.92 | 2.30 | 1.12** | 2.26** | 3.46 | 4,52 | 6.59 | 7.04 | 9.21 | 8.37 | 7.01 | 59.46 | | 19 40 - 41 | 5.05 | 2.83 | 2.02 | 1.41 | 1.47 | 2.96 | 3.52 | 7.04 | 6.66 | 8.50 | 7.30 | 6,40 | 55.16 | | 1941 - 42 | 4.52 | 2.84 | 1.35 | 1.40 | 2.01 | 3.78 | 3.36 | 5.74 | 6.14 | 9.14 | 8.27 | 6.12 | 54,67 | | 1942-43 | 4.82 | 2.90 | 2.06 | 1.76 | 2.00 | 2.38 | 3.87 | 6.56 | 7.44 | 8.93 | 8.38 | 7.08 | 58,18 | | 1943-44 | 4.93 | 3.58 | 2.03 | 1.58 | 1.82 | 3.48 | 5.00 | 5.89 | 6.38 | 7.86 | 8.58 | 5.90 | 57.03 | | 1944-45 | 3.54 | 2.14 | 1.76 | 1.73 | 1.69 | 2.55 | 4.61 | 5.57 | 5.06 | 7.75 | 6.45 | 6.43 | 49.28 | | 1945-46 | 4.20 | 3.04 | 2.04 | 2.45 | 2.02 | 3.31 | 4.18 | 4.62 | 7.94 | 8.64 | 8.36 | 7.68 | 58.48 | | 1946-47 | 4.61 | 2,36 | 1.61 | 1.95 | 2.21 | 3.62 | 5,26 | 6.16 | 6.32 | 9.57 | 8.41 | 6.21 | 58.29 | | | | | | | | STATIO | N #347 | | | | | | | |---------|------|------|--------|--------|----------|-----------|-----------|-----------|------|------|------|--------|-------| | | | | | | (l | .s.w.B. | Type A | Pan) | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1932+33 | 5.00 | 4.23 | 2.07 | 2.47 | 2.38 | 4.79 | 5.28 | 6.89 | 8.15 | 9.49 | 8.53 | 5.64 | 64.92 | | 1933-34 | 4.80 | 4.14 | 1.86** | 2.74 | 2.36 | 4.56 | 5.97 | 8.39 | 6.38 | 9.44 | 8.32 | 7.32 | 66.28 | | 1934-35 | 4.43 | 2.49 | 2.21 | 1.94 | 2.94 | 3.20 | 4.45 | 5.92 | 7.48 | 9.40 | 8.82 | 6.66 | 59.94 | | 1935-36 | 5.64 | 3.28 | 2.38 | 2.45 | 2.36 | 3.78 | 4.94 | 7.78 | 8,92 | 8.98 | 8.35 | 6.67 | 65.53 | | 1936-37 | 4.78 | 3.85 | 2.00 | 1.46 | 2.37 | 4.02 | 5,77 | 5.25 | 7.78 | 9.07 | 8.22 | 7.13 | 61.70 | | 1937-38 | 4.70 | 2.75 | 2.51 | 2,64 | 2.53 | 3.78 | 4.87 | 6.69 | 6.86 | 8.79 | 8.47 | 7.11 | 61.70 | | 1938-39 | 4.67 | 3,57 | 2.61 | 2.01 | 3.18 | 3.38 | 4.98 | 6.34 | 8.32 | 8.94 | 8.53 | 7.47** | 64.00 | | 1939-40 | 4.88 | 2.90 | 2.39 | 1.50** | 2.82 | 3.93 | 4.89 | 6.69 | 6.66 | 8.85 | 7.83 | 6.66 | 60,00 | | 1940-41 | 5.01 | 2.98 | 2.34 | 1.88 | 2.07 | 3,63 | 4.29 | 7.48 | 6.51 | 8.41 | 6.91 | 6.12 | 57.63 | | 1941-42 | 4.53 | 3,13 | 2.06 | 1.82** | 2.73** | 4.41 | 3.71 | 6.99 | 6.49 | 9.31 | 8.06 | 5.99 | 59.23 | | 1942-43 | 5.06 | 3.73 | 2.21 | 2.26 | 2.80 | 2.65 | 4.27 | 6.74 | 7.46 | 8.89 | 8.55 | 6.98 | 61.60 | | 1943-44 | 4.74 | 3.48 | 2.08 | 2.10 | 2.41 | 4.09 | 5.08 | 6.00 | 6.09 | 7.85 | 8.27 | 5.69 | 57.88 | | 1944-45 | 9.83 | 2.32 | 2.25 | 1.74 | 2.39 | 3.36 | 5.09 | 6.07 | 5.21 | 7.93 | 5.93 | 6.02 | 52.14 | | 1945-46 | 3.97 | 3.06 | 1.96 | 2.68 | 2.26 | 3.41 | 4.14 | 4.16 | 7.30 | 8.08 | 7.78 | 6.74 | 55.54 | | 1946-47 | 4.01 | 2.29 | 1.71 | 2.03 | 2.19 | 3.70 | 5.29 | 5.10 | 6.12 | 9.68 | 8.14 | 5.63 | 55.89 | | AVERAGE | | | | | | | | | | | | | 60.27 | | | | | | | NOTE: TI | HE SEASON | 1945-46 | IS ABOUT | 10% | | | | | | | | | | | L | DW. DUE T | C PAN BEI | NG PAINTE | D | | | | | | | | | | | | STATION | | DWIN PAI | | | | | | |---------|------|------|------|---------|------|---------|---------|----------|------|------|------|--------|-------| | | | | | | | (6' dia | a. Fan) | | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1932-33 | 4.43 | 4.06 | 2.22 | 1.89 | 3.49 | 3.61 | 4.16 | 6.43 | 6.89 | 7.75 | 6.87 | 4.95 | 56.75 | | 1933-34 | 4.01 | 3,11 | 1.36 | 1.58 | 1.55 | 3.57 | 5.03 | 7.23 | 5.43 | 7.78 | 7.11 | 6.04 | 53,80 | | 1934-35 | 3.43 | 2.13 | 1.71 | 1.41 | 2.22 | 2.48 | 3.51 | 4.91 | 6.22 | 7.78 | 7.22 | 5.46 | 48.48 | | 1935-36 | 4.60 | 2.62 | 1.84 | 1.77 | 1.70 | 2.93 | 3.81 | 6.49 | 7.26 | 7.54 | 7.04 | 5.60 | 53,20 | | 1936-37 | 3.81 | 2.96 | 1.59 | 1.05 | 1.74 | 3.09 | 4.67 | 4.51 | 6.29 | 7.72 | 7.37 | 6.68 | 51.48 | | 1937-38 | 4.11 | 2,32 | 1.96 | 1.99 | 1.72 | 2.99 | 3.97 | 5.42 | 6.04 | 7.43 | 7.13 | 5.96 | 51.04 | | 1938-39 | 4.24 | 3.23 | 2.19 | 1.54 | 2.52 | 2.65 | 4.14 | 5.51 | 7.19 | 7.68 | 7.19 | 5.96** | 54.04 | | 1939-40 | 4.11 | 2.37 | 1.94 | 1.09 ** | 2.16 | 3.06 | 3.90 | 5.68 | 5.96 | 7.76 | 6.88 | 5.80 | 50171 | | 1940-41 | 4.36 | 2.53 | 1.67 | 1.33 | 1.48 | 2,70 | 3,34 | 5.99 | 5.69 | 7.24 | 6.05 | 5.49 | 47.87 | | 1941-42 | 3.91 | 2.58 | 1.35 | 1.52 | 1.77 | 3.47 | 3.06 | 5,89 | 5.54 | 7.87 | 7.23 | 5.28 | 49.47 | | 1942-43 | 4.28 | 2.44 | 1.72 | 1.58 | 1.82 | 2.12 | 3.60 | 5.68 | 6.40 | 7.70 | 7.21 | 6.10 | 50.65 | | 1943-44 | 4.17 | 2.93 | 1.69 | 1.40 | 2.60 | 3.16 | 4.47 | 5.30 | 5.78 | 6.94 | 7.53 | 5.04 | 51.01 | | 1944-45 | 3.13 | 1.88 | 1.63 | 1.27 | 1.78 | 2.52 | 4.06 | 5.18 | 4.55 | 6.96 | 5.43 | 5.57 | 43.96 | | 1945-46 | 3,57 | 2.64 | 1.71 | 2.25 | 1.91 | 3,22 | 3.96 | 4.03 | 6.95 | 7.60 | 7:43 | 6,39 | 51.66 | | 1946-47 | 3.90 | 2.08 | 1.49 | 1.72 | 1.77 | 2.93 | 4.47 | 5.16 | 5.37 | 8.40 | 7.31 | 5.53 | 50.13 | | | | | | | | STATION | #351 | | | | | | | |---------|------|------|------|-------|---------|-----------|-----------|-----------|-------|-------|-------|--------|--------| | | ocт. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-32 | 7.34 | 4.60 | 3.11 | 2.86 | 2.10 | 6.50 | 8.11 | 10.67 | 12.70 | 16.61 | 17.14 | 13.02 | 104.76 | | 1932-33 | 8.14 | 4.69 | 2.87 | 1.98 | 3.56 | 5.70 | 7.36 | 8.96 | 11.52 | 17.00 | 13.89 | 11,60 | 97.27 | | 1933-34 | 8.72 | 4.95 | 2.69 | 2.79 | 3.68 | 6.29 | 9.30 | 12.70 | 12.34 | 16.16 | 15,64 | 10.95 | 106.21 | | 1934-35 | 6.78 | 3.54 | 1.80 | 1.58# | 2.64 | 3.86 | 6.76 | 10.72 | 15.54 | 16.36 | 13.40 | 11.72 | 94.70 | | 1935•36 | 7.70 | 4.12 | 3.12 | 3.68 | 2.20 | 6.70 | 7.66 | 11.42 | 13.33 | 15.15 | 14.64 | 11.58 | 101.30 | | 1936-37 | 6.98 | 4.45 | 2.56 | 2.08 | 2.44 | 4.06 | 6.22 | 9.92 | 12.08 | 15.96 | 14.76 | 10.96 | 92.47 | | 1937•38 | 7.08 | 4.82 | 2.71 | 2.78# | 2.38 | 4.32 | 6.48 | 11.12 | 14.62 | 15.77 | 14.18 | 10.02A | 96.28 | | | | | | 8 | OTE: "A | " SEPTEMB | ER. 1938. | SEE LEGEN | ٥. | | | | | | | | | | | | STATION | #441 | | | | | | | | 1945-46 | 5.84 | 3.52 | 2.91 | 3.12 | 2.88 | 4.88 | 5.90 | 8.92 | 12.68 | 14.16 | 15.05 | 10.15 | 90.01 | | 1946-47 | 6.01 | 2.62 | 1.26 | 2.12 | 2.42 | 3.72 | 5.47 | 8.70 | 11.20 | 11.85 | 11.96 | 9.25 | 76.58 | | | | | | | 5 | * MOITATE | 390 | | | | | | | |--------------------|------|------|--------|------|------|-----------|--------|--------|-------|--------|-------|-------|----------------| | | | | | | | (4' Pan |) | | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1930-31 | 6.04 | 5.18 | 3.16 | 2.87 | 2.88 | 6.40 | 6.19 | 6.98 | 7.79 | 10.37 | 9.13 | 7.60 | 74.59 | | 1931-32 | 5.41 | 3.61 | 1.75 | 1.96 | 2.74 | 5.24 | 6.31 | 6.49 | 7.28 | 9.76 | 9.22 | 7.21 | 66.98 | | 1932-33 | 6.30 | 5.66 | 2.32 | 2.54 | 3.80 | 5.60 | 5.36 | 7.36 | 10,00 | 11,60 | 10.69 | 7.99 | 79.22 | | 1933-34 | 7.73 | 7.02 | 2,30** | 3.54 | 2,54 | 5.47 | 6.10 | 8.65 | 6.17 | 10.37 | 8.99 | 7.97 | 74.8 | | 1934-35 | 5,29 | 2.90 | 2.16 | 2.06 | 3,12 | 3.10** | 3.84 | 5.10 | 7.42 | 9.16 | 9.07 | 7.04 | 60.26 | | 1935-36 | 5.74 | 3.35 | 2.77 | 2.83 | 1.66 | 4.07 | 4.86 | 7.40** | 8,36 | 9.12 | 8.86 | 7.20 | 66.22 | | 1936-37 | 4.97 | 4.40 | 2.15 | 82# | 1.67 | 3.04 | 5.33 | 4.74 | 6.88 | 9.20** | 9.17 | 8.03 | 61.42 | | 1937-38 | 5.71 | 2.78 | 2.35 | 2.35 | 1.82 | 2.90 | 4.45 | 5.72 | 6.35 | 8.46 | 8.33 | 7.34 | 58.56 | | 1938-39 | 4.38 | 3.94 | 2.40 | 1.88 | 2.35 | 2.70 | 4.34 | 5.64 | 7.88 | 8.66 | 8.63 | 6.65 | 59.45 | | 1939-40 | 4.81 | 3.23 | 2.54 | 1.49 | 2.03 | 3.74 | 4.30** | 6.54 | 6.97 | 9.80 | 8.63 | 6.92 | 61.00 | | 1940-41 | 5.82 | 3.36 | 2.29 | 1.58 | 1.24 | 3,23 | 3,37 | 6.42 | 6.26 | 8.86 | 7.00 | 5.93 | 55.36 | | 1941-42 | 3.98 | 3.13 | 1.54 | 1.88 | 2.34 | 4.14 | 3.37 | 6.46 | 6.72 | 9.62 | 8.15 | 6.40 | 57.73 | | 1942-43 | 4.39 | 2.99 | 2.21 | 2.42 | 2.40 | 2.38 | 4.05 | 6.76 | 7.06 | 8.87 | 8.59 | 7.64 | 59.76 | | 1943-44 | 4.97 | 3.61 | 1.64 | 1.79 | 1.60 | 3.91 | 4.37 | 5.50 | 5.27 | 7.68 | 8.76 | 5.34 | 55.44 | | 1944 - 45 | 4.36 | 2.09 | 2.10 | 1.93 | 2.02 | 2.58 | 4.88 | 5.90 | 4.84 | 8.26 | 8.02 | 6.61 | 53.59 | | 1945-46 | 4.21 | 3.02 | 1.85 | 3.00 | 2.40 | 3.32 | 4.57 | 4.06 | 8.16 | 8.74 | 8.98 | 7.39 | 59.70 | | 1946-47 | 3.94 | 2.20 | 1.69 | 2.50 | 2,38 | 3.14 | 4.99 | 5.65 | 6.47 | 10.72 | 8.58 | 7.57 | 59.83
62.59 | | 1946-47
AVERAGE | 3.94 | 2.20 | 1.69 | 2.50 | 2,38 | 3.14 | 4.99 | 5,65 | 6.47 | 10.72 | 8.58 | 7.57 | | | | | | | | | STATIO | N #390 | | | | | | | |---------|-------|------|--------|-------|------|--------|--------|------|------|------|------|-------|-------| | | | | | | | (6' | Pan) | | | | | | | | | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1930-31 | 5.14 | 4.15 | 2.76 | 2,21 | 2,39 | 4.97 | 4.49 | 5.46 | 6.26 | 8.80 | 7.68 | 6.30 | 60.61 | | 1931-32 | 4.33+ | 2.77 | 1.34 | 1.54 | 1.78 | 3.89 | 5.03 | 5.28 | 6,20 | 7.64 | 7.46 | 5.44 | 52.68 | | 1932-33 | 5.02 | 4.28 | 1.90 | 1.92 | 3.07 | 4.21 | 3.77 | 5.62 | 7.36 | 8.53 | 8.11 | 6.17 | 59.96 | | 1933-34 | 5.69 | 4.90 | 1.90** | 2.80 | 2.17 | 4.45 | 5.33 | 7.32 | 5.72 | 8.72 | 8,08 | 7.04 | 64.12 | | 1934-35 | 4.52 | 2.76 | 1.96 | 1.62 | 2.60 | 2.59 | 3.46 | 4.50 | 6.58 | 8.12 | 7.94 | 6.34 | 52.99 | | 1935-36 | 5.23 | 3.05 | 2.52 | 2.50 | 1.44 | 3.40 | 3.97 | 6.68 | 7.43 | 8.21 | 8.14 | 7.04 | 59.61 | | 1936-37 | 4.82 | 4.27 | 2.06 | 1.00# | 1.56 | 2.71 | 4.75 | 4.72 | 6.11 | 8.30 | 7.94 | 7.10 | 55.34 | | 1937-38 | 5.20 | 2.88 | 2,39 | 2.14 | 1.48 | 2.65 | 3.97 | 5.03 | 6.01 | 7.68 | 7.61 | 6.84 | 53.88 | |
1938-39 | 4.49 | 3.92 | 2.12 | 1.75 | 2,20 | 2.46 | 4.10 | 5.26 | 7.32 | 8.16 | 8.06 | 6.22 | 56.06 | | 1939-40 | 4.66 | 3.32 | 2.58 | 1.36 | 1.80 | 3.26 | 3.70 | 6.04 | 6.58 | 8.99 | 7.97 | 6.58 | 56.84 | | 1940-41 | 5.46 | 3.32 | 2.08 | 1.42 | 1.13 | 2.63 | 2.90 | 5.51 | 5.71 | 7.80 | 6.49 | 5.66 | 50.11 | | 1941-42 | 3.91 | 2.89 | 1.44 | 1.67 | 2.06 | 3.58 | 3.10 | 5.90 | 6.35 | 8.72 | 7.69 | 6.07 | 53,38 | | 1942-43 | 4.27 | 2.78 | 2.04 | 2.11 | 1.91 | 2.04 | 3.46 | 6.20 | 6.34 | 8.00 | 7.88 | 6.83 | 53.86 | | 1943-44 | 4.79 | 3.40 | 1.54 | 1.56 | 1.42 | 3.28 | 3.73 | 5.10 | 4.98 | 7.32 | 7.96 | 5.86 | 50.94 | | 1944-45 | 4.18 | 2.03 | 1.93 | 1.79 | 1.66 | 2.17 | 4.32 | 5.60 | 4.54 | 7.30 | 7.26 | 6.05 | 48.83 | | 1945-46 | 3,85 | 2.90 | 1.67 | 2.63 | 2.00 | 2.88 | 4.14 | 3.91 | 7.24 | 7.96 | 8.48 | 6.71 | 54.37 | | 1946-47 | 3.88 | 2.04 | 1.56 | 2.17 | 1.92 | 2.64 | 4.42 | 5.22 | 5.99 | 9.52 | 7.93 | 6.94 | 54,23 | | AVERAGE | | | | | | | | | | _ | | | 55.17 | | | | | | | | STATI | ON #425 | | | | | | | |---------|------|------|-------|------|------|-------|---------|------|------|-------|-------|-------|-------| | | | | | | | (Lan | d Pan) | | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1931-32 | 5.24 | 3.51 | 1.31 | 1.69 | 2.02 | 4.14 | 5.44 | 6.05 | 7.16 | 8.90 | 9.76 | 7.69 | 62.91 | | 1932-33 | 6.64 | 4.94 | 1.96 | 1.58 | 2.93 | 4.46 | 5.14 | 5.70 | 7.64 | 8.17 | 8.71 | 6.77 | 64.64 | | 1933-34 | 6.35 | 4.90 | 2.14 | 2,31 | 2.10 | 4.81 | 5,61 | 5.93 | 7.59 | 9.81 | 8.36 | 7.06 | 66.97 | | 1934-35 | 4.14 | 2.94 | 1.85 | 1.62 | 1.97 | 2.62 | 3.1.3 | 4.10 | 6.78 | 8.02 | 7.85 | 6.66 | 51.68 | | 1935-36 | 5.28 | 3.13 | 2.42 | 2.16 | 1.40 | 3,64 | 4.06 | 6.15 | 7.35 | 7.92 | 8.48 | 7.62 | 59.61 | | 1936-37 | 5.00 | 3.68 | 1.82 | .95 | 1.76 | 3.18 | 5.19 | 5.02 | 6.76 | 8.12 | 8.42 | 7.74 | 57.64 | | 1937-38 | 7.27 | 4.37 | 3.74A | 3.40 | 2.27 | 2.56 | 5.08 | 6.76 | 7.13 | 9.42 | 10.03 | 9.93 | 71.96 | | 1938-39 | 7.22 | 6.81 | 3.73 | 3.10 | 3.62 | 3.56 | 5.06 | 6.14 | 7.58 | 8.41 | 8.91 | 7.14 | 70.28 | | 1939-40 | 6.70 | 5.21 | 4.08 | 1.96 | 2.34 | 3.74 | 3.64 | 6.09 | 6.19 | 9.88 | 8.91 | 7.34 | 66.08 | | 1940-41 | 8.39 | 5.34 | 3.38 | 2.54 | 2.06 | 3.60 | 4.44 | 7.53 | 7.64 | 10.87 | 9.03 | 7.98 | 72.80 | | 1941-42 | 6.56 | 5.34 | 2.50 | 2.80 | 3.42 | 5.03 | 3.81 | 7.24 | 7.31 | 10.81 | 9.80 | 8,68 | 73,30 | | 1942-43 | 6.10 | 4.60 | 3.58 | 3.45 | 3.34 | 2.98 | 4.52 | 7.74 | 8.94 | 10.48 | 10.56 | 10.58 | 76.87 | | 1943-44 | 7.36 | 6.47 | 2.80 | 2.82 | 2.36 | 5.08 | 5.54 | 6.74 | 6.98 | 9.86 | 11.74 | 9.16 | 76.91 | | 1944-45 | 7.20 | 3.64 | 3.90 | 3.46 | 2.70 | 3.30 | 5.94 | 6.90 | 6.30 | 9.66 | 9.80 | 8.78 | 71.58 | | 1945-46 | 5.60 | 4.68 | 2.96 | 4.46 | 3.05 | 3.82 | 5,10 | 5.14 | 8.96 | 10.07 | 11.26 | 9.62 | 74.72 | | 1946-47 | 6.16 | 3,22 | 2.62 | 3.85 | 2.98 | 3.83 | 5.64 | 7.18 | 7.74 | 13.67 | 11.20 | 10.75 | 78.84 | NOTE: FORMERLY AT STATION 8759, EDISON INTAKE TO NOV. 1937. 1940 SUMMER AND FALL TOTALS LOW DUE TO WATERING OF LAWN AND SHRUSS NEAR PAN. "A" DECEMBER, 1937, SEE LEGEND. | | | | h | MONTHLY | EVAPORA' | IION AI | SAN GABI | RIEL DAM | #1 | | | | | |-----------|--------|------|------|---------|----------|----------|----------|----------|------|-------|--------|-------|-----| | | | | | | | STATION | #425 | | | | | | | | | , | | | | | (Floatin | g Pan) | | | | | | | | | œτ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | Tot | | 1939-40 | 4.78* | 3.72 | 2.72 | 1.58 | 2.00 | 3.42 | 4.17 | 6.93 | 7.58 | 9.66 | 8.45 | 6.06 | 61. | | 1940-41 | 5.32 | 3.65 | 2.08 | 1.92 | 1.52 | 2.48 | 3.42 | 6.94 | 7.00 | 8.70 | 7.95 | 5.96 | 56. | | 1941-42 | 5.24** | 4.26 | 1.88 | 2.30 | 2.98 | 4.57 | 3.32 | 6.46 | 6.56 | 9.22 | 8.04 | 6.09 | 60. | | 1942-43 | 4.74 | 3.50 | 2.68 | INC. | NR | NR | INC. | 6.30 | 7.18 | 7.66 | 8.42 | 7.50 | INC | | 1943-44 | 5.34 | 4.47 | 1.89 | 2.04 | 1.46 | 2.81 | 4.32 | 4.92 | 5.85 | 7.54 | 9.18** | 7.26 | 57. | | 1944-45 | 5.42 | 2.70 | 2.82 | 2.72 | 1.80 | 1.92 | 4.18 | 5.28 | 4.73 | 6.96 | 8.15 | 7.86 | 54. | | 1945-46 | 4.50 | 4.13 | 2.38 | 3.66 | 2.36 | 3.02 | 3.88 | 4.30 | 7.22 | 8.30 | 9.46 | 8.33 | 61. | | 1946-47 | 5.89 | 3.00 | 2.23 | 3.00 | 2.10 | 2,80 | 4.56 | 5.66 | 6.30 | 10,56 | 8.94 | 7.54 | 62. | | AVERAGE 7 | | | | | | | | | | | | | 59. | | | | | | MONTH | LY EVAPO | RATION A | AT SAN G | ABRIEL I | DAM #L | | | | | |---------|------|------|------|-------|----------|----------|----------|----------|--------|-------|------|-------|------| | | | | | | | STAT | IION #42 | 5 | | | | | | | | | | | | | (Screen | ed Land | Pan) | | | | | | | | oct. | NOV. | DEC. | JAN. | FEB. | MAY. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTA | | 1946-47 | 4.96 | 2.51 | 2.17 | 3.18 | 2.42 | 3.10 | 4.86 | 5.90 | 6.24 | 10.95 | 8.90 | 8.42 | 63. | | | | | | MONTH | LY EVAPO | | T PICK! | ENS DEBRI
B | S BASI | N | | | | |--------------------|------|------|------|-------|----------|--------|---------|----------------|--------|-------|------|-------|--------------| | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG, | SEPT. | TOTAL | | 1941-42 | 4.83 | 3.95 | 1.61 | 2.20 | 3.13 | 3.94 | 3.53 | 6.44 | 6.62 | 10.74 | 8.42 | 7.03 | 62.4 | | 1942-43 | 5.59 | 3.72 | 2.80 | 2.86 | 2.54 | 2.12 | 3.86 | 7.41 | 8.81 | 9.38 | 9.05 | 9.42 | 67.5 | | 1943-44 | 6.15 | 4.34 | 2.29 | 2.30 | 2.23 | 4.45 | 5.73 | 5.90** | 5.94 | 9.19 | 8.00 | 7.15 | 63.6 | | 1944-45 | 4,62 | 2.74 | 2.44 | 2.40 | 2.40 | 3.88 | 5.76 | 4.94 | 3.03 | 5.98 | 6.98 | 5.80 | 50.9 | | 1945-46 | 3,29 | 3.55 | 2.01 | 3.73 | 2.08 | 3.30 | 3.14 | 2.35 | 6.05 | 6.97 | 8.50 | 7.00 | 51.9 | | 1946-47
AVERAGE | 3.14 | 2,14 | 1.52 | 2.68 | 1.88 | 2.44** | 4.08 | 4.20 | 4.68 | 7.22 | 7.12 | 5.72 | 46.8
57.2 | | | | | MONTHLY | EVAPOR | ATION AT | LA FRE | SA - S.C | E.EB. CO | . SUBSTA | TION | | | | |---------|------|------|---------|--------|----------|----------|----------|----------|----------|------|------|-------|-------| | | | | | | S | TATION : | #1008 | | | | | | | | | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 1946-47 | 3.66 | 2.02 | 1.12 | 2.58 | 1.07 | 2.12 | 4.24 | 4.42 | 4.96 | 6.44 | 5.94 | 4.26 | 42.83 | | | | | | | VAFORATI | | | | CDBROOM | | | | | |-----------|------|------|------|--------|----------|----------|------|------|---------|------|------|-------|-------| | | | | | | (Floa | ting Par | n) | | | | | | | | | OCT. | NOV. | DEC. | .VAL | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | 939-40 | 4.93 | 3,22 | 2.62 | .72 | .88 | 2.48 | 3.17 | 4.17 | 4.28 | 6.26 | 5.86 | 5.61 | 44.20 | | 1940-41 | 4.84 | 4.40 | 1.59 | 1,51 | 3.63 | 2.07 | 4.41 | 4.85 | 4.69 | 6.03 | 5.09 | 5.22 | 48.33 | | 1941-42 | 3.88 | 3,39 | 1.41 | 1.97 | 1.87 | 3.35 | 2.29 | 4.85 | 4.42 | 5.96 | 5.66 | 5.01 | 44.06 | | 1942-43 | 4.12 | 3,59 | 2.24 | 2.35 | 2,29 | 2.08 | 3.21 | 4,89 | 5.08 | 5,68 | 6.10 | 5.66 | 47.29 | | 1943-44 | 4,58 | 4.14 | 1.24 | 2.24 | 2.13 | 3.59 | 3.43 | 3.60 | 4.22 | 4.96 | 5.89 | 4.65 | 44.6 | | 944-45 | 3.69 | 3.11 | 3.01 | 2.10 | 1.71 | 2.45 | 3.61 | 4.49 | 3.71 | 5.17 | 6.38 | 5.98 | 45.4 | | 1945 - 46 | 4.23 | 4.07 | 2.43 | 2.87 | 1.81 | 2.20 | 2.52 | 3,33 | 4.68 | 5.52 | 6.37 | 4.98 | 45.0 | | 946-47 | 4.70 | 2.82 | 1.86 | DISCON | F1NUED | | | | | | | | INC. | | | | | | | | 2.20 | 2.02 | 0,33 | 4.00 | V13E | 0.57 | 4.50 | | | | LEGEND | | |-------|--|--| | ····· | INC | | | | # RECORD INCOMPLETE - PARTLY FROZEN | | | | NR NO RECORD | | | | * ESTIMATED | | | | ** · · · · · PARTLY ESTIMATED | | | | MAXIMUM OR MINIMUM MONTHLY AMOUNT FOR PERIOD | | | | A PREVIOUS TO THIS DATE PAN WAS SET IN GROUND | | | | 34 INCHES AND WATER SURFACE MAINTAINED AT GROUND LEVEL (2 INCHES | | | | BELOW TOP OF PAN). AFTER THIS DATE PAN WAS SET IN GROUND 33 | | | | INCHES AND WATER LEVEL MAINTAINED AT 3 INCHES BELOW TOP OF PAN. | | | | AT GROUND LEVEL. IN MOST CASES THIS WAS ALSO THE DATE WHEN THE | | | | NEW TYPE REFERENCE GAGE (POINT GAGE) WAS INSTALLED. BOTH OF THESE | | | | CHANGES REDUCED THE RATE OF EVAPORATION. | | | | STATION NUMBERS ARE IDENTICAL WITH NUMBERS OF RAINFALL STATIONS AT | | | | WHICH EVAPORATION DATA ARE TAKEN. | | ## RUNOFF ## FCREWORD This is the sixteenth annual or biennial report on runoff published since the inception of the Hydraulic Division (formerly the "Hydrographic Department") in April, 1927*. These reports cover 20 years of records on various streams and channels throughout the District. #### VALUE OF RECORDS Runoff records furnish the basic data necessary for: - 1. Design of adequate channels and storm drains. - 2. Design of dams, debris basins and spreading grounds. - 3. Determination of the available water supply and conservation thereof by ground water replenishment. - 4. Determination of the quantity of industrial and natural waste. #### SUMMARY Runoff during the 1945-46 and 1946-47 seasons was below normal throughout the District. The storms of December 22 and 23, 1945; November 13 and 14, 1946 and December 25 and 26, 1946 produced peak flows for the seasons at practically all stations although in no case was the peak unusually high. ## EXTENT AND METHOD OF COLLECTING AND PRESENTING DATA L. Drainage Areas and Stations The Flood Control District operated 70 recording stream flow stations during the 1945-46 and 1946-47 seasons. These stations were distributed throughout the County as follows: | Drainage Area | No | . of Stations | |----------------------------------|-------|---------------| | Los Angeles River | | 24 | | San Gabriel River | | 21 | | Rio Hondo | | 16 | | Eallona Creek | | 2 | | Santa Monica Mountains - Coastal | | 3 | | Santa Clara Kiver | | 2 | | San Antonio Creek | | 1 | | Antelope Valley | | 1 | | | Total | 70 | The locations of all stations are shown on Map VI, page 51. ^{*}RECORDS PRIOR TO 1927 ON SOME
STREAMS ARE AVAILABLE IN EITHER THE OFFICE OF THE U.S.G.S. WATER RESOURCES BRANCH OR IN THE OFFICE OF THE STATE DIVISION OF WATER RESOURCES. REFERENCE TO THESE RECORDS, IF AVAILABLE, CAN BE FOUND UNDER "STATION DESCRIPTIONS" HEREIN PUBLISHED. ## II. Types of Channels The types of channels on which these stations are located are listed below in order of predominance: - (1) Natural sections shifting sand and gravel, clay or permanent rock. - (2) Concrete lined or riprap channels with no definite control point. - (3) Artificial controls concrete, placed rock, flumes and weirs. ## III. Types of Recorders Used The flow stage is recorded by various types of automatic recorders usually mounted over a concrete or corrugated iron pipe stilling well. The types of recording instruments used at stations are determined by the importance of the particular record, gage height range, time scale required, and the practicability of frequent access by a District hydrographer. Recorders used include the following: | Type | 1 | No. in Use | Time Duration | |-----------------------|-------|------------|-----------------| | Au | | 17 | Continuous | | H.C.F.* | | 38 | Continuous | | Stevens (Type A) | | 2 | Continuous | | Stevens (Type L) | | 8 | Weekly or Daily | | Rational (horizontal) | | 6 | Weekly | | Friez | | 1 | Continuous | | | Total | 72 | | #### IV. Records of Recording Streamflow Stations These records are, in general, published under each station in four sections, giving the following information: - (1) Station Descriptions which present pertinent data regarding location, drainage areas, channels, controls, regulations, diversions, available records, extremes of discharge, accuracy of records and operation. - (2) Lists of Measurements for all actual meter measurements together with observed water stage, areas of cross-section, and mean velocities. These lists include 2256 measurements taken by the District during 1945-46 and 2478 taken during 1946-47 at 70 recorder stations. ^{*}THE H.C.F. RECORDER WAS DESIGNED AND DEVELOPED IN THE DISTRICT'S HYDRAULIC DIVISION INSTRUMENT SECTION TO FURNISH A MEDIUM COST. ACCURATE AND DEPENDABLE CONTINUOUS WATER STAGE RECORDER. - (3) Mean daily runoff tabulations which show the mean daily runoff in second-feet; total monthly and yearly runoff in second-foot days and acre feet. - (4) Hydrographs showing a curve of instantaneous rate of flow versus time for the larger storms of the period. In general, the storm producing the peak flow of the season at the station was selected. However, the storm producing the peak flow at the maximum number of stations on a major river system was selected for all such stations. ## V. United States Geological Survey, Water Resources Branch Records Included in this report as additional information are the records of the thirteen permanent streamflow recording stations owned and operated in this District by the United States Geological Survey, Water Resources Branch. The Flood Control District cooperates with the U.S.G.S. by taking streamflow measurements at these stations. During the seasons covered by this report, 408 such measurements were taken. The U.S.G.S., in turn, publishes the records of 23 District stations in their Water Supply Papers for Facific Slope Dasins in California. ### VI. Staff Gage Station Measurements Records of 1142 measurements taken at various staff stations are also included herein. The measurements are correlated with the water stage at an established metering section. Included in this type of record are the measurements of "Rising Water at Whittier Narrows" which are taken weekly at established staff gage stations. A graph of "Rising Water" showing mean monthly flow fluctuation for a period of 25 years is included on page 311. #### VII. Miscellaneous Station Measurements In various drainage areas throughout the County, 1171 miscellaneous measurements were taken. These data were collected for specific purposes at irregular intervals and are insufficient to determine mean daily flow. They are listed and published by drainage areas. ## VIII. Percolation Data Numerous sets of percolation measurements were taken on selected reaches of nine streams. These are tabulated by streams. #### IX. Summary of Complete Records Beginning on page 323 of this report is a complete summary of the annual runoff in acre feet, mean yearly runoff and extremes for each year of record on all the stations at which the Eistrict has kept records. Mean daily flow for period of record is shown for stations with more than ten years of continuous record and no appreciable regulation. #### X. Limitations Occasionally, incomplete recorder records occur at certain stations. Flows for periods of incomplete record were estimated by various methods. In general, estimates were made by comparison with other flow records and rainfall or by interpolation between known or measured values. In the tabulations of mean daily runoff, incomplete totals were avoided by estimating any missing or unreliable records. It was felt that estimating missing current records was more satisfactory than leaving records incomplete. Familiarity with a current season's runoff characteristics facilitates making such estimates, while leaving the record incomplete may make it necessary to provide the estimate in later years, when the reconstruction of the available data would be much more difficult. Only meter measurements, pitot tube measurements and quantities determined by float velocities taken with depth soundings or over a known cross-section are published; other determinations are omitted. Due to shifting channel conditions at many locations, the accuracy of the record depends largely on measurements made at crucial points on each storm hydrograph. #### RESPONSIBILITY The collection of field data was the responsibility of the following hydrographers: | District | Name | |----------|---| | 1A | G. H. Middleton, assisted by F. E. Stunden | | 2 | C. L. Erewster, assisted by F. Smith* | | 1B & 3 | T. F. Moon, assisted by W. A. Rockenmeyer* | | 4 | E. S. Bonadiman, assisted by A. P. Kasimoff & J. H. Lang | | 5 | C. F. Bollinger, assisted by J. Paull | | 6 | R. A. Waddicor, assisted by J. A. Ocampo* | | 7 🐉 8 | L. J. Turner, assisted by S. E. Blakely & M. V. Pardieck* | | 9 & 10 | J. W. Luce, assisted by F. E. Wright* | Note: District 2A was formed in February 1947 with R. A. Waddicor in charge and District 6 was placed in charge of S. E. Blakely. (District 1B was divi- ^{*}OPERATION AND MAINTENANCE DIVISION PERSONNEL. ded among Districts 2, 2A and 3.) Prior to 1946-47, District 7 was assigned to J. W. Luce in addition to Districts 9 & 10. The field work, compilation of the records, and preparation of the report for 1945-46 and 1946-47, was under the immediate supervision of H. A. van der Goot assisted by W. E. Cole and F. H. Mellen. All field work and office work was under the direction of W. J. Wood, Assistant Chief, Hydraulic Division. #### COOPERATION Certain records included in this report were obtained through the cooperation of the San Gabriel River Water Committee, the U.S.G.S. Water Resources Eranch, and the United States Engineer Department, Los Angeles Office. Acknowledgment is given with each record. #### LEGEND Stations are designated by numbers to which prefixes and suffixes are added to indicate ownership, operating agency, and type of station. The letters used have the following connotations: - Prefix F indicates the stations owned and operated by the Los Angeles County Flood Control District. - Prefix E indicates stations owned and operated by the U. S. Engineer Department. - Frefix U indicates stations owned and operated by the U.S.G.S., Water Resources Eranch. - Prefix P indicates stations owned and operated by the District, formerly operated by the Pasadena Water Department. - Prefix L indicates a station owned and operated by the Listrict, formerly operated in cooperation with the Little Rock - Palmale Irrigation District. - Prefix S indicates a station owned and operated by the San Gabriel River Water Committee. - Suffix R indicates a recorder station. - Suffix S indicates a staff gage station. - Suffix B - or C indicates that the station has been moved. E represents second location, C a third location, etc. In working up the chart gage height record the following legend is used for indicating estimates: - " a" No gage height record due to recorder or clock failure. - " b" No gage height record due to obstructed communication or sanded well. - "c" Gage height record affected by backwater. - "d" Gage height record doubtful. - "f" Gage height record partly estimated. (Estimated part represents less than 75% of the flow; otherwise, a, b, c, or d is used.) - "v" Gage height-discharge relation failed due to extreme and undetermined shift or unusual drawdown in stilling well. These letters are placed in the discharge column; letters are not used if the estimated portion of the record represents less than 10% of the mean daily flow or if the total flow is estimated at .05 c.f.s. or less. Zero gage height elevations shown in the station descriptions are based on U.S.G.S. mean sea level datum. #### ACCURACY The legend used in plotting the hydrographs has the following significance: The solid line indicates the portion of the hydrograph lying below the maximum meter measurement taken during the period of the storm, unless the control was stable and the stage discharge relation was well defined by other higher measurements. The dash line indicates computed flow based on water stage records and the stage discharge relation determined by float measurements or extrapolation. The dotted line indicates estimated flow for periods when the water stage record was considered unreliable due to recorder failure or when the stage discharge relation failed due to extreme or undetermined shift. The Mean Daily Runoff Tabulations are qualified
under "Accuracy" in the Station Description. "Excellent" indicates that error in the record is probably less than 5%. "Good" indicates a possible error greater than 5% but probably less than 10%. "Fair" indicates a possible error greater than 10% but probably less than 20%. "Poor" indicates a possible error greater than 20%. #### STATION FEID-R ALHAMBRA WASH near Short Street LOCATION: WATER-STAGE RECORDER, LAT, 34 03'22", LONG, 118 05'11", ON THE LEFT (EAST) SIDE OF CHANNEL ABOUT 250 FEET ABOVE SHORT STREET AND 2650 FEET BELOW GARVEY AVENUE. ELEVATION OF ZERO GAGE HEIGHT 243,74 FEET. ABANDONED STATIONS F81-R, F81B-R, AND F81C-R WERE 2650 FEET, 4050 FEET, AND 1750 FEET, RESPECTIVELY, UPSTREAM FROM STATION F81D-R, DRAINAGE AREA: 14.5 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - CONCRETE 40 FEET WIDE BY 12.7 FEET DEEP TO BOTTOM OF INVERT WITH 0.5 FOOT FILLETS AT VERTICAL SIDE WALLS. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBRIDGE AT STATION. RECORDER: INSTALLED SEPTEMBER 2, 1936, OVER A 3,25 FT. X 4,0 FT. CONCRETE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER I. 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: AT STATION F81-R: JANUARY 14, 1930 TO SEPTEMBER 30, 1934. AT STATION F818-R: OCTOBER 1, 1934 TO FEBRUARY 25, 1935. AT STATION F816-R: FEBRUARY 25, 1935 TO APRIL 27, 1936. AT STATION F818-R: APRIL 27, 1936 TO MAY 22, 1936. AT STATION F818-R: SEPTEMBER 2, 1936 TO SEPTEMBER 30, 1947. FXTREMES OF DISCHARGE: 1945-46 MAXIMUM 1600 SECOND-FEET, DECEMBER 22. MINIMUM NO FLOW AT VARIOUS TIMES. MINIMAM NO FLOW AT VARIOUS TIMES. 1946-47 MAXIMUM 3810 SECOND-FEET, NOVEMBER 13. MINIMUM 0,1 AT VARIOUS TIMES. 1929-1947 (STATIONS F61-R. F61B-R. F61C-R. F61D-R) MAXIMUM 4,890 SECOND-FEET, JANUARY 1, 1934, MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: GOOD. FLOWS OCCASIONALLY ESTIMATED DURING LOW FLOWS DPERATION: LOCATED, OPERATED AND RECORDER HOUSE CONSTRUCTED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT; THE STILLING WELL AND COM-MUNICATION CHANNEL WERE CONSTRUCTED BY THE U.S. ENGINEER DEPARTMENT. #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. FB | D-R PERIOD ACRE-FEET 3,000 | Daily | discharge, in se | econd-feet of | ALHAMBR | A WASH ne | ar Short | Street | | | | , for the yea | r ending Septer | nber 30, 19 46 | |--------------------------------------|---------------------------------|--|--|---|---|---|---|---|--|---|---|----------------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5
8
7
8 | 0 0 0 0 0 0 1 1 c c c | 1 4
1 4
0 9
0 .6
0 9
7 5
1 1 | 0 3
0 2
0 1
0 6
0 6
0 5 | 0.5
0.8
2.3
0.9
1.1
0.4
0.4 | 0.4
0.3
123
1.4
0.6
0.6
1.1 | 0 9
0 A
0 A
0 A
0 A
1 1
1 2 | 2 6 4
2 6 4
0 3 3
0 3 5
0 3 5 | 1.4
0.9
1.1
0.6
0.4
0.9
1.1 | 0.6
0.4
0.9
1.1
1.1
1.1 | 0 9 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 11
10
00
00
11
16 | 1 6 6 6 6 4 9 1 1 1 0 9 | | 9
10
11
12
13
14 | 0.4
0.4
0.6
0.6
0.6 | 0.9
0.6
0.3
0.2
1.1
0.6
0.9 | 0 2
0 1
4 9
0 1
0 1
0 9 | 01
03
02
02
03
03 | 0 3
0 2
0 3
0 3
0 3
0 3
6 3 | 11
02
03
11
12
14
16 | 0 3
0 3
0 4
0 4
0 4 | 0 9
1 4
0 6
0 4
0 6
0 9
1 1 | 0.6
0.6
1.1
1.4
1.8
1.1 | 0 9
1 1
0 9
1 1
0 6
0 4 | 1 &
1 1
0 4
0 9
0 9
0 9
1 1 | 09
14
14
14
11
11 | | 18
17
19
19
20 | 0.9
1.1
1.1
1.4
0.9 | 1 1
0 4
0 2
0 4
0 4 | 0 3
0 3
0 4
0 4
0 4 | 0 3
0 3
0 4
0 4
0 3 | 03
01
03
03
04 | 0.6
0.3
0.4
7.5
2.7 | 0.4
0.6
0.9
0.6 | 1.4
1.6
0.4
0.9 | 0.6
0.9
1.1
1.4
1.4 | 0.6
0.9
0.4
0.4 | 1.6
1.4
1.6
1.6 | 11
11
09
09
18
21 | | 22
23
24
25
28 | 0.9
1.4
1.1
1.4 | 0 2
0 9
0 2
0 2
0 3 | 342
125
14
29 | 03
03
03
06 | 0.4
0.4
0.3
0.6 | 0 3 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.4
1.1
0.9
1.4 | 1 1
1 1
1 1
0 6 | 1 1
1 1
1 1
1 6
1 4 | 0 4
0 6
0 9
0 4 | 1.4
1.4
1.4
1.4 | 1 4
1 6
1 6
1 6 | | 27
28
28
30
31 | 0.9
0.6
16
12 | 0.4
0.6
2.0
0.4 | 0 &
0 &
0 &
0 &
0 & | 0 3
0 4
0 6
0 4
0 9 | e 0
a 0 | 03
37
59
179 | 0 4
0 3
0 6
1 1 | 0 9
0 9
1 4
1 1
0 9 | 1 1
1 6
1 1
0 9 | 0.4
0.4
0.6
0.9
1.1 | 1.6
2.1
2.3
2.1 | 1 6
1 1
1 1
1 4 | | | 521 | 27.6 | 6601 | 147 | 141.5 | 404.6 | 442 | 29.9 | 32.6 | 224 | 40.7 | 409 | | MEAN | 1.58 | 0.92 | 21.3 | 0.47 | 5.05 | 13.1 | 1.47 | 0.96 | 1.09 | 0.72 | 1.31 | 1,36 | | ACRE-
FEET | 103. | 55. | 1310. | 29. | 281. | 803. | 88. | 59. | 65. | 44. | 81. | 81. | | | Remarks: | | | | | | | | Y | EAR MEA | N4. | 14 | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT P. C. Dist. Form 52 4-45 Sta. No. F8 | D-R HYDRAULIC DIVISION ALHAMBRA WASH near Short Street Daily discharge, in second-feet of Apr. July Aug. Sept 03 03 03 03 03 0 9 1 1 0 6 0 4 0 3 0 4 0 6 43333344666333444666 2122233332244221111111111112349196 0433334444 0.4 0.4 0.1 0.4 1.4 0.4 0.4 0.4 0044669966669119661449433333323339 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3914444469646914616 0.6 15 8 119 00 4 00 3 00 3 00 3 0.6 0.5 0.9 9.5 0.9 1.6 2.3 1.6 1.4 0.6 0.3 13.2 1.4 0.9 0.4 0.3 345 126 74 1.6 0.6 0.6 0.4 0.6 27 0.6 0.6 0.6 03 0.4 0.6 4.0 1.8 141111 793 603.0 671 42.5 230 291 399 0.94 0.85 0.29 0.37 0.61 2.56 32.1 19.5 1.29 1,910 23 YEAR MEAN 5.24 OR PERIOD ACRE-FEET 3,800 #### STATION F152-R ALISO WASH at Nordhoff Street LOCATION: WATER-STAGE RECORDER, LAT. 34°14'08", LONG, 118°32'52", ON THE RIGHT (WEST) ABUTMENT DOWNSTREAM OF THE HIGHWAY BRIDGE AT NORDHOFF STREET ABOUT ONE MILE NORTHWEST OF NORTHRIDGE AND 3600 FEET WEST OF RESEDA AVENUE. ELEVATION OF ZERO GAGE HEIGHT, 817.50 FEET. DRAINAGE AREA: 7.15 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - CLAY AND SAND. CONTROL - CHANNEL FORMS DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF HIGHWAY BRIDGE. RECORDER: INSTALLED NOVEMBER 3, 1939, OVER AN 18 INCH CORRUGATED IRON PIPE STILLING WELL, REMOVED FOR BRIDGE REMOVAL AND CHANNEL CONSTRUCTION JULY 15, 1947. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO JULY 15 REGULATION AND/OR DIVERSIONS: NONE. RECORDS AVAILABLE: NOVEMBER 3, 1939 TO SEPTEMBER 30, 1947- EXTREMES OF DISCHARGE: MES OF DISCHARGE: 1945-4946 MAXIMUM 1140 SECOND-FEET, DECEMBER 21. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 290 SECOND-FEET, DECEMBER 25, MINIMUM NO FLOW MOST OF YEAR. 1939-1947 MAXIMUM DISCHARGE NOT DETERMINED, FEBRUARY 20, 1941MAXIMUM 1,750 SECOND-FEET, JANUARY 22, 1943. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABUREM | ENTS OF AL | ISO WASH | | | | | _ | | | | | |-----|------------|--------------|---------------|----------|-------------------------------|----------------------------------|-------------------------|-----------------------|-------------|-------|----------------------|---------------------------|-------------| | | AT
HEAR | No. | rdhoff Street | | | DURIN | D THE YE | AR ENDING | BEPT | ЕМВЕ | 30, | 10.146 | | | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BEGTION
BQ. FT. | MEAN
VELOCITY
FT. PER BEG. | GAUSE
HEIGHT
FEET | DISCHARGE
BEG. FT. | RAT-
ING | HETH- | MEAS.
SEC.
NO. | G. HY,
CHANGE
YDTAL | METE
NO. | | 84 | 12/19 | 137P
144P | DEVORE | 3.6 | 0.49 | 2.04 | 2.76 | 1.0 | | LOAT | 5 | 0 | FLOA | | ND. DATE HADE BY WIDTH BEGTION VELOCITY HEIGHT DISCHARGE RAT- | | BEC. | GHANGE | METER | |---|------|------|--------|-------| | END FEET BO. FT. FT.FER BCO. FEET BCO. FEET BCO. FT. ING | 00 | HO. | YDTAL | NO. | | 84 12/19 144P DEVORE 3.6 0.49 2.04 2.76 1.0 | LOAT | 5 | С | FLOAT | | 85 12/22 223A ··· 14.0 9.55 6.89 2.15 65.8 | .6 | 4 | 0 | FC42 | | 86 3/30 645A WADDICOR 13.5 3.97 2.67 2.30 10.6 | .6 | 7 | - 04 | FC22 | MEABUREMENTS OF ALISO WASH Nordhoff Street | NG. | DATE | BEGIN | н | ADE BY | WIDTH | BECTION | MEAN
VELOCITY
FT.FER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
BEG. FT. | RAT- | METH- | MEAS.
BEG.
NO. | G, HT. | HETER
NO. | |-----|-------|----------------|--------|---------|-------|---------|---------------------------------|-------------------------|-----------------------|--------------|-------|----------------------|--------|--------------| | | | 935A | | | | 1 | ĺ | 712. | | | | - | | <u> </u> | | 87 | 11-12 | 940A | TURNER | | 2.0 | 0,20 | 0.75 | 2.59 | 0.15 | L | .5 | 4 | 0 | FC13 | | 88 | 11-13 | 905A
915A | TURNER | -RILEY | 19.0 | 14,2 | 4.47 | 3.46 | 63.5 | | .6 | 8 - | 0.12 | FC43 | | 89 | 11-14 | 1050A
1055A | TURNER | | 2.8 | 0,24 | 0.92 | 2.26 | 0.22 | | .5 | 4 | 0 | - | | 90 | 11-20 | 1035A
1042A | TURNER | - RILEY | 9.0 | 2.13 | 2.54 | 2.66 | 5.4 | | .5 | 6 | .03 | | | 91 | 11-23 | 1230P
1236P | | | 10.5 | 3.24 | 3.02 | 2.56 | 9.8 | | .5 | 6 . | .01 | | | 92 | 12-26 | 1135A
1140A | TURNER
| | 5.5 | 0,61 | 1.34 | 2.25 | 0,8 | | .5 | 5 | o | | F. C. Dist. Form 52 4-46 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F152-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | ау | |-------|------|------|----------|--------------|-------|----------------------|----------------|-------|-----------------------|------------------|-----------------------|-----------------------| | | | | | | +0000 | 0
0
0
0 | 0
0 .8
0 | 00000 | 0 0 0 0 0 0 | 0 0 0 | 0 0 0 | 1
2
3
4
5 | | * | - | • | a | 4/59/46 | 00000 | 0 0 | 000+0 | 0000 | 0 0 0 | 0000+ | 7 2
2 1
0
0 | 6
7
8
9 | | - | | • | = | r Summer | 0000 | 0 0 + 0 | 0000 | 00000 | 0
0
0
+ | + 0000 | 0
0
8
0
0 | 1
2
3
4 | | - | | | = | Redorder for | 0 0 0 | +
+
+
+ | 0+000 | 00000 | +
+
+
0 2 | 0000+ | 0000+ | 18 | | * | | - | = | Stopped Rec | 0 0 0 | 0 0 0 | 0000 | 0 0 0 | b62
b73
92
0 | + + + +
± + + | +
+
0
+ | 12
22
13
14 | | | | | | Sto | 0 0 0 | 0
0 3
+
6.5 | 0 | 00000 | 00000 | ++++ | +
+
+
a + | 17
18
19
10 | | | 1 | | | I | + | 7.7 | a. o | 0 | 145.9 | + | 9.4 | -1 | | |] | | | | + | 0.25 | 0.03 | 0 _ | 4.71 | + | 0.30 | AN | | | | | | | + | 15. | 1.6 | 0 | 289. | + | 17. | RE- | F. C. Dist. Form 52 4-48 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. F 152-R | Sept | ending Septem | July | June | Мау | Apr. | Mar. | hoff Stre | Jan. | Dec. | Nov. | Oct. | ay | |------|---------------|------------|------|----------|------|------|-----------|----------------|-------------------|-----------|------|------------| | | | | | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0.4 | 1 | | | | | ļ | 0 | 0 | + | 0 | + | 0 | 0 | 02 | 2 | | | | | | 0 | 0 | + | 0.1 | + | 0 | 0 | 0.4 | 3 | | | | | | 0 | 8 | 1.5 | ŏ | + | 0 | + | 01 | 5 | | | | | | 0 | + | 0 | 0 | | 2.2 | + | 0 1 | 6 | | | | | ļ | 0.2 | to | 0 | 0 | o [†] | 0 | + | | 7 | | | - | | | | 8 | 0 | 0 | 0 | o | + | 0 2 | 8 | | | | | | | 0 | 8 | ċ l | 0 | 0 | : | 0.1 | 8 | | | | | | 4 | 0 | 0 | 0 | ō l | 0 | + | +** | 1 | | | = | = | = | Summer | 0 | 0 | 8 | 0 | 0 | 2.6 | + | 2 | | | | | | 9 | ŏ | ŏ | 0 | 0 | 0 | 25
7.5 | ,+ | 3 | | | | | | - (| 0 | 0 | 0 | ŏ | ŏ | 7.5 | 0 | 15 | | = | E . | = | = | for | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | | | | | | | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | | | | | <u>8</u> | 0.5 | 01 | ŏ | 8 | 0 | 8 | + | 8 | | £* | * | E | E | Ď. | 0.4 | 0.5 | 0 | 0 | 0 | 2.7 | + | 20 | | | } | | | stopped | 0.1 | 0.2 | 0 | 0 | 0 | 0 | 0 | 21 | | | | | | | 02 | 0 | 0 | 0 | 0 | 0 | + | 22 | | | | | | ē | 0 1 | 0 | 0 | 0 | 0.4 | 26 | ÷ | 23 | | | | _ E | _E | Recorder | . + | 01 | ŏ | 8 | 23 | 0. | + | 25 | | | ì | | | 8 | + | 0.1 | Ö | 0 | 16 | 0 | 0 | 26 | | | | | | æ | 0 1 | 0 | +) | 0 | 1.5 | 0 | 0 | 27 | | | i | | | | 0.6 | 12 | + | 0.1 | † l | 0 | 0 | 28 | | | | | | ì | 8 1 | ŏ | | .0 | 0 | 0 | 0 | 0 | | | i | <u> </u> | | | | ŏ | | ŏ | | | ŏ . | 31 | | 0 | 0 | 0 | 0 | 0.2 | 3 1 | | 0 1 | | 431 | | 1.7 | | | 1 | | 0 | | | i | 3.7 | | 0.1 | | 63.8 | | | | 0 | 0 | 0 | 0 | 0,01 | 0.10 | 0.12 | + | + | 1.39 | 2.13 | 0.05 | AN | | 0 | 0
N 0.32 | O MEAR MEA | 0 | 0.4 | 6.1 | 7.3 | 0.2 | 0.2 | 85.5
c.f.s. or | . 127 | 3.4 | RE-
EET | #### STATION UI-R ARROYO SECO above Mouth of Canyon LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR CONTROL. LAT. 34°13'20". LONG, 118°10'40", NEAR NORTH LINE OF SEC. 31. T. 2 N. R. 12 W.. 1.5 MILES UPSTREAM FROM MILLARD CANYON AND 5.5 MILES NORTHWEST OF PASADENA. ALTITUDE OF GAGE ABOUT 1,400 FEET. DRAINAGE AREA: 16.4 SQUARE MILES. RECORDS AVAILABLE: DECEMBER 1910 TO SEPTEMBER 1947. AVERAGE DISCHARGE: 32 YEARS (1913-15, 1916-46) 10.8 SECOND-FEET. 33 " " 47 10.7 " " EXTREMES: 1945-1946 MAXIMUM DISCHARGE 600 SECOND-FEET DECEMBER 25. (GAGE HEIGHT 4.05 FEET). MINIMUM DAILY 0.5 SECOND-FOOT ON MANY DAYS. 1946-1947 MAXIMUM DISCHARGE 680 SECOND-FEET MARCH 30. (GAGE HEIGHT 4.17 FEET). MINIMUM DAILY DISCHARGE 0.5 SECOND-FOOT SEPTEMBER 4-29. 1910-1947 MAXIMUM DISCHARGE 8.620 SECOND-FEET MARCH 2, 1938 BY SLOPE-AREA METHOD. PRACTICALLY NO FLOW FOR SEVERAL MONTHS IN MOST YEARS. REMARKS: RECORDS GOOD, EXCEPT FOR THOSE DAYS OF DOUBTFUL GAGE HEIGHT RECORD. WHICH ARE FAIR. NO DIVERSIONS ABOVE STATION. MINOR REGULATION AT DEBRIS DAM 1.5 MILES UPSTREAM. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY. | | DISCHARG | DE MEASURES | 4ENTS OF | ARRO | YO SEC | Q | | | | | ND. | DAYE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER BEQ. | GAUDE
HEIGHT
FEET | DISCHARDE
SEC. FT. | RAT- HEYE | MEAS.
SEC.
NO. | D. HT.
DHANGE
TOTAL | MEYER
HO, | |--------|----------|--------------|------------------|-------|-------------------------------|---------------------------------|-------------------------|------------|-------------------------------|-----------------------------------|--------|-------------|--------------|--|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------|----------------------|---------------------------|--------------| | | | abdva | . Mouth of Canyo | on . | | DUR | ING THE Y | EAR ENDING | SEPTEMBER 30 | 1, 46 | 4.5.50 | 410.4 | | | 11.5 | 9.6 | .98 | .97 | 9.4 | <u> </u> | 6 12 | 0 | | | | ı | PEGIN | | | 4974 77 | uran. | naumr. | DISCHARGE | Juran | n vr! | 1573 | 4/24
5/1 | | | 14.0 | 7.0 | 1.23 | .99 | 8.6 | | 6 14 | 0 | | | жо. | DATE | END | HADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | HEAN
VELOCITY
FT.PER SEC. | SAUSE
HEIGHT
FEET | SEC. FT. | RAT- METH- MEAN
ING DD NG. | G. HT. HETE
CHANGE
TOTAL NO | 1575 | | | ,, | 13.8 | 6.2 | 1.01 | .96 | 6.3 | Ι. | 6 15 | 0 | | | 1534 | 10/1 | | U.S.G.S. | 9.0 | 3.28 | .35 | .66 | 1.15 | .6 18 | 0 | 1576 | i | | | 13.8 | 6.4 | . 94 | .91 | 6.0 | | 6 14 | 0 | | | _1535 | 10/4 | _ | | 4.8 | 1.95 | .42 | 63 | .82 | 6 19 | 0 | 1577 | 5/22 | | | 14.0 | 6.3 | 1,02 | .88 | 6.4 | | 6 13 | 0 | | | _1536 | 10/11 | | •. | 5.6 | 1.82 | .43 | .64 | .78 | .6 11 | 0 | 1578 | | | | 13.5 | 5.40 | 0.85 | 0.83 | 4.59 | | 6 14 | 01 | | | _1537_ | 10/17 | ļ | | 5.5 | 2.07 | .57 | .64 | 1.18 | .6 11 | 0 | 1579 | | | ., | 6.7 | 2.28 | 1.10 | .76 | 2.51 | Π. | 6 12 | 0 | | | 1538 | 10/19 | | | 4.7 | 2.09 | .45 | .59 | . 95 | .6 9 | <u> </u> | 1580 | 1 | | ų.s.g.s. | .4. | 2.00 | 1,28 | ,76 | 2.57 | | 6 8 | 9 | | | 1539 | 10/31 | | | 5.5 | 1.90 | .71 | .63 | 1,35 | .6 10 | _ 0 | 1581 | | | | 4. | 1.84 | 1.09 | .71 | 2.00 | | 6 8 | 0 | | | _1540_ | 11/1 | | | 4.7 | 2.31 | .53 | .63 | 1.23 | .6 12 | 0 | 1582 | 1 | | | 4 | 1.68 | 1.07 | .71 | 1.80 | <u>.</u> | 6 8 | 0. | | | 1541 | 11/8 | | ** | 4.8 | 1.97 | .85 | .64 | 1.67 | .6 19 | 0 _ | 1583 | | | | 9.4 | 4.73 | .44_ | .68 | 2.06 | <u>.</u> | 5 19 | 0 | | | 1542 | 11/8 | - | | 6.0 | 2.79 | .56_ | .64 | 1.56 | .6 24 | | 1584 | | | ., | 4. | 1.66 | 1.07 | .68 | 1.77 | <u> </u> | 5 9. | 0 | | | 1543 | 11/15. | | ** | 5.6 | 2.31 | .76 | .65 | 1.76 | .6 12 | 0 | 1585 | 1 | | | 4.2 | 1.71 | 1.13 | .67 | 1.94 | <u> </u> | 6 10 | 0 | | | _1544 | 11/21 | | | 5.4 | 2.20 | -70 | .66 | 1.55 | .6 12 | | 1586 | 1 | | | 4 | 1.60 | .91 | ,66 | 1.46 | | 6 8 | 0 | | | _1545 | 11/28 | ┼ | | 6.0 | 1.96 | .69 | .67 | .1.35 | .6 12 | | 1587 | | | | 4. | 1.60 | .89 | .67 | 1.42 | 11. | 6 8 | 0 | | | 1546 | 12/3 | - | | 5.9 | 2.74 | .56 | .67 | 1.54 | .6 12 | 1 | 1588 | 1 | | | 4. | 1.60 | .68 | .66 | 1.09 | | .6 8 | 0 | | | 1547 | 12/5 | | | 6.0 | 1.98 | .75 | .67 | 1.48 | .6 12 | | 1589 | | | | 4.0 | 1.60 | .55 | .62 | .88 | | 6 8 | 0 | İ | | _1548 | 12/13 | | | 5.8 | 2.42 | .82 | .68 | 1.98 | .6 12 | | 1.590 | 8/1 | | ** | 3.9 | 1.57 | .69 | .64 | 1.08 | | .5 10 | 0 | | | _1549 | 12/19 | | | 6.7 | 2.24 | | .68 | 1.83 | .6 8 | | 1591 | 8/7 | | | 4 | 1.60 | .73 | .62 | 1.17 | 11 | .6 8 | 0 | | | 1550 | 12/22 | +- | | 40. | 55.5 | 5.05 | 3.39 | 280. | V 20 | | 1592 | i | <u> </u> | | 2.5 | .88 | .91 | .60 | .80 | 1-1- | .6 6 | 0 | <u> </u> | | _1551_ | 12/28 | + | | 14.5 | 9.1 | 1.14 | 1.02 | 10.4 | .6 15 | | _1593 | B/21 | | | 2.4 | .79 | .89 | .59 | .70 | \sqcup | .6 5 | 0 | | | 1552 | -1/4 | - | | 14.0 | 6.4 | .95 | .81 | 6.1 | .6 11 | | 1594 | } | | | 2.5 | 78 | .79 | .59 | .62 | 1 | .6 7 | 0 | - | | 1553 | 1/9. | +- | | 8.0 | 4.89 | 1 | .75 | 4.07 | .6 9 | | 1595 | 9/5 | | | 2.5 | .83 | .64 | .60 | .53 | 1_ | .6 7 | 0 | | | _1554 | 1/16 | | " | 13.5 | 5.3 | .67 | .73 | 3.57 | .6 14 | | 1596 | 9/11 | | | 2.5 | .79 | .70 | . 58 | .55 | $\bot\bot$ | .6 7 | 0 | | | _1555 | 1/23 | +- | - | 9.2 | 5.6 | 0.64 | 0.72 | 3.58 | .6 10 | | 1597 | 9/17 | | | 2.4 | .74 | .65 | .57 | .48 | 4 | .6 10 | 0 | <u> </u> | | 1556 | 1 | | | 8.4 | 4.33 | 1 | -71 | 3.13 | .6 10 | 1 | 1598 | 9/24 | | | 2.4 | .76 | .61 | .56 | .46 | 11 | .6 9 | 0 | <u></u> | | _1557 | 1 | | U.S.G.S. | 141. | 8.5 | -78 | .88 | 6.2 | .6 14 | | + | | | | | | | | | | | | | | 1558 | 2/13 | | | 11.5 | 7.0 | .58 | 80_ | 4.07 | ,6 32 | 1 | | | | | | | | | | | | | | | 1559 | 2/20 | | ** | 12.9 | 6.3 | .53 | 77 | 3.32 | .6 12 | 1 1 | | DIRTHARI | F 107481101 | EMENTS OFARRO | YO SECO | L | | | | | a. par | | | | 1560 | | + | •• | 12.9 | 6.6 | ,53 | .77 | 3.51 | .6 12 | | | | | | | | | | | | | 117 | | | 1561 | 3/6 | + | | 13.1 | 7.2 | .46 | .77 | 3.34 | .6 14 | | - | NEAR. | above | Mouth of Canyon | • | | Ви | RING THE | YEAR ENDIN | IS SEPTE | MBER 31 | , 19.5£ | - | | _1562 | 1 | | •• | 12.5 | 7.2 | . 38 | .79 | 2.74 | .6 25 | 1 1 | NO. | DATE | END | HADE BY | WIDTH | AREA OF
SECTION
BQ. FT. | HEAN
VELOCITY
FT.PER SEC | BAUGE
HEIGHT
FEET | DISCHARGE | PAT- HE | TH- MEA | G HT.
CHANGE
TOTAL | MEYER
NO. | | 1563 | 1 | Í | | 13.5 | 9.4 | .93 | 1.08 | 8.7 | .6 26 | | - | † | 1 | | | | 1 | 1 | - | 1 | 5 | i | | | 1564 |] | | | 12. | 9.3 | .74 | .97 | 6.9
 .6 12 | T | 1599 | 1 | | U.S.G.S. | 15.5 | 7.6 | .63 | | 4.78 | T | 6_ 22 | | | | 1565 | 1 | | " | 12. | 7.7 | .54 | .86 | 4.14 | .6 12
V 22 | | _1600 | 1 | | " | 2.3 | 1.00 | 1 * | | 1.74 | 1 | 6 6
6 7 | i | | | 1566 | | | | 43. | 78.6 | 5.52 | 3.70 | 434. | | | 1601 | 1 | | | 2.7 | 1.26 | | | 1.89 | | | li i | ļ — | | 1567 | | + - | | 41. | 60.1 | 5.32 | 3.41 | 320. | V 20 | | 1602 | 1 | 1 | <u>"</u> | 2.7 | 1.23 | 1 | | |] [| 6 7 | 1 | | | _1568 | | | | 27.4 | 31.4 | 2.17 | 2.04 | 68.1 | .6 21 | | 1603 | | - | | 2.3 | 1.14 | į | i | 1.97 | | | | | | 1569 | | _ | | 20. | 19.2 | 1.69 | 1.59 | 32.1 | .2.6 | | _1604 | i | + | | 2.2 | 1.01 | 1.45 | | 1 | | 6 11 | | | | _1570 | | | | 18. | 15.9 | 1.06 | 1.19 | 16.9 | | | 1605 | i | | | 11.1 | 11.5 | 1.28 | 1 | 14.7_ | † † | 6 11 | -03 | | | -1571 | , , , , | | | 19. | 12.5 | 1.03 | 1.10 | 12.9 | .6 18
.2.6
.8 11 | | 1606 | | | | .37 | 57.6 | | 3.42 | 291 | ++ | h 8 | 1.13 | | | _1572 | 4/18 | | I | 11.2 | 9.9 | 1.10 | 11.10 | 1 10.9 | 1 .0 | | 1607 | 11-14 | + | | 20.5 | 18.4 | 1 3.33 | 1.98 | 61.3 | + | 6- 11 | 1.01 | | | | DISCHARGE | MEABUREN | ENTE OF ARROYO | SECO | | | | | | | · · · · · · | | | MQ. | DATE | BEQ!H
END | MADE BY | WIDTH
FEET | AREA DF
BEGTION
BQ. FT. | MEAN
VELODITY
FT.PER SEQ. | BAUSE
HEISHT
FEET | DISCHARGE
SEC. FT. | RAT- | NETH- | MEAD. | S. HT.
DHANGE
TOTAL | HETER
NO. | |------|-----------|----------------|----------------|-------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------------|-----------|-------------|----------------|--------------|--------|------|----------------|----------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|----------|-------|---------------------------|--------------| | | -AF- | above | Mouth of Canyo | n | | DURI | NO THE Y | EAR ENDING | MEPTE | MBER | 30, 19 | . 47 | | 1630 | 4-16 | 1055A
1107A | TURNER | 10.0 | 7.6 | 0.46 | 0.88 | 3.5 | \square | 6. | | 0 | FC43 | | | | | · | | T | | | | | 1 | F. | 1 | | 1631 | 4-22 | | u.s.g.s. | 8.1 | 7.4 | 0.64 | 0,92 | 4,70 | | 6 | 0 0 | 0 | | | ND. | DATE | PEGIN
END | MADE MY | FEET | AREA DF
SECTION
SQ. FT. | MEAN
VELODITY
FT,PER SED. | BAUGE
HEIBRT
FEET | DISCHARGE
SEC. FT. | RAT- ME
IND C | - | EG. DI | HANGE
TOTAL | METER
NO. | 1632 | 4-30 | 1110A
1120A | TURNER | 8.8 | 7.3 | 0.56 | 0.84 | 4,1 | | 6 | 0 1 | 0 | FC43 | | 1608 | 11-20 | | , " | 42.5 | 99.6 | 5.76 | 4.05 | 574 | | 5
6. 2 | 4 | | | 1633 | 5-1 | | u.s.g.s. | 8.6 | 6.8 | 0.51 | 0-81 | 3.49 | \perp | 6 | | 2 | | | 1609 | 11-22 | | | 13.9 | 6.9 | 3.68 | 1.66 | 25.4 | | | 2 1 | 0. | | 1634 | 5-6 | | | 5.0 | 3.57 | 0.72 | 0.77 | 2.58 | | 6 | 1_5 | | | | 1610 | 11-23 | | | 28 | 35.0 | 3.74 | 2.59 | 13 1 | 6 | 2
-8 2 | 4 | .02 | | 1635 | 5-20 | | ,, | 5.Q | 3.35 | 0.62 | 0.75 | 2.08 | \sqcup | 6 | 3 0 | 0 | | | 1611 | 11-25 | | ,, | 19.9 | 23.0 | 1.66 | 1.62_ | 38.1 | | 6 1 | 1 | .01_ | | 1636 | 5-28 | 1045A
1055A | TURNER | 5.0 | 3.83 | 0.84 | 0.82 | 3.17 | Ц | 6 | 5 0 | | FC43 | | 1612 | 12-10 | | | 8.8 | 7.5 | 1.01 | 1.05 | Z-6 | | 6 | 9 0 | ۵ | | 1637 | 6-3 | | u.s.g.s. | 5.1 | 3.62 | 0.66 | 0.77 | 2.30 | L | 5 | 2 | 0 | | | 1613 | 12-17 | | | 8.7 | 7.0 | .91 | .98. | 6.4 | | | 9 | -01- | | 1638 | 6-3 | | | _5.0 | 3,47 | 0.68 | 0.77_ | 2.36 | \sqcup | 6 | 1_]0 | | | | 1614 | 12-26 | | | 38 | 50.9 | 3.14 | 2.83 | 160 | | 6
-8 2 | 1 | .04 | | 1639 | 6-11 | 905A
915A | STUNDEN | 5.0 | 3,31 | 0.70 | 0.74 | 2,3 | L | 5 | 6 6 | | FC36 | | 1615 | 1-14 | | <u></u> | 18.0 | 11.8 | 1.19_ | 1.19 | 14-1 | | 6 1 | 2 | • | | 1640 | 6-17 | | u.s.g.s. | 5.0 | 3.C4 | 0.48 | 2.68 | 1.46 | | | مام | ı | | | 1616 | 1-21 | 300P | TURNER | CHANNEL | s | | 1.05 | 10.3 | - | 6 | با | | FC43 | 1641 | 6-26 | 825A
835A | STUNDEN | 5.0 | 2.84 | 0.63 | 0-69 | 1.8_ | | 5
6 | 8 (| | F¢36 | | 1617 | 1-28 | <u></u> | u.s.6.s. | 13.4 | 13.9 | 1.47 | 1,34 | 20.4 | H | 6 1 | 1 | .02 | | 1642 | 7-1 | 8008 | U.S.G.S. | 2.2 | 0.92 | 1.68 | 0.68 | 1.55 | \vdash | .6 | 8 | 0 | | | 1618 | 1.31 | | | 10.2 | 9.4 | 1.01 | 1.04 | 9.5 | <u> </u> | 61 | 1 - | | | 1643 | 7-9 | | STUNDEN | 4,3 | 2,31 | 0.61 | 0.65 | 1.4 | - | .6 | 7 | 0 | FC36 | | 1619 | 2-6 | 100P
112P | TURNER | 9.7 | 9.1 | 0.91 | 0.92 | 8.3 | | 6_1 | 1 | 0 | FC43 | 1644 | 7-16 | | v.s.g.s. | 2.1 | 0.87 | 1.21 | 0.65 | 1.05 | | .6 | 7 | 0 | <u> </u> | | 1620 | 2-12 | | u.s.g.s. | 9.8 | 8.3 | -88 | .92 | 7.3 | <u> </u> | 6. | 0 | 2 | | 1645 | 8-1 | 405P | , | 1.8 | 0.68 | 1,03 | 0.60 | 0,70 | \sqcup | .6_ | 6 | 0 | · | | 1621 | 2-18 | 255P
310P | TURNER | 9.5 | 8.7 | 0.87 | 0.92 | 7.6 | ╽. | 6_1 | | 0 | FC43 | 1646_ | 8-7 | | MOON | 1.8 | 0.57 | 0.91 | 0.57 | 0.52 | | | 4 | 0 | FC22 | | 1622 | 2-28 | | u.s.g.s. | 9.4 | 8.0 | 0.73 | 0.99 | 5.8 | ╽. | 6 | щ | ۵ | | 1647 | 8-12 | 1030A | u.s.g.s. | 1.8 | 0.60 | 0.97 | 0.58 | 0.58 | | .5
.6 | 7 | 0 | | | 1623 | 3-7 | 1002A
1007A | BLAKELY | 3.2 | 1.96 | 3.57 | 0.99 | 7.0 | . | 6 | 5 | ٥ | FC35 | 1648 | 8-20 | | MOON | 1.8 | 0.59 | 1.00 | 0.59 | 0.59 | ₩ | .5 | 3 | 0 | FC22 | | 1624 | 3-11 | ļ <u></u> | u.s.g.s. | 9.5 | 8.0 | 0.66 | 0.98 | 5,3 | ļ., | 6 | 10 | ۰ | | 1649 _ | 8-26 | | U.S.G.S. | 1.7_ | 0.57 | 0.96 | 0.58 | 0.55 | H | .5
-6 | 7 | 0 | <u> </u> | | 1625 | .3-19 | 1110A
1120A | TURNER | 10.0 | 8.1 | 0.66 | 1.05 | 5.3 | | 61 | 11 | 0 | FC43 | 1650 | 9-2 | 430P | | 1_65_ | .0.56 | 0.95 | 0.58 | 0.53 | \sqcup | .5 | 2 | o | | | 1626 | 3-25 | | U.S.G.S. | 9.0 | 7.6 | 0.71 | 1.00 | 5.4 | \vdash | 6 | 4 | ٥ | | 1651 | 9-3 | | STUNDEN. | 1.7_ | 0.50 | 0.72 | 0.55_ | 0.36 | \sqcup | .5 | 4 | ٥ | FC36 | | 1627 | 4-1 | ļ | | 9.1 | .8.5 | . 0.79 | 1.11 | 6.7 | 4 | 6 | யு | ٥ | | 1652 | 9-9 | 10054 | J.S.G.S. | 1.5 | 0.51 | 122 | 0.:58 | 0.62 | \sqcup | 6 | 6 | ٥ | | | 1628 | 4-2 | 1020A
1030A | TURNER | 10.0 | 8.7 | 0.71 | 1.10 | 6.2 | \mapsto | 6 | щ | 0 | FC43 | 1653 | 9-17 | 1025A
1030A | STUNDEN | 1.5 | 0.51 | 1.16 | 0.58 | 0.59 | \sqcup | -5 | 3 | <u> </u> | FC40 | | 1629 | 4-8 | | u.s.g.s. | 9.0 | 7.9 | 0.66 | 0.98 | 5.2 | Ш | 6_ | 9 | ٥ | | 1654 | 9-23 | | v.s.g.s. | 1.5 | 0.53 | 1.17 | 0.58 | 0.62 | | 6 | 7 | 0 | | | P. G. biş | 4. Form 52 4-48 | | | | н | YDRAULIC | OL DISTRICT | • | | | Sta. 1 | _{No.} UI≃R | |----------------------------------|--|--|--------------------------------------|---|--|--|----------------------------------|--|--|--|---------------------------------|--| | Daily o | iischarge, in s | coond-feet of | ARROYO | ECO above | Mouth o | f Canyon | | | | , for the yea | r ending Septer | nber 30, 19_ 1/6 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | Мау | June | July | Aug. | Sept | | 1
2
3
4 | 1.0
1.0
0.9 | 1 2
1 2
1 2
1 2 | 1.5
1.5
1.5 | 6.5
6.8
6.8 | 3.1
2.9
28
24 | 3 3
3 3
3 3 | 65
50
40
31 | 8 &
8 &
8 1
7 9 | 3 3
3 1
2.7
2.6 | 1.8
1.8
1.7 | 1.0
1.0
1.0 | 0 &
0 &
0 &
0 5 | | 5
6
7
8
9 | 0.9
0.9
0.9
0.9 | 1 A
1 5
1 7
1 5
1 7
1 7 | 1.5
1.7
1.7
1.7
1.7 | 5.8
5.4
5.2
4.8
4.2
4.0 | 7.5
6.2
5.6
5.0
4.4
4.4 | 3 3
3 3
3 3
3 3
3 3 | 23
22
26
23
23
20 | 7.7
7.2
6.5
6.3
6.3 | 2.6
2.7
2.7
2.7
2.7
2.7 | 1.7
1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0
0.9 | 0.5
0.5
0.5
0.5
0.5
0.5 | | 11
12
13
14
15 | 0.9
0.9
0.9
0.9 | 1.7
1.8
1.8
1.8 | 1 .8
2 .0
2 .0
2 .0
2 .0 | 3.8
3.6
3.6
3.6
3.6 | 4 2
4 0
4 0
3 .6
3 .6 | 3 3
3 1
3 1
2 9 | 17
17
16
15 | 63
60
60
60 | 2.6
2.2
2.2
2.1 | 1 A
1 A
1 A
1 A | 0.7
0.7
0.8
0.8
0.8 | 5
5
5
5
5
5
5
5
5
5 | | 16
17
18
19
20 | 09
09
09
10 | 1.8
1.8
1.7
1.7 | 1.8
1.8
1.8
1.8 | 3.6
3.6
3.6
3.6 | 3.6
3.4
3.4
3.3
3.3 | 2.9
3.1
3.4
8.9 | 14
13
11
11 | 6.0
5.8
5.8
5.8 | 21 20 20 20 | 1 4
1 4
1 4
1 4 | 0.8
0.7
0.7
0.7 | 0.5
0.5
0.5
0.5
0.5 | | 21
22
23
24
25 | 1.0
1.2
1.2
1.1 | 1.5
1.5
1.5
1.4 | 58
213
186
60
28 | 3 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 | 3 3
3 3
3 3
3 3
3 3 | 8 9
7 1
6 3
5 2
4 8 | 10
10
9.4
9.4
9.4 | 5.8
5.6
5.4
5.2
5.0 | 2.0
2.0
2.0
2.0 | 1 2
1 1
1 1
1 1 | 0.7
0.7
0.7
0.7 | 0.5
0.5
0.5
0.5 | | 26
27
28
29
30
31 | 1 1
1 2
1 2
1 2
1 2
1 2 | 1 4
1 4
1 4
1 4
1 4 | 16
13
11
9 A
8 1
7 2 | 3 A
3 B
3 B
3 B
3 B
3 B | 3 3
3 3
3 3 | 4.4
4.0
4.8
6.5
362
121 | 9 2
9 2
8 9
8 6
8 5 | 5 .0
5 .2
4 .8
4 .4
3 .8
3 .6 | 1.8
1.8
1.8
1.8 | 1 1
1 1
1 1
1 1
1 0
1 0 | 3.0
3.0
3.0
3.0
3.0 | 0.5
0.5
0.5
0.5
0.6 | | | 311 | 461 | 644.5 | 1289 | 1539 | 612.0 | 554.7 | 186.6 | 68.4 | 42.0 | 241 | 15.4 | | MEAN | 1,00 | 1.54 | 20.8 | 4.16 | 5.50 | 19.7 | 18.5 | 6.02 | 2,28 | 1,35 | 0,78 | 0.51 | | ACRE-
FEET | 62. | 91. | 1,280. | 256. | 305. | 1,210. | 1,100. | 370. | 136. |
83.
TEAR MEA | 48.
N 6. | 31. | | | | | | | | | | | P | ERIOD ACRE | -FERT | 4,970. | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. UI-R | Daily d | ischarge, in se | cond-feet of | ARROYO SE | CO above | Mouth of | Canyon | | | | for the year | ending Septem | ber 30, 19_47 | |----------------------------------|-------------------------------------|------------------------------|------------------------------------|--|--|--|---------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 4 1
1.8
1.4
2.1
2.1 | 1.8
1.5
1.5
1.5 | 12
10
92
86 | 3 6
3 5
3 2
2 8
2 5 | 9 2
8 9
8 6
8 4
8 4 | 5,8
5,6
5,6
5,6 | 6.5
6.3
6.5
6.0 | 3 3
3 1
2 6
2 4
2 4 | 2.7
2.6
2.4
2.2
2.2 | 1.5
1.4
1.4
1.4 | 0.7
0.7
0.7
0.7
0.7 | 0.5
0.5
0.5
0.5 | | 6
7
8
9
10 | 2 1
1 .8
1 .8
1 .8
1 .7 | 1.7
1.7
1.7
1.7 | 15
16
11
8.4
7.7 | 22
19
17
17
16 | 8.4
8.1
7.9
7.7
7.4
7.2 | 5.6
5.6
5.4
5.4
5.4 | 5.6
5.4
5.2
4.8
4.4 | 2.6
2.7
2.7
2.7
2.7 | 2 2 2 2 2 2 2 2 2 1 | 1 A
1 A
1 A
1 A
1 A
1 A | 0.7
0.6
0.7
0.6
0.6 | 0.5
0.6
0.6
0.6 | | 12
13
14
15 | 1.5
1.1
1.0
1.0
1.4 | 2 2
18
140
57
28 | 77
74
72
72
70 | 15
15
14
14
14 | 7 2
7 0
7 0
6 8
6 8 | 5.4.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 4 2
4 0
3 8
3 6
3 4 | 2.7
2.7
2.7
2.7
3.1
2.9 | 2.1
2.0
1.8
1.8
1.7 | 1 2
1 2
1 2
1 1
1 1 | 0.5
0.5
0.5
0.5 | 0 £
0 5 5
0 5 5
0 5 | | 17
18
19
20 | 1.8
1.9
2.2
1.8 | 11 .
9 .4
8 .4
181 | 6 5
6 3
6 0 | 12
12
12
10 | 6.8
7.7
7.4
7.2 | 5 Q
5 4
5 8 | 3.4
3.6
3.8
4.0 | 2.6
2.4
2.2
2.2 | 1.5
1.5
1.5
1.7 | 1.1
1.0
1.0 | 0.5
0.5
0.5 | 0.7
0.7
0.6
0.6 | | 22
23
24
25 | 1.7
1.7
1.8
1.7 | 47
25
59
46
37 | 6.0
6.0
7.2
103 | 10
10
9.7
9.7
9.4 | 7.0
6.8
6.5
6.3
6.3 | 72
72
6.5
5 | 4.6
4.8
4.2
4.2
4.2 | 2 4
2 4
2 6
2 6
2 2 | 1.7
1.8
1.8
1.8 | 1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5
0.5 | 0.6
0.6
0.6
0.6 | | 26
27
28
29
30
31 | 15
20
21
20
20
20 | 26
22
20
16
14 | 206
145
85
63
49
38 | 8 9
8 9
1 8
1 6
9 7
9 4 | 6 .0
6 .0
5 .8 | 52
52
53
73
73
72 | 4 2
4 2
4 2
4 0
4 0 | 2 2
3 1
3 1
2 6
2 7
3 1 | 1.8
1.8
1.7
1.5 | 1 0
1 0
1 0
0 9
0 9
0 8 | 55555
0005 | 0.5
0.5
0.6
0.6
0.7 | | | 56.4 | 7993 | 889.3 | 497.7 | 204.8 | 185.7 | 136.7 | 823 | 57 <i>9</i> | 35.8 | 173 | 170 | | MBAN | 1,82 | 26.6 | 28.7 | 16.1 | 7.31 | 5.99 | 4.56 | 2.65 | 1.93 | 1.15 | 0.56 | 0.57 | | ACRE-
FEET | 112 | 1,590 | 1760 | 987 | 406 | 368 | 271 | 163 | 115 | 71 | 34 | 34 | | | Remarks: | | | | | | | | | EAR MEAN
OR
ERIOD ACRE | | 10 | #### STATION P277-R ARROYO SECO below Devil's Gate Dam LOCATION: WATER-STAGE RECORDER, LAT. 34°10'53", LONG. 118°10'21" ON THE LEFT (EAST) SIDE OF THE CHANNEL ABOUT 0,5 MILE BELOW DEVIL'S GATE DAM AND ABOUT 0,5 MILE ABOVE WASHINGTON STREET, PASADENA. ELEVATION DF GAGE, ABOUT 926 FEET. DRAINAGE AREA: 32.5 SQUARE MILES. CHANNEL AND CONTROL: NATURAL CHANNEL OF ROCK AND SAND FROM DEVIL'S GATE DAM TO THE STATION AT INTAKE STRUCTURE TO IMPROVED CHANNEL WHERE AN OCCE SECTION 80.2 FEET WIDE AND 18 FEET HIGH WITH A RECTANGULAR, BROAD-CRESTED WEIR 14.2 FEET WIDE AND 2.0 FEET HIGH FORMS THE CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM WASHINGTON STREET BRIDGE ABOUT 0.5 MILE BELOW STATION. RECORDER: INSTALLED NOVEMBER 30, 1942. OVER A 32 INCH DIAMETER STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY DEVIL'S GATE DAM AND PASADENA WATER DEPARTMENT'S GATED DIVERSION INTO CHANNEL ABOVE STATION. DIVERSIONS: PASADENA WATER DEPARTMENT DIVERTS FLOW APPROXIMATELY TWO MILES ABOVE DEVIL'S GATE DAM FOR DOMESTIC USE. FLOW MAY BE DIVERTED TO CHANNEL BETWEEN DEVIL'S GATE DAM AND STATION FROM PASADENA WATER DEPARTMENT TUNNEL. RECORDS AVAILABLE: NOVEMBER 30, 1942. TO SEPTEMBER 30, 1947. RECORDS PRIOR TO NOVEMBER 30, 1942 ARE AVAILABLE AT THE PASADENA WATER DEPARTMENT. EXTREMES OF DISCHARGE: MES OF DISCHARGE: 1945-1946 MAXIMUM A45 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW. 1946-1947 MAXIMUM 610 SECOND-FEET, DECEMBER 27, MINIMUM NO FLOW, PART OF YEAR. 1942-1947 MAXIMUM 5640 SECOND-FEET, JANUARY 23, 1943, MINIM ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE PASADENA WATER DEPARTMENT JANUARY 1940. THE OPERATION TAKEN OVER BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT NOVEMBER 30, 1942. IN COOPERATION WITH THE PASADENA WATER DEPARTMENT. | | OUBCHARDE | MEATURE | WENTE OF | ARRO | YO. SEC | 0 | | | | | | | | | DISCHARG | E MEABURE | MENTS OFARROYO S | SECO | | | | ± | | | | | | |------|-----------|-----------------------|-----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|--------------|---------|-------|--------------|------|----------|----------------|--------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------|---------|------------------------------|------|--------------| | | ·AP | belo | w Devils Gate D | am | | DURIN | 10 THE YE | AR ENDING | BEPTE | HER | 30, 1 | • 48· | | | | elow I | evils Gate Dam | | | DUR | ING THE Y | EAR ENDING | BEPT | EMBER | 20, 19 | .47. | | | но. | DATE | #EGIN
END | MADE BY | WIDTH
FEET | ARKA DF
ACDTION
EQ. FT. | MEAN
VELUCITY
FT.PER BEC. | BAUGE
HEIGHT
FEET | DIECHARGE
ECG. FT, | NAT- | ETH 1 | MEAN C | HANGE | HETER
NO. | NO. | DATE | BEGIN
END | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER BEG. | GAUSE
HEIGHT
FEET | DISCHARGE
BCC. FT. | RAT- N | 1ETH- H | EAB. B.
BEG. GH
NG. YI | HT. | HETER
NO. | | 174 | 12/22 | 930A
940A
1100A | MOON | 38.0 | 16.2 | 4.57 | 0.74 | 74.0 | | .6 | 7 | Ω | FC22 | 205 | 11-13 | 1016P
1043P | KASIMOFF - OTIS | 37.0 | 56.4 | 1.30 | 0.78 | 73.7 | | .6 | 10 | 0 | FC47 | | 175 | 12/22 | 1110A | MOON - ANDREN | 35.0 | 18.8 | 15.7 | 1.64 | 296. | - | TAC | 5 | 0 | | 206 | 11-14 | 943A
952A | MOON - ROCKENMEYER | 18.0 | 30.8 | 2.08 | 0.78 | 64.1 | | .6 | 9 | 0 | FC22 | | 176 | 12/23 | 425P
430P | MOON - HOLMES | 36.0 | 20.7 | 17.2 | 1.95 | 372. | | | 4 | 0 | | 207 | 11-14 | 1110A
1117A | * " | 6.0 | 4.44 | 16.2 | 0.78 | 72.0 | | .6 | 4 | 0 | РІТОТ | | 177 | 2/28 | 405P
407P | MOON | 1.5 | 0.16 | 0.69 | 0.14 | 0.11 | | .5 | 2 | 0 | .FC22 | 208 | 11-20 | 400P
402P | | 6.0 | 4,50 | 15.3 | 0.80 | 69.0 | | .6 | 6 | 0 | | | _178 | 3/14 | 232P
234P | | 1.0 | 0.12 | 0.83 | 0.13 | 0.10 | | .5 | 2 | 0 | | 209 | 11-21 | 725P
735P | MOON | 10.0 | 17.4 | 22.6 | 1.90 | 393. | | .5 | 8 | 0 | ** | | 179 | 3/21 | 340P
342P | | 1,5 | 0.22 | 0.91 | 0.16 | 0.20 | | .5 | 2 | 0 | | 210 | 11-23 | 1147A
1207P | ., | 24.0 | 28.0 | 2.08 | 0.75 | 58.1 | | .6 | 11 | 0 | FC22 | | 180 | 3/28 | 252P
255P | | 1.8 | 0.17 | 0.88 | 0.15 | 0.15 | | .5 | 3 | 0 | | 211 | 11-23 | 1235P
1240P | н | 6.0 | 5.04 | 13.3 | 0.76 | 65.6 | | .6 | 4 | 0 | PETOT | | 181 | 4/9 | 1045A
1055A | | TWO_CH | NNEL S | | | 0.53 | | .5 | 6 | | ., | 212- | 11-25 | 1110A
1115A | | 6.0 | 12.6 | 1,15 | 0.22 | 14.5 | | .6 | 5 | 0 | FC22 | | 182 | 4/11 | 400P
405P | ,, | | <u></u> | | | 0.55 | | .5 | 4 | | | 213 | 11-26 | 110P
115P | 11 | 6.0 | 2.28 | 9,60 | 0,31 | 21.9 | | OATS | 4 | 0 | | | 183 | 4/18 | 510P | | | | | | 0.93 | | VOTCH
EUR | | | | 214 | 12-26 | 230A
255A | MOON - STEVENS | 35.0 | 23.8 | 13.8 | 1.87 | 328. | | .6 | 9 - | 06 | PITOT | | 184 | 4/25 | 410P | ., | | | | | 0.92 | | | | | | 215 | 12-26 | 550P
615P | -11 | 36.5 | 21.9 | 17.3 | 2.09 | 378. | F) | OATS | 11 | 0 | | | 185 | 5/9 | 420P | | | | | | 1.1 | | | | | | 216 | 12-27 | 505P
510P | | 6.0 | 13.5 | 19.0 | 1.65 | 257. | | - 1 | | | PITOT | | 156 | 5/16 | 420P | | ļ | | | | 1.1 | | | | | | 217 | 12-31 | 1115A
1120A | MOON | 6.0 | 3.60 | 11.2 | 0.42 | 40.4 | | .6 | 6 | 0 | ** | | 187 | 5/23 | 400P | | | | | | 1.0 | | | | | | 218 | 1-3 | 1040A
1050A | | 6.0 | 2.52 | 8.97 | 0.34 | 22.6 | | NOT C | 6 | 0 | | | 188 | 5/30 | 410P | | | | | | 1.0 | | | | | | 219 | 1-29 | 150P | ** | | | | | 0.48 | | EIR | н | | | | 189 | 6/6 | 445P | | | | | | 0.97 | | | | | | 220 | 2.5 | 340P | | | | | | 0.52 | | | | | | | 190 | 6/13 | 545P | | | | | | 0.92 | | | | | | 221 | 2-13 | 245P | - 144 | | | | | 0.52 | | | | | | | 191 | 6/21 | 840A | | | | | | 0.85 | | | | | | 222 | 2-19 | 1150A | MOON - WADDICOR | | | | ļ | 0.55 | | | | | | | 192 | 6/27 | 350P | | | | | | 0.80 | | . | | | | 223 | 2-26 | 410P | MOON | | ļ | | | 0.55 | | - | _ | | | | 193 | 7/3 | 400P | | | | | | 0.79 | | | | | | 224 | 3-6 | 415P | 25 | | ļ | | | 0.55 | | • | | | | | 194 | 7/11 | 430P | | | | | | 0.72 | | | | | | 225 | 3-12 | 330P | * | | ļ | | | 0.55 | | • | | | | | 195 | 7/18 | 400P | | | | | | 0.65 | | | | | | 226 | 4-16 | 400P | | | ļ | | ļ | 0.58 | | - | | | | | 196 | 7/25 | 415P |
MOON | ļ <u> </u> | | | | 0.58 | | DIOI
EIR | | | | 227 | 4-23 | 920A | | | ļ | ļ | <u> </u> | 0.58 | L. | ** | | | | | 197 | 8/1 | 310P | | | | | | 0.55 | | | _ | | | 228 | 4-30 | 345P | | | ļ | ļ | | 0.57 | L | | | | | | 198 | 8/8 | 400P | | | | | | 0.49 | _ | | | | | 229 | 5-8 | 900A | | | | | | 0.57 | | ** | _ | | | | 199 | 8/15 | 410P | | | | | | 0.44 | _ | \ | | | | 230 | 5-14 | 940A | | | ļ | | <u> </u> | 0.57 | | | _ _ | | | | 200 | 8/22 | 300P | ** | | | | | 0.38 | \perp | | _ | | | 231 | 5-22 | 1130A | * | | <u> </u> | | ļ | 0.57 | L., | | 4 | | | | 201 | 8/29 | 300P | | | | | | 0.35 | | | 1 | | | 232 | 5-29 | 1215P | L. | | | | ļ | 0.57 | Ш | • | 4 | | | | 202 | 9/5 | 450P | STUNDEN | | | | | 0,32 | | | \perp | | | 233 | 6-5 | 310P | | | ļ | L | L | 0.59 | | | 4 | | | | 203 | 9/14 | 1210P | ** | | | | | 0.22 | | | | | | 234 | 7-23 | 930A
932A | 98 | 1.0 | 0.05 | 0.40 | ļ | C.02 | | .5 | 2 | 0 | FC22 | | 204 | 9/26 | 955A | | | | | | 0.10 | | | | | | | | | • | | | | | | | · | | | | | F. C. Dist. | Form 52 4-48 | | | | FLC | los angeles
OOD CONTRO
YDRAULIC I | L DISTRICT | • | | | Sta. P | то. <u>Р277-R</u> | |---|----------------|---|---------------------------------------|----------|---------------------------------------|--|---|---|--|---|---|---| | Dally di | scharge, in se | cond-feet of | ARROYO SE | CC below | Devils Ga | te Oam | | | | , for the year | ending Septen | nber 30, 19 <u>48</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 27 28 29 30 31 | | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | D | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | D 01110011100111001110011100011100000000 | D 0 3 3 4 4 4 0 4 5 0 0 5 5 5 0 0 5 5 5 0 0 0 0 | 1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 1
1 0
1 0 | b 1 0
1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 0 9
0 9 9
0 9 9
0 9 9
0 9 9
0 9 9
0 9 0 9
0 9 0 9
0 9 0 9
0 0 9
0 0 0 0 | 0 0 8 8 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | | 0 | 0 | 6785 | 1 7 | 0.5 | 4 .7 | 203 | 323 | 273 | 21.4 | 13.7 | 5 9 | | MEAN | 0 | 0 | 21.9 | 0,04 | 0.02 | 0.15 | 0.68 | 1.04 | 0.91 | 0.69 | 0.44 | 0.20 | | ACRE- | 0 | 0 | 1346. | 2,6 | 1.0 | 9.3 | 4.0 | 64. | 54. | 42. | 27. | 12. | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRE | | .1 7
1580. | F. C. Dist. Form 52 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. P 277-R | ally | discharge, in s | econd-feet of | ARROY | SECO bel | ow Devil | s Gate D | am | | | , for the yea | r ending Septer | nber 30, 19 <u>1</u> | |------------|-----------------|---------------|----------|----------|-----------|------------|----------|-----------|------|-----------------------------|-----------------|----------------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 0 | 0 | 0.2 | 32 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | + | + | 0 | | 2 | 0 | 0 | 0.2 | 27 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | | + | 0 | | 3 | 0 | 0 | 0.2 | 23 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | + | + | 0 | | 4 | 0 | 0 | 0.2 | 13 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | + | + . | Q | | 5 | 0 | 0 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | + | + | 0 | | 6 | 0 | 0 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 3.0 | 0.6 | + | + | 0 | | 7 | 0 | 0 | g.s | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | • | + | 0 | | 8 | o | 0 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | + | + | 0 | | .9 | 0 | 0 | 0.2 | 0.4 | 21 | 0.5 | 0.6 | 0.6 | 0.05 | + | + | 0 | | 10 | 0 | 0 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.05 | + | + | 8 | | 11 | 0 | 0 7 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.05 | * | † † | ő | | 12
13 | 0 | 0.7 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | + | + | † | ö | | 14 | ó | 26 | 0.2 | 0.4 | 0.5 | 0.5
0.5 | 0.6 | 0.6 | + | | · • | ŏ | | 15 | 0 | 72 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | + | + | † † | ŏ | | 16 | ∺ | 70
69 | 0.2 | 0.4 | 0.5 | 0.5 | <u> </u> | 0.6 | + | | | | | 17 | ŏ | 20 | 0 ž | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | ÷ | + | ; | Ö | | 18 | ŏ | ~0 | 02 | 0.4 | 0.5 | 0.5 | 0.6 | 3.0 | ÷ | - | ; | ŏ | | 19 | ŏ | 0 | 03 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 7 | | ; | ŏ | | 20 | ŏ | 31 | 0.3 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 7 | | , . | ŏ | | 21 | - ŏ | 110 | 0.3 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | + | | - | - 5- | | 22 | ŏ | 108 | 03 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | ÷ 1 | 4 | | ŏ | | 23 | ŏ | 65 | 03 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | + 1 | | | ŏ | | 24 | ŏ | 156 | 03 | 0.5 | 0.5 | 0.5 | ŏ.5 | 0.6 | + | + | ; | ō | | 25 | ŏ | 189 | 0 9 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | + | | | ō | | 26 | Ö | 22 | 410 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | + | + | + | 0 | | 27 | ŏ | 1 4 | 298 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | + | + | + | Ö | | 28 | ŏ | 0.2 | 163 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | + | + | + | Ö | | 29 | ŏ | 0 Z | 72 | 0.5 | | 0.5 | 0.6 | 0.6 | + | + | + | 0 | | 30 | ŏ | 0 Z | 50 | 0.5 | | 0.5 | 0.6 | 0.6 | + | + | + | Ö | | 31 | ŏ | | 40 | 0.5 | | 0.5 | | 0.6 | | + | + | | | | 0 | 1 | 0393 | | 34.5 | | 18.0 | | 4.95 | | + | | | | | 853.3 | | 1071 | | 15.5 | | 18.6 | | + | | . 0 | | EAN | 0 | 27.6 | 33.5 | 3.45 | 1.23 | 0.50 | 0.60 | 0.60 | 0.16 | 0 | 0 | 0 | | RE-
EEF | 0 | 1,690 | 2,060 | 212 | 68 | 31 | 36 | 37 | 10 | 0 | 0 | 0 | | | Remarks: | + = c.f.s. | or less. | | OWs are m | easured t | y V-Note | n wier in | | EAR MEA
OR
ERIOD ACRI | | ,140 | Stage discharge during low flows very unreliable. ## STATION F388-R BALLONA CREEK at Sawtelle Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 33°59'48", LONG. 118°24'07". ON THE DOWNSTREAM SIDE OF SAWTELLE BOULEVARD BRIDGE, ABOUT 1,5 MILES SOUTH OF CULVER CITY. ELEVATION OF ZERO GAGE HEIGHT. 11.28 FEET. FORMER STATION F38-R WAS AT CENTINELA BOULEVARD. I MILE DIMPSTREAM. DRAINAGE AREA: 111 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - HEAVY ADOBE OVERLAID WITH COARSE GRAVEL AND SAND, WITH ROCK PAYED LEVEES ON A 3 TO 1 SLOPE. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 30D FEET ABOVE STATION. RECORDER: INSTALLED AT STATION F99-R FEBRUARY 27, 1928. RECORDER REMOVED APRIL 27, 1936. INSTALLED AT STATION F388-R MAY 14, 1936 OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: STONE CANYON RESERVOIR, UPPER AND LOWER FRANKLIN CANYON RESERVOIRS, HOLLYWOOD RESERVOIR AND SILVER LAKE RESERVOIR. DIVERSIONS: SOME SMALL PUMPING DIVERSIONS FOR IRRIGATION. RECORDS AVAILABLE: AT STATION F38-R - FEBRUARY 27, 1928 TO APRIL 27, 1996-AT STATION F388-R - MAY 14, 1936 TO SEPTEMBER 30, 1947- EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 7750 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW, JUNE 3. MINIMUM NO FLOW, JUNE 3. 1946-1947 MAXIMUM 9630 SECOND-FEET, DECEMBER 25, MINIMUM 0,7 SECOND-FEET, APRIL 13, 1928-1947 (STATIONS F38-R AND F388-R) MAXIMUM 19,000 SECOND-FEET, MARCH 2, 1938MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: GOOD. OPERATION: LOCATED AND CONSTRUCTED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT AND OPERATED IN COOPERATION WITH THE U.S. ENGINEER DEPARTMENT AND WITH THE U.S.G.S. WATER RESOURCES BRANCH. DISCHARGE MEASUREMENTS OF BALLONA CREEK BALLONA CREEK _AT_ Sawtelle Boulevard ıĕ. Sawtelle Boulevard DURING THE YEAR ENDING BEPTEMBER 30, 19.14 DURING THE YEAR ENDING BEFTEMBER 30, 19. 47 HAT- METH- MEAS. S. HT. SED. DHANGE ND. TOTAL WIDTH BAUDE HEIGHT FEET HAT- METH-METER NO. NO. HEIBRY FEET 933/ BOLLINGER BOLLINGER 10.0 6.76 0.92 1.14 6.2 FC6 9.18 10-3 943A VAN DER GOOT 8.8 5.48 1.06 1.02 5.8 9 0 FC6 ...861 10/10 11.0 0.83 1.02 __5_7
.6 .10 0.0 919 10-10 947A BOLLINGER 6.6 3.66 1.23 0.98 7 0 . . 862 10/18 9184 10.0 6.54 1.13 1.10 7.4 .6 8 0 920 10-17 BOLLINGER 9.5 6.53 1.18 0.93 7.7 .6 9 ٥ 0.09 1.10 .6 9 -.02 10/25 1002 9.5 7.24 1.32 1.20 9.6 .6 9 -0.05 921 10-24 10.0 4.25 4.7 863 922 10-27 17.0 2.49 1,21 61.0 - .16 11/1. 12.0 7.51 1.09 1.03 8.2 .6 10 -0.02 24.5 .6 13 864 11/8 to.n 1.04 1.00 6.7 .6 9 -0.01 923 11-7 10.2 5.03 1.15 3.11 5.8 .6 10 0 . 865 924 11-12 BOLL INGER-PAULL 80.0 212. 4.86 5.28 1030. .6 15 +1.07 11.0 6.82 0.94 0.96 6.4 .6 10 0 866 11/15 1012A 552 7.66 0.85 0.97 867 11/21 10384 12.5 6.5 .6 10 0 925 11-12 627 103.0 387. 5.63 5.83 2180. .6 18 +.75 9134 8.13 1.07 1.02 .6 10 +0.05 12.5 8.7 926 11-12 1510. 868 11/29 148 91.0 286. 5.28 5.99 .6 16 -. 48 919 0 12.0 0.92 7.1 10 927 .6 17 869 12/7 0.97 .6 11-13 110.0 619. 8.22 9.42 5090 4.58 6.31 0.78 0.86 .6 10 +0.01 12.0 4.9 928 169. 729 .6 13 -.47 870 12/13 11-14 78.0 4.31 9234 9 -0.01 1.00 0.94 5.8 12.0 5.80 .6 929 11-15 BOLLINGER 7.10 12.8 .6 10 ±05 871 12/20 9334 1039A 755A 11.2 1.80 1033 6.08 1690. 14 -0.95 930 11-20 BOLLINGER-PAULL 107.0 537. 4270. .6 17 +1.11 85.0 . 6 7.96 8.80 872 12/21 ECKERT BOLLINGER 5.60 2150. .6 14 -1.80 12/22 88.0 931 BOLLINGER TWO CHANNELS 873 11-21 -.02 310/ 1054A 1.04 BOLL INGE 10 -0.41 932 11-27 12/23 48.0 2.43 3.42 438-17.0 13.1 14.6 .6 10 .02 874 922 1032A 933 .6 11 BOLLINGER 16.0 9 +0.01 12-5 15.0 10.0 0.67 1.01 875 12/27 1.52 10 -0.02 1/3 12-12 1.79 1.32 876 953/ 0.88 9 0 1/10 7.68 935 12-19 1,61 877 1.30 0.92 .6 9 +0.02 1/17 936 12-26 89.0 315. 6.10 878 143A 226F 11 -0.01 937 12-26 879 1/31 0.63 0.80 +.02 938 1-2 12.4 .6 10 880 403P .5 0 12.5 6.92 1.24 0.95 8.6 10 939 881 412P 424F 16.3 6 10 .01 .5 11.5 4.13 1.79 0.92 7.4 8 940 13.5 3.74 1.10 1.86 4.1 8 +.01 _882 8.23 1.88 6.9 -6 0 BOLL INGER 10.0 1.37 0.84 0 FC6 941 1 - 23 14.5 0.84 186. - .05 9.6 0.87 0 942 1-28 311P BOLLINGER-PAULL 61.0 96.0 1.93 2.78 .6 10 5.43 1.75 1.94 9.5 -6 11 ٥ 0.00 943 1-30 BOLLINGER 14.0 3/7 10.0 4.65 1.25 0.90 5.8 .5 9 0 944 2.6 11.2 4.21 1.33 1.90 .6 9 0 886 ٥ 6.99 11.5 .6 -01 945 2-10 11.2 1.65 1.92 8 10.5 4.90 1.20 0.90 5.9 9 930A 410P BOLL INGER 0 5.82 ٥ .5 10 946 2-13 10.0 1.46 1.90 8.5 3/19 300P 16.0 11.2 1.93 1.15 21.6 888 1.57 10.6 .6 9 -0.01 947 2-20 10.5 6.74 1.94 3/21 BOLL INGER 10,4 5.58 1.85 0.98 10.3 9 -1.06 948 2-27 17.0 13.6 .6 922. .6 8.39 1.62 1.99 890 3/28 857/ 902/ 50.0 265. 3.48 4.60 407P .6 19 -.05 949 1,34 34.5 3-5 134, 2.60 3.18 349. .41 21.5 29.5 1.17 63.5 891 3/29 ECKER1 1.17 .6 11 -.02 950 3-6 9.0 6.13 1.30 1.90 8.0 21.5 27.0 1.21 32.6 3/31 BOLL INGER 431P 425F 6.70 1.51 0.96 10.1 .6 11 0.01 951 7.52 BOLL INGER 15.0 3-13 10.5 0.78 1.88 5.9 0 893 4/4 9464 435P 9 0 952 .6 11.5 5.75 1.01 0.90 5.8 .5 3-20 9.5 5.48 0.99 1.88 5.4 8 0 894 4/11 916/ 938A 953 .5 10 0 3-27 17.5 10.0 1.42 1.98 14.2 .6 13 _.01 15.7 9.23 0.90 0.95 8.3 895 4/18 9534 9154 954 4-3 2,34 1.11 1,84 7 0 .5 9 0 9.2 2.6 •6 0.89 5.7 896 4/25 14.0 7.20 0.79 10 .02 3.45 0.70 1.87 -6 0 5.45 1.01 0.88 5.5 955 4-10 2.4 12.0 8.0 897 5/2 921A 1050A 1.03 10.7 .5 9 0 956 4-18 8.5 3.16 1.42 1.87 4.5 .6 8 0 7.43 1.44 12.0 898 5/16 912A 5.92 0.79 0.90 4.7 .5 8 0 957 4-24 8.5 3.07 1.40 1.88 4.3 -.01 11.0 5/23 1050/ .5 7 .01 2.97 13.0 6.97 0.82 0.94 5.7 958 5-1 9.2 1.21 1.86 3.6 _.01 900 5/31 922A 915A .5 9 0 1.17 0.93 4.8 959 3.05 1.87 901 6/6 10124 8.8 4.10 5-8 1005/ 8.3 4.5 855 9 0 1.25 1.01 6.6 .5 -.01 5.29 3.49 1.86 5.1 902 6/13 10.7 960 5-15 850A 150P 6.4 913/ .5 10 0 961 5-22 7.6 3.88 1.57 1.88 6.1 .6 8 0 1.07 8.2 7.44 1.10 13.0 903 6/20 9218 902 .6 7 9 0 962 5-29 6.5 3.50 1.06 1.85 3.7 o 0.95 3.4 12.0 3.39 1.00 6/27 FC35 10554 11 0 3.65 0.82 0.91 3.0 .5 à 10.5 1.88 0 7/3 HAIG 963 4.34 1.45 6.3 .6 905 6+5 4.19 1.07 0.95 ,5 Q FC35 5.91 1,87 7/10 HAIG 10.3 4.5 ş 964 6-12 9.5 1.07 6.3 .6 Ð 906 950/ 1056 7/17 7.0 4.28 1.14 1.04 .5 9 0 965 6-19 ...907 4.9 8.0 5.16 1.42 1.90 .6 8... +-02 833/ .6 0 FC6 7... -.02 7/25 BOLLINGER 7.0 4.20 1.24 1.05 5.2 8 966 6-26 7.0 5.95 1.98 1.95 11.8 .6 908 843/ 1127/ 957 1.32 1,10 6.1 .5 8 0 8/1... 7.5 4.63 .7. ٥ 909 7214 967 7-3 1004A 840A 6.5 4.56 1.51 1.90 6.9 .6 4.41 0.98 1.18 .5 7 0 968 4.53 1.89 7,2 4.3 7-10 6.2 1.48 6.7 0 8/8 847A 910 805/ 850 1.42 12.4 .6 14 0 969 7-17 7.0 5.25 1.31 1.89 6.9 8/14 911 907 1038A 312P BOLLINGER 833/ 1.11 .5 7 0 970 7-24 1.57 8/21 1.46 6.2 VAN DER GOOT 7.0 6.50 1:95 10.2 912 320F 0 3.78 1.46 1.10 .6 7 971 7+30 MOON 4.95 1.41 1.90 7,0 FC22 8/29 7.0 913 811/ 3.63 0.99 1.06 .6 7 -.01 972 4.52 1.81 1.92 8.2 .6 3.6 8-6 9/5 4.5 914 7 0 1,31 1.10 4.1 .6 973 6 9/12 3.11 8-13 5.5 4.40 1.57 1,90 6.9 915 956 7 6.3 3.32 1.30 1.09 4.3 .6 0 -.01 FC6 916 9/19 974 8-21 5.7 5.31 1.94 8.2 6 923 BOLL I NGER 1.54 835A 845A 7 3.89 0.92 1.05 3.6 .6 0 917 9/26 975 8-28 4.71 1.38 1.90 6.5 .6 6 0 939A 900-9134 10454 10534 976 5.15 1.48 1.90 7.6 .6 6 ٥ 6.0 0 977 9-11 1.87 978 9.94 1.98 10.8 .6 12 19.0 1.09 9-18 1107 979 9-25 F. C. Dist. Form 52 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta No. F388-R | ау | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | |-----------------------|--|---------------------------------|--|--|----------------------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------| | 1
2
3
4
5 | 7 .8
8 .4
9 .0
8 .9
9 .7 | 7.8
8.0
8.0
7.8
8.0 | 8 3
7 2
8 0
2 4
1 1 | 7 2
7.8
1 8
9 2
22 | 5.4
6.5
597
b 12
7.5 | 8.6
9.0
6.5
7.2
8.1 | 21
107
13
10 | 7 2
8 9
7 5
7 5
6 7 | 7.2
6.5
7.0
8.0
8.0 | 4 1
4 9
4 7
4 9
6 3 | 7.0
6.5
6.5
6.0 | 5.4
6.5
6.7
7.2
6.0 | | 6
7
8
9 | 50
7.8
6.7
8.8
9.3 | 39
8,0
6,3
6,3
6,7 | 11
9 A
7 B
7 .5
7 2 | 7.5
7.8
8.0
7.8
8.0 | 7.0
8.0
7.5
7.2
6.3 | 8 3
7 8
8 3
7 8
8 0 | 49
9
6
6
6
5 | 6.7
7.2
7.8
8.3
8.6 | 7.0
7.2
7.2
6.0
6.3 | 6 9
5 6
6 9 | 5 1
5 £
7 5
7 0 | 7.0
6.5
4.5
4.7
5.4 | | 1
2
3
4
5 | 14
7.5
6.7
5.8
7.4 | 63
67
72
78
78 | 3 0
7 .8
7 .0
7 .5
7 .5 | 8.0
7.8
7.2
9.2
9.2 | 7.5
7.2
6.7
6.4
21 | 7 2
8 9
2 4
8 3
7 8 | 6.7
7.2
6.7
8.3 | 8 .6
7 .8
8 .0
8 .9 | 7 2
8 9
8 3
8 3
8 3 | 53.0.1.9
65.4 | 9.7
6.7
7.5
8.3 | 4.5
5.8
5.7
4.1 | | 6
7
8
9 | 6 9
7 2
7 0
7 2
6 7 | 8.0
8.3
7.2
8.6 | 6.5
6.5
7.2
6.7 | 8 3
9 4
9 2
8 9
8 3 | 12
7.5
7.0
6.7
7.5 | 7.0
6.3
7.0
33.9
18.8 | 9 A
10
9 7
9 2
8 .6 | 9.7
9.4
8.3
7.5
8.0 | 6.5
7.2
8.0
8.0
9.2 | 5 .8
5 .6
5 .8
5 .6 | 8 5
8 6
9 2
9 7 | 5.4
6.0
5.8
6.0
6.3 | | 1
2
3
4 | 6.7
6.7
7.4
6.0 | 8 3
7 2
7 8
8 3
7 5 | 1010
1830
681
35
66 | 7.8
7.2
6.5
7.0
7.2 | 7 2
7 2
8 0
7 0
7 8 | #34
8.6
9.2
9.4
9.2 | 8 3 7
9 2 6
9 5 | 7.8
7.0
7.5
7.8
7.2 | 7.8
7.8
6.7
5.1
5.8 | 4 9
6 8
7 0
6 3 | 11
900
800
56 | 65
55
55
54 | | 6
7
8
9
0 | 7.5
7.2
7.2
8.2
6.7
9.7 | 7.8
8.9
9.7
41
9.2 | 9 A
9 2
8 S
8 9
7 8
8 9 | 7.5
6.5
7.8
8.3
6.5
5.6 | 7 2
8 .0
7 .8 | 8.6
9.2
366
149
£844
42 | 7.2
7.5
6.0
6.5
7.0 | 6 3
6 7
7 8
7 2
7 0
7 5 | 6.0
5.6
4.5
4.9
3.8 | 5.8
5.6
4.9
6.7
7.2
7.2 | 7.5
7.8
6.7
6.5
6.3 | 4.7
6.3
6.3
6.0
6.5 | | | 4185 | 297.5 | 869.4 | 266.7 | 8141 | 21723 | 3983 | 239.6 | 2083 | 1783 | 231.4 | 174.8 | | AN | 13.5 | 9.92 | 125. | 8.6 | 29.1 | 70.1 | 13.3 | 7.73 | 6.94 | 5.75 | 7.46 | 5,8 | | E- | 830. | 590. | 7,670. | 529 | 1,610. | 4.310. | 790. | 475. | 413. | 354. | 459. | 347.
5.4 | F. C. Dist. Form 52 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 38 B-R | | | | | | н | YDRAULIC I | DIVISION | | | | | | |----------------------------------|--|--------------------------------------|--|-------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------|--------------------------------|------------------------------------|---------------------------------| | Daily | discharge, in s | econd-feet of | BALLONA | CREEK at | Sawtelle | Boulevar | d | | | for the year | r ending Septer | nber 30, 19 <u>47</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 175
7.8
7.5
6.7
8.3 | 5 .8
5 .8
5 .8
5 .8
5 .8 | d 11
10
9.0
d 8.0
9.2 | 7.0
10
9.0
10
5.6 | 8 .0
7 .0
5 .3
6 .3 | 5.6
3.5
25
11
183 | 5.6
5.6
13
8.0
5.6 | 10
13
11
7.0
10 | 8.0
8.0
10
10
11 | 12
9.0
12
10
9.0 | 13
11
11
8.0
11 | 13
10
11
10
11 | | 8
7
8
9
10 | 6.0
6.7
7.0
7.0
7.0 | 5.8
5.8
5.8
5.8
5.8 | 263
d 6.5
6.5
6.5
6.5 | 9.0
10
9.0
11
10 | 6 3
5 .6
7 .0
4 4 0
1 6 | 8 0
9 0
6 3
6 3 | 4 9
5 .6
8 .0
7 .0
8 .0 | 10
9.0
9.0
10
17 | 11
10
8.0
10
11 | 7.0
10
12
11
12 | 10
10
12
11
9.0 |
7.0
7.0
10
9.0
7.0 | | 11
12
13
14
15 | 7 2
6 3
6 3
5 .4
3 .8 | 668
1430
1090
759 | 655320
666 | 10
8.0
9.0
10
7.0 | 8 O O O O O O | 8.0
7.0
6.3
7.0
6.3 | 6 3
7 0
4 9
6 3
7 0 | 8.0
11
10
11
10 | 11
11
11
11
8.0 | 10
11
9.0
11
9.0 | 9.0
12
11
13
13 | 9.0
9.0
9.0
7.0
8.0 | | 16
17
18
19
20 | 100
7.5
6.5
7.0
6.7 | 9.7
7.5
5.4
4.4
76.7 | 5 .9
5 .7
d 5 .6
6 .0
6 .3 | 63
9.0
10
7.0
9.0 | 5.6
7.0
12
8.0
9.0 | 4 2
7.0
6 3
6 3
3 2 | 7.0
8.0
10
10
6.3 | 11
11
8.0
10
9.0 | 10
12
10
9.0
9.0 | 9.0
10
12
12
12 | 12
7.0
12
10
5.6 | 11
18
16
8.0
7.0 | | 21
22
23
24
25 | 7 2
8.0
b. 8.0
7 3 | 14
b 8.6
930
d 15 | 6.3
5.6
5.8
244
1960 | 10
9.0
9.0
10
11 | 11
63
7.0
16
12 | 24
8.0
5.6
8.0 | 8.0
12
9.0
9.0
7.0 | 10
10
12
8.0
8.0 | 9 .0
8 .0
8 .0
9 .0 | 8.0
8.0
9.0
10
9.0 | 7.0
12
13
9.0
13 | 4.9
6.3
7.0
7.0
8.0 | | 26
27
28
29
30
31 | b 73
d 43
5.8
5.8
5.8
5.8 | 15
15
14
13
12 | 334
245
18
12
11 | 9.0
10
283
12
9.0 | 6 3
9 0
8 0 | 18
34
142
7.0
3.5
5.6 | 7.0
2.8
7.0
10
9.0 | 10
24
11
8.0
7.0
9.0 | 12
11
11
9.0
11 | 11
8.0
10
13
11 | 10
11
9.0
10
12
9.0 | 9.0
7.0
4.9
7.0
8.0 | | - | 507.0 | 59042 | 32499 | 557.9 | 6653 | 6221 | 224.9 | 322.0 | 295.0 | 317.0 | 325.6 | 2661 | | MEAN | 16.4 | 197 | 105 | 18,0 | 23.8 | 20.1 | 7.50 | 10.4 | 9.83 | 10.2 | 10.5 | 8.87 | | ACRE- | 1,010 | 11,710 | 6,450 | 1,110 | 1,320 | 1,230 | 446 | 639 | 585 | 629 | 646 | 528 | | | Remarks: | | | | | | | | 3 | OR | N_36.3 | 300 | | | | | | | | | | | P | ERIOD ACRE | -FEET 26 | 300 | ### STATION FI20-R BIG DALTON CREEK below Big Dalton Dam LOCATION: WATER-STAGE RECORDER, LAT, 34°10'12", LONG, 117°48'33", ON THE LEFT (SOUTHEAST) BANK ABOUT 200 FEET BELOW THE OLD TOE WALL ON THE DOWNSTREAM SIDE OF BIS DALTON DAM AND ABOUT 5 MILES NORTHEAST OF GLENDORA. ELEVATION OF ZERO GAGE HEIGHT, 1539,63 FEET. STATION MOVED ABOUT 200 FEET DOWNSTREAM ON DECEMBER 23, 1946. DRAINAGE AREA: 4.8 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - GRAVEL AND ROCK LINED WITH WILLOWS. CONTROL - CONCRETE CUTOFF WITH A C.POLLETTI WEIR AND A REMOVABLE V-NOTCH WIR. CN DECEMBER 23, 1946 A NEW CONCRETE BROAD-CRESTED WEIR TYPE CONTROL WAS COMPLETED. DISCHARGE MEASUREMENTS: LDW FLOWS MEASURED BY WADING. NO FACILITIES FOR MEASURING HIGH FLOWS. RECORDER: INSTALLED JUNE 3, 1940 OVER AN 18 INCH CORRUGATED IRON PIPE STILLING WELL. REINSTALLED OVER A 4 FT. X 4 FT. CONCRETE WELL DECEMBER 23, 1946-A STEVENS TYPE L RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO JANUARY 7, 1947. AN H.C.F. RECORDER WAS IN SERVICE FROM JANUARY 7, 1947 TO SEPTEMBER 30, 1947- REGULATION: 4,5 SQUARE MILES REGULATED BY BIG DALTON DAM. 0.3 SQUARE MILES UNREGULATED FLOW FROM KERIL CANYON. DIVERSIONS: NONE. RECORDS AVAILABLE: RESERVOIR OUTFLOW RECORDS FROM OCTOBER, 1929 TO JUNE 9, 1940-RECORDER RECORDS FROM JUNE 3, 1940 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 94 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW PART OF YEAR, 1946-1947 MAXIMUM ESTIMATED 30 SECOND-FEET, OCTOBER 3, MINIMUM NO FLOW PART OF YEAR, 1940-1947 MAXIMUM 111 SECOND-FEET, MARCH 4, 1943, MINIMUM NO FLOW PART OF YEAR, OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DIBCHARGE | MEABURE | 1ENTS DF | BIG DA | LTQN. C | REEK | | | | | | | | | DISCHARGE | MEASURE | SENTE OF BIG DAL | TON CR | EĒK | | | | | | | _ | | |-------|-----------|-------------------------|--------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-------|-------|---------------------------|--|-----|-----------|----------------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|---------|---------------------------|--------------------|--------------| | | her be | low Bi | g Daiton Dam | | | RUG | IND THE Y | EAR ENDING | BEPTI | EMBER | 30, 1 | , 46 | - | | | below | Big Dalton Dam | | | DUR | ING THE Y | EAR ENDING | a arpyr | HEER | 30, 19 <u>-</u> | 17_ | | | NO. | DATE | MEG:N | MAGE BY | WIDTH
FEET | AREA OF
SECTION
SO, FT. | MEAN
VELOCITY
FT.PER SEC. | SAUSE
HEIGHT
FEET | DISCHARGE
SEG. FT. | RAT- H | 00 N | SEO. | B. HT.
DHANDE
TOTAL | METER
NG. | NO. | DATE | #£BIN
END | HADE BY | WIDTH
PEET | AREA OF
BESTION
BQ. FT. | MEAN
VELOCITY
FT.PER BEG. | GAUGE
MEIGHT
FEET | DISCHARGE
SED. FT. | RAT- M | ETH- ME | AM. G.
G. SHA
D. TO | HT-
INDE
TAL | METER
NO. | | _206 | 12/26 | 1132A
1135A | BREWSTER | 0.5 | 0.12 | 0.92 | 0.05 | 0.11 | | .6 | 1 | 0 | FC12 | 231 | 10-2 | 1130A
1140A | BREWSTER | 4.0 | 1.34 | 1.79 | 0.95 | 2.4 | | 6 | 4 | 0 1 | FC12 | | 207 | 4/3 | 952 A
958 A | | 3.0 | _0.44 | 0.59 | 0.06 | 0.26 | LJ. | .6 | 3 | 0 | | 232 | 11-13 | 104P | | 2.0 | 0.22 | 0.82 | 0.02 | 0.18 | <u> </u> | 6 | 2 | 0 | | | 208 | 4/10 | 950 A
955 A | | _0.5 | 0.12 | 0.75 | 0.05 | 0.09 | | .6 | 1 | 0 | | 233 | 11-20 | 344P
350P | BREWSTER- VINES | 4.0 | 1.60 | 1.38 | 0.12 | 2.2 | <u> </u> | 6 | 4 | 0 | - | | 209 | 4/17 | 1141A
1145A | " | _0.5 | 0.11 | 0.36 | 0.03 | 0.04 | | .6 | 1 | . 0 | | 234 | 11-27 | 1035A
1040A | BREWSTER | 2.0 | 0.30 | 0.53 | 0.04 | 0.16 | <u> </u> | 6 | 2 | 0 | | | 210 | 4/24 | 926A
930A | 14 | 0.5 | .0.11 | 0.18 | 0.03 | 0.02 | | .6 | i | 0 | | 235 | 12-26 | 41 2P
420P | BREWSTER - VINES | 3.0 | 0.70 | 1.00 | 0.36 | 0.70 | | .6 | 3 | 0 | | | 211 | 5/1 | 1126A
1130A | ** | 2.0 | 0.24 | 0.17 | 0.03 | 0.04 | 1 | .6 | 2 | 0 | ٠. | 236 | 12-30 | 950A
1000A | BREWSTER | 6.0 | 2,70 | 4.70 | 0.97 | 12.7 | | 6 | 4 | 0 | • | | _212 | 5/8_ | 926 A
930 A | 0 | 1.0 | 0.12 | 0.17 | 0.02 | 0.02 | | .6 | 2 | 0 | | 237 | 12-31 | 1110A
1120A | ,, | 6.0 | 3,40 | 3,32 | 0.94 | 11.3 | | .6 | 4 | 0 | | | _213 | 5/15 | 1040A
1045A | | 1.0 | 0.12 | 0.17 | 0.02 | 0.02 | | .6 | 2 | 0 | | 238 | 12-31 | 223P
235P | ** | 7.5 | 3.23 | 2.82 | 0.86 | 9.1 | \perp | .6 | 7 | 0 | | | _214 | 5/22 | 910A
915A | | 1.0 | 0.12 | 0.17 | 0.02 | 0.62 | | .6 | 2 | 0 | | 239 | 1-2 | 350P
405P
217P | 11 | 6.0 | 3.05 | 2.82 | 0.87 | 8.6 | | | | 0 | | | 215 | 5/29 | 905 A
910 A | | 1.0 | 0.12 | 0.17 | 0.13 | 0.02 | | .6 | 2 | _ 0 | | 240 | 1-7 | 235P | ,, | 6.5 | 3.18 | 2.45 | 0.82 | 7.8 | 1-1 | .6 | 7 | 0 | | | 216 | 6/26 | 1033 A
1045 A | | 5.0 | 2.59 | 1.00 | 0.93 | 2.6 | 1_1 | .6 | 5 | 0 | | 241 | 1-8 | 1104A
1110A | | 0.8 | 0.20 | 0.60 | 0.06 | 0.12 | \square | .6 | 2 | 0 | ** | | 217 | 7/3 | 1048A
1100A | | 5.0 | 2.81 | 0.93 | 0.93 | 2.6 | | .6 | 5 | 0 | <u> </u> | 242 | 7-7 | 320P
330P
905A | BREWSTER-WADDICOR | 4.0 | 1.71 | 1,52 | 0,38 | 2.6 | + | - | | 0 | * | | 218 | 7/10 | 838A
850A | | 5.0 | 2.71 | 0.96 | 0.92 | 2.6 | | .6 | 5 | 0 | " | 243 | 7-9 | 915A | BREWSTER | 4.0 | 1.78 | 1.46 | 0.42 | 2.6 | \perp | .6 | 4 | 0 | | | _219 | 7/17 | 915A
925A | | 5.0 | 2.74 | 0.77 | 0.90 | 2.1 | | .6 | 5 | 0 | | 244 | 7-16 | 1235P
1245P | | 4.0 | 1.42 | 1.55 | 0.31 | 2.2 | - | .6 | 4 | 0 | ** | | 220 | 7/24 | 1146A
1158A | <u></u> | 5.0 | 2.64 | 0.87 | 0.90 | 2.3 | | .6 | 5 | 0 | | 245 | 7-23 | 1010A
1020A | | 4.0 | 1.51 | 1.52 | 0.28 | 2.3 | 4 | .6 | 4 | 0 | | | 221 | 7/31 | 1248P
100P | · | 6.0 | 1.58 | 1.20 | 0.88 | 1.9 | | . 6 | 6 | 0 | <u> -</u> | 246 | 730 | 920A
930A | | 4.0 | 1.5.2 | 1.45 | 0.28 | 2.2 | 1 | .6 | 4 | 0 | ** | | 222 | 8/7 | 900A
908A | BONADIMAN | 6.5 | 1.74 | 1.67 | 1.04 | 2.9 | | .6 | 7 | 0 | FC19 | 247 | 8-6 | 850A
900A | | 4.0 | 1.55 | 1.42 | 0.28 | 2.2 | | .6 | 4 | 0 | -10 | | 223 | 8/14 | 202P
210P | | 5.5 | 1.42 | 1,62 | 1.00 | 2.3 | | .6 | 6 | 0 | i. | 248 | 8-13 | 920A
930A | ** | 4.0 | 1.40 | 1.57 | 0.29 | 2.2 | | .6 | 4 | 0 | " | | _224 | 8/14 | 220P | | 5.5 | 1,45 | 1.52 | 1.00 | 2.2 | | .6 | 6 | 0 | | 249 | 8-20 | 920A | | 4.0 | 1.43 | 1.47 | 0.28 | 2.1 | \perp | .6 | 4 | 0 | ** | | 225 | 8/21 | 836A
844A | | 6.5 | 1.60 | 1.56 | 0.99 | 2.5 | | . 6 | 6 | 0 | | 250 | 8-27 | 1055 ⁴ | | 4.0_ | 1.45 | 1.52 | 0.31 | 2.2 | \perp | .6 | 4 | 0 | | | 226 | 8/28 | 1220P
1230P | BREWSTER | 5.0 | _1.55 | _1.55 | 0.96 | 2.4 | \sqcup | .6 | 5 | 0 | FC12 | 251 | 9-3 | 1020/ | | 4.0 | 1.69 | 1.54 | 0.29 | 2.6 | - | .6 | 4 | 0 | | | _227_ | 9/4 | 908A
920A | | 5.0 | 1.53 | 1.50 | 0.95 | 2.3 | | - 6 | 5 | 0 | | 252 | 9-10 | 1010/ | | 4.0 | 1.44 | 1.53 | 0.30 | 2.2 | - | .6 | 4 | 0 | - | | 228 | 9/10 | 1038A
1050A | | 6.0 | 1.64 | 1.52 | 0.98 | 2.5 | | .6 | 6 | 0 | " | 253 | 9-17 | 1005/ | | 4.0 | 1.51 | 1.46 | 0.32 | 2.2 | | .6 | 4 | 0 | - | | 229 | 9/18 | 1135A
1147A
1018A | BREWSTER | 5.0 | 1.67 | 1.50 | 0.98 | 2.5 | \sqcup | .6 | _ 5 | 0 | FC12 | 1 | | | | | | | | | | | | | | | 230 | 9/5 | 1030A | | 5.0 | 1.61 | 1.55 | 0.98 | 2,5 | <u> </u> | .6 | , 5 | . 0 | ļ., | 1 | | | | | | | | | | | | | | F. C. Dist. Form 52 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F120-R | Daily d | ischarge, in se | cond-feet of | BIG DALT | ON CREEK | below Bi | Dalton. | Dam | | | , for the yea | ar ending Septe | mber 30, 19_4 | |----------------------|-----------------|--------------|-------------------|-------------------------|----------|-----------------|--------------------------|----------------------------|-------------------
------------------------------|-------------------|-------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Жау | June | July | Aug. | Sept. | | 1 2 | 0 | 0 | 0 | + | 0 | 0 | 3.0
4.1 | 0.04 | 0 | 2.5 | 2.7
2.9 | 2.3 | | 3
4
5 | 0
0 | 0 | 0 0 | 0 0 4
0 0 4
0 0 4 | 0 1 | 0 | 0 &
0 &
0 &
0 & | 0 0 4
0 1
0 1 | 0 | 2.6
2.5
2.5 | 2.9 | 23 | | 6 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 01 | 0 | 2.5 | 29 | 2.5 | | 8
9
10 | 0 | 0 | 0 | 0 | 0 | 000 | 0 &
0 &
0 1 | 0 .0 3
0 .0 2
0 .0 4 | 000 | 2.6
2.6
2.6 | 2.8
2.7
2.6 | 2.6
2.6
2.5 | | 11
12 | 0
0 | 0 | 0 | 0 | 0 | 0 0 | 01 | 0.04 | 0 | 2.5
2.4 | 2.6
2.5 | 2.5
2.5 | | 13
14
15 | 0 . | 0 | 0 | 0 | 0 | 000 | 0.04
0.1
0.04 | \$Q.0
\$Q.0 | 0 | 2 3
2 3
2 2 | 2.5
2.4
2.4 | 2.5
2.4
2.6 | | 16
17
18 | 0 0 | 0 0 | 000 | 0 | 0 | 000 | 0.04
0.04
0.04 | 0.02
10.0
20.0 | 0 | 2 2
2 1
2 1 | 2.3
2.4
2.5 | 2.6
2.6
2.5 | | 19
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0.04 | 0.02 | 0 9 | 21 | 2.5 | 2.5 | | 21
22
23 | 0 | 000 | 0 2
2 5
4 8 | 0 | 000 | 0 0 0 | \$0.0
\$0.0
\$0.0 | 0.01
0.01
0 | 2.5
2.5
2.5 | 22 | 2.5
2.5
2.5 | 2.4
2.3
2.5 | | 24
25 | 0 | 0 | 0.4
0.2 | 0 | 0 | 0 | \$0.0 | 0
0 1 | 2.5
2.6 | 2.3 | 2.5
2.5 | 2.6 | | 26
27
28
29 | 0 | 0
0
0 | 01 | 0 | 0 | 0 | 0.02 | 0
0.01
0.01 | 2.6 | 0. S
0. S | 2.5
2.5
2.4 | 2.5
2.5
2.5 | | 30 | 0 | 0 | 0.04
0.02 | 0 | | 0
2 2
5 0 | 0.04
0.04 | 0.01
0
0 | 2.6
2.6 | 1.9
1.9
2.0 | 2.4
2.4
2.4 | 2.3 | | | 0 | 0 | 8.56 | 012 | 01 | 7 2 | 9.54 | 097 | 26.5 | 709 | 799 | 73.8 | | EAN | 0 | 0 | 0.28 | 0.004 | 0.004 | 0.23 | 0.33 | 0,03 | 0.89 | 2,28 | 2.58 | 2.46 | | CRE | 0 | 0 | 17. | 0.24 | 0.20 | 14. | 19, | 1.9 | 53. | 140. | 158. | 146. | | | Remarks: | | | | | | | | | YEAR MEA
OR
ERIOD ACRI | n 0.7
e-fert | 549. | | y. C, Die | st. Form \$2 4-66 | | | | FLO | LOS ANGELE
COD CONTRO
YDRAULIC | OL DISTRICT | r | | | Sta. | No. F 20-R | |--|---|---------------------------------------|---|---|-----------|--------------------------------------|-------------|-----|------|--|--|---| | Dally | ischarge, in se | cond-feet of | BIG DA | LTON CREE | K below 1 | Big Dalto | n Dam | | | , for the yea | r ending Septe | mber 30, 19_117 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 25 26 29 30 31 31 | 231000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 8 8 5 2 2 9 9 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | 00000000000000000000000000000000000000 | 12222222222222222222222222222222222222 | 200
1205
2215
2225
2222
2211
2210
2221
2210
2219
1198
000
000 | | | 8.7 | 7.77 | 223 | 60.82 | 0 | 0 | 0 | 0 | 0 | 58.4 | 67.8 | 49.4 | | MEAN | 0.28 | 0.26 | 0.72 | 1.96 | 0 | 0 | 0 | 0 | ٥ | 1.88 | 2.19 | 1.65 | | ACRE-
FEET | 17 | 15 | 44 | 121 | 0 | 0 | 0 | 0 | 0 | 116 | 134 | 98 | | | Remarks: | | | | | | | | | YEAR MEA
OR
TERMOD ACRE | N 0.7
E-FEET 54 | | ### STATION U9-R BIG DALTON CREEK near Mouth of Canyon LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR CONTROL, LAT. 34°09'25", LONG. 117°49'55", IN CENTER OF SEC. 21. T. 1 N. R. 9 W., 0.2 MILE UP-STREAM FROM MOUTH OF CANYON AND 2.5 MILES NORTHEAST OF GLENDORA. ALTITUDE OF GAGE ABOUT 1,170,0 FEET. DRAINAGE AREA: 7.5 SQUARE MILES. RECORDS AVAILABLE: DECEMBER 1919 TO SEPTEMBER 1947. AVERAGE DISCHARGE: 26 YEARS (1920-1946) 1.30 SECOND-FEET. 27 " 47 1.27 " " EXTREMES: 1945-1946 MAXIMUM DISCHARGE 166 SECOND-FEET DECEMBER 23. (GAGE HEIGHT 2.10 FEET). NO FLOW FOR SEVERAL PERIODS. 1946-1947 MAXIMUM DISCHARGE 14 SECOND-FEET NOVEMBER 20. (GAGE HEIGHT 1.01 FEET). NO FLOW FOR SEVERAL PERIODS. 1919-1947 MAXIMUM DISCHARGE ABOUT 850 SECOND-FEET MARCH 2, 1938. FROM RECORD OF RELEASE FROM BIG DALTON RESERVOIR. NO FLOW FOR SEVERAL MONTHS OF EACH YEAR. REMARKS: 1945-1946, RECORDS FAIR. 1946-1947 RECORDS GOOD. REGULATION AT BIG DALTON FLOOD CONTROL DAM. GLENDORA IRRIGATING COMPANY DIVERTED 1.5 MILES ABOVE STATION. 1945-46 DIVERSION, 499 ACRE FEET. 1946-47 DIVERSION, 314 ACRE FEET. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY, WITH THE EXCEPTION OF 50 DISCHARGE MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY. DISCHARGE MEASUREMENTS OF BIG DALTON CREEK Mouth of Canyon OURING THE YEAR ENDING REPTEMBER 30, 19 46 | ND. | DATE | BEDIN
END | MADE BY | WIDTH
FEET | AREA OF
MEDTION
EQ. FT. | HEAN
VELOCITY
FT.PER BEG. | BAUDE
HEIDHT
FEET | DISCHARGE
BEG. FT. | RAT-
IND | OD N | ED. 0 | HANGE | METER
NO. | NO. | DATE | BEGIN
END | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER SEQ. | GAUBE
HEIGHT
FEET | DISCHARGE
SEC. FT. | NG C | ETH-
BEG.
NG, | UHANGI
TOTAL | METER
NO. | |-----|-------|--------------|----------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|------|-------|-------|--------------|-----|------|--------------|----------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|------|---------------------|-----------------|--------------| | 38 | 10-9 | | u.s.g.s. | | | | 01 | 0.004 | | EST. | | | | 965 | 4-10 | | BREWSTER | 3.0 | 1.37 | 71 | .44 | .97 | | 5 5 | 0 | FC12 | | 39 | 10-10 | | | | | | 01 | .002 | E | ST. | 4 | _ | | 966 | 4-12 | | J.s.G.s. | 3.0 | .98 | .64 | .37 | .63 | | 56 | 0 | ļ | | 0 | 12-29 | | ,, | 5.0 | 1.34 | 0.57 | 44 | 76 | | .6_ | 10 | ٥ | | 967 | 4-17 | | BREWSTER | 3.0 | 1.20 | .62 | .36 | .74 | | 56 | 0 | FC12 | | 41 | 1-9 | | BREWSTER | 1.5 | -51 | 1.04 | .27 | .53 | | .6 | 3 | 0 | FC12 | 968 | 4-18 | | u.s.g.s. | 3.0 | 1.06 | .52 | .33 | .55 | _ . | 5 6 | 0 | | | 42 | 1-16 | | | 2.0 | 59 | 64 | .22 | .38 | | .6 | 4 | ۵ | | 969 | 4-24 | | BREWSTER | 2.0 | .77 | .73 | .30 | .56 | | 6 4 | 0 | FC12 | | 13 | 1-23 | | ** | 2,0 | .63 | .71 | .22 | .45 | | .6. | 4 | ۵ | | 970 | 4-25 | | U.S.G.S | 2,5 | .49 | .37 | .20 | 18 | | 6 5 | | | | 44 | 1-30 | | | 2,0 | 57 | .61 | .19 | .35 | _ | .6 | 4 | ٥ | | 971 | 5-1 | | BREWSTER | 1.5 | .46 | .50 | .16 | .23 | | 6 3 | 0 | FC12 | | 45 | 1-30 | | u.s.g.s. | 1.5 | .44 | .50 | -17- | 22_ | | .6 | 3 | 0 | | 972 | 5-2 | | u.s.g.s. | 1.5 | .42 | .33 | - 14 | .14 | | 6 | 0_0 | | | 16 | 2-6 | ļ | BREWSTER | 1.5 | .48 | 1.02 | .27 | 49 | | .6 | 3 | 0 | FC12 | 973 | 5-8 | | BREWSTER | 1.5 | 40 | 42 | .12 | .17 | _ | 6 3 | | FC12 | | 47 | 2-7 | <u> </u> | u.s.g.s. | 1.5 | .42 | .71 | .23 | .30 | | 6 | 4 | 0 | | 974 | 5-10 | | v.s.g.s. | 1.0 | 15 | .80 | .12 | 12 | _ ļ. | 6 2 | | | | 48 | 2-13 | | BREWSTER | 1.5 | .43 | .77 | .20 | .33 | | .6 | 3 | 0 | FC12 | 975 | 5-15 | | BREWSTER | _1.0 | .24 | .67 | .12 | .16 | | 6 2 | 0 | - | | 49 | 2-14 | ļ | U.S.G.S. | 1.5 | .36 | .61 | .17 | .22 | | .6 | 3 | 0 | | 976 | 5-16 | ļ | U.S.G.S. | 1.0 | .22 | ,54 | .12 | .12 | | 6 2 | 0 | | | 50 | 2-20 | ļ | BREWSTER | 1.5 | .44 | .89 | .20 | .39 | | .6 | 3 | 0_ | FC12 | 977 | 5-22 | | BREWSTER | 1.0 | 24 | .75 | .12 | .18 | _ . | 6 2 | 0 | FC12 | | 51 | 2-20 | ļ | U.S.G.S. | 1.5 | .42 | .67 | .18 | .28 | _ | .6 | 3 | 0 | | 978 | 5-22 | | U.S.G.S. | 1.0 | .25 | -56 | .12 | 14 | | 6 2 | ٥ | | | 52 | 2-27 | | BREWSTER | 1.5 | .40 | .85 | .19 | .34 | | .6 | 3 | 0 | FC12 | 979 | 5-28 | | ,, | 1.0 | .24 | .46 | -11 | 11 | _ . | 6 2 | | <u> </u> | | 53 | 2-28 | | U.S.G.S. | 1.5 | .15 | .93 | - 17 | .14 | | .6. | 5 | 0 | | 980 | 5-29 | <u> </u> | BREWSTER | 1.0 | .22 | -55 | 11- | .12 | _ . | 6 2 | | FC12 | | 54 | 3-6 | | BREWSTER | 1.0 | 24 | 1.04 | _15_ | .25 | | .6 | . 2 | 0_ | FC12 | 981 | 6-6 | | * | 1.0 | .25 | 32 | | 08 | _ . | 6 2 | | 11 | | 55 | 3-7 | | u.s.g.s. | 1.0 | _22_ | 191 | .14 | 20 | | .6 | 2 | 0 | <u>-</u> | 982 | 6-6 | | U.S.G.S. | 1.5 | .14 | .48 | 07_ | .067 | | 5 5 | ٥ | | | 56 | 3-13 | | BREWSTER | 1.0 | .24 | -96 | -15 | _23 | | .6 | 2 | 0 | FC12 | 983 | 6-10 | | 64 | م. د | .20 | 30 | -06 | 060 | . | 6 2 | | | | 57 | 8-14 | | U.S.G.S. | 1.0 | .20 | .90 | .13 | .18 | | .5 | 4 | _0_ | | 984 | 5-12 | L | BREWSTER | 1.0 | 0.22 | 0.18 | 0.05 | 0.04 | . | 6 2 | | FC12 | | 58 | 8-20 | | BREWSTER | 1.0 | -25 | 1.28 | .20 | 32 | | .6. | 2 | ۵. | FC12 | 985 | 6-17 | | U.S.G.S. | .5 | .18 | .34 | .03 | .061 | | 6 2 | | | | 59 | 3-21 | <u> </u> | u.s.g.s. | 1.0 | .26 | 1.28 | .22 | .33 | | .6 | 2 | .0. | | 986 | 6-19 | | BREWSTER | .5 | .10 | .30 | .02 | .03 | | 6 1 | 0 | FC12 | | 60 | 3-27 | ļ | BREWSTER | 1.0 | .24 | 1.00 | .15 | .24 | | .6 | 2 | 0 | FC12 | 987 | 6-24 | | u.s.c.s. | .5 | .05 | .16 | .01 | .008 | | 6 2 | ٥ | | | 61 | 3-28 | | u.s.g.s. | 2.0 | 0.36 | 0.94 | 0.26 | 0.34 | | .6. | 4 | 0 | | 988 | 6-26 | | BREWSTER | .5 | .10 | .20 | .01 | .02 | | 6 1 | 0 | FC12 | | 62 | 3-31 | | ** | 8.0 | 3.07 | 1.04 | -65 | 3.18 | | .6. | 14 | Q_ | | 989 | y-3 | | " | 1.0 | .12 | .17 | .00 | .02 | | .6 2 | 0 | | | 63 | 4-3 | ļ | BREWSTER | 5.0 | 1.99 | 1.03 | .60 | 2.05 | | .6. | 5 | 0 | FC12 | 990 | 8-15 | | J.S.G.S. | | | | .00 | .002 | | EST. | \perp | | | 64 | 4-4 | | u.s.g.s. | 3.5 | 1.56 | .92
 .57 | 1.44 | | .6 | | 0 | | | | | • | | | | | | | | | | | | -AT-
NEATL | near M | outh of Canyon | | | | ING THE Y | EAR ENDING | 1 8 EPTE) | 48ER : | 30, 11 | . 47 | | HD. | DATE | BEGIN | MADE BY | WIDTH
FEET | MEA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT-FER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT-
ING | DO NO. | G. HT.
CHANGE
TOTAL | METER
NO. | |-------|---------------|----------------|-------------------|-------|---------|-------------|-----------|------------|------------------|--------|----------|-------|-------|------|------|----------------------|----------|---------------|------------------------------|---------------------------------|-------------------------|-----------------------|-------------|--------|---------------------------|--------------| | NO. | DATE | BEGIN | HADE BY | WIDTH | AREA OF | HEAN | SAUGE | DIECHARGE | RAT- ME | TH- ME | AB. 0. | . H7. | HETER | 1017 | 2-19 | 926A
932A
919A | | 1.0 | 0.32 | 0.97 | 0.18 | 0.31 | | .6 2 | 0 | <u></u> | | жо. | DATE | 1218P | BREWSTER | PERT | SQ. FT. | FT.PER BEC. | PEET | BEG. FT. | ם מאו | PN | 5. 1 | GTAL | NO. | 1018 | 2-27 | 925A | | 1.0 | 0.28 | L=07. | 0.18 | 0.30 | _ | -6 2 | ٥. | ** | | 991 | 11-13 | 1230P | VINES | 5.0 | 1.54 | 0,84 | 0.57 | 1.3 | | 6 5 | 5 5 |) | FC12 | 1019 | 2:27 | 1109A | u.s.g.s. | 1.0 | 0.28 | 0.86 | 0.19 | 0.24 | | .5 5 | 0 | | | 992 | 11-13 | | υ.s.g.s. | 3.8 | 1.04 | 0.94 | 0.46 | 0.98 | | 5 15 | <u> </u> | | | 1020 | 3-6 | 1115A
928A | BREWSTER | 1.0 | 0.29 | 1.00 | 0.20 | 0.29 | | -6 2 | 0 | FC12 | | 993 | 11-21 | 151P | ,, | 3.6 | 1.24 | 1,60 | 0.60 | 1,98 | <u> </u> | 6 7 | . 0 |) | | 1021 | 3-13 | 938A | 11 | 1.0 | 0.28 | 0,96 | 0.14 | 0.27 | | .6. 2 | 0 | | | 994 | 11-21 | 202P | BREWSTER | 4.0 | 1.27 | 1.26 | 0.59 | 1.6 | <u></u> | 6 4 | <u> </u> | | FC12 | 1022 | 3-13 | | u.s.g.s. | 1.0 | 0.23 | 0.61 | 0.11 | 0.14 | | .5 5 | 0 | | | 995_ | 11-27 | 1000A | | 4.0 | 1.00 | 1.20 | 0.39 | 1.2 | Ц. | 6 4 | | | * | 1023 | 3-20 | 914A
920A | BREWSTER | 1.0 | 0.31 | 0.77 | 0.15 | 0.24 | | -6 2 | 0 | FC12 | | 996 | 11-27 | | U.S.G.S. | 4.7 | 0.69 | 0.72 | 0.37 | 0.50 | | 6 9 | عاد | 2 | | 1024 | 3-27 | 840A
845A | | 1.0 | 0.28 | 0.75 | 0.12 | 0.21 | | .6 2 | 0 | ., | | 997 | 12-4 | 1002A
1010A | BREWSTER | 1.5 | 0.38 | 0.89 | 0,24 | 0.34 | | 6 3 | lo | | FC12 | 1025 | 3-28 | | U.S.G.S. | 1,3 | 0,54 | 0.93 | 0.31 | 0.50 | | .6 7 | 0 | | | 998 | 12-5 | | U.S.G.S. | _1.3 | 0.33 | 0,94 | 0.21 | 0,31 | <u> </u> | 6 6 | | | | 1026 | 4-3 | 919A
925A | BREWSTER | 1.0 | 0.32 | 0,91 | 0.16 | 0.29 | | .6 2 | 0 | FC12 | | 999 | 12-11 | 1006A
1012A | BREWSTER | 1.0 | 0.27 | 1.19 | 0.20 | 0.32 | Ll. | 6 2 | | | | 1027 | 4-10 | 846A
852A | •• | 1.0 | 0.26 | 0.81 | 0.12 | 0.21 | | 6 2 | 0 | | | 1000 | 12-11 | | U.S.G.S. | 1.2 | 0.21 | 1.00 | 0.19 | 0.21 | Π. | 6 5 | | , | | 1028 | 4-11 | | u.s.g.s. | 0.8 | 0.21 | 0.45 | 0.08 | 0.094 | | .5 4 | 0 | | | 1001 | 12-18 | 1037A
1045A | BREWSTER | 1.0 | 0.24 | | 0.14 | 0.24 | 1 1 | 6 2 | |) | FC12 | 1029 | 4-17 | 834A
840A | BREWSTER | 0.8 | 0,20 | 0.60 | | 0.12 | | .6 2 | 0 | FC12 | | 1002 | 12-19 | | U.S.G.S. | 1.0 | 0.15 | | 0.13 | 0.12 | | 6 2 | 7 | | | 1030 | 4-23 | 945A
951A | | 0.8 | 0.24 | | 0.10 | 0.18 | | .6 2 | 0 | | | 1003 | | 1 | | 6.0 | 1.93 | | 0.63 | 3.00 | | 6 10 | T | | | 1031 | 4-25 | | U.S.G.S. | 0.7 | 0.18 | 0.43 | ļ | 0.077 | | .5 4 | 0 | | | 1004 | 12-26 | 350P
400P | BREWSTER
VINES | 5.0 | 1.98 | 1.52 |] | 3.0 | [] | 6 5 | - 1 | | FC12 | | 4-30 | 145P
150P | | 0.5 | 0.14 | _0.57 | | 0.08 | | .6 1 | 0 | FC12 | | 1005 | 12-31 | 1,00 | U.S.G.S. | 9.0 | 3.90 | 2,64 | | 10.3 | | 6 8 | | | | 1033 | 5-7 | 115P
120P | * | 0.5 | 0.11 | 0.55 | | 0.06 | | | - | , rc12 | | | | 324P
340P | BREWSTER | 7.0 | 4.22 | 2.39 | 1 | 10.1 | | 6 7 | | | FC12 | 1 | 5-9 | 120 | U.S.G.S. | 0.5 | 0.11 | | | | | 6 1 | ٥ | | | 1006_ | 1-2 | 340 | U.S.G.S. | 8.0 | | 2.03 | | 8.9 | | 6 8 | | | 1012 | 1035 | 5-15 | 755A
800A | BREWSTER | | | 0.33 | | 0.036 | | .5 4 | 0 | | | 1007 | 1-3 | 015A | | | 4.38 | 1 | | | T | | | | | 1 | T | 1145A | " | 0.5 | 0.11 | 0.45 | | 0.05 | | .6 1 | 0 | FC12 | | 1008 | 1-8 | 940A | BREWSTER | 4.0 | 2.10 | 0.95 | | 2.0 | П | - T | + | | FC12 | | 5-21 | 1150A | | 0.5 | 0.11 | | 0.03 | 0.04 | | .6 1 | 0 | | | 1009 | 1-15 | 950A | * | 4.0 | 1.40 | 0.51 | | 0.71 | | 6 4 | -1 | | | 1037 | 5-22 | 1235P | U.S.G.S. | 0.5 | 0.12 | 1 | 0.02 | 0.020 | | -5 4 | | | | 1010 | 1-16 | 1010A | U.S.G.S. | 2.3 | 0.78 | 0.67 | 0.28 | 0.52 | +-+• | 6 6 | + | .01 | | 1038 | 5-29 | 1240P
1120A | BREWSTER | 0.5 | 0,11 | 0.36 | 0.02 | 0.04 | | .6 1 | 0 | FC12 | | 1011 | 1-22 | 1018A
007A | BREWSTER | 1.5 | 0.52 | 0.88 | 0.22 | 0.46 | - | 6 3 | | | FC12 | 1039 | 6-4 | 1125A | | 0,5 | 0.12 | 0.17 | 0.01 | 0.02 | | .6 1 | 0 | <u>.</u> | | 1012 | 1-29 | 019A | • | 2.0 | 0.87 | 0.83 | 0.32 | 0.72 | - | 6.4 | c | | | 1040 | 6-5 | 940A | U.S.G.S. | 0.35 | 0.07 | 0.29 | 0.01 | 0.020 | | .5 3 | 0 | - | | 1013 | 1-30 | 850A | U.S.G.S. | 1.9 | 0.66 | 0.73 | 0.28 | 0.48 | H | .6 | 6 | 0 | | 1041 | 6-11 | 944A
1015A | WADD1COR | 0.5 | 0.08 | 0.25 | 0.01 | 0.02 | | .5 2 | Q | FC37 | | 1014 | 2-5 | 902A | BREWSTER | 2.0 | 0.63 | 0.81 | 0.20 | 0.51 | <u> </u> | 6 4 | 4 1 | 0 | FC12 | 1042 | 7-9_ | 1020A | BREWSTER | 0.6 | 0.20 | 1.25 | 0.18 | 0.25 | | .6 1 | 0 | FC12 | | 1015 | 2-11 | | U.S.G.S. | 1.2 | 0,33 | 0.88 | 0.20 | 0.29 | Щ. | 5 | 7 4 | 0 | | 1043 | 7-15 | 146P | u.s.g.s. | 0.4 | 0.09 | 0.41 | 0.04 | 0.037 | | -5 4 | ٥ | <u> </u> | | | 2-11 | 938A
944A | BREWSTER | 1.0 | 0.32 | 1 | 0.20 | 0.37 | 1 1 | 6 8 | . 1 | 0 | FC12 | 1 | 7-16 | | BREWSTER | 0.5 | 0.11 | 0.55 | l | 0.06 | | .6 1 | 0 | FC12 | | F. C. Dist. | Form 53 4-46 | | | | FLO | LOS ANGELES
DOD CONTRO
YDRAULIC 1 | L DISTRICT | r | | | Sta. | No. UG-R | |--|---|---------------|---|---|---|---|---|---|---|---|---|---| | Daily dis | scharge, in s | econd-feet of | BIG DALTON | CREEK ne | | | | | | . for the v | ear ending Septe | mber 30, 19 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 17 18 19 20 21 | 000000000000000000000000000000000000000 | | 000000000000000000000000000000000000000 | 00 6 6 6 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 2 2 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 00000000000000000000000000000000000000 | 2.4.4.0.8.1.8.1.7.6.1.1.7.6.1.1.7.6.1.1.7.6.1.1.7.6.1.1.7.6.1.1.7.6.1.1.7.6.1.1.7.6.1.1.7.6.1.7.7.6.1.1.7.6.1.1.7.6.1.7.7.6.1.1.7.6.1.7.7.6.1.1.7.7.7.6.1.1.7.7.7.6.1.1.7.7.7.7 | 00000000000000000000000000000000000000 | 01111111111111111111111111111111111111 | 000000000000000000000000000000000000000 | 0 | 000000000000000000000000000000000000000 | | 22
23
24
25
28
27
28
29
30
31 | 000000000000000000000000000000000000000 | 0000000 | 166
267
21
1.6
1.0
0.8
0.7
0.6 | **

*** | 00000 | 4553 QQQ337, 4 | 15.4.4.4.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. | 222211111111111111111111111111111111111 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | | 0 | 0 | 541 | 135 | 10.5 | 16.0 | 27.1 | 5 .4 | 19 | o | 0 | 0 | | MEAN | 0 | 0 | 1.75 | . 44 | .38 | .52 | .90 | .17 | .06 | 0 | 0 | 0 | | ACRE-
PEET | 0 | 0 | 107. | 27. | 21. | 32. | 54. | 11. | 3.8 | 0 | 0 | 0 | | R | temarks: | | | | | | | | | EAR ME
OR
ERIOD ACE | | 56. | #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. 11 G-R | ily di | charge, in sec | ond-feet of | BIG DAL | TON CREEK | near Mou | th of Can | yon | | | , for the year | ending Septem | ber 30, 19 _1 4 | |----------|----------------|-------------------|-------------------|--------------|-------------------|---------------------------------------|--------------------------|------------|-------|-------------------|---------------------|------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 0 | 0 | 0 .5
0 .4 | 11
9.4 | 0.4 | 0000
0000 | 0 2
0 2
0 3
0 3 | 01 | | 0 | 0 | 0 | | 2 | 0 3 | ŏ | 0.4 | 9.0 | 0.3 | 0.2 | 0.3 | 0 1 | | ŏ | 0 | 0 | | 4 | 0.1 | 0 | 0.3 | 9.0 | 0.3 | 0.2 | 0.3 | 0 1 | | 0 | 0 | 0 | | 5 | 0.1 | o o | 0.3 | 8.7 | 0.3
0.3
0.3 | 0,4 | 0.3 | 0.1 | 0.01 | 0 | 0 | 0 | | 6 | 0 | 0 | 0 .4
0 .4 | 8 .7
8 .4 | 0.3 | 0.3
0.2 | 0.3 | 0.1 | ŀ | 1.1 | 0 | 0 | | 8 | 0 | ŏ | 0.3 | 4 .4 | 0.3 | 0.2 | 0 2
0 2
0 2 | 0.1 | 1 | 1 1
1 3
0 3 | ŏ | 0 | | 9 | 0 | 0 | 0.3 | 1.0 | 0.4 | 0.2 | 0.2 | 0.1 | 1 | 0.3 | 0 | 0 | | 11 | | 0 | 03 | 8.0 | 0.3 | S. 0 | 01 | 0 <u>1</u> | | 0.7
0.8 | 0 | 0 | | 12 | ŏ | 0.1 | 3.0 | 0.7 | 03 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.1 | 0 1 | 0 | 0 1 | 8 | ŏ | | 13 | Ó | 0.7 | 0.2 | 0.7 | 0.3 | 0.2 | 0.1 | 0.1 | o l | 0.2 | 0 | Ó | | 14
15 | 0 | 0.7
0.3 | 0.2 | 0.6
3.0 | 03
03
03 | S. 0 | 01 | 0 1 | 0 | 2. 0
1. 0 | 0 | 0 | | 16 | - 8 | 0.2 | | 3.0 | 0.3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01 | 0.1 | - 6 | 01 | 8 | - 8 | | 17 | ŏ | 0.1 | 0.2 | 0.5 | 0.3 | 0.2 |
0.1 | | 0 | 0 | 0 | 0 | | 18
19 | 0 | 0.1 | 0.2 | 0.5 | 03 | 0 &
0 &
0 & | 0.1 | | 0 . | ŏ | 0 | 0 | | 20 | 8 | 0 1
4 8 | φ.
ς. ο | 0.5
0.4 | 03 | 0 Q | 0.1 | | 0 | 0 | 0 | 0 | | 21 | ő | 2.0 | 0.2 | 0.4 | 0.3 | 0.2 | 0.1 | | 0 | Ö | 0 | 0 | | 22 | 0 | 2.0
1.0
2.8 | S 0 | 0 .4 | S. 0 | 000
000
000 | 02 | | 0 | 0 | 0 | 0 | | 23 | 0 | 8. S
8. S | 0.2 | 0.4
0.4 | 0 2
0 2 | S 0 | 0.1 | 0.03 | 0 | 0 | 0 | 0 | | 25 | ŏl | 2.6
1.8 | 1.6 | 0.4 | 0.2 | 0.2 | 0.1 | 0.03 | 0 | 0 | 0 | 0 | | 26 | 0 | 1.1 | 4 .0 | 0.4 | S. 0 | 3.0 | 0.1 | | 0 | 0 | 0 | 0 | | 27
28 | 0 | 0.8
0.7 | 3.3
3.0
2.6 | 0 A
1 .2 | 0.2 | 000 | 01 | ļ | 0 | 0 | 0 | 0 | | 29 | ŏl | 0.6 | 2.5 | 0,6 | | 0.3 | 01 | | ŏ | ŏ | ŏ | ŏ | | 30
31 | 0 | 0.6
0.5 | 7.7 | 0.5 | | \$ 0
\$ 0 | 0.1 | | 0 | 0 | 0 | 0 | | 31 | 0 - | | 11 | 0.4 | | 9.0 | | | | 0 | . 0 | | | | 0.5 | | 396 | | 0.8 | | 4.4 | | 0 1 1 | | 0 | _ | | (BAN | 0.00 | 21.0 | | 81.8 | 0.00 | 6.7 | | 2.05 | | 4.9 | | 0 | | CRB | 0.02 | 0.70 | 1.28 | 2.64 | 0.29 | 0.22 | 0.15 | 0.066 | 0.004 | 0,16 | 0 | 0 | | Past | 1.0 | 42 | 79 | 162 | 16 | 13 | 8.7 | 4.1 | 0,2 | 9.7 | 0 | 0 | | | Remarks: | | | | | | | | | EAR MEAN | | | | | | | | | | | | | P | DATOD ACER- | _{Гвит} 336 | | ## STATION F274-R DALTON WASH at Merced Avenue | LOCATION: WATER-STAGE RECORDER, LAT 34°04'28", LONG. 117°57'48". | ON THE LEFT | |--|----------------| | (EAST) BANK AND ON THE DOWNSTREAM SIDE OF THE MERCED AVENUE | BRIDGE, ABOUT | | ONE-HALF MILE ABOVE THE JUNCTION WITH WALNUT WASH AND ABOUT | ONE MILE SOUTH | | OF BALDWIN PARK. ELEVATION OF ZERO GAGE HEIGHT, 345.27 FEE | т. | DRA!NAGE AREA: 28 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - EARTH, SAND AND GRAVEL COVERED WITH WEEDS AND GRASS DURING SUMMER MONTHS. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF BRIDGE. RECORDER: INSTALLED NOVEMBER 11, 1940 OVER A 24 INCH DIAMETER IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: PARTHALLY REGULATED BY BIG DALTON DAM, BIG DALTON SPREADING GROUNDS AND LITTLE DALTON SPREADING GROUNDS. THE COVINA AND AZUSA CANALS AT TIMES SPREAD FLOWS IN BOTH BIG AND LITTLE DALTON WASHES. DIVERSIONS: GLENDORA MUTUAL WATER CO. DIVERTS FLOW FROM BOTH BIG AND LITTLE DALTON CANYONS. RECORDS AVAILABLE: NOVEMBER 11, 1940 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 1450 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW PART OF YEAR, 1946-1947 MAXIMUM 328 SECOND-FEET, NOVEMBER 23, MINIMUM NO FLOW PART OF YEAR, 1940-1947 MAXIMUM 2650 SECOND-FEET, FEBRUARY 22, 1944, MINIMUM NO FLOW PART OF EACH YEAR. ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | DISCHARGE | MEASUREMENTS OF | DALTON WASH | | |-----------|-----------------|----------------------------------|-----------| | AT. | Merced Avenue | DIGING THE YEAR ENDING SENTEMBER | an salifa | | 130 | 12/6 | 224P | | FEET | AD. FT. | VELDOITY
FT.PER BEG. | HEIGHY
FEET | SEC. FT. | ING | 00 | NO. | TOTAL | HETER
HD. | |-------|-------|--------------|---|-------|---------|-------------------------|----------------|---------------------|--------------|-----|------|---------------|--------------| | 130 | 10/0 | | 1 | | 10. 75. | T, PER BEG. | PRET | | \vdash | _ | nu. | TOTAL | | | -130 | | 230P | BREWSTER | 3.0 | 0.44 | 0.41 | 1.75 | 0.18 | | . 6 | 3 | 02 | FC12_ | | | | 1035P | DALIGIER | 3.0 | 0.44 | 0.41 | | 0.10 | | | | 02 | . 1 012 | | 131 | | | COLE - ROCKENMEYER | 28.5 | 20.5 | 3.80 | 2.90 | 78.0 | | .6 | 10 | +.01 | FC20 | | | | 200P | | | | 9.00 | 2.00 | 70.0 | | | - | | | | 132 | 12/23 | 215P | BREWSTER | 25.0 | 147.7 | 2.80 | 2.40 | 41.1 | | .6. | 7 | 01 | FC12_ | | | | 220P | | | | | | | | | | | | | 133 | 1/10 | 230P | [" | 18.0 | 5.20 | 1.21 | 2,16 | 6.3 | | .6 | . 5. | 02 | ** | | | | 215P | 1 | | | | | | | | 1 | | | | 134 | 1/17 | 225P | - ' - | 8.0 | 1.60 | 1.25 | 1.94 | 2.0 | \perp | .6. | 4 | 02 | ** | | - 1 | | 145P | | | l | | | | | | ŀ | | | | 135 | 2/3 | 200P | " | 26.0 | 16.8 | 4.17 | 2.78 | 70.1 | <u> </u> | .6 | 6 | +. 95 | : | | i i | | 345P | | | | | | | ĺ | ١. | _ | | | | 136 | 2/3 | 400P | · · · · · · · · · · · · · · · · · · · | 34.0 | 33.6 | 5.15 | 3,09 | 173. | - | .6 | ļZ. | 10 | | | | | 1230P | l | | | | | | ĺ | .6 | 6 | 01 | ۱., | | _137 | 2/4 | 1242P | `` | 20.0 | 5.9 | 1.41 | 2,14 | 8.3 | - | 1.6 | 1-5- | 01 | | | 138 | 2/7 | 208P | 1 | 4.00 | 0.72 | 0.83 | 1.82 | 0.60 | | .6 | 4 | 0 | | | 9.0 | -2/ | 210P | | 9.00 | 0.72 | 0.63 | 1.04 | 0.80 | | .0 | | V | | | 139 | 2/21 | 218P | | 4.00 | 0.74 | 0.46 | 1.76 | 0.34 | 1 | .6 | 4 | 01 | | | 139. | E/ E1 | 1000A | | 4.00 | | 0.40 | 1.70 | V. V. | 1 | | - | | | | 140 | 3/19 | 1012A | | 16.0 | 6.30 | 2.06 | 2.27 | 13.0 | 1 | 6 | 5 | 0 | | | | | 233P | | 177.5 | - ×10× | | | | | - | | | | | 141 | 3/20 | 241P | WADDICOR - HOLMES | 13.5 | 3.74 | 1.62 | 2.13 | 6.0 | 1 | .6 | 7 | 0 | FC22 | | | | 237P | | | | | | | Γ. | | П | | T | | 142 | 3/21 | 245P | BREWSTER | 3.0 | 1.13 | 1.33 | 1.95 | 1.5 | | .6 | 13 | 0 | FC12 | | | | 200P | | | | | ĺ | | 1 |] | 1 | 1 |] | | 143 | 3/28 | 210P | 11 | 10.0 | 2.40 | 1.21 | 2.02 | 2.9 | _ | .6 | 5 | 01 | ··- | | - 1 | | 812A | | ŀ | l | ł | ļ | | 1 | 1 | İ | 1 | 1 | | _144 | 3/30 | 823A | COLE - HOLMES | 30.5 | 22.9 | 4.85 | 3.00 | 111. | ╙ | .6 | 8. | +.04 | FC20 | | | | 1038A | | 1 | 1 | | 1 | | l | ١. | 1_ | ١ | | | 145 | | 1050A | BREWSTER -COOLEY | 28.0 | 23.6 | 3.94 | 2.70 | 93.1 | | ļ.6 | 7 | 05 | FC12 | | 1 | | 1247P | | l | [| 1 | ۱ | | | | 1 . | ١., | | | , 146 | 3/30 | 101P | BREWSTER | 28.0 | 32.6 | 5.40 | 3.30 | 176. | 1 | .6 | 6 | 04 | | | | 0.404 | 111GA | DOCUCATO COOL EV | | 1 | 1 | 1 | 2.0 | 1 | .6 | 5 | 0 | ١ | | 147 | 3/31 | 1120A | BREWSTER-COOLEY | 9.0 | 1.73 | 1.16 | 1.99 | 1 - 2. V | | 10 | +-5 | · · · · · · · | - | | 140 | 3/31 | 340P
350P | | 4.0 | 1.13 | 0.88 | 1.94 | 1.0 | 1 | .6 | 4 | 01 | | | 148 | 3/31 | 1024A | <u> </u> | 4.0 | 1 113 | 0.80 | 1.94 | 1 | t – | 1.0 | +* | 1.01 | | | _149 | 5/28 | 1030A | BREWSTER | 3.0 | 0.44 | 0.41 | 1.84 | 0.18 | 1 | 6 | 1 3 | 0 | ., | P. C. Dist. Form 52 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sts. No.F274-R | Daily di | scharge, in se | cond-feet of | DALTON | WASH at | Merced Av | enue | | | | , for the year | r ending Septem | ber 30, 19 46 | |----------------------------------|----------------|---------------------------------|--|--|---|------------------------------------|---|--|-------------------------------|---------------------------|------------------------------|-----------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 0 0 0 0 0 | 0 0 0 0 | 1 1
1.7
1 1
1 0
0 6
0 6 | 0
0
0
0
0
3 1
4 .2
4 .8 | 0
0 9
3 8
6 .8
0 .6
0 .7
0 .6 | 259911
259911
229 | 0.5
1.3
0
0
0 | 0 0 0 0 0 | 0 2
0 1
0 0
0 1
0 | 0 1
0
0 1
0
0 | 0.1
0
0
0
0
0 | 0
0
0
0
0 | | 8
9
10 | 0 | 0 | 1 2
2 4
1 1 | 63
12
12
9.5 | 0
0
0 | 0
8.0
2.9 | 0 1 | 0
0
0 1 | 0
0
0.1 | 01
0
01 | 0
0
0 | 0 | | 11
12
13
14
15 | 0000 | 0
1.6
1.9
0.7
0.2 | 0.8
0.8
1.8
2.4 | 9.5
9.5
8.3 | 0 0 0 | 3.6
4.0
0.8
2.4
2.0 | 0 0 | 0
0 1
0 1 | 0000 | 00000 | 0
0
0 | 0
0
0
0 | | 16
17
18
19
20 | 0 0 0 | 2 2
1 5
1 1
0 3
0 4 | 1.8
0 2
1.0
0.8 | 2.6
2.5
0
1.9 | 0 &
0 &
0 &
0 &
1 3 | 1.5
2.5
1.4
5.8
2.9 | 0.6
0
0.5
0.8 | 0
0
0
0 | 0
0 .1
0
0 | 0000 | 0 0 0 | 0
0
0
0
0 | | 21
22
23
24
25 | 0 0 0 | 0
0
0 .e
0 | 89
229 b
177 b
0.8 | 0
0
0
1
0 | 0.8
0.8
1.0
2.7
2.4 | 1.5
0.9
2.2
3.0 | 0 2 0 0 0 0 0 | 0
0
0
0 | 0 0 0 0 | 0000 | 0 0 0 | 0 | | 26
27
28
29
30
31 | 0 0 0 0 0 | 0
0 &
0 &
0 &
0 4 | 0 0 0 | 0
0
0
0
0 | 1.2
1.5
2.2 | 13
0
4 8
2 1
56
2.6 | 0
0
0
0
0
0
0
0
0 | 0 4
0 3
0 2
0 2
0 4
0 3 | 0000 | 0 1
0
0 1
0 0 | 0
0
0
0
0 | 0
0
0
0
0 | | | 0 | 113 | 5162 | 95.4 | 62.5 | 1194 | 4 .5 | 2.4 | 0.6 | 0.7 | 0.1 | 0 | | MEAN
ACRE-
FEET | 0 | 0.38
22. | 16.6
1020. | 3.07
189, | 2.23
124. | 3.85
237. | 0.15
8.9 | 0.08 | 0.02 | 0.02 | 0.003 | 0 | | 1 | Remarks: | | · | | | | | · · · · · · · · · · · · · · · · · · · | Y | EAR MEA | N 2.2 | | F. C. Dist. Form 52 4-45 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 274-R | ily dis | charge, in se | cond-feet of | DALTON | WASH at M | erced Ave | nue | | | | , for the ye | ar ending Septe | mber 30, 19 | |----------|---------------|-------------------|----------|------------|------------|------------|----------|-----|---------|-----------------|-----------------|-------------| | цy | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 0 | 1.3 | 1.4 | 0 2 | 0 | 2.2 | 5.9 | 0 | 0 | o o | O O | 8 | | 3 | 0 | 2.4
3.0 | 1 4 | 0 2
1.5 | 0 | 1.8 | 3.3 | 0 | 0 | 0 | 0 | 6 | | 4 | 0 | 3.0 | 12 | 3.8 | ŏ | 0.5 | 3.3 | ŏ | ŏ | ŏ | l ŏ | 0 | | 5 | ŏ | | 0.5 | 4.1 | ŏ | 2.5 | 41 | ŏ | ŏ | ١٥ | ŏ | ŏ | | 6 | 0 | 1 2
2 5 | 0.1 | 3.7 |
0 | 0.6 | 4.7 | 0 | 0 | 0 | 0 | 0 | | 7 | 0 | 12 | 0 | 3.9 | O. | 0.9 | 1.9 | 0 | 0 | 0 | 0 | 0 | | 8 | 0 | 6.4 | 0 | 8. S | 0.4 | 0.3 | 1.3 | 0 | 0 | 0 | 0 | 0 | | 9 | 8 | 0 <u>9</u>
1 9 | 0 | 2.0 | 1.5
0.6 | 8.0
8.0 | 1.0 | 0 | 0 | 0 | 0 | 8 | | 11 | - 6 | 2.5 | 0 | 3.0 | 0.1 | 0.4 | - 63 | ŏ | - 8 | | + 0 | - 5 | | 12 | ŏ | 21 | ŏ | 33 | ŏ | 2.0 | ŏ | ŏ | l ŏ | ŏ | l ŏ | ١ŏ | | 13 | o l | 39 | O | 3.3 | 0.3 | 1.9 | 0 | 0 | 0 | 0 | 0 | Ó | | 14 | 0 | 16 | 0 | 41 | 0.7 | 1.1 | 0 | 0 | 0 | 0 | 0 | 0 | | 15
16 | 0 | 1.8 | 0 | 2.6 | 0 | 1.0 | <u> </u> | 0 | 0 | 0 | 8 | 0 | | 17 | 0 | 1 3
0 | 0 | 22 | 0 | 1 3
1 2 | 0 | 0 | 0 | 0 | 0 | 0 | | 18 | 1.0
1.4 | ŏ | ŏ | 2.4 | 01 | 0.7 | ŏ | ŏ | 0 | ő | 0 | 6 | | 19 | ō~ | ŏ | ŏ | 2.8 | 0.3 | 2.1 | ŏ | ŏ | ŏ | ١ŏ | ŏ | ŏ | | 20 | 0 | 5.2 | 0 | 3.3 | 0.2 | 2.8 | . 0 | . 0 | 0 | 0 | 0 | 0 | | 21 | 0 | 1.4 | 0 | 2.8 | 0 | 4 .1 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 | 0 | 1.8 | 0 | 2.8 | 0 | 4.3 | o l | o | 0 | 0 | 0 | 0 | | 24 | 0 | 4 6
0 9 | 0 | 3.7
2.2 | 0 1 | 3.7
3.2 | 0 | 0 | 0 | 0 | 0 | 0 | | 25 | ŏ | 1.0 | 4 7 | 2.2
1.8 | 0.6 | 1.5 | ŏ | ŏ | ŏ | 8 | 0 | ŏ | | 26 | ő | 1.2 | 29 | 2.2 | 1.5 | 1.7 | 0 | Ō | Ŏ | - 8 | 1 - ŏ | Ō | | 27 | 0 | و ٥ | 21 | 2.4 | 2.2 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | | 18 | 0 | 1.9 | o l | 6.5 | 2.4 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | | 19
10 | 0.1 | 0.5 | 0 | 1.4 | | 2.0 | 0 | 0 | 0 | 0 | 0 | 0 | | 11 | 0.6 | 1 4 | 0 | 13 | | 3.5
4.1 | 0 | 0 | 0 . | 0 | 0 | 0 | | -1 | 0.0 | | <u> </u> | 0.1 | | 44 | | | <u></u> | | | 1 | | | 31 | | 103.0 | | 11.0 | | 8.65 | | 0 | | 0 | _ | | | | 2159 | | 81.2 | | 55.4 | | 0 | | 0 | | 0 | | AN | 0.10 | 7.20 | 3.32 | 2.62 | 0.39 | 1.79 | 0.89 | 0 | 0 | 0 | 0 | 0 | | RE- | 6.1 | 428 | 204 | 161 | 22 | 110 | 53 | 0 | 0 | 0 | 0 | 0 | | R | temarks: | | | | | | | | 3 | ZEAR ME | N_1.36 | | | | | | | | | | | | P | OR
ERIOD ACR | E-FEET 98 | 4 | ## STATION FILLB-R BIG TUJUNGA CREEK above Edison Road LOCATION: WATER-STAGE RECORDER, LAT. 34°18'18", LONG. 118°09'32", ON THE RIGHT (NORTHWEST) BANK 400 FEET ABOVE CROSSING OF EDISON ROAD, ABOUT 4 MILES UP. STREAM FROM BIG TUJUNGA DAM NO. 1, ELEVATION OF GAE ABOUT 2410 FEET, FORMER STATION F FILE-R WAS ABOUT 300 FEET DOWNSTREAM. CHANNEL AND CONTROL: CHANNEL - GRAVEL AND BOULDERS. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR AT STATION. RECCRDER: INSTALLED ON NOVEMBER 30, 1930 AT STATION F111-R; REMOVED AUG. 17. 1932. INSTALLED ON SEPTEMBER 15, 1932 AT STATION F1118-R OVER A 24 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: AT STATION FILL-R - NOVEMBER 30, 1930 TO AUGUST 17, 1932 AT STATION FILLB-R - SEPTEMBER 15, 1932 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 1800 SECOND-FEET, MARCH 30. MINIMUM 0.7 SECOND-FEET, VARIOUS TIMES. MINIMUM D, TSECONDEFEET, VANIOUS TIMES. 1946-1947 MAXIMUM 1500 SECOND-FEET, DECEMBER 26, MINIMUM 0.1 SECOND.FEET, AUGUST 7. 1930-1947 (STATIONS F111-R AND F118-R) MAXIMUM DISCHARGE ON DETERMINED, MARCH 2, 1938. MAXIMUM DISCHARGE OF RECORD. 14, 800 SECOND.FEET, JANUARY 23, 1943, MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE U.S.G.S. WATER RESOURCES BRANCH. | | SURAHDEIC | MEABURE | KENTE OF BIG TUJUN | IGA CREI | EK | | | | | | | | - | | DIECHANGE | MEABURE | MENTE OF BIG TUJI | JNGA CE | REEK | | | | | | | _ | |------|------------|-------------------------|--------------------|----------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|--------|----------------------|---------------------------|--------------|-----|-----------|----------------|--------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------|-------|----------------------------------|------------------| | + | AT
VEAR | abov | ve Edison Road | | | DURIN | в тне че | AR ENDING | BEPTE | жвел | 30, | 1 <u>- 4</u> 6 | | | T | abov | e Edison Road | | | DUR | ING THE Y | EAR ENDIN | O BEPT | EMBER | ao, 19. | 17_ | | жа, | DATE | BEGIN | HADE BY | 'WIOTH
FEET | AREA DF
SECTION
SQ. FT. | MEAN
VELUGITY
FT.FER SEG. | GAUGE
HEIBHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH- | MEAB.
SEC.
No. | S. HT.
CHANGE
TOTAL | METER
NO. | NO. | DATE | BED(N
END | HADE BY | WIDTH
FEET | ARKA OF
MECTION
MQ. FT. | HEAN
VELODITY
FT.PER BED. | MAUSE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | 00 F | EAR. B.
BEC. CHAI
BEC. TOT | HT. HETEI
NG. | | 456 | 10/4 | 1130A
1137A
1250P | GILLESPIE | 3.2 | 1.84 | 0.87 | 5.85 | 1.6 | | .6 | 4 | 0 | FC40 | 485 | 10-8 | 1120A
1125A | TURNER | 4.4 | 1.53 | 1.05 | 5.89 | 1.6 | | .5 | 5 0, | FC40 | | 457 | 10/18 | 1258P | , . | .3,0 | 1.71 | 0.88 | 5.90 | 1.5 | | .6 | 5 | D | | 486 | 11-15 | 1242P
1253P | BLAKELY | 23.0 | 16.3 | 1.86 | 6.57 | 30.3 | | 6 | 13 0 | | | 458 | 11/1 | 120P
125P | | 3.1. | 2.00 | 1.45 | 5.93 | 2.9 | | .6 | 3 | ٥ | FC37 | 487 | 11-19 | 1042A
1100A | TURNER-VAN DER GOO | T 22.0 | 13.0 | 1.53 | 6.38 | 19.9 | | 6 | 12 0 | - | | 459 | 11/8 | | DEVORE - STUNDEN | 3.0 | 1.88 | 1.44 | 5.95 | 2.7 | | .6. | 6 | 0 | FC42 | 488 | 11-21 | 1227P
1237P | BLAKELY | 35.3 | 28.0 | 2.73 | 6.88 | 76,5 | | 6 | 160 | 1 " | | 460 | | 1111A
1123A | DEVORE | 3.0 | 1.94 | 1.39 | 5.95 | 2.7 | | .6 | 6 | ٥ | FC40 | 489 | 11-25 | 1238P
1248P | " | 26.5 | 21.9 | 2.47 | 6.74 | 54.0 | | 6 | 14 0 | FC35 | | 461 | | 1043A
1053A | | 3.3 | 2.09 | 1.48 | 5.97 | 3.1 | | .6 | 7 | 0 | | 490 | 12-9 | 1110A
1125A | TURNER | 24.0 | 11.5 | 1.42 | 6.33 | 16.3 | | .6 | 13 0 | FC40 | | 462 | | 1047A
1100A | | 3.2 | 1.97 | 1.73 | 5.98 | 3.4 | | .6 | 7 | | | 491 | 12-28 | 1248P
105P | BLAKELY | 38.0 | 48.0 | 2.88 | 7.30 | 138. | | 6_ | 190 | 1 " | | 463 | 12/24 | 145P
155P | STUNDEN | 27.0 | 19.5 | 2.59 | 6.69 | *50.5 | | .6 | 8 | 0_ | | 492 | 1-2 | 1130A
1145A | TURNER | 28.8 | 22.1 | 2,16 | 6.67 | 47.7 | | 6 | 14 0 | | | ł | 12/26 | 235P
249P | DEVORE | 15.8 | 9.97 | 1.95 | 5.40 | 19.4 | | -6 | 9 | .0 | | 493 | 1-21 | 1125A
1140A | " , | 24.5 | 13.2 | 1.37 | 6.36 | 18.1 | | 6 | 13 0 | ,, | | -465 | .1/3 | 1050A | | 12 9 | 6.45 | 1.63 | 6.19 | 10.5 | | 6 | a | 0 | | 494 | 2-5 | 1010A
1025A | ,, | 23.5 | 12.2 | 1.26 | 6.30 | 15.4 | | 6 | 12 0 | | | 466 | 1/10 | 950A
1006A | | 11.3 | 4.93 | 1,46 | 6.09 | 7,2 | | .6 | 10 | 0 | | 495 | 2-18 | 1040A
1055A | | 22.5 | 11.3 | 1.19 | 6.28 | 13,4 | | | 12 0 | | | 467 | 1/17 | 245P
300P | | 11.2 | | 1.42 | 6.07 | 7.0 | | .6 | 10 | 0 | | 496 | 3-14 | 100P
110P | STUNDEN | 14.0 | 7.16 | 1.51 | 6.22 | 10.8 | | 6 | 8 0 | - | | 468 | 1/24 | 242P
255P | | 11.3 | 4.87 | | 6.06 | 6.8 | | \neg | 9 | 0 | | 497 | 4-11 | 1110A
1125A | TURNER | 18.0 | 12.4 | 0.65 | 6.21 | 8.0 | | 6 | 10 0 | | | 469 | | 1021A
1035A | | 11.3 | 4,25 | | 6.03 | 5.7 | | . | 9 | -0.01 | FC42 | 498 | 5- i | 105P
125P | STUNDEN | 21.0 | 8,27 | 0.79 | 6.15 | 6.5 | | 5 | 11 0 | | | 470 | 2/4 | 215P
230P | | 14.0 | 7.65 | | 6.27 | 14.0 | | .6 | | 0 | FC40 | 499 | 5-22 | 1040A
1100A | ** | 20.0 | 5,92 | } | 6.05 | 3.8 | | .5 | 10 0 | | | 471 | | 1010A
1028A | | 12.9 | 5.68 | 1.44 | 6.12 | 8.2 | Ħ | .6 | | 0 | | 500 | 6-11 | 1135A
1155A | ,,, | 18.0 | 5.28 | 0.55 | 5,99 | 2.9 | | .5 | 9 +.0 | , . | | | | 1012A | | | | | | | H | | | | 1., | 501 | 7-9 | 155P
210P | n | 2.0 | | 1.23 | 5.84 | 0.69 | | .5 | 4 0 | FC36 | | 472 | 2/28 | 1028A
1120A | | 13.1 | 5.37 | 1.40 | 6.08 | 7.5 | | .6 | | 0 | 1 | 502 | 7-31 | 1240P
1245P | | 1.8 | | 0.73 | 5.81 | 0.27 | T-1 | 5 | 3 0 | FC40 | | 473 | | 1138A
202P | | 12.8 | 5.29 | 1.42 | 6.10 | 7,5 | \vdash | .6 | | 0 | | 503 | 8-12 | 130P
136P | TURNER | 2.1 | | 1.02 | 5.86 | 0.43 | T | 5 | 5 0 | FC43 | | 474 | 3/28 | 222P | | 13.9 | 7.84 | | 6.28 | 14.4 | | .6 | | 0 | | 504 | 9-10 | 105P
112P | | 1.8 | | 1.30 | 5.89 | 0.74 | | 5 | 4 0 | FC40 | | 475 | 4/1 | 920A | STUNDEN | 30.0 | 36.6 | 3.44 | 7.22 | 126. | \vdash | .6 | | | FC36 | - | 10.10 | 1.1- | | | 4 | 1 | 1000 | | | | | | | 476 | 4/11 | 932A
1015A | WADDICOR | 24.5 | 17.3 | 1.85 | 6.52 | 31.8 | \vdash | .6 | | 0_ | FC40 | - | | | | | | | | | | | | | | 477 | 4/25 | 1027A
250P | ••• | 14.0 | 8.38 | 1.52 | 6.28 | 12.7 | \vdash | .6 | | 0 | 1 | - | | | | | | | | | | | | | | 478 | 5/7 | 300P | WADDICOR - STUNDEN | 13.2 | 6.84 | 1.30 | 6.17 | 8.9 | - | - | 9 | 0 | ļ | - | | | | | | | | | | | | | | 479 | 5/23 | 215P | STUNDEN | 13.5 | 5.98 | 1.27_ | 6.16 | 7.6 | \vdash | .6 | 13_ | 0 | FC40 | 1 | | | | | | | | | | | | | | 480 | -5/6 | 1115A
1020A | * * | 10.5 | 3.84 | 1.15 | 5.05 | 4.4 | \vdash | .6 | 8_ | 0 | | 1 | | | | | | | | | | | | | | 481 | 6/18 | | TURNER | 8.2 | 4.62 | 0.65 | 5.98 | 3.0 | \vdash | .6 | 9 | 0 | | 1 | | | | | | | | | | | | | | 482 | 7/16. | 800A
1110A | | 4.5 | 1.02 | 0.95 | 5.81 | 1.0 | | .5. | 5_ | 0 | | 1 | | | | | | | | | | | | | | 483 | 8/12 | 1115A | | 4.3 | 0.96 | 0.83 | 5.78 | 0.80 | \vdash | . 5 | 5_ | 0 | 1 | 4 | | | | | | | | | | | | | | 484 | -9/3 | 1035A
1040A | | 4.4 | 1.04 | 0.77 | 5.79 | 0.80 | Ш | .5 | 5 | ٥ | ļ | 1 | | | | | | | | | | | | | F. C. Dist. Form 82 4-48 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. FIIIB-R | | | | | | n | YDRAULIC | DIAISION | | | | | | |----------------------------------|---------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--
--------------------------------------|--|---------------------------------|---------------------------------|---------------------------------|--------------------------------------| | aily d | ischarge, in sec | cond-feet of | BIG TU. | JUNGA CRE | EK above | Edison Ro | ad | | | for the year | r ending Septen | ber 30, 19 <u>14</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 1.5
1.4
1.5
1.6
1.9 | 2.9
2.6
2.3
2.1
2.1 | 2 9
2 9
2 7
2 9
3 1 | 9.8
9.8
11
9.4
9.8 | 5.8
5.8
37
17
11 | 6.6
6.6
6.4
6.4 | 137
107
b 98
 67
 78 | 11
11
10
10 | 5.4
5.1
4.8
4.4
4.1 | 1.9
1.9
1.8
1.8 | 0.8
0.7
0.7
0.7
0.8 | 8. 0
8. 0
8. 0
8. 0
8. 0 | | 6
7
8
9
10 | 2.0 | 2 9
2 7
2 7
2 6 | 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 8.6
8.2
7.8
7.4 | 9.4
9.0
8.6
8.6 | 6 1
6 1
5 8
5 6
5 4 | 70
60
52
43
b 36
f 31 | 9.8
9.4
9.4
10
11 | 3.9
3.8
3.9
3.8
3.8 | 1.6
1.5
1.5
1.5 | 0.9
0.8
0.8
0.8 | 8. 0
8. 0
8. 0
8. 0
8. 0 | | 12
13
14
15 | 1.9
1.8
1.6
1.5 | 2.7
2.6
2.6
2.6
2.7 | 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 7.0
7.0
7.0
7.0
7.0 | 8 .6
8 .2
7 .8
8 .6
9 .8 | 5 .4
5 .4
7 .8
7 .0
5 .8
5 .6 | 28
27
24
22 | 9.4
9.0
9.0
9.0 | 3 2 3 9 2 7 2 7 | 12 12 11 10 | 0.8
0.8
0.8
0.7 | 0.8
0.7
0.7
0.7 | | 17
18
19
20 | 1.4
1.4
1.2
1.2 | 2.7
2.7
2.7
2.6
2.6 | 3.2
3.4
3.4
3.4 | 7.0
7.0
7.0
7.0 | 8 2
8 2
8 2
8 2 | 5.4
5.4
23
17 | 20
18
17
17 | 8 .6
8 .6
7 .8
7 .8 | 2.7
2.6
2.3
2.3 | 0.9
1.0
1.2
1.6 | 0.8
0.7
0.7
0.8 | 6
6
6
6
6
6 | | 22
23
24
25 | 1 2
1 2
1 4
1 4
1 5 | 2 .6
2 .6
2 .6
2 .6
2 .6 | 133
331
277
58
30 | 6.6
6.6
6.4
6.4 | 8 2
8 2
7 8
7 8
7 8 | 12
10
14
14 | 16
15
13
13 | 7.4
7.8
7.8
7.8
7.8 | 2 3
2 4
2 3
2 3
2 3 | 199
099
12 | 0.8
0.7
0.7
0.7 | e. 0
e. 0
e. 0
e. 0 | | 26
27
28
29
30
31 | 1.5
1.8
3.2
5.6 | 2.6
2.6
2.7
2.9 | 20
16
14
12
10 | 6 .4
6 .4
6 .4
5 .8
5 .8 | 7.4
7.4
7.4 | 9 4
8 2
12
25
1074
310 | 12
12
12
12
11 | 7.8
7.8
7.0
6.6
5.8
5.4 | 2.4
2.3
2.3
2.3
2.1 | 1.0
0.8
0.7
0.7
0.8 | 0.7
0.7
0.8
0.8
0.8 | 0.8
0.9
0.9
1.4
1.6 | | | 56.5 | 78.7 | 9723 | 2302 | 266.8 | 16485 | 1141 | 269.8 | 939 | 38.7 | 23.7 | 0. 6 ک | | EAN | 1.82 | 2.62 | 31.4 | 7.43 | 9.53 | 53.2 | 37.4 | 8.70 | 3.13 | 1,25 | 0.76 | 0.87 | | CRE-
FEET | 112. | 156. | 1,930. | 457. | 529. | 3,270. | 2,220. | 535. | 186. | 77. | | 52.
5.2 | F. C. Dist. Form 52 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F | | | B-R | | | | | | н | YDRAULIC : | DIVISION | | | | | | |--------|-----------------|---------------|-----------|------------|-----------|------------|------------|--------------|--------------|---------------|------------------|----------------| | aily (| discharge, in s | econd-feet of | BIG TU. | JUNGA CREI | K above 1 | dison Roa | a d | | | , for the yea | ir ending Septer | nber 30, 19_14 | | Эау | Oet. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 4 .2 | 0.5 | 20 | 5 4 | 17 | 11 | 9.4 | 6.6 | 3 .4 | 1.1 | 0.2 | 0.3 | | 2 | 5 T | 0.5 | 19 | 4 9 | 17 | 12 | 9.4 | 6.1 | 3.4 | 0.9 | 0.3 | oг | | 3 | 2 .6 | 2.0 | 17 | 4 3 | 16 | 12 | 9.6 | 5 .8 | 3.6 | و ٥ | 0.2 | 0.2 | | 5 | 2.4 | 2.1 | 16
16 | 4 0 | 16 | 13 | 9.6 | 5.1 | 3.6 | 8.0 | 0.2 | 0.2 | | 6 | 1 .6 | 2.1 | 27 | 3 8
3 6 | 16 | 12 | 9.4 | 4 .8 | 3.5 | 8.0 | 0.1 | 0.2 | | 7 | 1.5 | 2.3 | 24 | 32 | 15 | 11 | 9.0 | 4 .8
4 .8 | 3.6
3.4 | 8. O
8. O | 01 | 0.1 | | 8 | 1.5 | 2.7 | 1 9 | 30 | 14 | 12 | 8.6 | 5 1 | 3.2 | 0.7 | 0.3 | 0.2 | | 9 | 1 .4 | 2.6 | 16 | 28 | 16 | 12 | 8.2 | 5.1 | 3 1 | 0.7 | 0.6 | 0.5 | | 10 | 12 | 2.6 | 15 | 27 | 17 | 11 | 8.2 | 5.1 | 2.7 | 0.7 | 0.5 | 0.6 | | 11 | 12 | 12 31 14 | | | 15 | 11 | 7.8 | 5 .4 | 2.6 | 0.7 | 0.5 | 0.6 | | 12 | 1.2 | 2 26 13 25 | | 14 | 11 | 7.4 | 5.4 | 2.4 | 0.7 | 0.4 | 0.4 | | | 13 | 1.2 | 402 | 13 | 24 | 14 | 11 | 7.0 | 5.1 | 2.1 | 0.7 | 0.2 | 0.2 | | 15 | 1.2
1.5 | 70 | 12 | 24 | 13 | 11 | 7.0 | 5.6 | 2.0 | 0.7 | 0.2 | 0.2 | | 16 | 2.6 | 23 | 11 | 20 | 13 | 11 | 7.0 | 5 .6
4 .6 | 2.0 | 0.6
0.6 | 0.3 | 0.2 | | 17 | 2.1 | 19 | 11 | 20 | 13 | 10 | 7.0 | 4.0 | 1.9
1.8 | 0.6 | 0.2 | 0.2 | | 18 | 2.0 | 19 | 10 | 20 | 13 | 9.8 | 7.0 | 3.6 | 1.8 | 0.6 | o ž | 0.9 | | 19 | 1.9 | 19 | 10 | 19 | 13 | 9.8 | 7.0 | 3.4 | 1.6 | 0.5 | ŏã | 0.7 | | 20 | 1 .8 | 261 | 10 | 19 | 13 | 11 | 7.0 | 3.4 | 1.9 | 0.5 | 0.2 | 0.6 | | 21 | 1 .6 | 90 | 9.8 | 18 | 12 | 14 | 7.4 | 3 .6 | 1.9 | 0.4 | 0.5 | 0.6 | | 22 | 1.6 | 50 | 9.8 | 17 | 12 | 13 | 7.8 | 3.6 | 1.6 | 0.4 | 0.6 | 0.6 | | 23 | 1 .6 | 253 | 10 | 17 | 12 | 11 | 7.4 | 3.6 | 1.6 | 0.4 | 0.6 | 0.6 | | 25 | 1 .6
1 .6 | 113
57 | 17
258 | 17
16 | 11
11 | 9.8 | 7.4
7.4 | 3.2
2.9 | 1.5 | 0 .4
0 .4 | 0.5 | 0.4 | | 26 | 1.6 | 40 | 634 | 16 | 11 | 9.4 | 7.4
8.2 | 2.7 | 1.5 | 0.3 | 0.5 | 0.4 | | 27 | 2.4 | 3 4 | 257 | 16 | 11 | 9.4 | 10 | 3.4 | 1 .6
1 .6 | 0.3 | 0.6 | | | 28 | 2.6 | 28 | 145 | 22 | 11 | 12 T | 8.6 | 3.9 | 1.6 | 0.2 | 0.6 | 0 æ | | 29 | 23 | 26 | 97 | žõ | | 11 | 8.2 | 3.6 | 1.6 | o ž | 0.5 | 0 ž | | 30 | 2.1 | 23 | 73 | 18 | | 9.8 | 7.4 | 3 .6 | 1.4 | 0.2 | 0.5 | 0.4 | | 31 | 2.1 | | 61 | 17 | | 9.4 | | 3.9 | | 0.2 | 0.4 | | | | 581 | | 876.6 | | 384.0 | | 241.8 | | 69.6 | | 112 | | | | | 1611.8 | | 791.0 | | 342.4 | | 137.5 | | 17.8 | | 112 | | EAN | 1.87 | 53,7 | 60.5 | 25.5 | 13.7 | 11.0 | 8,06 | 4.44 | 2.32 | 0.57 | 0.36 | 0.37 | | RE- | 115 | 2 200 | 2 7720 | 1 F70 | 762 | 670 | 700 | 2772 | 120 | 25 | 55 | 22 | | CARP ### STATION FIGS-R BIG TUJUNGA CREEK below Big Tujunga Dam #1 LOCATION: WATER-STAGE RECORDER, LAT. 34°17'20". LONG. 118°11'38". ON THE RIGHT (NORTHWEST) BANK, 2800 FEET BELOW BIG TUJUNGA DAM NO. 1. AND ABOUT JE MILES NORTHEAST OF SUNLAND. ELEVATION OF ZERO GAGE HEIGHT. 1063.34 FEET. ORAINAGE AREA: 81.7 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND BOULDERS. NO ARTIFICIAL CONTROL. OISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 125 FEET ABOVE STATION. RECORDER: INSTALLED ON MOVEMBER 8, 1932. WASHED OUT DURING THE MARCH 2, 1938 STORM. INSTALLED ON MAY 31, 1938 IN A CONCRETE HOUSE OVER A 4 FT. X 4 FT. CONCRETE WELL AT APPROXIMATELY THE SAME LOCATION AS THE OLD WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY BIG TUJUNGA DAM NO. 1. OIVERSIONS: NONE. RECORDS AVAILABLE: STREAM MEASUREMENTS FROM DECEMBER 8, 1931 TO NOVEMBER 7, 1932 AND JANUARY 20, 1938 TO MAY 29, 1938; RECORDER RECORDS FROM NOVEMBER 8, 1932 TO JANUARY 13, 1938 AND FROM MAY 31, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 983 SECOND-FEET, MARCH 30, MINIMUM 0.6 SECOND-FEET, FEBRUARY 14, 1946-1947 MAXIMUM 501 SECOND-FEET, DECEMBER 26, MINIMUM 0.7 SECOND FOOT, MARCH 12 TO 16, 1902-1947 MAXIMUM 33,000 SECOND-FEET, ESTIMATED MARCH 2, 1938MINIMUM NO FLOW SEVERAL DAYS IN OCTOBER, 1936. ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. DISCHARGE MEASUREMENTS OF BIG TUJUNGA CREEK RAT- METH-MEAS. G. HT. SEC. CHANGE NO. TOTAL NO. MEAN VELODITY FT.FER SEC. GAUDE HEIGHT FEET DATE MADE BY WIDTH FEEY DISCHARGE SEC. FT. Below Big Tujunga Dam No. 1 DURING THE YEAR ENDING REPTEMBER 30, 19 46 KND 9102 .6 12 0 1041 6,97 6.05 978. ..3/30 58.0 40. AREA OF MEAN VELOCITY SQ. FT. FT. FT. FER MEC HERBHT FEET METH- MEAS. G. HT. SEG. CHANGE NO. TOTAL NO. DATE 845A .6 11 - .01 4.33 4.95 310. 1042 3/31 9154 51.0 105 1245P 0 236. .6 11 0 1007 GILLESPIE 1.72 65.6 3.60 4.70 10/4 12.0 5.59 5.08 FC37 49.0 9.6 1043 3/31 68.1 3.51 4.70 239. .6 11 0 1044 49.0 10/11 12.0 5.08 ٥ 1008 1205P 5.31 1.66 8.8 305P 315P .6 12 30.1 1.93 3.77 58.0 0 FC22 7. 1045 4/4 45.0 10/18 12.0 5.41 1.63 8.8 .0 1009 5.08 1105A 11504 3.70 313. .6 11 0 8 ٥ 1046 49.0 84.6 4.80 12.3 6.32 2.15 5.17 13.6 4/4 1010 10 19 11 20 4 925 0 1047 6.0 1.18 0.75 2.97 0.89 .6 6 0 6.74 4,92 14.5 _8. 10/25 2.15 4/18 -1011 935 235P .6 7 0 FC36 4.91 13.8 ٥ 1048 STUNDE 0.58 1.41 2.90 0.82 .5 6 11/1 6.79 2.03 4/24 1012 250P 220P 10.0 0 6.16 2.03 4.79 12.5 .6 10 FC42 1049 4.50 1.31 3.00 5.9 .6 10 1013 11/8 STUNDER .6 10 0 0 4.65 1.27 3.01 5.9 .6 11 DEVORE 6.13 2.02 4.90 12.4 1050 1014 11/15 1115A 0 10.9 .6 10 TWO CH NELS 3.02 5.9 .6 11 11/21 6.19 1.76 4.87 1051 _1015 5/19 1015A 950A 1016A 0 1015A 0.90 2.98 .586 8 .6 9 1052 5/23 8.0 4.10 2.13 1.64 4.62 ٥ 1016 11/29 6.1 2.13 1.60 4.61 3.4 .6 7 0 1053 5/31 1017 TURNER 4.16 2.97 3.7 . 2 FC43 10.18 2.14 1.68 4.60 3.6 .6 9 0 1054 6/6 3.98 2,96 3.8 10 0 1019 2.14 1.59 4.63 3,4 .6 6 0 1055 6/13 215F 9.2 3.66 1.04 2.96 3.8 6 10 ٥ FC36 51.9 4.78 5.54 248, .6 12 1056 6/20 STUNDEN 9.4 4.95 3.04 7.0 9 0 FC36 1020 12/22 .6 12 5.54 60.0 91.0 6.41 583. 1057 6/20 4.94 9 0 ** 1021 1.42 3.0 7.0 .6 13 -0.23 57.0 58.1 3.94 4.84 229. 1057/ 6/24 ROBERTSON 23.5 19.8 0.64 3,15 12.6 .6 10 0 FC23 ..1022 0 56.0 69.7 3.33 4.81 232. .6 13 1058 6/27 THRNER 11.1 7.44 1.33 3.09 9.9 .6 12 0 FC43 -1023 12/24 78.8 .6 15 -.01 34.4 2.29 4.08 1059 7/5 11.0 7.30 1 36 3.09 9.9 .6 12 0 -10-24 12/24 1115P 1135A .6 16 -.01 4.08 80.0 2.15 1025 12/25 50.0 37.2 1060 7/8 1020A 22.3 13.0 1.65 3.36 21.4 .6 11 0 11.8 .6 9 0 FC42 1.50 3.47 7.86 1026 1/3 DEVORE 18.0 1061 7/8 1125A 30.0 20.8 2.24 3.67 46.7 .6 9 0 0 _1027
1/10 18.0 8.31 1.50 3.47 12.5 .6 11 1062 7/8 52.0 54.0 2.46 4.20 133. .6 14 0 62.4 4.29 149. .6 11 0 1028 18.1 8.54 1.44 3.47 12.3 .6 9 0 1063 7/8 230P 53.0 2.39 0 17.9 9.41 1.24 3.46 11.7 6 10 0 1064 7/11 52.5 58.9 2.55 4.20 150. 16 -1029 3.09 16.3 .6 12 0 1.29 7/18 23.0 12.6 1030 .1/31 DEVOR 2.68 1.61 .3.34 4.3 FC42 1065 1105 0 FC39 3.09 15.5 .6 11 21.5 13.6 1.14 1031 46.5 28.6 57.7 0 1066 7/26 1115A LUCE 2/7 2.01 3,88 6 16 .6 12 0 FC43 12.3 3.09 14.8 1032 0 1067 8/1 1040A TURNER 24.0 1.20 2/7 36.9 2.25 4.00 82.9 1035 .. .6 12 0 1033 1.23 3.38 .6 9 0 1068 8/8 23,0 13.0 1,21 3.09 15.7 2/14 10.9 3.42 4.2 .6 12 0 12.1 1.24 3.08 1069 8/15 23.0 3.84 1.29 3.38 5.0 6 11 0 1105A .6 10 0 9.27 1.09 1035 2/28 10.3 3.91 1.28 3,38 5.0 .6 10 0 10.70 8/22 1105A 17.9 .6 10 0 9.6 9.30 2.96 1.03 1036 3/7 10.2 3.94 1.27 3.39 5.0 6 10 0 1071 8/28 955A 18.2 230F 0 .6 10 610 245P 9.38 2.96 9.7 3.83 1.30 3.39 5.0 0 1072 9/4 18.2 1.03 120P .6 10 0 FC39 0.92 3,01 9.1 0.64 1.17 3.24 0.75 .5 4 0 FC36 1073 9/11 LUCE 18.0 9.84 1038 3/20 0.85 3.01 8.4 .6 10 0 .6 5 0 FC22 1074 9/18 18.0 9.85 1039 3/28 WADDICOR 4.3 1.10 0.88 3.24 0.97 1255P 1050/ 1040 3/30 53.0 99.8 4.98 5.33 497 .6 12 + 07 FC36 1075 9/25 1105A TURNER 18.0 8.61 0.81 2.92 7.0 .6 10 0 FC43 | | | | | | | | | | | | | | | 1 | 1 | BEGIN | 1 | WIDTH | AREA OF | PEAN | neunc | DISCHARGE | t I | 1 | _ | | |-------|----------|------------------------|------------------------|---------|--------------------|---------------------------------|-----------|---|----------|-------|--------|--------|------------------|-------|------|----------------|------------------|-------|---------|-------------------------|----------------|-----------|----------|-------|---------------------------|--------------| | | DISCHARG | E MEABURE | HENTS OF BIG TU | JUNGA C | REEK | | | • | | | | | | Ha. | DATE | 205P | MADE BY | PERT | SQ. FT. | VELOCITY
FT.PER SEC. | HEIGHT
FEET | BEC. FT. | AAT- | DD NE | S. G. H
CHANG
TOTAL | E NO. | | | -AT- | below | Big Tujunga Da | m No. 1 | | DUF | ING THE Y | FEAR ENDIN | 3 #EP | TEMBE | R 30, | 1,_4 | 2 | 1103_ | 1-30 | 220P
230P | | 27.7 | 22.4 | 0.85 | 3.03 | 19.0 | | 5 13 | 0 | | | | | BESIN | I | T | AREA OF | VEAN | BAUDE | DISCHARGE | T | | luras. | о. нт. | 1 | 1104 | 2-5 | 242P | | 28.0 | 22.2 | 0.86 | 3.03 | 19.0 | | 6. 13 | 0 | | | HO. | DATE | END | MADE BY | PEET | SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER SEC. | HEIGHT | BEG. FT, | ING | DD CO | ND. | CHANGE | METER
NO. | 1105 | 2-13 | 1235P
1250P | | 28.0 | 2.2 | 0.89 | 3.03 | 19.8 | | 5 13 | 0 | | | 1076 | 10-2 | 1145A
1200N | TURNER | 18.0 | 8.54 | 0.76 | 2.96 | 6.5 | | .6 | 10 | 0 | FC43 | 1106 | 2-19 | 1210P
1230P | | 28.0 | 21.5 | 0.84 | 3.02 | 18.0 | | 6 15 | 0 | | | 1077 | 10-9 | 120P
135P | | 17.7 | 8.33 | 0.78 | 2.96 | 6.5 | | .6 | 10 | 0 | | 1107 | 2-26 | 1245P
105P | •• | 27.0 | 18.0 | 0.71 | 2.88 | 12.8 | | 6 14 | a | | | 1078 | 10-16 | 125P
140P | | 17.6 | 8,32 | 0.81 | 2.92 | 6.7 | | .6 | 10 | 0 | | 1108 | 3-7. | 1230P
1237P | BLAKELY | 17.8 | 16.6 | 0.75 | 2.89 | 12.5 | | 5 8 | o | FC35 | | 1079 | 10-23 | 1128A
1145A | TURNER
VAN DER GOOT | 17.0 | 8.19 | | 2.91 | 6, 4 | | | 10 | 0 | ., | 1109 | 3-14 | 345P
400P | STUNDEN | 3.0 | 0.91 | 0.79 | | 0.72 | | 5 3 | 1 | FC36 | | | | 250P
305P | TURNER | 17.5 | 1 | 0.77 | 2.90 | 1 | | .6 | 10 | 0 | | 1110 | | 1235P
1240P | TURNER | 3.3 | | | 2.50 | 0.89 | Ī | | 0 | | | 1080_ | 10-30 | 120P | - TORNER | | 8.21 | | | 6.3 | | .6 | 9 | | i |] | | 1140A | | | 0.80 | 1.11 | | | | | | FC43 | | 1081 | 11-6 | 135P
720P | | 16.4 | 6.49 | | 2.83 | 3.1 | | | | T | | 1111 | 4-9 | 1145A
155P | | 3.4 | 0.83 | | 2.51 | 0.90 | | 54 | 10- | - | | 1082 | 11-13 | 736P
936A | BLAKELY | 44.0 | 70.2 | 2,94 | 4.56 | 206 | - | ,6 | | C | FC35 | 1112 | 4-23 | 210P
1235P | | 13.5 | 5.96 | 0.60 | 2,63 | 3,6 | | 5 14 | 10_ | +" | | 1083 | 11-14 | 954A
343P | | 49.0 | 56.0 | 1.67 | 3.95 | . 936 | | -6 | 16 | 0 | | 1113 | 5-7 | 1250P
315P | | 13,8 | 5.79 | 0.59 | 2,62 | 3.4 | - | 5 14 | 0 | | | 1084 | 11-14 | 357P | | 53.0 | 76.4 | 2.64 | 4.49 | 202 | - | .6 | 15_ | 0 | <u> </u> | 1114 | 5-14 | 325P
1225P | | 11.0 | 4.81 | 0.71 | 2.62 | 3.4 | H | ž 1. | 0 | " | | 1085 | 11-20 | 207P
312P | | 23.5 | 15.8 | 1.44 | | 22.7 | | .6 | 12 | | | 1115 | 5-21 | 1240P
1255P | | 11.2 | 4.93 | 0.73 | 2.62 | 3.6 | | 5 1 | 0 | | | 1086 | 11-20 | 326P
455P | ** | 48.5 | 53.7 | 1.72 | | 92.1 | - | .6 | 14 | | | 1116_ | 5-28 | 110P | | 9.0 | 4.00 | 0.88 | 2.62 | 3.5 | ļ., . | 5 9 | 0 | ļ. | | 1087 | 11-20 | 512P | | 56.0 | 89.4 | 2.41 | | 216 | _ | .6 | 19 | ļ | ļ. <u>"</u> | 1117 | 6-4 | 1230P | | 9.0 | 4.08 | 0.86 | 2.62 | 3.5 | 1 | 3 9 | 0 | <u> </u> | | 1088 | 11-21 | 813A
836A | | 56.0 | 89.5 | 2,42 | 4,57 | 217 | ļ | 6 | 27 | 0 | | 1118 | 6-18 | 1100A
1115A | STUNDEN | 9.2 | 4.41 | 1.02 | 2.66 | 4.5 | | 5 0 | o | FC36 | | 1089 | 11-25 | 954A
1004A | | 49.0 | 58.0 | 1.72 | 3.99 | 100 | 1 | .6 | 14_ | .0. | | 1119 | 7-3 | 1255P
105P | TURNER | -9.8 | 4.56 | 1_05 | 2.64 | 4.8 | | 5 10 | a_ | FC43 | | 1090 | 11-29 | 1040A | TURNER | 47.0 | 51.2 | 1.79 | 3,94 | 91.6 | | 6 | 14 | o | FC43 | 1120 | 7:9 | 1040A
1055A | STUNDEN | 8.8 | 4.83 | 1.14 | 2.70 | 5.5 | | 5 | lo | FC31 | | | 12-4 | 1145A
1200N | | 26.0 | 16.0 | 1.21 | 3.18 | 19.3 | | .6 | 13 | 0 | ., | 1121 | 7-16 | 1140A
1155A | TURNER | 8.6 | 4.90 | 1.20 | 2.70 | 5.9 | | 6 9 | ٥ | FC43 | | 1092 | 12-11 | 1240P | | 26.0 | 16.6 | 1.21 | 3.19 | 20.1 | | . 6 | 13 | 0 | | 1122 | 7-30 | 315P
330P | STUNDEN - TURNER | 7.9 | 4.41 | 1.31 | 2.71 | 5.8 | | 5 9 | | 1 | | 1093 | 12-19 | 100P
1025A
1040A | | 26.0 | 16.6 | 1.16 | 3.18 | 19.3 | | 6 | | 0 | | (| | 330P | , | | | | 1 | | 1 | 5 | | FC26 | | | | 302P | BLAKELY | 1 | | | | | Ť | .6 | | | FC35 | 1123 | 7-30 | 345P | TUDNED | 7.9 | 4.41 | 1.25 | 2.71 | .5.5 | 1 1 | - | | FC36 | | 1094 | 12-25 | 317P
419A | BLAKELT | 55.5 | 87.7 | 2.45 | 4.52 | | | | 15 | 0 | | 1124 | 8-16 | 1100A
1040A | TURNER | 8.9 | 4.69 | 1.22 | 2.70 | 5_7 | | 6 9 | - 0 | FC43 | | 1095 | 12-26 | 827A | <u> </u> | 55-0 | 119 | 3.98 | 5,24 | | - | | 12 | 0 | 1 | 1125 | 8-12 | 1055A | ļ " | 8.0 | 4.58 | 1.31 | 2.70 | .6.0 | 1-1 | 68 | | + | | 1096 | 12-26 | 845A | " | 55.0 | 125 | 3.99 | 5.33 | 498 | + | .6 | 11 | 0 | " - | 1126 | 8-19 | 1130A
245P | <u> </u> | 8.0 | 4.69 | 1.26 | 2.72 | 5.9 | | 6 9 | Q | +: | | 1097 | 12-27 | 1102A
1256P | " | 53.5 | 90.4 | 2,35 | 4.44 | 212 | ╁ | .6 | 14. | 0 | ! | 1127 | 8-27 | 255P
210P | | 7.0 | 3.98 | 1.40 | 2.74 | 5_6 | | 6 8 | <u> </u> | | | 1098 | 12-27 | 110P | | 53.5 | 87.0 | 2.25 | 4.44 | 196 | <u> </u> | .6 | 14 | 0 | | 1128 | 9-4 | 220P | ļ | 7.0 | 4,22 | 1.35 | 2.74 | 5.7 | \vdash | 57. | 0 | + | | 1099 | 1-3 | 1215P
1235P | TURNER | 29.0 | 31.9 | 1.39 | 3.41 | 44.2 | 1_ | , 6 | 16 | 0 | FC43 | 1129 | 9-17 | 1110A | | 7.0 | 4.29 | 1.31 | 2.73 | 5.6 | | 67. | | ļ | | 1100 | 1-10 | 958A
1010A | BLAKELY | 28.2 | 21.5 | 0.87 | | 18.8 | ↓_ | .6 | 13 | ļ | FC35 | 1130 | 9-24 | 1115A
1125A | <u> </u> | 7.0 | 4,33 | 1.22 | 2.74 | 5.3 | Ш | 6 8 | _ _ | | | 1101 | 1-16 | 11100A
1115A | TURNER | 27.5 | 22.5 | 0,85 | 3.05 | 19\2 | | .6 | 12 | 0 | FC43 | 1 | | | | | | | | | | | | | | 1102 | 1-22 | 110P
125P | | 29.0 | 33.2 | 1,46 | 3.43 | 48.0 | | 6 | 11_ | 0 | | | | | | | | | | | | | | | | | | | 4 | | | 1 | , | , | , | , | 1 | , | , | •• | | | | | | | | | | | | | FLOOD CONTROL DISTRICT Sta. No. F168-R HYDRAULIC DIVISION BIG TUJUNGA CREEK below Big Tujunga Dam No. harge, in second-feet of_ , for the year ending September 30, 1916 Day Feb. Mar. Apr. July Sept. Мау June Aug. 99999999988888888808900445434109 86420865565444499640999999955 8889012345554453327798777033353 239 175 58 179 80134567.65432100007111110987.6666 99777654321098876544444900000000 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 345 2 10625 2634 9765 1355 404.4 10893 336 4 8443 150.6 339.6 256.0 11.1 11.3 34.3 10.9 27.2 4.86 6.18 35.1 9.41 32.6 8.53 1,670. 685. 674. 667. 522. 1,940. 299. 368. 2,160. 2.110. 802. 508. YEAR MEAN_ OR PERIOD ACRE-FEET_ MEAN. 17.1 12,400 LOS ANGELES COUNTY F. C. Dist. Form 52 4-48 P. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 168-R | Daily d | lischarge, in se | cond-feet of | BIG TU | JUNGA CRE | EK below | Big Tuju | nga Dam N | o <u>. l</u> | | , for the yea | r ending Septe | mber 30, 19 <u>47</u> | |----------------------------------|--------------------------------------|--------------------------------|--|--|--------------------------------------|----------------------------------|---------------------------------|--------------------------------------|--|--|---------------------------------------|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4 | 6 .4
6 .4
6 .4 | 5.8
5.8
5.9
5.0 | 19.4
19.4
19.4
19.4 | 95
32
74
66 | 18.8
18.8
18.8
18.8 | 13.0
12.5
12.5
12.5 | 1.0
a 1.0
1.0
1.0 | 3.8
3.8
3.5
3.5 | 3 .5
3 .5
3 .5
3 .5 | 4 .8
4 .8
4 .9
4 .8 | 5 5 8
5 8
5 8 | 5 .8
5 .8
5 .8 | | 5
6
7
8
9 | 6 .4
6 .4
6 .4
6 .4 | 3.2
3.2
3.4
3.4 | 0.0 S
0.0 S
0.0 S | 18.8
18.8
18.8
18.8
18.8 | 18.8
18.8
18.8
19.4
19.4 | 125
125
125
125
125 | 1.0
0.9
0.9
a 0.9 | 3 .4
3 .4
3 .4
3 .4
3 .4 | 3.5
3.5
3.5
3.5
3.4 | 4 .8
4 .8
4 .8
5 .2
5 .5 | 5 .8
5 .8
5
.8
6 .0
6 .0 | 5.8
5.8
5.8
5.8
5.8 | | 10
11
12
13
14
15 | 6.8
7.2
7.2
7.2
6.8 | 3.8
5.2
59
173
200 | 20.0
20.0
19.4
19.4
19.4 | 18.8
18.9
19.0
19.1
19.2
5.19.3 | 19.4
20
20
20
20
20 | 12.5
8.1
0.7
0.7
0.7 | 00000 | 3 .4
3 .4
3 .4
3 .4
3 .4 | 3 .4
3 .2
3 .0
4 .2
4 .5
4 .5 | 5 <u>5</u> 5 5 5 5 8 5 8 5 8 | 6.0
6.0
6.0
6.0 | 5.8
5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5. | | 16
17
18
19
20 | 6.8
6.8
6.8
6.8
6.4 | 149
b20
b21
b22 | 19.4
19.4
19.4
19.4
19.4 | 19.4
19.4
19.4
19.4
19.4 | 19.4
19.4
18.8
17.8 | 0.7
0.8
0.8
0.8 | 09999 | 3.4
3.4
3.5
3.5
3.5 | 4.5
4.5
4.5
4.5
4.5
4.5 | 5.8
5.8
5.8
5.8 | 6.0
6.0
6.0
6.0 | 155555
5555
5555 | | 21
22
23
24
25 | 6 .4
6 .4
6 .4
6 .0
6 .0 | 212
100
526
46 | b12.0
b12.0
b12.0
b12.0 | 3 9
4 9
4 8
4 7
4 6 | 17.8
17.8
17.8
15.0 | 1.0
1.0
1.0
0.9 | 4.4
3.5
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
3.5 | 4 5
4 .8
4 .8
4 .8
4 .8 | 5 .8
5 .8
5 .8
5 .8 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 555444
55555 | | 26
27
28
29
30
31 | 6.0
6.0
5.8
5.8
5.8 | 99
98
87
92
67 | 460
316
191
204
206
198 | 46
36
19.4
19.4
18.8
18.8 | 13.0
13.0
13.0 | 99
09
10
10
10 | 3.8
3.8
3.8
3.8
3.8 | 3 5 5 5 5 5 5 5 5 5 5 5 | 5 .0
5 .0
4 .8
4 .8
4 .8 | 5.8
5.8
5.8
6.1
5.8
5.8 | 55555
5555
5555 | 5 5 5 5 5 5 5 | | | 199.6 | 7152 | 127.6 | 959.7 | 503.4 | 151.0 | 62.1 | 107.8 | 124.8 | 1713 | 178.8 | 1659 | | MEAN
ACRE-
FEET | 6.44
396 | 57.2
3.400 | 68.6
4,220 | 31.0
1.900 | 18.0
998 | 4.87
300 | 2,07 | 3.48
214 | 4.16
248 | 5.52
340 | 5.77
355 | 5.53 | | - | Remarks: | 1 25400 | , ,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | , | | | YEAR MEA | N 17.7 | ,820 | ### STATION F213-R BIG TUJUNGA CREEK above Gold Canyon LOCATION: WATER-STAGE RECORDER, LAT, 34°18'02", LONG, 118°16'02" ON THE LEFT (SOUTH) BANK 2 MILES ABOVE MOUTH OF CAMYON 7 MILES BELOW BIG TUJUNGA DAM NO, 1 AND ABOUT 4 MILES NORTHEAST OF SUNLAND. ELEVATION OF ZERO GAGE HEIGHT, 1571.80 FEET, THE FORMER STATION UI]-R WAS ABOUT 1000 FEET UPSTREAM AT THE LOCATION OF A PARTLY CONSTRUCTED AND ABANDONED DAM. DRAINAGE AREA: 106 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL COMPOSED OF GRAVEL AND BOULDERS. CHANNEL FORMS DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 90 FEET BELOW STATION. RECORDER: INSTALLED IN 1932 OVER A 36 INCH CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW FROM 81.4 SQUARE MILES REGULATED BY BIG TUJUNGA DAM NO. 1 FLOW FROM 24.6 SQUARE MILES UNREGULATED. DIVERSIONS: THERE ARE SEVERAL SMALL PRRIGATION DIVERSIONS ABOVE THE STATION. RECORDS AVAILABLE: OCTOBER 1, 1932 TO SEPTEMBER 30, 1947. (RECORDS AT U.S.G.S. STATION, TUJUNGA CREEK, NEAR SUNLAND, ARE AVAILABLE FROM OCTOBER 1, 1916 TO SEPTEMBER 30, 1932 IN WATER SUPPLY PAPERS.) EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 1300 SECOND-FEET, MARCH 30. MINIMUM 4,9 SECOND-FEET, DECEMBER 2. 1946-1947 MAXIMUM 745 SECOND-FEET, DECEMBER 25. MINIMUM 3,7 SECOND-FEET, AUGUST 5. 1916-1947 MAXIMUM 50,000 SECOND-FEET, ESTIMATED MARCH 2, 1938. MINIMUM 0,8 SECOND-FOOT NOWAMBER 18, 1936. OPERATION: CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE U.S.G.S. WATER RESOURCES BRANCH. | | | | | | | | | | | | | | | , | | | | | | | | | | | | | |--|---|--|--|--|--
--|--|--|---------------------------|--|---|--|--------------|---|---|---|--|--|--|--|--|---|--|---|---------------------------------------|--------------| | | DIECHARGE | HEABURE | MENTS OF | BIG TU. | LUNGA (| CREEK | | | | | _ | | - | ко. | DATE | BEGIN | HADE BY | WIDTH | AREA OF
SCOTION
SQ. FT. | MEAN
VELOCITY
PT.PER BEC. | GAUGE
HEIGHT
FEET | DIECHARGE
BEC+ FT. | RAT- HET! | MEAB. | HANGE | HETER
NG+ | | | -AT- | Abo | ve Gold Canyon | | | DURI | NO THE Y | EAR ENDING | 95976 | EMBER | 30, | 18-110 | - | 881 | 4/10 | 802 A
812 A | WADDICOR | 20.7 | 10.0 | 1.72 | 5.75 | 17.2 | | 11 | 0 | FC37 | | HD. | DATE | PEGIN | HADE BY | wiots | AREA OF
SECTION
MO. FT. | HEAN
VELDGSTY
FT. PER SEC | GAUGE | DISCHARGE | RAT- | HETH- | MEAS
SEC.
NO. | о. нт. | MEYER
NO. | 882 | 4/17 | 753A
806A | | 20.0 | 8,27 | 1.45 | 5.60 | 12.2 | 1.6 | 12 | 0 | | | HO. | DATE | 345P | HADE BY | FEET | MO. FT. | FT. PER SEC | HEIGHT
FEET | DISCHARGE
SEC. FT. | PAI | an | NO. | CHANGE
YOTAL | ND4 | 883 | 4/24 | 1030A
1040A | | 7.9 | 5.41 | 1.68 | 5.51 | 9.1 | | 8 | 0 | | | 823 | 10/4 | 400P
345P | GILLESPIE | 14.5 | .8.2 | 1.35 | 5.48 | 11-1 | +- | 6 | 9_ | 0 | FC37 | 884 | 5/1 | 820A
832A | | 8.0 | 6.35 | 1.86 | 5.58 | 11.8 | .6 | 8 | 0 | | | 824 | 10/11 | 355P
958A | | 14.8 | 8.0 | 4 1.41 | 5.46 | 11.3 | + | .6 | 8 | 0_ | | 885 | 5/8 | 915A
927A
905A | | 11.2 | 7.09 | 1.59 | 5.55 | 11.3 | .€ | 8 | 0 | | | 825 | 10/19 | 1007A
320P | | 15.0 | 7.3 | ľ | 5.49 | 10.2 | + | .6 | 8 | 0_ | <u> </u> | 886 | 5/15 | 915A
1050A | WADDICOR | 11.8 | 7.02 | 1.81 | 5,56 | .12.7. | | 9 | 0 | EC37 | | 826 | 10/25 | 340P
428P | | 15.0 | 8.7 | | | 13.8 | H | .6 | | 0 | | 887 | 5/22 | 1100A
330P | TURNER | 17.0 | 10.3 | 0.96 | 5.66 | 9.9 | | 8 | 0_ | FC43 | | 827 | L | 438P
1045A | DEVORE-TURNER | 15.2 | 9.1 | | 5.67 | 15.8 | + | .6 | 8 | 0 | FC42 | 888 | 5/29 | 340P
940A | ** | 9.5 | 5.19 | 1.44 | 5.53 | 7.5 | -6 | 10 | 0_ | <u></u> | | 828 | 1 | 1056A
840A | GILLESPIE | 15.0 | 9.0 | | 5.66 | 14.8 | + | . 6 | 8 | 0 | FC37 | 889 | 6/5 | 950A
230P | | 8.5 | 4,75 | 1.37 | 5.51 | 6.5 | 1.6 | 9 | 0 | | | 829 | 1 | 854A
426P | DEVORE | 15.7 | 9.8 | 1 | 1 | 16.4 | + | .6 | 10 | 0 | FC42 | 890 | 6/12 | 240P
215P | | 6.8 | 4.22 | 1.35 | 5.48 | 5.7 | . .e | 8 | 0 | | | 830 | I | 450P
325P | •• | 14.9 | 9.0 | T | | 14.3 | + | .6 | 10 | 0 | | 891 | 6/19 | 225P
1035A | ** | 6.7 | 3.99 | 1.25 | 5.44 | 5.0 | - ·E | 7 | _0_ | | | 831_ | I | 341P
327P | | 15.4 | 9.5 | | | 13.9 | H | . 6 | 10 | | | 892 | 6/26 | 1045A -
225P | | 18.5 | 12.4 | 1.14 | 5.78 | 14.2 | | 10 | -0 | " | | 832 | | 339P
950A | | 14.1 | 7.2 | 1 | ì | 9.0 | +- | .6 | 9 | -0.01 | | 893 | 7/3 | 240P
110P | " | 17.0 | 10.7 | 1.07 | 5.71 | 11.5 | -6 | .8 | 0. | | | 833 | | 1005A
842A | | 12.5 | 5.8 | 1 | 5.49 | 6.0 | \vdash | .6 | 8 | 0 | | 894 | 7/8 | 122P
330P | HAIG | 16.7 | 9.62 | 1.13 | 5.95 | 10.9 | -6 | 10 | ٥ | FC35_ | | 834 | | 857A
847A | | 12.6 | 6.0 | 1 | | 5.9 | \vdash | .6 | 9 | 0 | | 895 | 7/8 | 346P
910A | ** | 26.5 | 38.3 | 2.92 | 6.92 | 112. | 6 | 14 | 0 | | | 835. | İ | 903A
428A | | 16.0 | 10.0 | 1 | 5.79 | 13.2 | \Box | <u>, b</u> | | +0.02 | FC33 | 896 | 7/9 | 922A
255P | TURNER | 20.0 | 41.9 | 3.53 | 7.10 | 148. | | 10 | 0. | FC43 | | 836 | , | 442A
545A | PARD IECK-CORONADO | 36.0 | 63.6 | | | 349. | H | .6 | 5 | | | 897 | 7/17 | 310P
1250P | ** | 16.0 | 9.44 | 1.35 | 6.18 | 12.7 | -6 | 10 | 0_ | | | 837_ | 1 | 555A
900A | | 31.0 | 46.2 | 4.54 | 7,34 | 210. | | .0 | _ | | | 898 | 7/25 | 100P
245P | LUCE | 24.0 | 16.2 | 1.03 | | 16.8 | 6 | 9 | 0 | FC39_ | | 838 | | 909A
928A | | 31.0 | 38.6 | | | 194. | $\dagger \dagger \dagger$ | .0 | | +0.03 | ., | 899 | 7/31 | 255P
230P | TURNER | 17.0 | 11.4 | 1.34 | 6.70 | 15.3 | 6 | 9 | 0 | FC43 | | 839 | 1 | 934A
935A | | 36.0 | 51.6
59.8 | 1 | | 247.
263- | \Box | .0 | | +0.44 | | 900 | | 245P
1055A | | 19.0 | 12.0 | | 6.81 | 14.8 | -6 | 10 | 0 | ** | | 640
841 | 1 | 951A
1006A
1019A | | 36.0
45.0 | 83.9 | | | 449. | \Box | ٠.٠ | 7 | 0.44 | | 901 | | 1110A
115P | ** | 19.0 | 12.2 | 1.22 | | 14.7 | 1 | 10 | 0 | | | 842 | 12/22 | 1247P
108P | PARD IECK - CORONADO | 37.0 | 64.4 | 5.14 | 7.80 | 382. | | . 6 | | -0.02 | FC33 | 902 | 8/21 | 125P
355P | | 17.0 | 9.94 | | | 9.7 | -6 | 1 1 | -0 |
.c | | 843 | 12/22 | 108P
118P | | 37.0 | 65.0 | 5.57 | 7.80 | 362. | | .6 | 6 | -0.01 | | 903 | 8/29 | 405P
1025A | | . 17.0 | 8.89 | | 6.53 | 8.1_ | | | 0 | | | 844 | 12/22 | 415P
432P | | 48.0 | 97.2 | 5.73 | 8.47 | 557. | | .6 | 7 | 0 | | 904 | 9/5 | 1035A
640A | | 17.0 | 9.54 | | 6.49 | 9.2 | .6 | 9 | 0 | |
| 845 | 12/22 | 540P
554P | ,. | 48.0 | 98.2 | 6.19 | 8.47 | 608. | | .6 | 7_ | 0 | | 905 | 9/12 | 652A
155P | LUCE | 14.7 | 9.73 | | 6.50 | 9.5 | .6 | 1 1 | 0 | FC39 | | 846 | 12/22 | 928P
945P | | 48.0 | 104. | 6.66 | 8.59 | 691. | | .6 | 7 | -0.02 | | 906 | 9/19
9/26 | 205P
1055A | THOUSE | 15.5 | 9.00 | 0.79 | | 7.1 | 6 | 8 | 0 | FC43 | | 847 | 12/23 | 1112A
1134A | DEVORE | 35.5 | 69.0 | 4.68 | 7.90 | 323. | | .6 | | -0.03 | FC40 | 907 | 9/26 | 1105A | TURNER | 16.5 | 8.88 | 0.81 | h.25 | 7.2 | ļļb | 8 | 0 ; | FC43 | | 848 | 12/26 | 857A
919A | ••• | 33.2 | 32.1 | 2.75 | 6.63 | 88.2 | | 6 | 13 | 0 | FC42 | | | | | | | | | | | | | | | 849 | 12/27 | 902 A
924A | •• | 20.0 | 18.8 | 2.20 | 6.21 | 41.4 | Ш | .6 | 11_ | | | | | | | | | | | | | | | | | 850 | 12/29 | 1103A
1115A | PARD LECK . | 26.6 | 13.9 | 1,42 | 5.93 | 19.8 | Ш | 6 | 7 | 0 | FC33 | | | | | | | | | | | | | | | 851 | 1/4 | 857A
910A | DEVORE | 19.3 | 11.3 | 1.70 | 5.87 | 19.2 | Ш | -6 | 10. | | FC42 | | DISCHARGE | MEASURE | MENTS OF BIG TU | UNGA C | REEK | | | | | | | | | 852 | 1/11 | 906A
430P | | 19.7 | 11.2 | 1.60 | 5.84 | | | .6 | 10. | 0_ | 1 | Н | | | | | | | | | | | | | | 853 | 1/16 | 430F
445P | | | | | | 17.9 | | | | | | 1 | -AF | above | Gold Canvon | | | DUB | ING THE Y | EAR ENDING | SEPTEMB | FR 30. | . 47 | | | . 854 | | | | 19.6 | 10.7 | 1.57 | 5.82 | 16.8 | | -6 | 11_ | ۵ | | | - NATE | | Gold Canyon | | | | | EAR ENDING | S SEPTEME | | s.47 | | | 855 | 1/25 | 917A
931A | | 19.6 | 9.11 | 1.57 | 5.82 | | | | 11
10 | _ o | | NO. | DATE | REGIN
EHD | Gold Canyon | WIDTH
FEET | AREA GF
SECTION
SQ. FT. | HEAN
VELOCITY
FY.PER BEC. | GAUGE
HEIGHT
FECY | DISCHARGE | RAT- METH | MEAS. | a. HT. | MEYER
NO. | | | 1/25 | 917A
931A
435P
445P | | İ | 1 | 1.57 | | 16.8 | | | | _ 0
_ 0 | | - | - 1 | REGIN | | WIDTH | | | | DISCHARGE | RAT- METH | | а. нт. | | | 856 | | 917A
931A
435P
445P
319P
334P | DEVORE-MITTENDORF | 18.8 | 9.11 | 1.57 | 5.82 | 16.8 | | -6 | | 0
0
0
-0.08 | | NO. | DATE | #EGIN
#HD
1140A | HADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METH | MEAS.
BEC.
NO. | G. HT.
CHANGE
TOTAL | NO. | | | 1/30 | 917A
931A
435P
445P
319P | | 18.8 | 9,11
5.05 | 1.57 | 5.82
5.54 | 16.8
16.6
7.5 | | 6 | 10 | o | | ы».
908 | 10-3 | 1140A
1152A
925A
935A
1040A
1050A | HADE BY TURNER | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELDCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METH | MEAS.
BEC.
NO. | G. HT.
CHANGE
TOTAL | NO. | | 856 | 1/30 | 917A
931A
435P
445P
319P
334P
906A
926A
1000A
1014A | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0 | 9,11
5,05
37,2 | 1.57
1.82
1.48
4.30
3.59 | 5.82
5.54
7.07 | 16.8
16.6
7.5 | | .6
6 | 10
8
9 | 0
.0
-0.08 | | 908
909 | 10-3
10-9 | 925A
925A
935A
1040A
1050A
350P
405P | HADE BY | 17.0 | 9.30
9.11 | PEAN VELDOITY FY.PER SEC. 0.86 0.75 | 6.40 | B.O. 6.8 | RAT- METH
ING DD | MEAS.
85C.
NO.
9 | G. HT. CHANGE TOTAL O | NO. | | 856
857
858
859 | 1/30
2/3
2/8 | 917A
931A
435P
445P
319P
334P
906A
926A
1000A | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0
24.5 | 9,11
5.05
37.2
24.3 | 1.57
1.82
1.48
4.30
3.59 | 5.82
5.54
7.07
6.63 | 16.8
16.6
7.5
160.
87.2 | | .6
.6 | 10
8
9 | 0
-0_08
0 | | 908
909
910 | 10-3
10-9 | 925A
925A
925A
1040A
1050A
1050A
955A
910A | TURNER TURNER TURNER | 17.0
17.0 | 9.30
9.11 | 0.86
0.86 | 6.40
6.40 | 8.0
6.8 | RAT- METH
ING DD | MEAS.
SEC.
NO. | Q. HT. CHANGE YOTAL O O | NO. | | 856
857
858
859
860 | 1/30
2/3
2/8
2/13
2/19
2/27 | 917A
931A
435P
445P
319P
334P
906A
926A
1000A
1014A
915A
929A | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0
24.5
9.7 | 9,11
5,05
37,2
24,3
3,37 | 1.57
1.82
1.48
4.30
3.59
1.67 | 5.82
5.54
7.07
6.63
5.56
5.69 | 16.8
16.6
7.5
160.
87.2
5.6 | | .6
.6
.6 | 10
8
9
9 | .0
-0.08
.0 | | 908
909
910
911 | 10-3
10-9
10-17
10-23 | 925A
925A
925A
925A
935A
1040A
1050A
350P
405P
855A
910A
905A | TURNER TURNER TURNER TURNER YAN DER GOOT | 17.0
17.0
17.0 | 9.30
9.11
9.04
8.83 | 0.86
0.75
0.86
0.82 | 6.40
6.40
6.40 | 8.0
6.8
7.2 | RATING SD | 9
9 | G. HT. CHANGE TOTAL O O O | NO. | | 856
857
858
859
860
861 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6 | 917A
931A
435P
445P
319P
334P
906A
926A
1000A
1014A
915A
929A
902A
914A | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8 | 9,11
5.05
37.2
24.3
3.37
6.00 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52 | 5.82
5.54
7.07
6.63
5.56
5.69 | 16.8
16.6
7.5
160.
87.2
5.6
9.1 | | .6
.6
.6 | 10
8
9
9 | .0
.0.08
.0
.0 | | 908
909
910
911
912 | 10-3
10-9
10-17
10-23
10-30 | 925A
925A
1040A
1050A
925A
1040A
1050A
350P
405P
905A
910A
915A
150P
200P | TURNER TURNER TURNER TURNER YAN DER GOOT | 17.0
17.0
17.0
17.0 | 9.30
9.11
9.04
8.83 | 0.86
0.86
0.86
0.86
0.86 | 6.40
6.40
6.40
6.32 | 8.0
6.8
7.8
7.2 | .6
.6 | 9 9 9 | G. HT. CHANGE YOTAL O O O O | NO. | | 856
857
858
859
860
861 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13 | 917A
931A
435P
445P
319P
334P
906A
926A
914A
915A
914A
852A
904A
852A
108P | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7 | 9,11
5,05
37,2
24,3
3,37
6,00
4,99
5,11
5,06 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.62
1.64 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67 | 16.8
16.6
7.5
160.
87.2
5.6
9.1
8.1
8.4 | | .6
.6
.6
.6 | 10
8
9
9 | 0
-0.08
0
0
0 | | 908
909
910
911
912
913 | 10-3
10-9
10-17
10-23
10-30
11-6 | 925A
1040A
1152A
925A
1040A
1050A
350P
405P
855A
910A
905A
150P
200P
140P | TURNER TURNER TURNER TURNER YAN DER GOOT | 17.0
17.0
17.0
17.0
17.0 | 9.30
9.11
9.04
8.83
9.06
7.98 | 0.86
0.75
0.86
0.86
0.86 | 6.40
6.40
6.40
6.32
6.37 | 8.0
6.8
7.2
7.8 | .6
.6 | 9 9 9 9 9 | O O O O O | FC43 | | 856
857
858
859
860
861
862
863 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13 | 917A
931A
435P
319P
334P
906A
926A
1000A
1014A
915A
929A
902A
914A
852A
904A
842A
108P
129P
959A | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.6 | 9,11
5,05
37,2
24,3
3,37
6,00
4,99
5,11
5,06 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.62
1.64
1.56 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04 | 16.8
16.6
7.5
160.
87.2
5.6
9.1
8.1
8.4
.7.9 | | .6
.6
.6
.6 | 9
9
9
9 | 0
-0.08
0
-0
0 | | 908
909
910
911
912
913
914
915 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13 | 925A
925A
925A
925A
1040A
1050A
405P
855A
910A
910A
150P
200P
140P
150P
245P | TURNER " TURNER TURNER YAN DER GOOT TURNER " | 17.0
17.0
17.0
17.0
17.0
17.0
17.0
25.0 | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8 | 0.86
0.75
0.86
0.82
0.86
0.64 | 6.40
6.40
6.40
6.32
6.37
6.31 | 8.0
.6.8
.7.8
.7.2
.7.8
.5.1
.40.6
.150. | .6
.6
.6
.6 | 9 9 9 9 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19 |
917A
931A
435P
445P
319P
334P
906A
926A
10104A
915A
929A
914A
852A
852A
842A
854A
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P
108P | DEVORE MITTENDORF DEVORE DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0 | 9,11
5,05
37,2
24,3
3,37
6,00
4,99
5,11
5,06
12,8
5,42 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.62
1.64
1.56
2.12 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04 | 16.8
16.6
7.5
160.
87.2
5.6
9.1
8.1
8.4
7.9
27.1 | | .6
.6
.6
.6 | 10
8
9
9
9
9
10
10 | 0
-0.08
0
0
0
0
0 | | 908
909
910
911
912
913
914 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12 | 925A
925A
925A
925A
1050A
350P
405P
855A
910A
905A
915A
150P
200P
140P
150P
245P | TURNER " TURNER TURNER YAN DER GOOT TURNER " | 17.0
17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
TWO CH | 9.30
9.11
9.04
8.83
9.06
7.98
22.1 | 0.86
0.75
0.86
0.82
0.86
0.84
1.84 | 6.40
6.40
6.40
6.32
6.37
6.31
7.02 | 8.0
6.8
7.2
7.8
5.1
40.6 | .6
.6
.6
.6
.6 | 9 9 9 9 9 9 10 14 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864 | 1/30 2/3 2/8 2/13 2/19 2/27 3/6 3/13 3/19 3/29 | 917A
931A
435P
445P
319P
334P
906A
926A
1000A
1014A
915A
929A
902A
902A
852A
852A
854A
854A
108P
123P
959A
1013A
753A
807A
914A | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.6
13.0
40.00 | 9,11
5,05
37,2
24,3
3,37
6,00
4,99
5,11
5,06
12,8
5,42
78,0 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.62
1.64
1.56
2.12
1.51
7.44 | 5.62
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13 | 16.8
16.6
7.5
160.
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580. | | .6
.6
.6
.6
.6 | 10
8
9
9
9
9
9
10
10 | 0
-0.08
0
0
0
0
0
02
b | | 908
909
910
911
912
913
914
915
916
917 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13
11-14
11-20
11-21 | 1140A
1152A
925A
925A
1040A
1050A
350P
405P
855A
910A
905A
150P
200P
140P
150P
245P
245P
245P
424P
436P
920A
935A | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER TURNER | 17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
31.0
Two CH | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
ANNELS | 0.86
0.75
0.86
0.86
0.82
0.86
0.84
1.84
2.74 | 6.40
6.40
6.40
6.32
6.37
6.31
7.02
7.22
7.96
7.35 | 8.0
6.8
7.8
7.2
7.8
5.1
40.6
150.
139.
233. | .6
.6
.6
.6
.6
.6 | 9 9 9 9 9 10 114 116 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
659
860
861
862
863
864
865 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30 | 917A
931A
435P
445P
314P
314P
314P
906A
926A
1010A
1014A
915A
929A
904A
852A
904A
852A
804A
108A
852A
801A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
854A
108A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A
852A | DEVORE MITTENDORF DEVORE DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0
40.00
35.0 | 9.11
5.05
37.2
24.3
3.37
6.00
4.99
5.11
5.06
12.8
5.42
78.0 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.64
1.56
2.12
1.51
7.44
6.04 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95 | 16.8
16.6
7.5
160.
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580.
405. | | .6
.6
.6
.6
.6
.6
.6 | 10
8
9
9
9
10
10
10
6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 908
909
910
911
912
913
914
915
916
917
918 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13
11-14
11-20
11-21 | 1140A
1152A
925A
1050A
350P
405P
855A
910A
905A
910A
915A
150P
200P
140P
150P
245P
436P
920A
920A
920A
920A
920A
920A
920A
920A | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER TURNER TURNER - RILEY TURNER | 17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
Two CH | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
ANNELS |
0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.97 | 6.40
6.40
6.40
6.32
6.37
6.31
7.02
7.22
7.96
7.35
7.54 | 7.8
7.8
7.8
7.8
5.1
40.6
150.
139.
233. | .6
.6
.6
.8
.6
.6
.6 | 9 9 9 9 9 10 14 16 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30 | 917A
931A
435P
445P
319P
319P
319P
319P
906A
926A
1010A
915A
929A
914A
852A
904A
842A
842A
854A
108P
123P
959A
1013A
753A
914A
915A
925A
914A
822A
914A
822A
832A
842A
842A
852A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A
807A | DEVORE MITTENDORF DEVORE DEVORE DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.6
13.0
40.00
35.0
33.0 | 9.11
5.05
37.2
24.3
3.37
6.00
4.99
5.11
5.06
12.8
5.42
78.0
67.0 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.62
1.64
1.56
2.12
1.51
7.44
6.04
5.98 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95 | 16.8
16.6
7.5
160
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580
405
399 | | . 6
. 6
. 6
. 6
. 6
. 6 | 10
8
9
9
9
9
9
10
10 | -0.08 0 -0.08 0 0 0 0 -0.02 b03 004 | | 908
909
910
911
912
913
914
915
916
917
918
919 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13
11-14
11-20
11-21
11-23 | 1140A
1152A
925A
925A
1040A
350P
4057
905A
915A
915A
915A
915P
920A
944P
920A
924S
924S
924S
924S
924S
925A
935A
935A
935A
935A
935A
935A
935A
93 | TURNER TURNER YAN DER GOOT TURNER TURNER PARDIECK | 17.0
17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
31.0
Two CH | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
ANNELS | 0.86
0.75
0.86
0.82
0.82
0.84
1.84
2.74
2.97 | 6.40
6.40
6.40
6.32
6.37
6.31
7.02
7.22
7.96
7.35
7.54
6.88 | 8.0
6.8
7.8
7.2
7.8
5.1
40.6
150.
139.
233.
269. | 60 60 60 60 60 60 60 60 | 9 9 9 9 9 10 114 116 9 113 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/30
3/30
3/30
3/30 | 931A
435P
445P
445P
334P
906A
926A
10014A
915A
852A
904A
852A
904A
852A
904A
852A
904A
223P
1013A
223P
1013A
223P
1013A
223P
1024
1034
1045
1047
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1057
1 | DEVORE MITTENDORF DEVORE DEVORE PARDIECK-CORONADO | 18.8
13.6
35.0
24.5
9.7
18.9
14.8
12.7
20.0
13.0
40.00
35.0
33.0
32.0 | 9.11
5.05
37.2
24.3
3.37
6.00
4.99
5.11
5.06
12.8
5.42
78.0
67.0
66.7 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.64
1.56
2.12
1.51
7.44
6.04
5.98 | 5.82
5.54
7.07
6.63
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95
7.83 | 16.8
16.6
7.5
160.
87.2
5.6
9.1
8.1
8.4
.7.9
27.1
8.2
580.
405.
399.
375. | | .6
.6
.6
.6
.6
.6
.6
.6 | 9 9 9 10 10 6 6 6 6 | 04 | | 908
909
910
911
912
913
914
915
916
917
918
919
920
921 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13
11-14
11-20
11-21
11-23
11-23
11-23 | 925A
925A
925A
935A
1050A
1050A
955A
905A
905A
905A
915A
915A
915A
920A
920A
920A
920A
920A
920A
920A
920 | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER TURNER TURNER - RILEY TURNER | 17.0
17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
31.0
Two CH | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
ANNELS
34.2
40.0
52.9 | 0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.97 | 6.40
6.40
6.40
6.32
6.37
7.02
7.22
7.96
7.35
7.54
6.88
6.83
6.91 | 8.0
.6.8
.7.8
.7.2
.7.8
.5.1
.40.6
.150
.139
.233
.269
.104
.91.7 | 6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 | 9 9 9 9 9 10 14 16 9 13 15 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/30
3/30
3/30
3/30 | 931A
435P
435P
435P
334P
906A
926A
1014A
915A
922A
902A
902A
852A
852A
802A
914A
802A
802A
802A
802A
802A
802A
802A
802 | DEVORE MITTENDORF DEVORE
DEVORE PARDIECK-CORONADO | 18.8
13.6
35.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0
40.00
35.0
33.0
32.0
29.0 | 9.11
5.05
37.2
24.3
3.37
6.00
4.99
5.11
5.06
12.8
5.42
78.0
67.0
66.7 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.62
1.64
1.56
2.12
1.51
7.44
6.04
5.98
5.99 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.63
6.04
5.60
8.13
7.95
7.83
7.76 | 16.8 16.6 7.5 160. 87.2 5.6 9.1 8.1 8.4 7.9 27.1 8.2 580. 405. 399. 375. | | .6
.6
.6
.6
.6
.6
.6
.6
.6 | 9 9 9 9 10 10 6 6 6 6 5 5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 908
909
910
911
912
913
914
915
916
917
918
919
920
921 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13
11-14
11-20
11-21
11-23
11-23
11-23 | 1140A
1152A
925A
925A
1040A
1050A
350P
905A
1040A
150P
905A
1150P
200P
1150P
200P
1150P
200P
200P
335A
332P
332P
1065A
332P
1065A
332P
332P
1065A
332P
332P
332P
332P
332P
332P
332P
332 | TURNER TURNER YAN DER GOOT TURNER TURNER PARDIECK | 17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
Two CH

32.0
29.0
31.0
29.0 | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
ANNELS
""
34.2
40.0
52.9
21.7 | 0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.97 | 6.40
6.40
6.40
6.32
6.31
7.02
7.22
7.06
7.35
7.54
6.88
6.83
6.91 | 8.00
6.48
7.48
7.2
7.8
5.1
40.6
150.
139.
233.
269.
104.
91.7
107. | 6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 | 9 9 9 9 9 9 9 10 14 16 9 13 15 14 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/30 | 931A
435P
445P
334P
906A
926A
1010A
915A
902A
902A
902A
1010B
902A
852A
852A
852A
852A
852A
852A
852A
85 | DEVORE MITTENDORF DEVORE DEVORE PARDIECK-CORONADO | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
20.6
13.0
40.00
35.0
33.0
32.0
29.0
47.0 | 9.11
5.05
37.2
24.3
3.37
6.00
4.99
5.11
5.06
12.8
5.42
78.0
66.7
62.6
52.2 | 1.57
1.62
1.48
4.30
3.59
1.67
1.52
1.62
1.64
1.56
2.12
1.51
7.44
6.04
5.98
6.99 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95
7.83
7.76 | 16.8
16.6
7.5
160
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580
405
399
375
333
856 | | .6
.6
.6
.6
.6
.6
.6
.6
.6
.6 | 9 9 9 9 9 10 10 6 6 6 5 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-20 11-23 11-23 11-23 11-27 12-4 | 925A
925A
925A
925A
925A
925A
925A
935A
915A
915A
915A
915A
915A
926A
926A
926A
926A
926A
926A
926A
926 | TURNER TURNER YAN DER GOOT TURNER TURNER PARDIECK | 17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
32.0
29.0
29.0
26.5
25.0 | 9.30
9.11
9.04
8.83
9.06
7.498
22.1
544.8
46.8
34.2
40.0
52.9
21.7
20.2 | 0.86
0.75
0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.97
3.04
2.29 | 6.40
6.40
6.40
6.32
6.31
7.02
7.22
7.96
7.35
7.54
6.88
6.83
6.91
6.19 | 8.0
6.8
7.8
7.2
7.8
5.1
40.6
150.
233.
269.
104.
91.7
107.
28.2
29.6 | 6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 | 9 9 9 9 9 9 10 14 16 9 13 15 14 13 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/30 | 931A
435P
331P
334P
936A
926A
926A
926A
927
934P
932A
934P
935A
932A
934A
935A
935A
935A
935A
935A
935A
935A
935 | DEVORE MITTENDORF DEVORE DEVORE PARDIECK-CORONADO | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
40.00
35.0
32.0
29.0
47.0
49.0 | 9.11
5.05
37.2
24.3
3.37
6.00
4.99
5.11
5.06
12.8
5.42
78.0
66.7
62.6
52.2
108. | 1.57 1.82 1.48 4.30 3.59 1.67 1.52 1.62 1.64 1.56 2.12 1.51 7.44 5.98 5.99 6.38 6.99 7.11 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95
7.83
7.76
8.74
8.63 | 16.8
16.6
7.5
160
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580
405
399
375
333
856 | | .6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6 | 9 9 9 9 10 10 6 6 6 6 5 5 | 0
0
0
0
0
0
0
0
0
02
b
03
0
04
0 | | 908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13
11-14
11-20
11-23
11-23
11-23
11-23
11-27
12-4 | 925A
925A
925A
925A
925A
925A
925A
925A | TURNER TURNER YAN DER GOOT TURNER TURNER PARDIECK | 17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
29.0
31.0
29.0
31.0
26.5
25.0 | 9,30
9,11
9,04
8,83
9,06
7,498
22,1
54,8
46,8
34,2
40,0
52,9
21,7
20,2
24,3 | 0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.97 | 6.40
6.40
6.40
6.32
6.37
7.02
7.22
7.96
6.83
6.81
6.83
6.91
6.83
6.83
6.81
6.83 | 8.0
6.8
7.8
7.2
7.8
5.1
40.6
150.
233.
269.
104.
91.7
107.
28.2
29.6 | 6 | 9 9 9 9 9 10 14 16 9 13 15 14 13 13 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/30
3/30 | 931A
435P
931A
435P
936A
926A
926A
926A
926A
927
907
907
907
907
907
907
907
907
907
90 | DEVORE -MITTENDORF DEVORE DEVORE PARDIECK-CORONADO | 18.8 13.6 36.0 24.5 3.7 18.9 14.8 12.7 12.7 20.6 13.0 35.0 32.0 29.0 47.0 49.0 62.0 | 9.11
5.05
37.2
24.3
3.37
6.00
4.99
5.11
5.06
12.8
5.42
78.0
66.7
62.6
52.2
122.
108. | 1.57 1.82 1.48 4.30 3.59 1.67 1.52 1.62 1.64 1.56 2.12 1.51 7.44 5.98 5.99 6.38 6.99 7.11 7.86 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95
7.83
7.76
7.67
8.74
8.63
9.44 | 16.8
16.6
7.5
160
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580
405
399
375
333
856
759 | | .6.
.6.
.6.
.6.
.6.
.6.
.6.
.6.
.6.
.6. | 10
8
9
9
9
10
10
6
6
6
5
7
8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925 | 10-3
10-9
10-17
10-23
10-30
11-6
11-12
11-13
11-14
11-20
11-23
11-23
11-23
11-27
12-4
12-11
12-17 |
1140A
925A
925A
1040A
1050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11050A
11 | TURNER TURNER YAN DER GOOT TURNER TURNER - RILEY PARDIECK TURNER | 17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
32.0
32.0
29.0
31.0
29.0
26.5
25.0
26.0
27.0
26.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27 | 9.30
9.11
9.04
8.83
9.06
7.498
22.1
54.8
46.8
34.2
40.0
52.9
21.7
20.2
24.3 | 0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.97 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
7.54
6.83
6.91
6.18
6.18 | 8.0
6.8
7.8
7.2
7.8
5.1
40.6
150.
233.
269.
104.
91.7
107.
28.2
29.6
25.5 | 6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6. | 9 9 9 9 9 10 14 16 9 13 15 14 13 13 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/3 | 931A 455P 4645P 465P 465P 465P 465P 465P 465 | DEVORE -MITTENDORF DEVORE DEVORE PARDIECK - CORONADO | 18.8 13.6 36.0 24.5 3.7 18.9 14.8 12.7 12.7 20.6 13.0 35.0 32.0 29.0 47.0 49.0 66.0 | 9,111 5.05 37.2 24.3 3.37.7 6.00 4.99 5.111 5.06 12.8 5.42 78.0 67.0 66.7 62.6 122. 108. 163. | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.64
1.56
2.12
1.51
7.44
5.98
5.99
6.99
7.11
7.86
8.09 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.63
6.04
5.60
8.13
7.95
7.76
7.67
8.74
8.63
9.44 | 16.8
16.6
7.5
1600
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
5805
399.
375.
399.
375.
399.
375.
278.
278. | | .6.
.6.
.6.
.6.
.6.
.6.
.6.
.6.
.6.
.6. | 9 9 9 9 9 10 10 6 6 6 5 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-20 11-21 11-23 11-23 11-27 12-27 12-11 12-17 12-25 | 1140A 995A 405P 200P 1150A 995A 405P 200P 1150A 995A 200P 200P 200P 200P 200P 200P 200P 200 | TURNER TURNER YAN DER GOOT TURNER TURNER PARDIECK | 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 | 9.30
9.11
9.04
8.83
9.06
7.498
22.1
54.8
46.8
34.2
40.0
52.9
21.7
20.2
24.3
ANNELS | 0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.97 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
7.54
6.83
6.91
6.18
6.18
6.18
6.18 | 8.0
6.8
7.8
7.2
7.8
5.1
40.6
150.
139.
233.
269.
104.
91.7
107.
28.2
29.6
25.5
234.
695. | | 9 9 9 9 9 9 10 14 16 9 13 15 14 13 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30 | 931A 455P 4645P 46 | DEVORE-MITTENDORF DEVORE DEVORE PARDIECK-CORONADO | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.6
13.0
35.0
32.0
29.0
47.0
49.0
62.0
60.0
35.0 | 9,111 5.05 37.2 24.3 3.37.7 6.00 4.99 5.111 5.06 12.8 5.42 78.0 66.7 62.6 52.2 108. 163. 154. 75.9 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.64
1.56
2.12
1.51
7.44
6.04
5.98
5.99
6.99
7.11
7.86
8.09 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.63
6.04
5.60
8.13
7.95
7.76
7.67
8.74
8.63
9.44
9.20 | 16.8
16.6
7.5
1600
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580
405
399
375
333
856
769
278
278
278
278
278
278
278
278
278
278 | | .6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6 | 9 9 9 9 10 10 10 6 6 6 7 8 6 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-20 11-23 11-23 11-27 12-24 12-11 12-17 12-25 12-26 | 1140A 95A 95A 95A 95A 95A 95A 95A 95A 95A 95 | TURNER TURNER YAN DER GOOT TURNER TURNER - RILEY PARDIECK TURNER | 17.0
17.0
17.0
17.0
17.0
17.0
25.0
32.0
32.0
32.0
29.0
31.0
29.0
31.0
25.0
32.0
32.0
32.0
32.0
32.0
32.0
32.0
32 | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
40.0
52.9
21.7
20.2
24.3
34.8
66.8
40.0
66.8
69.4 | 0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.29
2.02
1.30
1.47
1.05 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
7.54
6.83
6.91
6.18
6.18
6.16
7.48
8.69 | 8.0
6.28
7.2
7.3
7.2
7.3
150
150
100
191
107
107
107
28.2
29.6
25.5
234
695
599 | 6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 | 9 9 9 9 9 10 14 16 9 13 15 14 13 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/31
3/31 | 931A 445P 445P 445P 445P 445P 445P 445P 445 | DEVORE-MITTENDORF DEVORE DEVORE PARDIECK-CORONADO |
18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0
40.00
35.0
32.0
29.0
47.0
62.0
60.0
35.0
35.0
35.0
36.0
36.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0 | 9,111 5.05 37.2 24.3 3.37.7 6.00 4.99 5.111 5.06 12.8 5.42 78.0 67.0 66.7 62.6 52.2 108. 163. 154. 75.9 | 1.57 1.82 1.48 4.30 3.59 1.67 1.52 1.62 1.64 1.56 2.12 1.51 7.44 6.04 5.98 6.99 7.11 7.86 8.09 6.23 7.19 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.63
6.04
5.60
8.13
7.95
7.67
8.74
8.63
9.44
9.20
8.00
7.92 | 16.8
16.6
7.5
160
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580
405
399
375
333
375
333
856
758
278
278
278
278
278
278
278
278
278
27 | | .6
.6
.6
.6
.6
.6
.6
.6
.6
.6 | 9 9 9 9 9 10 10 6 6 6 5 7 8 6 9 7 6 | 0
-0.08
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 908
909
910
911
912
913
914
915
916
917
918
920
921
922
923
924
925
926
927
928 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-20 11-21 11-23 11-23 11-27 12-24 12-11 12-17 12-25 12-26 12-26 | 1140A 995A 1150A 995A 1150A 995A 995A 995A 995A 995A 995A 995A 9 | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER TURNER TURNER PARDIECK TURNER TURNER TURNER | 17.0 17.0 17.0 17.0 17.0 25.0 32.0 31.0 29.0 31.0 25.0 32.0 31.0 42.0 42.0 | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
40.0
52.9
21.7
20.2
24.3
ANNELS
6.8
6.8
40.0
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8 | 0.86
0.75
0.86
0.82
0.86
0.64
1.84
2.74
2.29
2.02
1.30
1.47
1.05
6.55
6.59
5.97 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
7.54
6.83
6.91
6.18
6.18
6.16
7.48
8.63
8.23 | 8.0
6.8
7.8
7.2
7.8
5.1
40.6
150.
139.
233.
269.
104.
91.7
107.
28.2
29.6
25.5
234.
695.
589. | 6 | 9 9 9 9 9 9 10 14 16 9 13 15 14 13 13 17 7 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/30
3/30
3/31
3/31
3/31 | 931A 435P 334P 334P 334P 334P 334P 334P 334P | DEVORE-MITTENDORF DEVORE DEVORE PARDIECK-CORONADO | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0
40.00
35.0
32.0
29.0
47.0
62.0
60.0
35.0
33.0
35.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0 | 9,111 5.05 37.2 24.3 3.37.6 6.00 4.99 5.111 5.06 12.8 5.42 78.0 66.7 62.6 52.2 108. 163. 154. 75.9 66.5 | 1.57
1.82
1.48
4.30
3.59
1.67
1.52
1.64
1.51
2.12
1.51
7.44
5.98
5.99
7.11
7.86
8.09
5.23
7.19 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95
7.83
7.76
7.67
8.63
9.44
9.20
8.00
7.92 | 16.8
16.6
7.5
160.
87.2
5.6
9.1
8.1
8.4
7.9
27.1
8.2
580.
405.
399.
375.
333.
856.
759.
2278.
1250.
473. | | .6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6 | 10 8 9 9 9 10 10 10 6 6 6 5 7 8 6 9 7 6 5 | 0
-0.08
0
-0.08
0
-0.00
0
00
0
00
0
0
004
0
0
004
0
0
004
0
0
004 | | 908
909
910
911
913
914
915
916
917
918
920
921
922
923
924
925
926
927
928 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-23 11-23 11-23 11-23 11-27 12-24 12-11 12-17 12-25 12-26 12-26 12-26 | 1140A 995A 150P 920A | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER TURNER TURNER PARDIECK | 17.0 17.0 17.0 17.0 17.0 17.0 17.0 32.0 32.0 31.0 32.0 32.0 31.0 32.0 32.0 34.0 32.0 34.0 34.0 34.0 34.0 34.0 34.0 | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
40.0
52.9
21.7
20.2
24.3
34.2
40.0
69.4
81.0
89.4 | 3.04
2.29
2.02
1.47
1.05
6.55
6.59
7.17 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
6.81
6.83
6.81
6.18
6.18
6.18
6.18
8.63
8.23 | 8.0
6.28
7.2
7.2
7.3
150
150
100
191
102
102
103
104
107
107
107
107
107
107
107
108
108
108
108
108
108
108
108
108
108 | 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . | 9 9 9 9 9 10 14 16 9 13 15 14 13 13 11 7 7 7 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/30
3/30
3/30
3/30
3/30
3/30
3/31
3/31
3/31
3/31
3/31 | 931A 435P 902A 929A 100P 915A 929A 100P 915A 929A 100P 915A 929A 100P 915A 929A 10P 914A 923A 923A 923A 923A 923A 923A 923A 923 | DEVORE-MITTENDORF DEVORE DEVORE PARDIECK-CORONADO | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0
40.00
35.0
32.0
29.0
47.0
62.0
60.0
35.0
33.0
35.0
30.0
30.0
30.0 | 9,111 5.05 37.2 24.3 3.37.2 6.00 4.99 5.11 5.06 12.8 5.42 78.0 66.7 62.6 52.2 108. 163. 154. 75.9 66.5 59.8 | 1.57 1.82 1.48 4.30 3.59 1.67 1.52 1.64 1.56 2.12 1.51 7.44 6.04 5.98 6.99 7.11 7.86 8.09 6.23 7.19 5.78 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95
7.83
7.76
7.67
8.63
9.44
9.20
8.00
7.92
7.64
7.63 | 16.8 16.6 7.5 160. 87.2 5.6 9.1 8.1 8.4 7.9 27.1 8.2 580. 405. 399. 375. 333. 856. 769. 2278. 1250. 473. 478. 346. | | .6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6 | 10 8 9 9 9 10 10 10 6 6 5 7 8 6 9 7 6 5 5 | 0
-0.08
0
-0.08
0
-0.00
0
00
0
00
0
0
00
0
0
00
0
0
00
0
0
00
0
00
0
00
0
00
0
0
00
0
0
0 | | 908
909
910
911
912
913
914
915
916
917
918
920
921
922
923
924
925
926
927
928
929
930 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-20 11-21 11-23 11-23 11-27 12-24 12-11 12-17 12-25 12-26 12-26 | 1140A
925A
925A
1040A
1050A
405F
115A
855A
910A
855A
910A
115A
115A
115A
115A
115A
115A
115A
1 | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER TURNER TURNER PARDIECK TURNER TURNER TURNER | 17.0 17.0 17.0 17.0 17.0 17.0 32.0 32.0 31.0 29.0 31.0 26.5 25.0 24.0 TWO CH 543.0 42.0 42.9 45.9 | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
34.2
40.0
52.9
21.7
20.2
24.3
ANNELS
6.8
6.8
40.0
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8 | 3.04
2.29
2.02
1.30
1.47
1.05
6.55
6.59
7.17 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
6.81
6.83
6.91
6.18
6.18
6.16
7.48
8.63
8.13
8.58 |
8.0
6.28
7.2
7.2
7.3
5.1
40.6
150.
139.
233.
269.
104.
91.7
107.
28.2
29.6
25.5
234.
695.
589. | 6 | 9 9 9 9 9 9 10 14 16 9 13 15 14 13 17 7 7 8 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/29
3/30
3/30
3/30
3/30
3/30
3/31
3/31
3/31
3/31
3/31 | 931A 435P 934P 936A 926A 926A 926A 926A 926A 926A 926A 92 | DEVORE-MITTENDORF DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0
40.00
35.0
32.0
29.0
47.0
62.0
60.0
35.0
33.0
33.0
35.0
30.0
30.0
30.0
30.0
30.0
30.0 | 9,111 5.05 37.2 24.3 3.37.2 6.00 4.99 5.11 5.06 12.8 5.42 78.0 66.7 62.6 52.2 108. 154. 75.9 66.5 59.8 58.6 | 1.57 1.82 1.48 4.30 3.59 1.67 1.52 1.64 1.56 2.12 1.51 7.44 5.98 5.99 7.11 7.86 8.09 6.38 7.19 5.78 5.55 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
7.95
7.83
7.76
7.67
8.63
9.44
9.20
8.00
7.92
7.64
7.63 | 16.8 16.6 7.5 160. 87.2 5.6 9.1 8.1 8.4 7.9 27.1 8.2 580. 405. 399. 375. 333. 856. 769. 2278. 1250. 473. 478. 346. 325. | | .6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6 | 10
8
9
9
9
10
10
6
6
6
5
7
8
6
7
6
5
5 | | | 908
909
910
911
913
914
915
916
917
918
920
921
922
923
924
925
926
927
928
929
930
931 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-20 11-21 11-23 11-23 11-27 12-24 12-11 12-17 12-25 12-26 12-26 12-26 12-26 12-26 | 1140A 995A 150P 1992A 19 | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER PARDIECK TURNER PARDIECK | 17.0 17.0 17.0 17.0 17.0 17.0 32.0 32.0 31.0 32.0 31.0 25.0 31.0 42.0 42.0 45.0 46.0 | 9.30 9.11 9.04 8.83 9.06 7.98 22.1 54.8 40.0 9.12 20.2 24.3 ANNELS 106 89.4 81.0 102 | 3.04
2.29
2.02
1.30
6.55
6.59
5.97
7.17
5.24
6.05 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
6.81
6.83
6.91
6.18
6.16
7.48
8.63
8.13
8.58
6.53
6.53
6.53 | 8.0
6.28
7.8
7.2
7.8
150,
123,
233,
269,
104,
91,7
107,
28,2
29,6
25,5
234,
695,
589,
483,
731,
546, | | 9 9 9 9 9 9 10 14 16 13 15 14 13 11 7 7 7 7 8 8 9 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | | 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875 | 1/30
2/3
2/8
2/13
2/19
2/27
3/6
3/13
3/19
3/30
3/30
3/30
3/30
3/30
3/30
3/31
3/31
3/31
3/31
3/31 | 931A 435P 4345P 1014A 1014A 1024A 10 | DEVORE -MITTENDORF DEVORE | 18.8
13.6
36.0
24.5
9.7
18.9
14.8
12.7
12.7
20.0
13.0
40.00
35.0
32.0
29.0
47.0
62.0
60.0
35.0
33.0
35.0
30.0
30.0
30.0 | 9,111 5.05 37.2 24.3 3.37.2 6.00 4.99 5.11 5.06 12.8 5.42 78.0 66.7 62.6 52.2 108. 163. 154. 75.9 66.5 59.8 | 1.57 1.82 1.48 4.30 3.59 1.67 1.52 1.64 1.56 2.12 1.51 7.44 5.98 5.99 7.11 7.86 8.09 6.38 7.19 5.78 5.55 5.54 2.58 | 5.82
5.54
7.07
6.63
5.56
5.69
5.71
5.67
5.63
6.04
5.60
8.13
7.95
7.67
8.74
8.63
9.44
9.20
8.00
7.92
7.64
7.63
6.58 | 16.8 16.6 7.5 160. 87.2 5.6 9.1 8.1 8.4 7.9 27.1 8.2 580. 405. 399. 375. 333. 856. 769. 2278. 1250. 473. 478. 346. | | .6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6 | 10
8
9
9
9
10
10
6
6
6
5
7
8
6
7
6
5
5 | 0
-0.08
0
-0.08
0
-0.00
0
00
0
00
0
0
00
0
0
00
0
0
00
0
0
00
0
00
0
00
0
00
0
0
00
0
0
0 | | 908
909
910
911
912
913
914
915
916
917
918
920
921
922
923
924
925
926
927
928
929
930
931 | 10-3 10-9 10-17 10-23 10-30 11-6 11-12 11-13 11-14 11-23 11-23 11-23 11-23 11-25 12-26 12-26 12-26 12-26 12-26 12-27 | 1140A 1152A 1152A 150P 150P 150P 150P 150P 150P 150P 150P | TURNER TURNER YAN DER GOOT TURNER TURNER TURNER PARDIECK TURNER PARDIECK | 17.0 17.0 17.0 17.0 17.0 17.0 32.0 32.0 32.0 32.0 32.0 34.0 7 32.0 32.0 34.0 34.0 46.0 37.0 | 9.30
9.11
9.04
8.83
9.06
7.98
22.1
54.8
46.8
34.2
40.0
52.9
21.7
20.2
24.3
ANNELS
6.8
6.8
40.0
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8 | 3.04
2.29
2.02
1.47
1.05
6.55
6.59
7.17
5.24
6.05
5.92 | 6.40
6.40
6.40
6.32
6.37
7.02
7.02
7.05
6.81
6.83
6.91
6.18
6.18
6.16
7.48
8.63
8.13
8.58 | 8.0
6.8
7.8
7.2
7.8
5.1
150.
139.
233.
269.
107.
28.2
29.6
25.5
589.
483.
731.
546.
601. | | 9 9 9 9 9 9 10 14 16 9 13 15 14 13 17 7 7 8 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FC43 | F. C. Dist. Form 52 4-46 12.6 772. 13.9 826. | | DISCHARGE | E MEABURE | MENTS OF BIG TUJL | INGA CR | EEK | | | | | | | | ND. | DATE | BEDIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
BO, FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIDHT
FEET | | RAT- H | ETH- MEA | DHANG | K I | |------|---------------|-------------------------|-------------------|---------|-----------------|-------------------------|----------------|------------|-----------|-------|-----------------|-------|-----|--------|----------------------|---------|---------------|-------------------------------|---------------------------------|-------------------------|-----|----------|----------|-------|--------------| | | -A¥-
-NBAR | <u> </u> | ve Gold Canyon | | | DUR | ING THE Y | EAR ENDING | вертем | ER 30 | . 19.47 | | 953 | | 855A
907A
900A | | 10.0 | | | | 5.5 | T | | 0 | | | | i | BEGIN | · . | WIDTH | AREA DF | HEAN | DAUDE | DISTHARGE | RAT- HETA | MEAS | а. нт. | METER | 954 | 5-28 | 915A
850A | | 10.0 | 8.58 | 0.66 | 5.84 | 5.7 | - | 6 1 | 0 0 | - | | NO. | DATE | END | MADE BY | PEET | SECTION SO, PT. | VELOCITY
FT.PER SEC. | HEIGHT
FEET | | :NB BD | | CHANGE
TOTAL | , ND, | 955 | 6-4 | 905A | н | 10.0 | 8.16 | 0.64 | 5.80 | 5.2 | | 6 1 | 0 | " | | 934 | 1-10 | 305P
317P | BLAKELY | 28.0 | 22.6 | 1.77 | 6,15 | 40.0 | a. | 15. | _ه.إ | FC35 | 956 | 6-12 | 845A
905A | STUNDEN | 7.0 | 4.54 | 0.97 | 5.74 | 4.4 | . | 6 | 3 0 | FC36 | | _935 | -15 | 1045A
1100A | TURNER | 24.0 | 26.0 | 1.32 | 6.12 | 34.2 | .6 | 12 | 0 | FC43 | 957 | 6-19 | 930A
945A | * | 8.6 | 5.35 | 0.99 | 6.02 | 5.3 | | × | 0 | - | | 936 | -22 | 1025A
1040A | *** | 31.0 | 31.8 | 1.80 | 6.40 | 57.4 | 6 | 14 | 0 | ., | 958 | 6-19 | 1015A
1030A | | 6.5 | 4.49 | 1.16 | 6.02 | 5.2 | | 5
6 | 3 0 | *** | | 937 | 1-29 | 120P
130P | | 23.0 | 26.5 | 1.27 | 6.10 | 33.7 | .6 | 10 | 0 | | 959 | 6-25 | 850A
920A | | 6.0 | 4.57 | 1.25 | 6.04 | 5.7 | _ . | 6 | 7 0 | | | 938 | 2-6 | 1100A
1115A | | 21.0 | 19.2 | 1.49 | 6.06 | 28.7 | .6 | 8 | 0 | | 960 | 7-3 | 840A
850A | TURNER | 6.0 | 4.36 | 1.08 | 5.97 | 4.7 | _ . | 6 | 6 0 | FC43 | | 939 | 2-13 | 915A
930A | | 28.0 | 19,7 | 1,29 | 6.05 | 25.4 | .6 | 8 | 0 | ** | 961 | 7-10 | 1000A
1010A | | 6.0 | 4.44 | 1.15 | 6.14 | 5,1 | | 6 | 0 6 | ,. | | 940 | 2-19 | 910A
925A | | 22.5 | 24.0 | 1.06 | 6.03 | 25.4 | .6 | 11 | 0 | | 962 | 7-17 | 915A
925A | | 6.0 | 5.00 | 1.10 | 6.10 | 5.5 | Į, | 6 | 5 0 | | | 941 | 2-26 | 910A
925A | ,, | 23.0 | 21.0 | 0.97 | 5.91 | 20.3 | . , .6 | 12 | 0_ | | 963 | 7-24 | 920A
930A | ** | 6.0 | 4.90 | 1.14 | 6.04 | 5.6 | <u> </u> | 6 | 5 0 | | | 942 | 3-5 | 1135A
1150A | ** | 23.0 | 22.0 | 0.96 | 5,94 | 21.1 | .6 | 12 | | | 964 | 7-31 | 900A
915A | STUNDEN | 6.0 | 4,74 | 1,12 | 6.05 | 5,3 | | 6 | 7 0 | FC36 | | 943 | 3-14 | 830A
845A | STUNDEN | 15.0 | 15.0 | 0.40 | 5.55 | 6.0 | .6 | 12 | 0 | FC36 | 965 | 8-5 | 440P
450P | TURNER | 6.0 | 4.33 | 0.92 | 6.02 | 4.0 | | 6 | 6 0 | FC43 | | 944 | 3-19 | 940A
950A | TURNER | 13.0 | 10.5 | 0.70 | 5.51 | 7.4 | .6 | 7 | 0 | FC43 | 966 | 8-14 | 200P
210P | | 6.0 | 4.74 | 1.05 | 6.06 | 5.0 | | 6 | s 0 | | | 945 | 3-26 | 905A
915A | | 11.0 | 10.4 | 0.51 | 5,50 | 5.3 | ,6 | 11 | _0 | | 967 | 8-21 | 1050A
1100A | | 6.0 | 5.05 | 1,19 | 6.18 | 6.0 | | 6 | 5 0 | | | 946 | 4-2 | 830A
840A | ,, | 12.0 | 12.8 | 0.51 | 5.59 | 6.5 | .6 | 13 | 0 | | 968 | B-28 | 915A
925A | | 6.0 | 5,05 | 1.27 | 6.18 | 6.4 | | 6 | 0 | ,, | | 947 | 4-10 | 435P
445P | | 13.0 | 12.5 | 0.44 | 5.52 | 5.5 | -6 | 12 | . ا | ٠,, | 969 | 9-5 | 945A
955A | | 6.0 | 4.77 | 1.15 | 6.14 | 5.5 | | 6 | j 0 | | | 948 | 4-16 | 940A
952A | | 13.0 | 9.22 | 0.49 | 5.81 | 4.5 | .6 | 11 | 0 | | 970 | 9-11 | 850A
900A | | 6.0 | 4.94 | 1,13 | 6.15 | 5.6 | | 6 | | | | 949 | 4-23 | 915A
925A | • | 10.0 | 8.52 | 0.76 | 5.96 | 6.5 | .6 | 11 | 0 | | 971 | 9 - 18 | 1035A
1045A | н | 6.0 | 5,11 | 1,23 | 6.18 | 6.3 | | 6 | 0 | | | _950 | 4-30 | 820A
830A | | 10.0 | 8.40 | 0.76 | 5.97 | 6.4 | .6 | 11 | 0 | | 972 | 9 - 25 | 925A
935A | | 6.0 | 5.08 | 1.22 | 6.00 | 6.2 | | 6 | . 0 | ., | | | 5-8 | 1125A
1135A
1225P | | 10.0 | | 0.69 | 5.93 | 6.1 | .6 | | 0 | | 973 | 9 -30 | 1035A
1045A | ** | 6.0 | 4.89 | 1.15 | 5.94 | 5.6 | | 6 | 0 | | | 952 | 5-15 | 1225P
1237P | | 10.0 | 8.66 | 0.72 | 5.91 | 6.2 | .6 | 10 | 0 0 | | 1 | , | , | | | | | | | . т | | | , | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. F213-R HYDRAULIC DIVISION Gold Canyor BIG TUJINGA CREEK above Nov. Dec. Feb. July Aug. Sept. Apr. June 1 2 3 4 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 90 31
0011111221111100999155655445686 8 .4 8 .4 8 .4 8 .4 8 .4 7 .8 7 .8 744 1091 778 778 778 778 774 771 26 12 8650 44 91 24 8698 15063 4393 14649 2411 3899 389.4 11204 4162 5019 1611.0 318.0 2462 52.0 871, 3,200, 2,910 48.8 10.3 8.04 36.1 2,220. 8.21 12.6 773. YEAR MEAN 23.7 OR PERIOD ACRE-FEET 17,160 15.7 48.6 2,990. 16.2 996. F. C. Dist. Form 53 4-40 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Bts. No. F 213-R | Series Se | | | | BIG TU | JUNGA CRE | | Gold Cany | | | | the | | | |--|----------------------------|----------------------------------|--------------------------------|---------------------------------|---------------------------------|----------------------|--------------------------------|--------------------------------|---|--------------------------------------|--------------------------|--------------------------------------|--------------------------| | 2 10 9.0 29 59 30 20 6.6 6.3 5.0 4.6 6.6 5.2 4 11 1 14 28 115 29 20 6.6 5.8 5.2 4.6 14 5.4 5 77.5 7.5 28 49 29 20 6.6 5.8 5.2 4.6 14 5.6 6 7.5 5.0 36 46 29 20 6.3 6.0 5.0 4.8 4.6 4.2 6.0 6 7.7 5 5.0 36 46 29 20 6.3 6.0 5.0 4.8 4.8 4.2 6.0 8 7.2 4.6 32 44 29 20 6.3 6.0 5.0 4.8 4.8 4.2 6.0 8 7.2 6.0 31 42 27 20 6.0 5.0 4.8 4.8 5.0 10 6.3 4.2 30 41 28 20 6.0 6.0 5.0 4.8 4.8 5.0 7.7 11 6.3 7.8 30 40 26 20 5.8 6.0 4.8 5.0 5.2 5.2 11 6.3 4.2 30 40 26 19 5.8 6.0 4.8 5.0 5.2 5.2 11 6.3 6.6 29 38 26 8.7 5.4 6.6 4.4 5.0 5.2 5.2 12 6.3 6.6 29 38 26 6.9 4.5 2.0 5.8 6.0 4.8 5.2 5.0 5.2 5.2 13 5.8 191 28 36 26 6.9 4.5 2.0 6.0 4.8 5.0 5.2 5.0 5.2 14 5.8 231 27 35 26 6.0 4.7 5.0 5.0 5.2 15 6.3 225 26 34 26 5.8 6.0 4.2 5.0 4.8 5.2 16 9.0 194 26 33 26 6.0 4.4 6.0 4.6 5.0 5.0 5.2 15 6.3 225 26 34 26 6.9 4.5 0.0 4.4 6.0 4.6 5.0 5.0 5.2 16 9.0 194 26 33 26 6.0 4.4 6.0 4.6 5.0 5.0 5.2 17 7.5 33 26 33 26 6.3 4.6 6.0 4.6 5.0 5.0 5.0 5.2 18 7.5 27 26 32 26 6.3 4.8 6.0 4.6 5.0 5.0 5.0 5.2 19 7.5 26 26 32 26 6.3 4.6 6.0 4.6 5.0 4.6 5.0 5.0 5.2 24 7.5 27 26 32 26 7.8 6.0 5.8 5.2 5.0 5.0 5.2 24 7.5 6.9 22 5.7 24 6.0 5.8 5.6 5.4 5.4 5.6 6.0 29 7.2 242 23 32 26 7.8 6.0 5.8 5.4 5.4 5.6 6.0 29 7.5 114 6.4 4 54 20 5.2 6.9 5.8 5.6 5.4 5.4 5.8 5.0 21 7.5 114 6.4 4 54 20 5.2 6.9 5.8 5.4 5.4 5.6 5.0 5.0 22 7.5 117 170 5.6 21 5.6 6.9 5.8 5.4 5.4 5.0 5.0 5.0 24 7.5 114 6.4 4 54 20 5.2 6.9 5.0 5.8 5.2 5.4 5.4 6.0 25 7.5 117 170 5.6 21 5.6 6.9 5.8 5.4 5.4 5.0 5.0 5.0 28 9.0 9.9 30.5 3.9 20 10 6.6 5.8 5.8 5.4 5.0 5.0 5.0 28 9.0 9.9 30.5 3.9 20 10 6.6 5.8 5.8 5.4 5.0 5.0 5.0 28 9.0 9.9 30.5 3.9 20 10 6.6 5.8 5.8 5.4 5.0 5.0 5.8 5.4 5.6 5.0 5.0 29 8.1 104 296 33 31 7.8 6.3 5.4 5.4 5.0 5.0 5.8 5.4 5.4 5.0 5.0 5.0 20 7.2 242 23 30 25 25 26 5.3 4.8 5.2 5.4 5.4 5.8 5.0 5.0 5.0 5.0 28 9.0 9.9 30.5 3.9 20 10 6.6 6.9 5.8 5.8 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5 | Day | | | | 1 | | | | Мау | June | 1 | | 7 | | 6 7 7 5 5 0 3 6 4 6 29 20 6 3 6 0 4 8 4 6 6 0 8 7 7 7 2 4 6 6 3 1 4 2 27 20 6 0 6 0 6 0 5 0 4 8 4 6 4 2 4 8 8 6 8 7 7 2 6 0 31 42 27 20 6 0 6 0 6 0 5 0 4 2 4 8 8 6 8 6 6 4 6 6 0 4 6 6 5 0 4 2 4 8 8 8 6 6 6 4 6 6 5 0 4 2 6 7 7 7 7 8 6 6 3 4 2 30 4 0 2 6 19 5 6 6 3 4 8 5 2 5 0 5 2 5 2 11 6 5 3 6 6 2 9 3 8 2 6 6 8 7 8 5 4 6 6 4 4 2 5 0 0 4 8 5 2 5 0 5 2 1 5 2 1 5 5 0 1 5 2 1 5 2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | 2
3
4 | 10
11
11 | 9.0
14
14 | 29
28
28 | 59
91
115 | 30
29
29 | 20
20 | 6.6
6.6
6.6 | 6.0
5.8 | 5 .0
5 .0
5 .2 | 4 £
4 £
4 £ | 6.6
8.7
14 | 5 &
5 &
5 & | | 12 6 3 6 6 29 38 26 87 d 5 2 6 0 4 A 50 0 4 6 52 14 58 191 28 36 26 69 d 5 2 60 4 2 50 4 8 52 14 58 231 27 35 26 60 d 5 2 6 6 3 4 5 50 50 50 52 15 6 3 225 26 33 26 60 d 4 7 6 3 4 5 50 50 5 0 5 A 16 9 0 194 26 33 26 60 d 4 7 6 3 4 5 50 4 6 5 A 50 60 18 7 7 5 2 7 26 33 26 63 4 A 6 6 0 4 6 5 A 50 60 18 7 5 2 7 26 33 26 63 4 A 6 6 0 4 6 5 A 50 60 18 7 5 2 7 26 32 26 63 4 A 6 6 0 4 8 5 A 5 0 60 18 7 5 2 7 26 32 26 67 5 5 0 5 8 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A | 6
7
8
9 | 7 5
7 2
7 2
6 6 | 5.0
4.6
6.0
4.6 | 36
32
31
30 | 46
44
42
41 | 29
29
27
28 | 20
20
20
20 | 6.3
6.0
6.0 | 6.0
6.0
6.0 | 5.0
4.8
5.0
4.8 | 4.8
4.6
4.2
4.8 | 4.0
4.2
4.8
5.0 | 5.6
6.0
8.6
7.7 | | 17 75 33 26 33 26 63 4 4 6 0 4 6 5 4 5 0 6 0 18 7 5 27 26 32 26 63 4 6 60 4 6 5 4 5 6 6 0 18 7 5 26 26 32 26 75 5 0 5 8 5 2 5 4 5 6 6 19 7 2 24 2 2 3 32 26 7 5 5 0 5 8 5 2 5 4 5 6 6 10 7 2 27 2 19 45 2 90 7 8 5 6 5 6 5 4 5 8 6 11 7 2 27 2 19 45 2 90 7 8 5 6 5 6 5 4 5 8 6 12 7 5 15 7 19 58 2 7 5 7 2 6 5 6 5 6 5 4 5 8 6 12 7 7 8 8 4 19 5 7 2 6 9 6 6 5 6 5 6 5 4 5 8 6 12 7 7 8 8 19 19 19 19 19 19 | 11
12
13
14
15 | ក្នុង
ក្នុង
ក្នុង
ក្នុង | 7.8
66
191
231
225 | 3 0
2 9
2 8
2 7
2 6 | 4 0
3 8
3 6
3 5
3 4 | 26
26
26
26 | 19
8.7
6.9
6.0
5.8 | 5.4
d 5.2
d 5.0
d 4.7 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 .8
4 .4
4 .2
4 .6
4 .7 | 5 Q
5 Q
5 Q
5 Q | 5 .0
4 .6
4 .8
5 .0
5 .0 | 5 2 2 2 5 5 4 | | 22 7.5 157 19 58 2 7.5 7.2 5.6 5.6 5.4 5.8 7.9 23 7.8 6.9 19 57 2 6.9 6.6 5.6 5.6 5.4 6.3 7.2 24 7.5 6.9 22 57 24 60 6.9 5.8 5.8 5.4 6.0 6.8 25 7.5 117 170 56 21 5.6 6.9 5.2 5.8 5.2 6.0 5.4 26 7.5 114 644 54 20 5.2 6.9 5.0 5.8 5.2 6.0 5.4 27 8.1 108 473 50 20 5.2 6.9 5.0 5.8 5.2 6.0 5.0 28 9.0 9.9 305 339 20 10 6.6 5.8 5.2 6.0 5.0 29 8.1 104 296 33 8.7 6.6 5.6 5.4 6.3 5.0 6.0 5.2 20 8.1 104 296 33 8.7 6.6 5.4 6.3 5.0 5.8 5.0 5.8 30 7.8 88 293 31 7.8 6.3 5.4 5.4 5.0 5.2 31 7.5 278 30 726 0 362 0 52 5.8 5.8 5.0 5.0 5.8 5.0 31 7.5 8 8 8 293 31 7.8 6.3 5.4 5.4 5.0 5.2 31 7.5 8 8 8 293 32 | 17
18
19
20 | 7 5
7 5
7 5
7 2 | 33
27
26
242 | 26
26
26
23 | 3 2
3 2
3 2 | 26
26
26
26 | 6 3
6 9
7 5
7 8 | 4.4
4.6
5.0
6.0 | 6 Q
6 Q
5 B
5 B | 4 .6
4 .8
5 .2
5 .4 | 5 A
5 A
5 A
5 A | 5.0
5.6
5.8 | 6.0
6.0
6.3 | | 27 8 1 108 473 50 20 52 69 5.6 5.8 52 6.0 5.0 28 9.0 9.9 305 339 20 10 6.6 5.8 5.8 5.0 6.0 5.2 28 8.1 104 296 33 7 8 6.6 5.4 6.3 5.0 5.8 5.6 30 7.8 8.8 293 31 7.8 6.3 5.4 5.0 5.4 5.0 246.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 246.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 2530.6 1558.0 72.6 0 362.0 181.8 155.0 178.0 2530.6 1558.0 1558.0 178.0 175.8 1558.0 178.0 175.8 1558.0 178.0 175.8 1558.0 178.0 175.8 1558.0 178.0 175.8 1558.0 178.0 175.8 1558.0 175.0 175.0
175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175. | 22
23
24
25 | 7.5
7.8
7.5
7.5 | 157
84
69
117 | 19
19
22
170 | 58
57
57
56 | 2
2
24
21 | 7.5
6.9
6.0 | 7 &
6 .6
6 .9
6 .9 | 5 & &
5 & &
5 & &
5 & & | 5 .6
5 .8
5 .8 | 5 A
5 A
5 A
5 2 | 5.8
6.3
6.0
6.0 | 7 9
7 2
6 6
5 4 | | 246.0 2530.5 3109.0 726.0 362.0 181.8 154.8 178.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175.0 175.8 155.0 175. | 27
28
29
30 | 8 1
9 0
8 1
7 8 | 108
99
104 | 473
305
296
293 | 50
39
33
31 | 20 | 5 2
1 0
8 7
7 .8 | 6.9
6.6
6.6 | 5.6
5.8
5.4
5.4 | 5.8
5.8
6.3 | 5.0
5.0
5.0 | 6.0
6.0
5.8
5.4 | 5.0
5.2
5.6 | | ACTION 1.724 04.14 100 04.15 11.15 1 | | | 2530.6 | 3109.0 | 1558.0 | 726.0 | | | | 54.8 | | 178.0 | 175.8 | | Ramarka: YEAR MEAN 26.2 | | | | | | | | | | | | i | 1 | | | PERT | | 5,020 | 6,170 | 3,090 | 1,440 | 718 | 362 | 361 | | YEAR MEA | N 26.2 | | ### STATION FRANCE TUJUNGA WASH below Hansen Dam LOCATION: WATER-STAGE RECORDER AND SHARP-CRESTED WEIR, LAT. 34°15'31". LONG. 118°23'11". AT LOWER END OF OUTLET STRUCTURE OF HANSEN DAM. IN EX MISSION SAN FERRANDO GRANT. IN CITY OF LOS ANCELES, 3 MILES SOUTHEAST OF SAN FERRANDO, LOS ANGELES COUNTY. DATUM OF GAGE IS 96.29 FEET ABOVE MEAN SEA LEVEL. DATUM OF 1929 (CORPS OF ENGINEERS, U.S. ARMY, BENCH MARK). RECORDS AVAILABLE: OCTOBER 1940 TO SEPTEMBER 1947 IN REPORTS OF GEOLOGICAL SURVEY, APRIL 1932 TO SEPTEMBER 1940 (FRACMENTARY) AND OCTOBER 1940 TO SEPTEMBER 1947 IN ANNUAL REPORTS OF LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. ## EXTREMES OF DISCHARGE: IEMES OF DISCHARGE: 1945-1946 MAXIMUM DISCHARGE 610 SECOND-FEET DECEMBER 23 (GAGE HEIGHT 4.12 FEET). NO FLOW ON MANY DAYS. 1946-1947 MAXIMUM DISCHARGE 900 SECOND-FEET DECEMBER 27 (GAGE HEIGHT 5.11 FEET). NO FLOW ON MANY DAYS. 1940-1947 MAXIMUM DISCHARGE 1780 SECOND-FEET JANUARY 23, 1943. NO FLOW DURING PARTS OF EACH YEAR. REMARKS: RECORDS GOOD EXCEPT THOSE FOR DECEMBER 22-25, 1945. WHICH ARE FAIR. STORAGE AND DIVERSIONS ABOVE STATION. FLOW REGULATED BY MANNEY FLOOD CONTROL DAM. FLOW BELOW THE STATION CAN BE DIVERTED TO HANSEN SPREADING GROUNDS. RECORDS OF DIVERSION AND FLOW DOWN TUJUNGA WASH ARE PUBLISHED UNDER STATION F208-R. COOPERATION: GAGE-HEIGHT RECORD AND FOUR DISCHARGE MEASUREMENTS FURNISHED BY CORPS OF ENGINEERS, U.S. ARMY. | | | | MENTS OF TUJ | | | | . h | | | | | | | | | | HENTE OF TUJUNG | | | | | | | | | | | |------|--------|--------------|--------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|--|----------------------|---------------------------|--------------|-----|-------|--------------|-----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-----------|----------------------|---------------------------|--------------| | | b | elow h | ansen Dam | | | | ING THE | YEAR ENDING | MEPTE | MBER | 30, | ·• 46 | | | | helow | Hansen Dam | | | DUR | HND THE | YEAR ENDIN | g BEP | TEMBER | 2 3D, | 19_47_ | | | жо. | DATE | BEGIN
END | MADE BY | WIDTH
FEXT | AREA DF
SECTION
EQ. FY. | MEAN
VELOCITY
FT.PER BEC. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- MI | ETH- N | IEAB.
BEC.
NG. | E. MT.
CHANGE
TOTAL | METER
NO. | N. | DATE | BEBIN
END | HADE BY | WIDTH
FEET | AREA OF
RESTION
AG. FT. | HEAN
VELUGITY
FT.PER BEG. | BAUGE
HEIGHT
FEET | DINCHARGE
SEC. FT. | RAT- | METK- | HEAB.
BEG.
NO. | B. HY.
GMANGE
TOTAL | HETER
NO. | | 62 | 10-2 | | U.S.E.D. | 4.8 | 1.85 | 1.41 | .53 | 2.61 | | 5 | 9 | 0 | | 90 | 10-1 | | U.S.G.S. | | | | 0.08 | 0.019 | | VOL | | | | | 63 | 10-9 | | U.S.G.S. | 5.0 | 1.55 | 1.37 | 52 | 2.13 | 1 | | 11 | 0 | | 91 | 10-15 | | 1, | | ļ | | 0.11 | 0.044 | | VOL | | | | | 64 | 10-17_ | | | 10.5 | 3.41 | 1.11 | 63 | 3.80 | ļ., | <u>.</u> | 20 | 0 | | 92 | 10-29 | | p. | ļ | | | 0.03 | 0.002 | | VOL_ | | | | | 65 | 10-23 | <u> </u> | * | 23.7 | 16.9 | .46 | .78 | 7.8 | | _ | 19 | 0 | | 93 | 11-6 | | " | 29,5 | 76.6 | 2,64 | 2,97 | 202 | | 2-8 | 8 | .0 | | | .66 | 10-30 | ļ | • | 1.5 | .13 | .21 | .13 | .027 | 6 | i | 4 | 0 | | 94 | 11-8 | | ,, | 22.8 | 30.4 | 1.25 | 1.53 | 37.9 | | .6 | 9 | 0 | ļ | | 67 | 11-28 | | " | | ļ | ļ | .08 | .024 | Į v | н. | _ | 0 | | 95 | 11-12 | | | 38 | 28.2 | 0.96 | 1.23 | 27.2 | L | .6
2-8 | 12 | +.02 | | | . 68 | 12-5 | ļ | b) | | ļ | ļ | .09 | .033 | ys | <u>.</u> | _ | 0 | ļ | 96 | 11-19 | | | 44 | 65.9 | 1,08 | 1.92 | 71.1 | L | | 11 | 01 | | | 69 | 12-11 | | | 2.0 | 19 | .38 | -16 | .073 | | 4 | 4 | 0 | | 97 | 11-22 | | ., | 50.0 | 88.9 | £1.83 | 2.62 | 163 | L | .6
2-8 | .12 | | | | 70 | 12-23 | | U.S.E.D. | 60. | 281. | 2.20 | 4,10 | 618, | | | 14 | 0 | | 98 | 12-3 | | | 28.5 | 26.4 | 1.02 | 1.27 | 26.8 | | .6 | 8. | ۵ | ļ | | 71 | 12-23 | <u> </u> | * | 60, | 281. | 2,09 | 4.10 | 588. | . 6 | _ | 14 | 0 | | 99 | 12-10 | | " | 33 | 34.7 | 1.10 | 1.46 | 38.1 | _ | -6 | 15 | _0 | | | 72 | 12-24 | | • | 60. | 252. | 2.15 | 3.95 | 543. | ļι | | 12 | 02 | ļ | 100 | 12-17 | | | 33.0 | 31.6 | 0.72 | 1.22 | 22.9 | <u> </u> | .6 | 14 | _0_ | ļ | | 73 | 12-28 | | U.S.G.S. | | | | .11 | .045 | M | N. | _ | | ļ | 101 | 1-14 | ļ | | 33 | 33.1 | 0.91 | 1.35 | 30.0 | ļ | .6 | 13 | 0 | | | 74 | 1-4 | ļ | н | 34.5 | 31.4 | .57 | 1.13 | 17.9 | 2 | | 10 | 0 | ļ | 102 | 1-28 | | | 41.0 | 46.8 | 0.96 | 1.58 | 45.1 | <u> </u> | .6 | 18 | .0 | | | 75 | 1-9 | | | 29. | 18.3 | .35 | .77 | 6.4 | ε | 4 | 10 | 0 | ļ | 103 | 2-12 | ļ <u>.</u> | ļ.,, | 32 | 31.8 | 0.74 | 1.24 | 23.4 | _ | .6 | 16 | 0 | - | | 76 | 1-16 | | * | | ļ | ļ | | .011 | Vo | L | _ | | <u> </u> | 104 | 2 -25 | | <u> </u> | 33 | 26.8 | 0.74 | 1.13 | 19.7 | - | .6 | 13 | 0 | <u> </u> | | _77 | 1-23 |
ļ | | 53. | 51.7 | 1.20 | 1.67 | 53.2 | 1 | Ц | 18 | +.04 | ļ <u>.</u> | | | | | | | | | | | | | | | | 78 | 2-13 | ļ | | | | ļ | .22 | .22 | Ψo | - | | | ļ | | | | | | | | | | | | | | | | 79 | 2-20 | | | _ | ļ | ļ | 21_ | -073 | vc | | | | <u> </u> | | | | | | | | | | | | | | | | 80 | 2-27 | - | - | 2.0 | .30 | .87 | 18- | .26 | 5 | 4 | 4 | 0 | ļ | | | | | | | | | | | | | | | | 81 | 3-6 | ļ | | | ـــــــ | ļ | .13 | 022 | ψc | L | | | | 1 | | | | | | | | | | | | | | | 82 | 3-12 | | ** | _ | ļ | | .08 | -011 | vc | L | | | | | | | | | | | | | | | | | | | 83 | 3-27 | ļ | | | - | | .13 | .055 | , vo | 4 | _ | | ļ | 1 | | | | | | | | | | | | | | | _84 | 5+8 | ļ | • | | ļ | | 0.10 | 0.037 | Vc |)L | | | ļ | 1 | | | | | | | | | | | | | | | 85 | 5-14 | ļ | - | 65. | 161. | 1.78 | 3.23 | 287. | 1 | i | 24 | 01 | | 1 | | | | | | | | | | | | | | | 86 | 8-20 | | | | ļ | ļ | 12 | .12_ | , ys |) <u>. </u> | | | ļ | ļ | | | | | | | | | | | | | | | .87 | 9-5 | | * | | ļ | ļ | 11- | .078 | Į v | <u>u_</u> | | | <u> </u> | Į. | | | | | | | | | | | | | | | 88 | 9-11 | | * | 3.2 | . 1.00 | 1.55 | .41_ | 1.55 | E | 4 | 9 | 0 | | 1 | | | | | | | | | | | | | | | .89 | 9-20 | <u> </u> | | | | | .05 | .007 | Į vc | »L | | | <u> </u> | 1 | | | | | | | | | | | | | | | P. C. Dis | L Form 52 4-44 | | | | FLO | LOS ANGELES
OOD CONTRO
YDRAULIC I | L DISTRICT | | | | Sta. N | . E286-R | |----------------------------|---------------------------------|--------------|---------------------------------|-------------------------------|---------------------------------|---|--------------------------|-------------------------------|--------------------|-------------------------------------|----------------------------|--------------------------------------| | Datler | iischarge, in se | conditest of | TUJUNGA | WASH belo | | | DIVISION | | | , for the year | r ending Septem | ther 30, 19 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apř. | Мау | June | July | Aug. | Sept. | | 1
2
3 | 2.9
2.4
2.3 | 0 | 0 | 0
0 1
2 6 | 0
0
0.1 | 0.2
0.2
0.1 | 3.0
3.0
0.0 | 0
0
1 1 | 000 | 0 | 000 | 0
0
3.7
0.8 | | 4 5 | 2.4 | 0 | 0 | 2.9 | 01 | 0 0 | 113 | 2 1
1 2 | 0 | 0 | 0 | 3.2 | | 8
7
8
9 | 2.7 2.7 2.7 2.9 | 0 0 0 | 0
0 1
0 1
0 1 | 0
3 A
1 6
1 5
5 0 | 0
114
118
0 | 0000 | 0 2
0 2
0 1
0 1 | 0.5
0
2.7
8.2
4.5 | 62
26
0 | 0000 | 0
0
4 1
0 | 1 A
2 1
2 1
7 0
9 7 | | 11
12
13
14
15 | 3 1
3 2
3 2
3 1 | 0 0 | 01 | 3.5
0
0
0 | 0 1
0 2
0 2
0 2
0 3 | 0 0 0 0 | 0000 | 0
0
12
58 | 0
0
5 3
0 | 2 3
6 5
5 0
4.7
28 | 00000 | 1 .6
1 .1
1 .5
1 .5
1 .5 | | 18
17
18
19 | 3 1
3 5
3 2
3 1 | 0 0 0 | 01
01
01 | 1.9
1.1
1.8
0.8 | 0.2
0.1
0.1
0.1 | 0 0 0 0 | 0000 | 0 0 0 | 00000 | 2.5
2.4
1.3
3.3
2.5 | 0
0
0
5 .5
2 4 | 4.6
15
0
0
0.1 | | 21
22
23
24
25 | 4.2
6.4
6.5
4.7
4.9 | 0 0 0 | 0 2
137
485
543
150 | 0 A
5 .5
7 .2
0 | 0 2
0 3
0 3
0 2
0 3 | 0000 | 0000 | 0 1
61
0
0 | 00000 | 2 5
1 5
1 3
1 6
1 5 | 21
0
0
0
0 | 0
0
6 2
12
0 | | 28
27
28
29
30 | 4.9
5.3
5.7
4.4
0 | 00000 | 0 1
0 0
0 | 0 0 0 | 0 3
0 3
0 2 | 0 3
0 4
0 1
0 2
0 4 | 0000 | 00000 | 9 .6
0
0 | 3 4
1 .6
1 .6
0 .9
1 .4 | 00000 | 0000 | | 31 | 0 | 0 : | 1316.8 | 475 | 2359 | 2.4 | 237.9 | 191.9 | 150.6 | 1361 | 54.6 | 75.1 | | MEAN | 3.52 | 0 | 42.5 | 1.53 | 8.42 | .08 | 7.93 | 6.19 | 5.02 | 4.39 | 1.76 | 2.50 | | ACRE-
PERT | 216. | 0 | 2,610 | 94. | 468. | 4.8 | 472. | 381. | 299. | 270.
YEAR MEA | | | | | Demarks. | | | | | | | | F | PERIOD ACR | e-feet | 5,070. | ## IOR ANGELES COUNTY HYDRAULIC DIVISION Sta. No. F288-R | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 114
527
266
3347
278
408
329
6534
224
224
224
222
220 | 175459350455935000000000000000000000000000 | 55000000000000000000000000000000000000 | 166901 | Apr. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | O O O O O O O O O O O O O O O O O O O | 8ept. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |---|---|--|---|--
--|---|--|---|---|---| | 0 0 0 0 0 0 113 1 0 7 3 8 1 1 2 2 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 1 | 53766478082965444432 | 164
1559
1235
74037
229
301
311
300
3293 | 0.000000000000000000000000000000000000 | 16 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | 0
0
0
11037
11037
1 120
1 120
1 143
1 144
1 120
1 120 | 2766478082965444432 | 15593
15275
42379
33111
3300993 | 9 B 6 6 5 4 4 6 6 5 4 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 9.5 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | 0
113
107
1 38
1 19
1 12
1 10
1 43
1 143
1 143
1 123
1 123
1 130 | 2 6 6 5 4 7 8 0 0 8 2 9 6 5 4 4 4 4 3 2 2 2 2 2 4 4 4 3 2 2 2 2 2 4 4 4 3 2 2 2 2 | 1595
1525
1525
1525
1525
1525
1525
1525 | 8 6 6 5 4 4 6 6 5 5 4 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0 | 0 | 000000000000000000000000000000000000000 | 00000000000000 | 000000000000000000000000000000000000000 | | 103
107
1 38
1 19
1 12
1 100
1 43
1 143
1 143
1 123
1 123
1 123
1 123
1 123
1 130 | 3 6
3 4 7
2 8 0 8
3 2 9 6 5 2 4
2 2 4 4 2 2 2 | 123
75
40
275
229
30
311
330
30
299
30
299
30
311
30
30
30
30
30
30
30
30
30
30
30
30
30 | 665446655444500000 | 01 | 000000000000000000000000000000000000000 | 0 | 0 | 000000000000 | 0000000000000 | 000000000000000000000000000000000000000 | | 107
38
119
110
110
110
110
110
110
110
110
110 | 2780829654
43829654
22444432 | 4037
229
33111
330
330
330
330
330
330
330
330
3 | 5 4 4 6 6 5 5 4 4 4 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0 | 00000000000 | 00000000000 | 0000000000 | | 1 38
112
1 12
1 10
1 143
1 168
1 123
1 123
1 123
1 120
1 130
1 130 | 2 8 4 0 8 3 2 9 2 5 5 4 2 2 4 4 4 2 2 2 2 2 2 2 2 2 2 2 | 237
229
331
331
330
330
329
33 | 4 4 6 6 5 4 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 00000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000000 | 0000000000 | 00000000 | | 1 19
12 10
1 10
1 143
1 164
1 123
1 123
1 132
76
22
180 | 4 5 8 2 9 6 5 4 4 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 279
301111000993 | 2 0 0 5 4 4 4 B 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0000000000 | 0000000000 | 000000000000000000000000000000000000000 | 0 | 000000000 | 00000000 | 0000000 | | 1 12
1 10
1 143
1 168
1 144
1 123
1 120
132
76
22
180 | 3829654444430 | 29
3311
330
330
333
333
333
333
333
333
33 | 00544450000000000000000000000000000000 | 000000000 | 000000000 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 00000000 | 00000000 | 0 0 0 0 0 0 | | 1 10
1 43
1 168
1 144
1 123
123
122
76
22
180 | 3 9 6 5 4 4 4 4 4 3 2 2 | 30
311
30
300
300
300
300
300
300
300
30 | 05444500000000000000000000000000000000 | 00000000 | 00000000 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0000000 | 0000000 | 0 0 0 0 0 0 | | 1 43
143
168
1 144
1 123
120
132
76
22
180 | 29654444432
2222222222222222222222222222222 | 31
311
300
300
300
299
35 | 55444500000000000000000000000000000000 | 000000 | 000000 | 0 0 0 | 0
0
0
0 | 00000 | 000000 | 00000 | | 1 143
1 168
1 144
1 123
120
132
76
22
180 | 26
25
24
24
24
24
23
22 | 31
30
30
30
29
29 | 4 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 00000 | 00000 | 0 0 0 | 00000 | 000000 | 0000 | | 1 168
1 144
1 123
120
132
76
22 | 25
24
24
24
24
23
22 | 31
30
30
30
29
29 | 24 22 22 22 22 22 22 22 22 22 22 22 22 2 | 0000 | 000 | 0 0 | 0 0 0 | 000 | 000 | 0 | | 1 123
120
132
76
22
180 | 24
24
24
23
22 | 30
30
29
29
33 | 200000000000000000000000000000000000000 | 0000 | 0000 | 0 | 0 | 000 | 000 | 000 | | 120
132
76
22
180 | 2 4
2 4
2 3
2 2 | 30
29
29
33 | 22 | 0 | 000 | 0 | 0 | 0 | 00 | 0 | | 132
76
22
180 | 2 4
2 3
2 2 | 29
29
33 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 76
22
180 | 23 | 29
33 | 22 | 0 | Ó | | | | | | | 180 | 22 | 33 | 22 | , × | | | | | | | | 180 | | 7. | | | 0 | Ιō | ŏ | ŏ | ŏ | Ŏ | | 1 000 | | 3 4 | 22 | Ö | 0 | 0 | 0 | Ō | Ö | 8 | | | 19 | 38 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 160 | 18 | 41 | 21 | 0 | o o | o | 0 | 0 | O I | 0 | | 156 | 1.9 | 4.3 | 20 | 0 | 0 | o | 0 | 0 | o l | 0 | | 148 | 360 | 4 4 | 18 | 0 | 0 | 8 | 8- | 0 | 0 | 8 | | | | | | | | | | | | ŏ | | | | | | | ŏ | | | | | ŏ | | 137 | 230 | 46 | | 0 | Ō | 0 | 0 | Ō | o | o | | 156 | 186 | 4.4 | | 0 | 0 | 0 | 0 | O | 0 | 0 | | | 167 | 4.0 | | 0 | | 1 0 | | 0 | 0 | | | .9 | 26540 | | 6670 | | 0 | | 0 | | 0 | | | | | 1740.0 | | 41.6 | • | 0 | Ü | 0 | J | 0 | | 73 93.1 | 85-6 | 56.1 | 23.8 | 1.34 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1 | 3 1/50 | 1.320 | gr | . 0 | 0 | 0 | | | | | 4: | | ····· | · · · · · · · · · · · · · · · · · · · | | | V | | | | | | | 137
119
137
156
2793.
3 93.1
5,550 | 9 2654 0
2793.0
15,540 5,260 | 9 2654 0
2793 0 5,260 3,150 | 9 2654 0 667 0 2793 0 5,550 5, | 137 480 45 17 0
119 455 46 17 0
137 230 46 17 0
156 186 44 0
0 0
9 26540 6670 416
3 93,1 85,6 56,1 23,8 1,34
5,540 5,260 3,450 1,320 83 | 137 486 45 17 0 0 0 119 455 46 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 137 480 455 17 0 0 0 0 119 455 46 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 137 480 45 17 0 0 0 0 0 0 119 455 46 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 137 450 45 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 137 486 45 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | #### STATION FOOB-R TUJUNGA WASH at Glen Oaks Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34915'08", LONG, 118°23'22", ON THE DOWNSTREAM SIDE OF THE GLEN OAKS BOULEVARD (FORMERLY REMSEN AVENUE) BRIDGE APPROXIMATELY 3 MILES SOUTHEAST OF SAN FERNANDO AND 0,5 MILE BELOW HANSEN DAN. ELEVATION OF ZERO GAGE HEIGHT, 937.98 FEET. PUBLISHED HEREWITH IS THE DIVERSION TO HANSEN SPREADING GROUNDS. (SEE DEPLAYED) DRAINAGE AREA: 148 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL IS WIDE AND COMPOSED OF SAND, GRAVEL AND BOULDER, BOULDERS PREDOMINATING. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENT: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR ABOVE STATION. RECORDER: INSTALLED APRIL 29, 1932 AT STATION F20-R AT
STONEHURST AVENUE, WASHED OUT DURING THE MARCH 2, 1938 FLOOD. REINSTALLED AT STATION F208-R AT GLEN DAKS BOLLEVARD (FORMERLY REMSEN AVENUE), JULY 2, 1940 OVER A 21 INCH CORRUGATED IRON-PIPE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY HANSEN DAM. INFLOW TO HANSEN DAM PARTIALLY REGULATED BY BIG TUJUNGA DAM #1 AND BY HAINES CANYON DEBRIS BASIN. DIVERSIONS: SOME WATER DIVERTED FOR IRRIGATION NEAR MOUTH OF BIG TUJUNGA CANYON. FLOW CAN BE DIVERTED ABOVE THE STATION TO HANSEN SPREADING GROUNDS. RECORDS AVAILABLE: JANUARY 1931 TO APRIL 1932 RANDOM MEASUREMENTS AVAILABLE. RECORDER RECORDS FROM APRIL 29, 1932 TO DECEMBER 31, 1933. NO COMMUNICATION FROM DECEMBER 31, 1933 TO MARCH 9, 1934. RANDOM MEASUREMENTS AVAILABLE. RECORDER RECORDS FROM MARCH 9, 1934 TO MARCH 2, 1938 TO JULY 25, 1940 RANDOM MEASUREMENTS AVAILABLE. RECORDER RECORDS FROM MARCH 9, 1934 TO MARCH 2, 1938 TO JULY 25, 1940 RANDOM MEASUREMENTS AVAILABLE. RECORDER RECORDS FROM JULY 25, 1940 TO SEPTEMBER 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 610 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW MOST OF YEAR. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 880 SECOND-FEET, DECEMBER 27. MINIMUM NO FLOW MOST OF YEAR. 1932-1947 AT STATION F20-R AND F20B-R. MAXIMUM 54,000 SECOND-FEET, ESTIMATED, MARCH 2, 1938. MINIMUM NO FLOW PART OF EACH YEAR. ACCURACY: GOOD. OPERATION: LOCATED AND CONSTRUCTEO BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. OPERATED IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY AND CORPS OF ENGINEERS, U.S. ARMY. REMARKS: HANSEN SPREADING GROUNDS INTAKE WAS CONSTRUCTED DURING SUMMER OF 1944. SUBSEQUENT RECORDS AT STATION 208 MEASURE CUTFLOW FROM HANSEN DAM LESS SPREADING DIVERSIONS. CONTINUED OPERATION OF THE STATION IS FOR FLOOD FLOWS ONLY. RECORDS OF OUTFLOW FROM HANSEN DAM AS RECORDED BY THE UNITED STATES GEOLOGICAL SUMVEY AT THEIR STATION IN THE OUTLET CHANNEL BELOW HANSEN DAM ARE PUBLISHED UNDER STATION E286-R. PUBLISHED HEREWITH ARE THE RECORDS OF DIVERSION TO HANSEN SPREADING GROUNDS AND FLOW DOWN TUJUNGA WASH. ## DIRCHARGE MEASUREMENTS OF TUJUNGA WASH ### Glenoaks Boulevard (Below Spreading Grounds Diversion) DURING THE YEAR ENDING BEFTEMBER 30. 19.18 | KQ. | DATE | PEGIN | | w:рти | AREA DF | HEAN | GAUDE | DIRCHARGE | RAT- | икти- | HEAR. | B. HT. | HETER | |-----|------|-------|---------|-------|---------|-------------|-------|-----------|------|-------|-------|--------|-------| | RU, | DATE | END | MADE BY | FEET | BQ. FT. | PT.PER MED. | PEET | BEG. 97. | INO | QD. | NO. | TOTAL | NO. | | 7 | | 227P | | | | | | | | | | | | | | 1/9 | 239P | DE VORE | 18.5 | 8.62 | 1.08 | | 9.3 | | -6 | 8 | | FC42 | | | 1 | 4E 2D | | ř | | i l | | } | | | | | | | 8 | 1/23 | 2051 | * 1 | 23.0 | 14.1 | 1.42 | | 20.1 | | 6 | 9_ | | ** | F. C. Disk, Porm 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Bts. No. F20 B-R | ally d | lischarge, in se | cond-feet of | TUJUNGA | WASH at | Glen Oaks | Boulevar | d | | | , for the year | r ending Septer | nber 30, 19 U | |----------------------------|---------------------------------|--------------|---------------------------------|---------------------------------|---|--|---------------------------------------|--------------------|-------|--|--------------------|--------------------------| | Эву | Oot. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 2 3 | 2.9
2.4
2.3 | 0 0 | 0 | 0
0 1
2 .6 | 0 1 | 0 2
0 2
0 1 | 3.0
3.0
9.0 | 0
0
1 1 | 0 | 000 | 0 | 0
0
3.7 | | 5 | 2.4 | 0 | 8 | 29
21 | 01 | 00 | 0
11 | 2 1
1 2 | 0 | 0 | 0 | 0.8
3.2 | | 6
7
8
9 | 2,7
3.5
2.7
2.7
2.9 | 0000 | 0
0
1
0
1
0
1 | 0
3.4
1.6
1.5
5.0 | 0 0 0 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.5 | 00000 | 0000 | 0
4 1
0
0 | 1.4
2.1
2.0
7.0 | | 11
12
13
14 | 31
32
32
31 | 0 | 0 1
0 1
0 1
0 1 | 3.5
0
0
5.5 | 0000
0000
0000 | 00000 | 00000 | 0 | 00000 | 25 Q 7 Q 7 Q 7 Q 7 Q 7 Q 7 Q 7 Q 7 Q 7 Q | 00000 | 1.6
1.1
1.5
1.5 | | 16
17
18
19 | 3 1
3 5
3 2
3 1
4 2 | 0 0 | 0 1
0 1
0 1 | 1.9
1.1
1.8
0.8
0.6 | 0000 | 0000 | 0 0 0 | 0 0 0 | 00000 | 2.5
2.4
1.3
0.5 | 0
0
5.5 | 4.6
0
0
0 | | 21
22
23
24 | 6.4
6.5
4.7
4.9 | 0 0 0 | 0 2
21
410
543
150 | 0 .4
5 .5
7 .2
0 | 0
0
0
0
0
0
0
0
0
0
0 | 0000 | 0 0 0 | 0 1
0
0
0 | 00000 | 2.5
1.5
1.6
1.5 | 0 0 0 | 0000 | | 28
27
28
29
30 | 4 9
5 3
5 7
4 4
0 | 0000 | 01 | 0 0 0 0 | 03
03
02 | 3
0
0
0
0
0
0
0
0
5 | 0 0 0 | 0 0 0 | 00000 | 0
1 &
1 &
0 9
1 & | 00000 | 00000 | | | 109.0 | 0 | 1125.8 | 47.5 | 3.9 | 2.4 | 139 | 5.0 | 0 | 411 | 9 .6 | 322 | | EAN | 3.51 | 0 | 36.3 | 1.53 | 0.14 | 0.08 | 0.46 | 0.16 | 0 | 1.33 | 0.31 | _ 1,07 | | RET | 216 | 0 | 2,230 | 94 | 7.7 | 8.4 | 27.6 | 9.9 | ٥ | 82 | 19 | 64 | | | Remarks: | | | | | | | | | YEAR MEAN
OR
PERIOD ACRE | | ,820 | F. C. Dist. Form 52 4-48 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sts. No. F20 B-R | Day | ischarge, in se
Oct. | Nov. | TUJUNGA 1 | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Bept. | |----------------------------------|-------------------------|-------------------------------|---|----------------------------------|--|-----------------|-------|--------|-------|------------------------------|------------------|------------------| | 1 2 3 4 | 0 0 | 0 0 | 6.0
6.0
27
26 | 1.0
1.4
6.0 | 3 6
3 2
2 9
2 8 | 16
16
9.5 | 0 | 0 0 0 | 0 0 | 0 0 | 0 0 | 0 | | 5 | 0 | 0 | 36 | 4 .0
1 .0 | 26 | 0.1 | 0 | 0 | 0 | o | 0 | 0 | | 8
8
8 | 00000 | 4.0
4.0
2.0
11
12 | 3 4
2 7
2 8
4 0
3 8 | 8.0
23
27
29 | 25
25
24
24
26 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | | 11
12
13
14 | 01 | 10
43
65
26
17 | 32
29
16
5.0
4.0 | 30
31
31
31
30 | 25
25
24
24
24 | 0 0 0 | 00000 | 00000 | 00000 | 00000 | 0 0 0 0 | 00000 | | 16
17
18
19 | 01 | 6.0
14
23
15 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 30
30
29
29
33 | 30000000000000000000000000000000000000 | 0000 | 0000 | 00000 | 0000 | 00000 | 0
0
0
0 | 0000 | | 21
22
13
24 | 0000 | 62
115
74
67 | 11
19
18
19
24 | 3 4
3 8
4 1
4 3
4 4 | 22
21
20
20 | 0 0 0 | 00000 | 00000 | 00000 | 0000 | 0 0 0 | 0000 | | 26
27
28
29
30
31 | 000000 | 41
59
55
50
19 | 14
246
255
5.0
3.0
5.0 | 45
45
46
46
44
40 | 18
17
17 | 0000 | 0000 | 000000 | 0000 | 0000 | 0 0 0 0 | 0
0
0
0 | | | 0.9 | 865.0 | 0.880 | 0.568 | 667.0 | 41.5 | 0 | 0 | 0 | 0 | 0 | 0 | | AN | 0.03 | 28.8 | 31.9 | 28.8 | 23.8 | 1.34 | 0 | 0 | 0 , | 0 | 0 | 0 | | RE- | 1.8 | 1,720 | 1960 | 1770 | 1,320 | 83 | 0 | . 0 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | | EAR MEAN
OR
ERIOD ACRE | 9.47
FERT 6.8 | 350 | F. C. Dist. Form 52 6-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.____ | Daily d | lischarge, in s | econd-feet of | HANSEN | SPREADING | GROUNDS | INTAKE C | ANAL | | | , for the year | ending Septem | aber 30, 19 <u>46</u> | |----------------------------------|-----------------|---------------|---------------------|-----------|----------------------|----------|---------------------------|-----------------------------|-------------------------|---------------------------------|-------------------------|---------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 0 0 | 0 0 0 | 0 0 0 | 0000 | 0000 | 00000 | 0
0
0
113
111 | 0 0 0 0 | 0000 | 0 0 0 | 0000 | 0 0 | | 6
7
8
9 | 0 0 0 | 0000 | 0000 | 0 0 0 | 0
114
118
0 | 00000 | 0000 | 0
0
2.7
8.2
4.5 | 62
26
0
0 | 0000 | 0 0 | 0
0
0
0
9.7 | | 11
12
13
14
15 | 0 0 0 | 0 0 0 | 0 0 0 | 00000 | 00000 | 00000 | 0000 | 0
0
12
58
0 | 0
0
5 3
0
0 | 0
0
0
0
8 8 | 0000 | 0 0 0 | | 16
17
18
19
20 | 0 0 0 | 0 0 0 | 0 0 0 | 00000 | 0 0 0 | 0000 | 00000 | 0000 | 0000 | 0
0
0
3 3 | 0
0
0
0
2 4 | 0
15
0
0 | | 21
22
23
24
25 | 0 0 0 | 0 0 0 | 0
116
75
0 | 00000 | 00000 | 00000 | 00000 | 0
61
0
0 | 00000 | 0000 | 21
0
0
0 | 0
0
6 2
1 2
0 | | 26
27
28
29
30
31 | 00000 | 0 0 0 | 00000 | 00000 | 000 | 000000 | 0000 | 00000 | 9 6 | 3 4
0
0
0 | 00000 | 0 0 0 | | | 0 | 0 | 191.0 | o | 232.0 | 0 | 224.0 | 186.9 | 150.6 | 95.0 | 4 5 .0 | 42.9 | | MEAN | 0 | 0 | 6.16 | | 8.29 | 0 | 7.47 | 6.04 | 5.02 | 3.06 | 1.45 | 1.43 | | ACRE-
FEET | 0 | . 0 | 379 | 0 | 460 | 0 | 444 | 371 | 299 | 188 | 89 | 85 | | | Remarks: | | | | | | | | P | TEAR MEATOR
OR
ERIOD ACRE | | 2320 | | P. O. Dist. Form 52 4-46 | | |--------------------------|--| | | | | | | ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.____ | ily die | | | | T. T. | | | | | | 1 | ending Septer | | |----------|--------------|---------|------------|-------|-------|-------|-------|-----|------|------------------|---------------|------| | ay | Oct | Nov. | Dec. | Jan. | Feb. | Mer. | Apr. | Мау | June | July | Aug. | Sept | | 1 | 0 | 0 | 108 | 165 | 0 | 0 | 0 | 0 | 0 | O | 0 | ٥ | | 2 | 0 | 0 | 47 | 150 | o | 0 | 0 | o | o | 0 | 0 | 0 | | 3 | 0 | 0
 0 | 149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 0 | 0 | 155 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6 | -6 | 109 | - 6 | 75 | - 6 | - 6 - | 8 - | - 8 | | 8 | - 8 | 0 | | 7 | ŏ | 103 | ŏ | 32 | ŏ | ŏ | ŏ | ŏ | ŏ | 0 1 | ŏ | ŏ | | á | ŏ | 36 | ŏ | ~õ l | ŏ | ŏ | ŏ | ŏ | ŏ | Ö | ŏ | ŏ | | 9 | ŏ | 0.8 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | l ŏ l | ŏ | ŏ | | 10 | 0 | 0 | ō | ō Ì | 0 | 0 | 0 | 0 | Ō | 0 | 0 | 0 | | ıı | 0 | 0 | 0 | 0 | - 0 - | 0 | .0 | 0 | O | 0 | 0 | 0 | | 12 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | Ö | 0 | 0 | 0 | | 13 | 0 | 78 | 10 | o | o | o | 0 | ō | o | o | 0 | 0 | | 14 | . 0 | 142 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 - | 0 | 0 | | 15 | -0 | 127 | 20 | 8 | - 8 - | 8 | - 8 | - 8 | 0 | - 8 | - 8 | - 8 | | 16
17 | ŏ | 117 | 21 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | % | ŏ | ŏ | | 18 | ŏ | 109 | 21 | ŏ | ŏ | ŏ | Ö | ŏ | ŏ | 6 | ŏ | 0 | | 19 | ŏ | 61 | ão i | ŏ | ŏ | ŏ | l ŏ l | ŏ | ŏ | ŏ | ŏ | l ŏ | | 20 | ŏ | 7.0 | 20 | ŏ | ŏ | ŏ | Ö | ŏ | ã | ŏ | ŏ | ŏ | | 21 | ō | 118 | 9.0 | Ŏ | - ō | Ŏ | Ö | - 6 | ō | ō | - ŏ - | ŏ | | 22 | 0 | 93 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 1 | ō | Ó | | 23 | 0 | 86 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 24 | O | 89 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 25 | 0 | 92 | 0 | 0 | Q | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | | 26 | 0 | 81 | 346 | 0 | Ŏ | 0 | 0 | 0 | Ō | 0 | 0 | 0 | | 27 | 0 | 78 | 234 | 0 | 0 | 0 | 0 ' | 0 | 0 | 0 | 0 | 0 | | 28
29 | 0 | 64 | 200 | o l | 0 | 0 | 0 | 0 | 8 | 8 | 0 | 0 | | 30 | 0 | 137 | 225
183 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 31 | ö | 157 | 162 | ŏ | | ă | | 0 | | 8 | ŏ | | | | _ <u>`</u> _ | <u></u> | 102 | | | | I | | | | | | | | 0 | | 1666.0 | | 0 | | 0 | | 0 | | 0 | | | | | 1928.0 | | 848.0 | | 0 | | 0 | | 0 | | 0 | | BAN | 6 | 64.3 | 53.7 | 27.4 | o | 0 | 0 | a | 0 | 0 | 0 | 0 | | EET | 0 | 3820 | .3300 | 1680 | 0 | 0 | | 0 | ا و | 0 | 0 | | | 1 | Remarks: | | | | | | | | | YEAR MEA | N 12. | 2 | | | | | | | | | | | | OR
ERIOD ACRE | FEET 1 | 3800 | ## STATION FIGS-R TUJUNGA WASH at Magnolia Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°09'53". LONG. 118°24'43". ON THE DOWN-STREAM SIDE OF MAGNOLIA BOULEVARD BRIDGE, ABOUT 2 MILES WEST OF NORTH HOLLYWOOD. ELEVATION OF ZERO GAGE HEIGHT. 632,70 FEET. DRAINAGE AREA: INDETERMINATE DUE TO A NATURAL SPLIT WHICH DIVIDES THE TUJUNGA WASH INTO TWO BRANCHES. CHANNEL AND CONTROL: CHANNEL + LOOSE SAND. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM HIGHWAY BRIDGE. RECORDER: INSTALLED AUGUST, 1930 OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. WASHED OUT IN THE MARCH 2, 1938 FLOOD, REINSTALLED ON OCTOBER 17, 1938 OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. A STEVENS TYPE L RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY BIG TUJUNGA DAM NO. 1. HAINES DEBRIS BASIN, AND HANSEN DAM. DIVERSIONS: SOME WATER DIVERTED FOR IRRIGATION, NEAR MOUTH OF BIG TUJUNGA CANYON AND FOR SPREADING AT HANSEN SPREADING GROUNDS BELOW HANSEN DAM. RECORDS AVAILABLE: AUGUST, 1930 TO FEBRUARY 17, 1938 AND OCTOBER 17, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 2,1 SECOND-FEET, DECEMBER 21. MINIMUM + FLOW VARIOUS DAYS. 1946-1947 MAXIMUM 2,3 SECOND-FEET, DECEMBER 26. MINIMUM NO FLOW PART OF YEAR. 1930-1947 MAXIMUM DISCHARGE NOT DETERMINED, MARCH 2, 1938MAXIMUM DISCHARGE OF RECORD, 1,350 SECOND-FEET, JANUARY 22, 1943. MINIMUM NO FLOW. ACCURACY: FAIR. LOW FLOWS USUALLY INTERPOLATED BETWEEN MEASUREMENTS. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DIRCHARD | E MEABU | EKENTE OF | TUJU | NGA WA | SH | | | | | | | | NO. | DATE | BEGIN | MADE MY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | HEAK
VELODITY
FT.PER BEG. | HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH- | | S. HT.
CHANGE
YOTAL | METER
NO. | |--|--|--|-------------------|---|--|--|--|--|----------|--|---|--|--------------|--|--|---|--|-----------------------------------|--|---|--|-------------------------------------|---------------|------------------------|--|-----------------------------------|--------------| | | AT | | agnolia Boulevaro | <u> </u> | | DUR | ING THE S | EAR ENDIN | 6 8EPT | EMBE | R 30, | 19.46 | - | 105 | 5/2 | 1130A
1138A
1220P | | 1:6 | 0.52 | 0,35 | 7.52 | 0.18 | | .5 | 4 | 0 | | | MD. | DATE | END. | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | | METH- | MEAR.
BEG.
NG. | G. HT.
EHANGE
TOTAL | METER
NO. | 106 | 5/9 | 1225P
1025 A | | 1.6 | 0.54 | | | 0.12 | | .5 | | 0 | " | | | 10/25 | 116P | DEVORE | 3.0 | 0.41 | 1 | 7.46 | 0.00 | | | 5 | Ī | FLOAT | 107 | 5/16
5/23 | 1030A
1010A
1014A | | 1.4 | 0.48 | 0.21 | 7.50 | 0.10 | | .5 | - 1 | 0 | | | | | 215P
220P | | 1.6 | 0.35 | | 7.46 | 0.20 | | 5 | 4 | ٥ | | 108 | 6/6 | 1125 A
1130 A | | 1.4 | | 0.20 | | 0.09 | | | 4 | 0 | | | | 11/15 | 1005A | | 1.7 | 0.42 | | 7.46 | 0,10 | | .5 | 4 | 0 | | 110 | 6/13 | 1040 A
1043 A | BROWN | 1.4 | 0.38 | 0.26 | 7.45 | 0.10 | | | 3 | 0 | FC24 | | 80 | 11/23 | 105P | | 1.5 | 0.30 | 0.30 | 7.48 | 0.09 | | .5 | 4 | ۵ | l., | 111 | .6/20 | 1118A
1122A | HAIG | 1.4 | 0.38 | 0.24 | 7.45 | 0.09 | | .5 | 4 | 0 | FC35 | | 81 | 11/29 | 115P | | 1.5 | 0.43 | 0.35 | 7.51 | 0.15 | | .5 | _5 | _0_ | | 112 | 7/5 | 1146A
1150A | <u></u> | 1.2 | 0.38 | 0.21 | 7.39 | 0.08 | | .5 | 4 | 0 | · | | 82_ | 12/6 | 142P
146P
1220P | | 1.5 | 0.55 | 0.25 | 7.51 | 0.14 | | .5 | 4 | _0_ | | 113 | 7/17 | 150P
152P
1230P | | 0.60 | 0.18 | 0,33 | 7.39 | 0.06 | | .5 | 2 | 0 | | | 83 | 12/13 | | | 1.5 | 0.60 | 0.25 | 7.54 | 0.15 | | ٠5. | 4 | 0_ | | 114 | 8/7 | 1232P | | 0,60 | 0.08 |
0.50 | 7.48 | 0.04 | | .5 | 2 | | FC35 | | 84 | 12/20 | | ., | 1.5 | 0.60 | 0.22 | 7.55 | 0.13 | H | .5 | 4 | 0_ | •• | | | | | | | | | | | | | | | | | 12/27 | 146P | | .3.0 | 1.14 | | 7.55 | 0.28 | | .5 | 5 | 0 | | | | | | | | | | | | | | | | | 86_ | 1/3 | 1226P | ** | 2.0 | 0.54 | | 7.55 | _0.24 | \vdash | 5 | 4 | 0 | 120 | 0.62 | 87 | 1/10 | 116P | T | 2.0 | | 0.35 | 7.54 | 0.22 | T | -5 | 4 | 0 | i | | | | | | | | | | | | | | | | 88 | 1/17 | 106P
110P
915A | | 1.6 | 0.56 | 0.38 | 7.55 | 0.21 | | -5- | 4 | . 0 | | | | | | | | | | | | | | | | | | 1/17 | 106P
110P
915A | | 1.6 | | 0.38 | | | | | 4 4 | | | | DISCHARGE | S HEASURE | MENTE OF TUJUNO | GA WASH | L | | | | | | | | | | 88
89 | 1/17 | 106P
110P
915A
920A
1215P
1220P
954A
958A | | 1.6 | 0.56 | 0.38
0,34
0.30 | 7.55
7.55 | 0.21 | | .5 | 4 | 0 | | | DISCHARGE | | MENTE OF TUJUN | | | | ING THE Y | EAR ENDIN | a s ep | TEMBE | я зо, | 19 <u>47</u> | | | 88
89
90 | 1/17
1/ 24
1/31 | 106P
110P
915A
920A
1215P
1220P
954A
958A
148P
152P | | 1.6 | 0.56
0.53
0.56 | 0.38
0.34
0.30 | 7.55
7.55
7.56 | 0.21
0.18
0.17 | | .5
.5 | 4 | 0 | | | | Magn | olia Boulevard | | |) urau | l gangr | | | II | DEAR. | п. ыт. | METER | | 88
89
90
91 | 1/17
1/ 24
1/31
2/7 | 106P
110P
915A
920A
1215P
1220P
954A
958A
148P
152P
1139A
1142A | | 1.6
1.6
2.0 | 0.56
0.53
0.56
0.66 | 0.38
0.34
0.30 | 7.55
7.55
7.56 | 0.21
0.18
0.17
0.27 | | .5
.5
.5 | 4 | 0
0
0 | | | | Magn
BEGIN
END | | | | | 1 | DISCHARGE SEG. FT. | RAT- | II | DEAR. | U. HY.
CHANGE
TOTAL | METER ND. | | 88 | 1/17
1/24
1/31
2/7
2/14 | 106P
110P
915A
920A
1215P
1220P
954A
958A
148P
152P
1139A
1140A
1140A | | 1.6
1.6
2.0
2.0 | 0.56
0.53
0.56
0.66
0.69 | 0.38
0.34
0.30
0.41
0.32 | 7.55
7.55
7.56
7.56
7.56 | 0.21
0.18
0.17
0.27
0.22 | | .5
.5
.5 | 4
4
5 | 0 0 0 | | | | Magn | MADE BY WADDICOR - CCAMPO | winth FEET | AREA OF SECTION HIG. FT. | MEAN
VELODITY
FT.PER BEG. | DAUGE
HEIGHT
FEET
7.99 | DISCHARGE
SEG. FT. | RAT- | матн-
00 | MEAS.
SEC.
NO. | g. HT.
CHANGE
TOTAL | METER ND. | | | 1/17
1/24
1/31
2/7
2/14
2/21 | 106P
110P
915A
920A
1215P
1220P
954A
958A
148P
152P
1139A
1142A | | 1.6
1.6
2.0
2.0
2.5
2.1 | 0.56
0.53
0.56
0.66
0.69
0.67
0.62 | 0.38
0.34
0.30
0.41
0.32
0.33 | 7.55
7.55
7.56
7.56
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22 | | .5
.5
.5
.5 | 4
4
5 | 0 0 0 0 | | но.
115
116 | DAYK 11-13 12-12 | Magn
END
1141A
1147A
1017A
1019A
1110A | MADDICOR - CCAMPO | 7.0
0.7 | AREA OF SECTION HIS FT. 3.07 | MEAN VELDDITY FT.PCR BEG. 0.59 | 7.99 | DISCHARGE SEG. FT. | RAT- | ,6
.5 | MEAS.
NO. | g, HY.
CHANGE
TOTAL
02 | ND. | | | 1/17 1/24 1/31 2/7 2/14 2/21 2/27 3/7 3/14 | 106P
110P
915A
920A
1215P
1220P
954A
958A
148P
152P
1139A
1142A
1144A
220P
225P
143P
146P | | 1.6
1.6
2.0
2.0
2.5
2.1
2.1
2.0 | 0.56
0.53
0.56
0.66
0.69
0.67
0.62 | 0.38
0.34
0.30
0.41
0.32
0.33
0.29
0.27 | 7.55
7.55
7.56
7.56
7.55
7.55
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22
0.22
0.18
0.16 | | .5 | 4
4
5
4
4 | 0 0 0 0 0 0 0 | | ив.
115
116
117 | 11-13
12-12
1-2 | Magn
END
1141A
1147A
1017A
1019A
1110A
1114A
1015A | MADELEY WADDICOR - OCAMPO WADDICOR | 7.0
0.7 | 3.07
.035 | MEAN VELODITY FY.PCR BEG. 0.59 0.27 0.20 | 7.99
7.56 | 1.8
0.01 | TAR | .6
.5 | меав.
вкс.
но.
5 | U, HT.
CHANGE
TOTAL | ND. | | | 1/17 1/28 1/31 2/7 2/14 2/21 2/27 3/7 3/14 3/20 | 106P
110P
915A
920A
1215P
1220P
954A
148P
152P
1139A
1145A
220P
143P
146P
1024A
1030A | | 1.6
1.6
2.0
2.0
2.5
2.1
2.1
2.0
1.6 | 0.56
0.53
0.56
0.66
0.69
0.67
0.62
0.60
0.50 | 0.38
0.34
0.30
0.41
0.32
0.33
0.29
0.27
0.36 | 7.55
7.56
7.56
7.56
7.55
7.55
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22
0.18
0.16
0.18 | | .5
.5
.5
.5
.5
.5 | 4
4
5
4
4
4 | 0
0
0
0
0
0
0 | | 115
116
117 | 11-13
12-12
1-2
1-16 | Magn END 1141A 1147A 1017A 1019A 1110A 11114A 1015A 1020A 1017A | MADDICOR - OCAMPO | 7.0
0.7
1.0 | 3.07
.035
0.05 | MEAN VELDDITY FT.PCR BEG. 0.59 | 7.99
7.56
7.60
7.59 | 1.8
0.01
0.01 | TAR | ,6
.5 | меав.
вкс.
но.
5 | g, HY.
CHANGE
TOTAL
02 | ND. | | | 1/17
1/24
1/31
2/7
2/14
2/21
2/27
3/7
3/14
3/20 | 106P
110P
915A
920A
1215P
1220P
954A
958A
148P
1139A
1142A
1145A
220P
225P
143P
146P
1024A
1030A
950A | | 1.6
1.6
2.0
2.0
2.5
2.1
2.1
2.0 | 0.56
0.53
0.56
0.66
0.69
0.67
0.62
0.60
0.50
0.64 | 0.38
0.34
0.30
0.41
0.32
0.33
0.29
0.27
0.36 | 7.55
7.56
7.56
7.55
7.55
7.55
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22
0.18
0.16
0.18
0.29 | | .5
.5
.5
.5
.5
.5
.5 | 4
4
5
4
4
4
3 | 0
0
0
0
0
0
0
0 | | 115
116
117
118 | 11-13
12-12
1-2
1-16
1-23 | Magn
END
1141A
1147A
1017A
1019A
1110A
1114A
1015A
1020A
1020A
1024A | MADDICOR - CCAMPO | 7.0
0.7
1.0
Two Ci | 3.07
.035
0.05 | 0.59 0.27 0.60 | 7.99
7.56
7.60
7.59 | 1.8
0.01 | TAR | .6
.5
.6 | 5 2 2 2 4 | O O O | FC37 | | 88
89
90
91
92
93
94
95
96
97 | 1/17 1/24 1/31 2/7 2/14 2/21 2/27 3/7 3/14 3/20 3/21 3/28 | 106P
110P
915A
920A
1215P
1220P
954A
958A
148P
152P
1139A
1142A
220P
225P
143P
1030A
950A
1028A
1028A | | 1.6
2.0
2.0
2.5
2.1
2.1
2.0
1.6
1.8
2.0 | 0.56
0.53
0.56
0.66
0.69
0.67
0.62
0.60
0.50
0.64 | 0.38
0,34
0.30
0.41
0.32
0.33
0.29
0.27
0.36
0.45
0.27 | 7.55
7.56
7.56
7.55
7.55
7.55
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22
0.18
0.16
0.18
0.29
0.18 | | .5
.5
.5
.5
.5
.5
.5 | 4
4
5
4
4
4
4
3 | 0
0
0
0
0
0
0 | | NO. 115 116 117 118 119 | 11-13
12-12
1-2
1-16
1-23
2-13 | Magn
END
1141A
1147A
1017A
1019A
1110A
1114A
1015A
1020A
1017A | MADDICOR - CCAMPO WADDICOR WADDICOR WADDICOR | 7.0
0.7
1.0 | 3.07
.035
0.05 | MEAN VELODITY FY.PCR BEG. 0.59 0.27 0.20 | 7.99
7.56
7.60
7.59 | 1.8
0.01
0.01
0.03 | TAR | .6
.5
.6 | 5 2 2 2 4 2 | O O O | ND. | | 88
89
90
91
92
93
94
95
96
97
98 | 1/17 1/24 1/31 2/7 2/14 2/21 2/27 3/7 3/14 3/20 3/21 3/28 3/30 |
106P
110P
915A
920A
1215P
1220P
954A
958A
148P
152P
1139A
1145A
1145A
1145A
1145A
1024A
1030A
954A
1028A
1028A
1028A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
1039A
103 | | 1.6
1.6
2.0
2.0
2.5
2.1
2.1
2.0
1.6 | 0.56
0.53
0.56
0.66
0.67
0.62
0.60
0.50
0.64
0.66 | 0.38
0,34
0.30
0.41
0.32
0.33
0.29
0.27
0.36
0.45
0.27 | 7.55
7.56
7.56
7.55
7.55
7.55
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22
0.18
0.16
0.18
0.29
0.18
0.56
0.78 | | .5
.5
.5
.5
.5
.5
.5 | 4
4
5
4
4
4
3 | 0 | | 115
116
117
118 | 11-13
12-12
1-2
1-16
1-23 | Magn | MADDICOR - CCAMPO WADDICOR WADDICOR WADDICOR WADDICOR-BLAKELY | 7.0
0.7
1.0
1.0
Two C | 3.07
.035
0.05
ANNELS | 0.59 0.27 0.20 0.60 | 7.99
7.56
7.60
7.56
7.56 | 1,8
0.01
0.03
0.04 | TAR | .6
.5
.6
OATS | 5 2 2 2 4 2 | O, HT. CHANGE TOTAL O O O O | FC37 | | 88
89
90
91
92
93
94
95
96
97 | 1/17 1/24 1/31 2/7 2/14 2/21 2/27 3/7 3/14 3/20 3/21 3/28 3/30 4/4 | 106P
110P
915A
920M
1215P
1220P
954A
958A
148P
1139A
1142A
1140A
1145A
220P
1024A
1030A
954A
1028A
1225A
1028A
1225A
1225A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
1235A
123 | | 1.6
1.6
2.0
2.0
2.5
2.1
2.1
2.0
1.6
1.8
2.0
2.5 | 0.56
0.53
0.56
0.66
0.69
0.67
0.62
0.60
0.50
0.64 | 0.38
0.34
0.30
0.41
0.32
0.29
0.27
0.36
0.45
0.27
0.50
0.58 | 7.55
7.56
7.56
7.55
7.55
7.55
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22
0.18
0.16
0.18
0.29
0.18 | | .5
.5
.5
.5
.5
.5
.5 | 4
4
5
4
4
4
4
3
5 | 0
0
0
0
0
0
0 | | 115
116
117
118
119
120 | 11-13
12-12
1-2
1-16
1-23
2-13
2-20 | Magn | MADDICOR - CCAMPO WADDICOR WADDICOR WADDICOR WADDICOR-BLAKELY | 7.0
0.7
1.0
TWO CI | 3.07
.035
0.05
0.05
ANNELS | 0.59
0.27
0.60 | 7.99
7.56
7.60
7.56
7.56
7.56
7.56 | 1.8
0.01
0.03
0.04
0.01 | TAR | .6
.5
.6
OATS | #EAS. #60. #60. #60. #60. #60. #60. #60. #60 | 0. HT. CHANGE TOTAL02 0 0 0 0 0 | FC37 | | 98
90
91
92
93
94
95
96
97
98
99 | 1/17 1/24 1/31 2/7 2/14 2/21 2/27 3/7 3/14 3/20 3/21 3/28 3/30 4/4 |
106P1
110P
110P
915A
920A
954A
148P2
1139A
1142A
1142A
1142A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A
1145A | | 1.6
1.6
2.0
2.0
2.5
2.1
2.1
2.0
1.6
1.8
2.0
2.5
2.5
2.1
2.0 | 0.56
0.53
0.56
0.66
0.67
0.62
0.60
0.50
0.64
0.66 | 0.38
0.34
0.30
0.41
0.32
0.33
0.29
0.27
0.36
0.45
0.27
0.50
0.58
0.39 | 7.55
7.55
7.56
7.56
7.55
7.55
7.55
7.55 | 0.21
0.18
0.17
0.27
0.22
0.18
0.16
0.18
0.29
0.18
0.29
0.18 | | .5
.5
.5
.5
.5
.5
.5 | 4
4
5
4
4
4
3
5
5 | 0
0
0
0
0
0
0
0
0
0 | | ND. 115 116 117 118 119 120 121 | 11-13
12-12
1-2
1-16
1-23
2-13
2-20
3-6 | Magn | MADDICOR - CCAMPO WADDICOR "" WADDICOR "" WADDICOR-BLAKELY BLAKELY | 7.0
0.7
1.0
TWO CI | 3.07
.035
0.05
0.05
ANNELS | 0.59
0.27
0.60 | 7.99
7.56
7.60
7.56
7.56
7.56
7.56
7.56 | 1.8
0.01
0.03
0.04
0.01 | TAR | .6
.5
.6
OATS | #EAS. #60. #60. #60. #60. #60. #60. #60. #60 | 0. HT. CHANGE TOTAL02 0 0 0 0 0 0 | FC37 | F. C. Dist. Form 52 4-48 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. FIOS-R | Daily d | lischarge, in sec | ond-feet of | TUJUNGA V | ASH at Ma | agnolla Bo | oulevard. | | | | _, for the year | ending Septem | ber 30, 19_ 46 | |---|-------------------|---|---|---------------------------------------|---------------------------------------|---------------------------------------|--|---|---------------------------------------|---|--|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 27 28 29 | | 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 | 0 1
0 1
0 0 2
0 0 2
0 0 2
0 0 2
0 0 1
1 0 0 1
0 0 1
0 0 2
0 1
1 0 0 2
0 0 2
0 0 0 2
0 0 0 1
0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 8 8 0 0 0 8 8 0 0 0 0 8 8 0 0 0 0 0 | 0.05
0.04
0.04
0.04
0.04
0.04
0.04
0.04 | 0 0 4
0 0 | | 30
31 | 0 2 | 0.2 | 0 3
0 2
0 2 | 0 2
0 2
0 2 | | 0 6 | ο̃z | 9 0 0
9 0 0 | 0.0 в | 0.05 | 0.04 | 0 .0 4
0 .0 4 | | | 02 | | | 0.2.1 | | | | 0.09 | 2.75 | 0.05 | | | | | 6.2 | 3 .6 | 6 .6 | 6.2 | 6.2 | 6.8 | 6.3 | 3.78 | | 196 | 125 | 120 | | MEAN | 0.20 | 0.12 | 0.21 | 0.20 | 0.22 | 0.22 | 0.21 | 0.12 | 0.09 | 0.06 | 0.04 | 0.04 | | ACRE- | 12. | 7.1 | 13. | 12. | 12. | 13. | 12. | 7.5 | 5.4 | 3.9 | 2.5 | 2.4 | | | Remarks: | | | | | | | | | ear meai
or | | 103. | | | | | | | | | | | PI | ERIOD ACRE | -FEET | | P. C. Dist. Form 52 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 105 -R | ay | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |----|----------|------------|---------|--------|-------|-------|-------|---|---------------------------------------|----------------|--------|-------| | 1 | + | + | 0.1 | 0.06 | 8 0.0 | 0.01 | 0.01 | 0.01 | 0.01 | + | Ö | 0 | | 2 | + | + | 0.1 | 0.02 | 0.08 | 0.01 | 0.01 | 0.01 | 0.01 | | ó | Ō | | 3 | + | + | 01 | \$ 0.0 | 0.09 | 0.01 | 0.01 | 0.01 | 0.01 | + | 0 | Ō | | 4 | + | + | 0.1 | 0.02 | 0.09 | 0.01 | 0.01 | 0.01 | 0.01 | + | 0 | 0 | | 5 | + | + | 0.1 | 0.04 |
01 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | | 6 | + | + | 0.1 | 0.04 | 0.1 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | | 7 | + | | 01 | 2 0. 0 | 0.09 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | | 8 | + | + | 0.1 | 0.02 | 0.08 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | | 9 | + | + | 0.0B | 0.02 | 0.07 | 0.01 | 0.01 | 0.01 | + | + | o | 0 | | 0 | + | + | 0.04 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | | 1 | + | + | 0.02 | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | | 2 | + | 01 | 0.02 | 8 0. 0 | 0.03 | 0.01 | 0.01 | + | | . + | 0 | 0 | | 3 | + | 0.6 | 0.04 | 8 0. 0 | 0.01 | 0.01 | 0.01 | + | + | + | 0 | 0 | | 5 | + | 0.1 | 0.06 | 8 0. 0 | 0.01 | 0.01 | 0.01 | + | + | * | 0 | 0 | | 16 | + | 0.1 | 8 0.0 | 0.06 | 0.01 | 0.01 | 0.01 | CONTRACTOR OF THE PARTY | + | 0 | 0 | 0 | | 7 | + | 0.1 | 0.06 | 0.04 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | 0 | | 8 | + | 01 | 0.06 | 0.04 | 0.01 | 0.01 | 0.01 | + | + | 0 | 0 | 0 | | 9 | | | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | + | | 0 | 0 | 0 | | 0 | + | 01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 | Ţ | , , , , , , , , , , , , , , , , , , , | 0 | 0 | 0 | | 21 | | 0.1 | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | + | + | - 0 | - 0 | - 0 | | 22 | + | 01 | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | + | - | Ö | 0 | 0 | | 23 | + | 03 | 0.06 | 0.04 | 0.01 | 0.01 | 0.01 | + | | 0 | ŏ | ő | | 24 | + | 01 | 0.08 | 0.04 | 0.01 | 0.01 | 0.01 | - | 1 | ŏ | ŏ | ŏ | | 25 | + | 01 | 2.0 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | + | ŏ | . ŏ | ŏ | | 6 | + | 0.1 | 0.6 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | + | 0 | ő | ŏ | | 17 | + | 0.1 | ŏ ž | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | + | ŏ | ŏ | ŏ | | 18 | + | 0.1 | ŏã | 0.06 | 0.01 | 0.01 | 0.01 | 0.01 | + | ŏ | ŏ | ŏ | | 29 | + | 01 | o.z | 0.06 | 0.01 | 0.01 | 0.01 | 0.01 | + | ŏ | ŏ | ŏ | | 30 | + | 0.1 | 01 | 0.07 | | 0.01 | 0.01 | 0.01 | + | Ö | Ö | ا o | | 31 | + | | 0.1 | 0.07 | | 0.01 | | 0.01 | | ō | Ö | | | | | | 3.18 | | 1.06 | | 0.30 | | 0.04 | | 0 | | | | | 2 .6 | J U | 137 | 1.00 | 031 | | 0.18 | J .J .7 | | | 0 | | AN | + | 0,087 | 0.103 | 0.044 | 0.038 | 0.010 | 0,010 | 0,006 | 0.001 | + | 0 | 0 | | ET | + | 5.2 | 6.3 | 2.7 | 2.1 | 0.6 | 0.6 | 0.4 | 0.1 | | ٥ | ٥ | | _ | Remarks: | + = 0.05 c | f.s. or | 1099 | | | | | | TEAR MEA | N 0.02 | | ### STATION FIGE-R TUJUNGA WASH-CENTRAL BRANCH at Magnolia Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°09'53", LONG, 118°22'53", ON THE DOWN-STREAM SIDE OF MAGNOLIA BOULEVARD BRIDGE IN NORTH HOLLYWOOD. ELEVATION OF ZERO GAGE HEIGHT, 613.87 FEET. DRAINAGE AREA: INDETERMINATE DUE TO A NATURAL SPLIT WHICH DIVIDES TUJUNGA WASH INTO TWO BRANCHES. CHANNEL AND CONTROL: CHANNEL . LOOSE SAND. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING NEAR GAGE. HIGH FLOWS MEASURED FROM HIGHWAY BRIDGE. RECORDER: INSTALLED AUGUST 1930 AT STATION F106-R. REMOVED MARCH 1936. INSTÂLLED TEMPORARILY MARCH 1936 AT STATION F106B-R AT CHANDLER BOULEVARD. REMOVED JULY 1936. REINSTALLED AUGUST 1936 AT STATION F106-R. REMOVED MARCH 2, 1938. REINSTALLED SEPTEMBER 25, 1939 AT STATION F106-R AT CHANDLER BOULEVARD. REMOVED NOVEMBER 11, 1941, REINSTALLED NOVEMBER 24. 1941 AT STATION F106-R OVER A 20 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY HANSEN DAM, BIG TUJUNGA DAM NO. 1. AND HAINES DEBRIS BASIN. DIVERSION: SOME WATER DIVERTED FOR IRRIGATION NEAR THE MOUTH OF BIG TUJUNGA CANYON AND FOR SPREADING AT HANSEN SPREADING GROUNDS BELOW HANSEN DAM. RECORDS AVAILABLE: AT STATION F106B-R MARCH 20. 1936 TO JULY 29, 1936 SEPTEMBER 25, 1939 TO NOVEMBER 11, 1941. AT STATION F106-R AUGUST 1930 TO MARCH 18, 1936 AUGUST 20, 1936 TO MARCH 2, 1938 NOVEMBER 24, 1941 TO SEPTEMBER 30, 1947 EXTREMES OF DISCHARGE; MES OF DISCENSION. 1945-1946 MAXIMUM 357 SECOND-FEET, DECEMBER 24 MINIMUM NO FLOW MOST OF YEAR MINIMUM NO 150... 1946-1947 MAXIMUM 593 SECOND-FEET, DECEMBER 28 MINIMUM NO FLOW MOST OF YEAR ACCURACY: FAIR. DISCHARGE-GAGE HEIGHT RELATION UNRELIABLE AT TIMES. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. DIBONARGE MEASUREMENTS OF TUJUNGA WASH - CENTRAL BRANCH DISCHARGE MEASUREMENTS OF TUJUNGA WASH - CENTRAL BRANCH Magnolia Boulevard Magnolia Boulevard DURING THE YEAR ENDING SEPTEMBER SO, 1947 MO. GAUGE NEIGHT DISCHARGE RAT- METH SEC. CHANGE NO. METER NO. TOTAL METER NO. RAT- METH- MEAS. Q. HT. BEC. CHANGE NO. TOTAL DATE MEAN GAUGE VECCOITY HEIBHT FT.PER BEG. FEET 741A RIDA 8 + .02 FC42 TWD CHANNELS 4.96 26.0 10.0 116 12/22 752A DEVORE 120 11-12 WADDICOR - OCAMPO 2.96 1.22 4.39 5 0 FC37 440P 500P .6 10 + .11 FC35 121 5.50 236 11-12 117 12/23 HAIG 20.0 1.31 4.67 6,8 .6_ 6 0 1210P .6 10 -.13 122 11-13 5.64 229 23.0 118 12/24 5.1 1.22 4.97 6.2 7 0 .6 .5 6 - .04 32.0 20.6 2.99 5.41 61.3 123 11-20 110 3/30 455A 952A 6.0 1.3 1.46 4.81 .6 6 0 116A 124 12-26 20.0 8.14 2.34 . 19. .6 9 +.03 4.87 618P TURNER - RILEY 110P | WADDICOR - TURNER 915A | 920A | BLAKELY 125 12-27 TWO CHANNELS 5.38 .6 11 +.02 FC43 126 12-28 42.0 23.3 3.74 5.47 87. .6 12 0 127 3-28 4.0 0.60 2.12 5.08 1.3 FLOATS 1 0 F. C. Dist. Form 52 4-46 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F108-R | Daily di | ischarge, In se | cond-feet of | TUJUNGA | HASH - CE | NTRAL BRA | NCH at Ma | onolia Bo | uleyard | | , for the yea | ır ending Septe | mber 30, 19146 | |---|-----------------|--------------|---|-----------|---------------------------------------|---|---|---|------|-------------------------------|---|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 5 6 7 7 8 8 9 10 11 12 13 114 115 116 117 119 20 22 23 24 22 25 26 27 28 29 | | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | | 0 | 0 | | 30
31 | 0 1 | 0 | 000 | 0
0 | === | 9.7 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | | | 2.2 | 0 | 411.0 | 0 | 8.0 | 103 | 0 | 0 | 0 | 0 | 0 | 0 | | CREA | 0.07 | 0 | 13.3 | 0 | 0.03 | 0.33 | | 0 | ۵ | ļa. | | - 0 | | CRE-
PEST | 4.4 | 0 | 815. | 0 | 1.6 | 20. | 0 | 0 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRI | Nl. | 16
841. | | . O. Dist. | Form 52 4-48 | | | | FLO | OD CONTROI
CORAULIC D | L DISTRICT
IVISION | | | | Sta. N | <u>, F 106</u> | |------------|----------------|--|------------------|-----------|-----------|--------------------------|-----------------------|-------------|------|------------------------------|-----------------------------------|---------------------| | aily di | scharge, in s | econd-feet of | TUJUNGA W | ASH - CEN | TRAL BRAN | CH at Mag | nolia Bol | llevard | | , for the yea | r ending Septem | ber 30, 19 <u>1</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 - | 0 | 0 | 0 | 0 | | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | 0 | 0 | 0 | 0 | 0 | 0 | - ; | ŏ | 0 | 0 | | ŏ | | 4 5 | 0 | 0 | 0 | 0 | 0 | 6 1 | o l | ŏ | 0 | 0 | 0 | ŏ | | 6 | - 0 | | ├ ─ ∓ | - 8 | 0 | - 6 | ŏ | | 0 | ŏ | ŏ | ŏ | | 7 | ŏ | ŏ | Ö | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | Ιŏ | l ŏ l | ŏ | | 8 | ŏ | l ŏ | ŏ | ŏ | ŏ | ŏΙ | ō l | 0 | Ō | 0 | Ŏ | 0 | | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0_ | | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | O O | 0 | 0 | 0 | | 12 | 0 | 1.0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | | o. | | 13
14 | Ö | 4 1 | 0 | 0 | 0 | 0 | ŏ | ő | ŏ | 0 | 0 | ŏ | | 15 | ŏ | 0 | 6 | ŏ | ŏ | ŏ | ŏ | ŏ | 0 | 1 0 | 6 | ŏ | | 16 | - 0 | 0 | 8 | ŏ | 0 | ŏ | ŏ | ō | ō | 8 | ŏ | - ŏ | | 17 | ō | Ŏ | l ŏ l | ŏ | Ō | 0 | 0 | 0 | 0 | Ó | 0 | 0 | | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | O | | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 20 | 0 | 2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ŏ | 0 | 0 | ŏ | | 22 | 0 | 4.3 | ŏ | ŏ | 0 1 | ŏ | ŏ | ŏ | 0 | l ŏ | ŏ | ŏ | | 24 | ŏ | 0 | 0.3 | ŏ | 6 | ŏ | ŏ | ő | l ŏ | ŏ | l ŏ l | ŏ | | 25 | ŏ | l ŏ | 26 | ŏ. | l ŏ | ăl | ŏ | Ιŏ | Ιŏ |) ō | o l | ō | | 26 | ō | i - 0 | 4 1 | Ö | Ö | 0 | Ó | 0 | 0 | 0 | 0 | 0 | | 27 | 0 | 0 | 47 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | | 28 | 0 | 0 | 148 | 0 | 0 | 0.6 | ō | 0 | 0 | 0 | 0 | 0 | | 29 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 30
31 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | 31 | 0 | i | 0 | 0 | | 0 .1 | | | · | | · · · · · · · · · · · · · · · · · | | | | 0 | 1 = - | 225.4 | 0 | 0 | 0.6 | | 0 | 0 | o | 0 | 0 | | | | 15.0 | 1 | 0 | | | | | | T | 1 | | | MBAN | 0 | 0.50 | 7.27 | 0 | 0 | 0.02 | + | 0 | 0 | 0 | 0 | 0 | | FEET | 0 | 30 | 447 | 0 | 0 | 1.2 | <u>+</u> | 0 | 0 | 0 | 0 | 0 | | | Remarks: | + = 0.05 | c.f.s. 01 | · less. | | | | | | YEAR ME.
OR
PERIOD ACE | | | | | | | | | | | | | " | PERIOD ACE | E-FEET 4 | 78 | ## STATION F270-R CALABASAS CREEK at Ventura Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°09'27". LONG. 118°38'18". ON THE RIGHT (EAST) BANK OF CALABASAS CREEK NEAR THE UPSTREAM END OF A CONCRETE HORSE SHOE CULVERT UNDER VENTURA BOULEVARD. AND ABOUT 100 FEET WEST OF THE WESTERLY CITY LIMITS OF LOS ANGELES. ELEVATION OF ZERO GAGE HEIGHT, 916.24 FEET. DRAINAGE AREA: 2.4 SQUARE MILES. CHANNEL
AND CONTROL: CHANNEL - SAND AND CLAY ADDBE. CONTROL - ENTRANCE TO A CONCRETE HORSE SHOE CULVERT, 6.0 FEET WIDE AND 5.0 FEET DEEP. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBRIDGE 32 FEET ABOVE STATION. RECORDER: INSTALLED FEBRUARY 17, 1940 OVER A 24 INCH CORRUGATED IRON PIPE STILL-ING WELL. A HORIZONTAL RATIONAL RECORDER WAS IN SERVICE FROM OCTOBER 1 1945 TO SEPTEMBER 36, 1947. REGULATION AND/OR DIVERSIONS: SOME REGULATION BY SMALL DAMS UPSTREAM. RECORDS AVAILABLE: FEBRUARY 17, 1940 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 30 SECOND-FEET, DECEMBER 21. MINIMUM NO FLOW MOST OF YEAR. MINIMUM NO FLOW MOST OF YEAR. MINIMUM NO FLOW MOST OF EACH YEAR. MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. F. C. Dist. Form 52 4-46 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F270-R | aily di | scharge, in se | econd-feet of | CALABASAS | CREEK a | t Ventura | Boulevar | d | | | , for the yea | r ending Septer | nber 30, 19_4 | |--------------|----------------|---------------|-----------|---------|-----------|------------|------|-----|----------|-------------------|-----------------|---------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | 0 | 0 | 0. | 0 | | 3 | 0 | 0 | 0 | o | 0.2 | o | o | o | 0 | 0 | o o | 0 | | 4 | 0 | o o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 0 | 0 | 8 | 0 | 0 | - 0 | 0 | 8 | 0 | 0 | 0 | | 6 7 | ŏ | ŏ | 0 | ŏ | ŏ | ŏ | ő | ŏ | ŏ | 0 | ő | Ö | | é | ŏ | ŏ | 0 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 0 | ŏ | ŏ | | 9 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | lő | 0 | ŏ | l ŏ | | 10 | ŏ | ŏ | iŏi | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 11 | ō | Ö | ō | 0 | 0 | 0 | 0 | ō | 0 | 1 0 | 0 | ō | | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 14 | 0 | . 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 15 | Q | 0 | 0 | 0 | 0 | . 0 | 0 | 00 | <u> </u> | 0 | 0 | 0 | | 16
17 | 0 | 0 | 0 | 0 | 0 | 0 | Ŏ | ó | Ŏ | 0 | 0 | 0 | | 18 | 0 | o o | 0 1 | 0 | 0 | 0 | Ŏ | 0 | 0 | 0 | ò | o | | 19 | 0 | 0 | 0 | ŏ | ö | 01 | 0 | 0 | Ö | 0 | 0 | 0 | | 20 | 0 | ŏ | 0 | ŏ | ŏ | 0 1 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 21 | ŏ | ŏ | 1.5 | ŏ | ō | 0 | 0 | ŏ | ŏ | ŏ | ŏ | ŏ | | 22 | ŏ | ŏ | اقة | ŏ | ō | o l | ō | ō | Ŏ | l o i | ŏ | ŏ | | 23 | o | ō | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō | ŏ | | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 25 | _ 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | | 26
27 | 0 | o o | 0 | 0 | 0 | 0 | 0 | o o | 0 | 0 | 0 | 0 | | 28 | 0 | 0 | 0 | o o | 0 | o l | 0 | 0 | 0 | 0 | Ŏ | o o | | 29 | 0 | 0 | 0 | 0 | ١ | 0.4 | 0 | ő | 0 | 0 | 0 | 0 | | 30 | ŏ | ŏ | 0 | ă | | 4 3 | ŏ | ŏ | ŏ | 0 | ŏ | ŏ | | 31 | ŏ | | ŏ | ŏ | | 4.3
0.5 | | ŏ | | ⊣ ŏ | ŏ | <u>`</u> | | | | | | | 0.2 | | | | | | | | | | 0 | 0 | 2.9 | 0 | 0.2 | 5 4 | + | . 0 | 0 | 0 | 0 | 0 | | EAN | 0 | 0 | 0.09 | 0 | 0.01 | 0.17 | | 0 | | 0 | 0 | 0 | | CHE-
PEET | 0 | 0 | 5.8 | 0 | 0.4 | 10.7 | + | 0 | 0 | 0 | 0 | 0 | | | | | c.f.s. or | | | | | | | YEAR MEA | NO. | 02 | | | | - | | | | | | | | OR
PERIOD ACRE | -FEET | 16.9 | F. O. Dist. Form 52 4- LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 270-R | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Muy | June | July | r ending Septer | Sept. | |------------|----------|----------|-----------|------------|----------|------|----------|-----|------|----------|-----------------|-------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | ~ | 0 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | 0 | 0 | o | o | 0 | 0 | o o | o | 0 | 0 |) 0 | 0 | | 5 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | 0 | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ō | | 8 | 0 | o o | + | Q | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10 | 0 | 0 | O. | 0 | <u> </u> | 0 | 0 | 0 | 0 | 0. | 0 | 0 | | 11 | 0 | 0 | Q | Q | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | | 12 | Ö | * ! | 0 | ď | 0 | ŏ | 00 | 0 | 0 | 0 | o o | 0 | | 13 | ă | 1.5 | 0 | 0 | ŏ | ŏ | 0 0 | 0 | 0 | 0 | 0 | 0 | | 14 | ŏ | 0.1 | ŏ | ŏ | + | ŏ | 0 | ŏ | ő | 0 | 0 | Ö | | 15 | ŏ | 0 1 | Ö | ă | ō | ŏ | | 0 | ŏ | 6 | ă | ŏ | | 16 | ŏ | ŏ | ŏ | q | ŏ | ŏ | <u> </u> | 0 | ŏ | 6 - | 0 | ŏ | | 17 | ŏ | ŏ | 5 | ď | ő | ŏ | ŏ | ŏ | ŏ | 0 | ŏ | ŏ | | 18 | ŏ | ŏ | l ŏ l | ă | ŏ | ŏ | ŏ | 0 | l ŏ | 6 | 0 1 | ŏ | | 19 | ŏ | ŏ | ğ | ď | ŏ | ŏ | ŏ | ŏ | Ιŏ | 1 6 | Ö | ŏ | | 20 | . ŏ | + | 'õi | <u>ā</u> | ŏ | 0.1 | ŏ | ŏ | ŏ | l ŏ | ŏ | _ 0 | | 21 | ō | 0 | 0 | ā | 0 | 0 | 0 | Ö | 0 | O | Ö | ō | | 22 | 0 | 0 1 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 | 0 | 2.6 | 0 | Ó | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 24 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 25 | 0 | Q | 0.8 | _ 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | | 26
27 | o l | 0 | 0.7 | o o | o | 0 | o | 0 | 0 | 0 | 0 | 0 | | 28 | o | 0 | + | . <u>o</u> | o o | o l | 0 | 0 | 0 | 0 | 0 | 0 | | 29 | 0 | 0 | * 1 | ď | 0 | 3.0 | ŏ | 0 | 0 | 0 | 0 | 0 | | 30 | 0 | o l | o l | Ö | | 0 | 0 | Ŏ | ŏ | 0 | 0 | 0 | | 31 | 0 | 0 | 0.0 | ů | | 8 | | 0 | 0 |] 0 | 0 | 0 | | | | | | | | 0 1 | ···· | 0 | | | U | | | | 0 | | 1.6 | _ | | | 0 | | 0 | | 0 | _ | | | | 4.2 | | 0 | | 0.3 | | 0 | r | 0 | | 0 | | AN | 0 | 0.14 | 0,05 | 0 | + | 0.01 | . 0 | 0 | 0 | 0 | 0 | 0 | | RE-
EET | 0 | 8.3 | 3.2 | 0 | + | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | | | Remarks: | + = 0.05 | c.f.s. on | Pless. | | | | | | YEAR MEA | N | 0.02 | ### STATION FIRE R CASTAIC CREEK at Highway 128 LOCATION: WATER-STAGE RECORDER, LAT. 34°25'41", LONG. 118°37'41", NEAR THE CENTER OF THE DOWNSTREAM SIDG OF THE HIGHMAY BRIDGE AT HIGHMAY NO. 126 ABOUT 6,0 MILES NORTHWEST OF SAUGUS AND 1,5 MILES WEST OF THE JUNCTION OF HIGHWAY NO. 126 AND HIGHWAY NO. 99, ELEVATION OF ZERO GAGE HEIGHT. 952.05 FEET. DRAINAGE AREA: 195. SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL. CONTROL - CHANNEL FORMS DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF HUGHWAY BRIDGE. RECORDER: INSTALLED DECEMBER 27, 1945 OVER AN 18 INCH CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM DECEMBER 27, 1945 TO SEPTEMBER 30, 1947. REGULATION AND/OR DIVERSIONS: NONE. RECORDS AVAILABLE: DECEMBER 27, 1945 TO SEPTEMBER 30, 1947. SOME STREAM FLOW MEASUREMENTS ARE AVAILABLE FOR EARLIER YEARS. EXTREMES OF DISCHARGE: 1945-1946 (FOR PERIOD OF RECORD) MAXIMUM 995 SECOND-FEET, MARCH 30. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 1440 SECOND-FEET, DECEMBER 26. MINIMUM NO FLOW MOST OF YEAR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARUE | MEABUREN | CAS | STAIC.C | REEK . | | | | | | | | _ | | DISCHARGE | E MEASURES | CENTE OF | CASTAIC | CREEK | | | | | | | | | | |-----|-----------|----------------|-----------------|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------|-------------|----------------------|---------------------------|--------------|-----|------------|----------------|----------|---------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|---------|--------|-------|--------------| | | netr. | Highwa | у 126 | | | DURIN | и тне че | ÄR ENDINS | BEPTE | EMBER | 30, | 10 <u>71</u> 6 | - | | AT
NEAR | High | way. 126 | L | | | DUR | IÑG THE Y | CAR ENDINE | BEPT | EMBER | 30, 1 | . 54. | | | NO, | DATE | BEGIN | HADE BY | WIDTH | AREA GF
BESTION
BG. FT. | MEAN
VELOCITY
FT.PER SEC. | EAUGE
HEIGHT
FEET | DISCHARGE
BEC- FT. | RAT- | метн-
во | MEAS.
BEG.
NG. | G. HT.
CHANGE
TOTAL | HETER
NO: | NG. | DATE | BEGIN
END | НА | DÉ NY | WIOTH
FEET | AREA OF
BECTION
SQ. FT. | MEAR
VELOCITY
FT.PER BEC. | BAUDE
MERBHT
FEET | DISCHARGE
SEC, FT. | RAT- | 1ETH- H | EAS. C | | HETER
NO. | | 1_ | 12/22 | 1100A
1135A | TURNER | TH | EE CH | ANNELS | | 536 | | .6 | 20 | 0 | FC43 | 18 | 11-13 | 955A
1018A | LUCE - \ | WRIGHT | THREE | CHANNEL | S | _5,58 | 250. | | ,6 2 | 22 + | .75 F | C39 | | 2 | 12/23 | 925A
.945A | TURNER - PALMER | TWO | сн. | NNELS | | 220. | | .6 | 18 | _0_ | | 19 | 11-13 | 400P
418P | | | ., | | | 5,40 | 299. | | .6 | 20 - | .12 | •• | | . 3 | 12/27 | 130P
140P | TURNER | 11.4 | 2.29 | 1.44 | 4.66 | 3.3 | | .5 | 10 | 0 | | 20 | 11-20 | 1007A
1023A | | •• | Two CH | ANNELS | | 5.33 | 197. | | .6 | 18 - | .06 | ., | | 4 | 1/3 | 1223P
1233P | | 8.5 | 2.06 | 1.26 | 4.72 | 2.6 | | .5 | 8 | 0 | ,; | 21 | 12-26 | 900A
930A | | | ** | | | 5.47 | 477. | | .6 | 21 - | .03 | | | 5 | 1/10 | 105P
115P | | 7.5 | 1.54 | 1.23 | 4.57 | 1.9 | | .5 | 8 | Q | | 22 | 12-27 | 1010A
1030A | | | ., | ., | | 5.16 | 229. | | .6 | 19 + | .05 | | | 6 | 1/16 | 1255P
105P | | 7.0 | 0.84 | 0.89 | 4.66 | 0.8 | | .5 | 7 | 0 | | 23 | 12-31 | 326P
335P | LUCE | | 19.0 | 7.98 | 2.35 | 4.50 | 18.6 | | .6 | 7 | 0 | | | 7 | 1/24 | 1245P
1250P | ** | 3.5 | 0.60 | 1.05 | 4.69 | 0.6 | | .5 | 4 | 0 | | 24 | 1-9 | 1240P
1245P | ,, | | 5,5 | 1.08 | 0.75 | 4.12 | 0.81 | | .5 | 5 | 0 | | | 8 | 2/3 | 305P
315P | TURNER - PALMER | 9.5 | 2.44 | 2.27 | 4.94 | 7.8 | | .6 | 6 | 0 | | 25 | 1-15 | 1120A
1125A | ,, | | 3.0 | 0.22 | 0.27 | 4.07 | 0.06 | | .5 | 3 | 0 | ** | | 9 | 2/6 | 1245P
1250P | TURNER | 5.0 | 0.92 | 1,41 | 4.70 | 1.3 | | ,5. | 5 | 0 | Ţ., | 26 | 2-14 | 1130A
1135A | ,, | | 4.5 | 1.27 | 1.26 | 4:08 | 1.6 | | .6 | 4 | 0 | | | 10 | 2/14 | 1230P
1235P | | 4.0 | 0.52 | 1.04 | 4.70 | 0.5 | | . 5 | 4 | 0 | | 27 | 2-20 | 115P
120P | ,, | | 2.0 | 0.22 | 0.27 |
3,89 | 0.06 | | .5 | 2 | 0 | | | 11 | 2/21 | 1210P
1215P | | 5.0 | 0.74 | | 4.71 | 0.8 | | 5 | 6 | ٥ | | 28 | 3-28 | 1205P
1212P | н | | 7.0 | 2.22 | 1.46 | 4.19 | 3,2 | | - | 6 | 0 | ., | | 12 | 3/30 | 745A
820A | TURNER - WRIGHT | | DUR CHA | | 5.88 | 863 | | 6 | 25 | - 10 | | | - | 1 | | | | | | | | 1 1 | | | , | | | 13 | 3/30 | 610P
630P | | | REE CH | | | 460. | | .6 | | 0 | | | | | | | | | | | | | | | | | | 14 | | 1115A
1135A | TURNER | | VO CHAP | | 5.60 | | | .6 | | | | l | | | | | | | | | | | | | | | | 15 | 4/3 | 1210P
1230P | | | 01171 | | 5.06 | | | .6 | | 0 | | 1 | | | | | | | | | | | | | | | | 10 | 4/11 | 1205P
1215P | | 17.0 | 5.35 | 2.00 | 4.68 | 10.7 | | .5 | 9 | 0 | | | | | | | | | | | | | | | | | | 15 | 4/11 | 1040A
1046A | | 14.0 | 2.44 | 1.39 | 4.48 | 3.4 | H | .5 | 9 | | | | | | | | | | | | | | | | | | | 1/ | J4/19 | [IN4PV | | 114.0 | 2.44 | 1.39 | 4.48 | 3.4 | | 5- | | | + | 41 | | | | | | | | | | | | | | | | P. C. Dist. | Form 52 4-46 | | | | | OD CONTRO | S COUNTY
OL DISTRICT | | | | Sta. I | to. F 108 - R | |-------------|---------------|--------------|---------|------------|-------------|------------|-------------------------|------|------|-------------|-----------------|-----------------------| | | | | | | H | YDRAULIC 1 | DIVISION | | | | | | | Daily di | scharge, in a | cond-feet of | CASTAIC | CREEK at | Highway 1 | 126 | | | | for the yea | r ending Septer | nber 30, 19 <u>47</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 | 0 | 0 | 0 | 15 | 0.1 | 0 | 0 | 4 .4 | 0 | 0 | Ŏ | 0 | | 2 3 | 0 | 0 | 0 | 11
9.5 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 4 | ŏ | l ŏ | l ŏ | 9.6 | 0 1 | ŏ | l ŏ l | ŏ | ŏ | l ŏ | ŏ | ŏ | | 5 | ŏ | 0 | 0 | 8.7 | 0.1 | 0 | 0 | 0 | ō | 0 | o l | 0 | | 6 | 0 | 0 | 12 | 6.9 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | 0 | 0 | 0 | 3.0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8 | 0 | 0 | 0 | 1.5
1.1 | 0.2
1.2 | 0 | 0 | . 0 | 0 | 6 | ŏ | 0 | | 10 | ŏ | ŏ | 6 | 5.6 | 12 | ŏ | 0 0 | . 9 | ă | 0 | l ŏ l | ŏl | | 11 | 0 | 0 | Ō | 0.5 | 1.7 | 0 | 0 | 0 | Ö | 0 | 0 | 0 | | 12 | 0 | 0 | 0 | 0.4 | 1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 | 0 | 249 | 0 | 0.4 | 1 1
0 .6 | 0 | 0 | Ŏ | 0 | 0 | 0 | 0 | | 15 | 0 | 9.£ | 0 | 0.2 | 0.6 | Ö | 0 | 0 | 0 | 0 | ă | ŏ | | 16 | | ŏ | 0 | | 0.7 | Ö | Ö | ő | - ŏ | 1 0 | ō | ŏ | | 17 | ō. | ō | Ŏ | 0 | 0.9 | õ | ō | ŏ | ō | 0 | Ŏ | o | | 18 | 0 | 0 | 0 | 0 | 1.7 | 0 | 0 | 0 | Q | 0 | 0 | 0 | | 19
20 | 0 | 75 | 0 | 0 | 1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 | 0 | 4.8 | 0 | ŏ | 0.1 | 11 | 0 | - 0 | | 1 8 | 8 | <u> </u> | | 22 | ŏ | o o | 0 | 0 | 0 | 5.5 | 0 | 0 | Ō | 0 | 0 | 0 | | 23 | 0 | 99 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 24
25 | 0 | 14 | 9.6 | 0 | 0 | 0 | 0 | 0 | o o | 0 | 0 | 0 | | 26 | 0 | 0 | 435 | 0.1 | 0 | 0 | 0 | 0 | 8 | 8 | 0 | 0 | | 27 | ŏ | lŏ | 215 | 01 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | Ιŏ | ŏ | | 28 | ŏ | Ŏ | 132 | 0.4 | ō | 1.1 | o | 0 | ō | 0 | Ö | Ŏ. | | 29 | 0 | 0 | 80 | 0.6 | | 0 | 6.8 | 0 | 0 | 0 | 0 | o [| | 31 | 0 | 0 | 4.5 | 0.2 | | 0 | 5.7 | 0 | 0 | - 8 | 0 | . 0 | | | 0 | | 25 | 0.7 | | | 1 | | | | , 0 | | | | 0 | | 970.5 | | 23.7 | | 12.5 | | 0 | | 0 | | | | | 451 <i>A</i> | | 702 | | 17.6 | | 4.4 | | 0 | , | 0 | | MEAN | 0 | 15.0 | 31.3 | 2.26 | .85 | 0.57 | 0.42 | 0.14 | . 0 | 0 | <u> </u> | 0 | | ACRE- | 0 | 895 | 1930 | 139 | 47 | 35 | 25 | 9 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | | YEAR MEA | N4.25 | | ## STATION F378-R COMPTON CREEK near Greenleaf Drive LOCATION: WATER STAGE RECORDER, LAT. 33°52'54", LONG. 118°13'27", ON THE LEFT (EAST) BANK OF THE CONCRETE CHANNEL, 120 FEET SOUTH OF THE CENTER LINE OF GREENLEAF DRIVE EXTENDED AND ABOUT ONE AMED ONE-HALF MILES SOUTHWEST OF COMPTON. ELEVATION OF ZERO GAGE HEIGHT, 50,14 FEET. DRAINAGE AREA: 23.3 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - RECTANGULAR, CONCRETE, 13.0 FEET DEEP AND 60 FEET WIDE. INVERT IS 1.05 FEET BELOW BOTTOM OF VERTICAL SIDE WALLS. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 10 FEET BELOW GAGE. RECORDER: INSTALLED JANUARY 22, 1928 AT STATION F37-R AT ROSECRANS AVENUE. REMOVED JUNE 3, 1938 DUE TO NEW CHANNEL CONSTRUCTION BY CORPS OF ENGINEERS, U.S., RANY. INSTALLED OCTOBER 3, 1938 OVER A 4.0 FT. X 3.2 FT. CONCRETE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: AT STATION F37-R - JANUARY 22, 1928 TO JUNE 9, 1938. AT STATION F378-R - OCTOBER 3, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF OISCHARGE: MAXIMUM 2,010 SECOND-FEET, DECEMBER 23. MINIMUM 2,6 SECOND-FEET, DECEMBER 20. MINIMUM 2, 6 SECOND-FEET, DECEMBER 20. 1946-1947 MAXIMUM 2930 SECOND-FEET, NOVEMBER 23. MINIMUM 1,6 SECOND-FEET, SEPTEMBER 2. 1928-1947 (STATIONS F37-R AND F378-R) MAXIMUM DISCHARGE OF RECORD, 3,010 SECOND FEET, NOVEMBER 11, 1944. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: GDDD OPERATION: LOCATED AND CONSTRUCTED BY CORPS OF ENGINEERS, U.S. ARMY, AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN CONJUNCTION WITH THE CORPS OF PASINEERS, U.S. ARMY. | | DISCHARGE | MEARURES | ENTE OF | COMPTI | ON CREE | ΕK | | | | | | _ | | DISCHARGE | MEASURE | MENTS OF | COMP. | TON CR | EEK | | | | | | | | |------|-------------|----------------|-------------------------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------|----------------------|-----------------|--------------|------|-----------|--------------|-------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------|-------|------------------------------|----------------|--------------| | | AT-
NEAR | | reenleaf <u>Drive</u> | | | "DURIN | IG THE YE | AR ENDING | өсртем | DER SC | , 19. 46 | - | 11 | | | enleaf Drive | | | | ING THE Y | EAR ENDING | S SEPT | EMBER | 30, 19 | <u>4</u> Z | | | HO. | DAYE | BEOIN | MADE BY | WIDTH | AREA OF
SECTION
BQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
BEC- FT. | RAT- M | ETH-MEA
BEC
ND | S G HT | METER
NO: | NO. | DATE | BEDIN | MADE BY | WIDTH | AREA DE
MECTION
BO. FT. | MEAN
VELOCITY
FT,PER MED. | GAUGE
HEIGHT
FEET | DISCHARGE
BEC. FY. | RAT- | DD I | 4EAB. G.
8EG. GH
NG. T | HANGE
FOTAL | METER
NO. | | 326 | 10/4 | | BONADIMAN | 31.0 | 13.3 | 0.47 | 0.57 | 6.2 | | 6 4 | 0 | FC19 | 341 | 10/3 | 1052 | BONADIMAN | 31.0 | 11.8 | 0.58 | 0.57 | 6.8 | | .6 | 7 | 9 F | FC19 | | 327 | 11/15 | 1010A
1018A | | 33.0 | 12.9 | 0.47 | 0.51 | 6.0 | | ā 4 | | | 342 | 10/16 | 1045A | | 58.5 | 27.2 | | 0.72 | 26.9 | 1 - [| | 10 - | | * | | 328 | 12/6 | 1032A
1002A | | 40.0 | 15.5 | 0.37 | 0.54 | 5.7 | | 5 5 | | | 343 | 10/17 | 1031 | | 54.0 | 18.9 | 0.37 | 0.57 | 7.0 | | .6 | 10 | 0 | | | 329 | 12/21 | 1045P
1102P | BONAD IMAN - KAS IN GFF | 50.0 | 150 - | 3.40 | 2.70 | 512. | | 2 7 | +.06 | | 344 | _11/12 | | BONADIMAN
LANG | 60.0 | 186. | 2.13 | 3.55 | 396. | | .6 | 9 . | _20 | | | 330 | 1/31 | | BONADIMAN | 58.0 | 20.2 | 0.42 | 0.50 | 8.4 | | 6 5 | 0 | ļ | 345 | 11/12 | 746#
800# | | 60.0 | 186. | 2.16 | | | | .6 | 8 . | - 16 | ., | | 331 | 2/21 | 1032A
1044A | | 51.0 | 14.9 | 0.36 | 0.56 | 5.4 | | 6 6 | 0. | | 346 | 11/20 | 1126/ | BONADIMAN | 60.0 | 103. | 2.02 | 2.16 | 208. | | .6 | 9 . | _22 | | | 332 | 3/20 | 341P
3568 | BONAD IMAN - KAS I MOFF | 60.0 | 150. | 3.50 | 2.71 | 526. | Ш. | 6 8 | + 12 | <u> </u> | 347 | 11/21 | 10564 | | 59.0 | 12.9 | 0.54 | 0.54 | 7.0 | | .6 | 13 | 0 | | | 333 | 3/21 | 1040A
1050A | | 58.0 | 17.8 | 0.40 | 0.50 | 7.2 | | â 6 | ٥ | | 348 | 11/23 | 1236F | BONAD MAN | 60.0 | 206. | 3.50 | 3.76 | 721. | | .6 | 9 | -32 | | | _334 | 3/28 | 1031A
1042A | PC:NC IMAN | £0.0 | 59.5 | 2.60 | 1.19 | 154. | | 5 8 | - 08 | | 349 | 12/12 | 1122/ | BONADIMAN | 22.0 | 10.3 | 0.49 | 0.55 | 5.0 | | .6 | 6 | 0 | | | -335 | 3/30 | 1041A
1055A | ECNADIMAN-KASIMOFF | 60.0 | 181. | 4.49 | 3.20 | 814. | | <u>i 9</u> | +09 | | 350 | 1/29 | 142P | | 39.0 | 13.4 | 0.60 | 0.53 | 8.1 | | .6 | 5 | 0 | | | 336 | 5/2 | 1102A
1114A | BONAD IMAN | .58.0 | 20.3 | 0.42 | 0.57 | 8.5 | | 10 | 0 | ٠. | 351 | 2/10 | 132P | | 58.0 | 18.7 | 0.44 | 0.57 | 8.3 | | .6 | 7 | 0 | | | 337 | 6/6 | 1002A
1014# | •) | Two C | HANNELS | | 0.58 | 6.4 | | 3 6 | 0_ | | 352 | 3/6 | 252
302 | | 58.0 | 18.1 | 0.34 | 0.55 | 6.2 | | .6 | 7 | 0 | - | | 338 | 7/3 | 1010A
1020A | | 19.0 | 9.80 | 0.68 | 0.58 | 6.6 | | 5 6 | 0 | | 353 | 3/11 | 820/
832/ | | 33.0 | 5.61 | 1.17. | 0.57 | 6.6 | | .6 | 9 | 0 | ., | | 339 | 7/25 | 952A | | 20.0 | 10.1 | 0.57 | 0.57 | 5.8 | | 6 | 0 | ٠. | 354 | 3/11 | 1122 | | 41.0 | 13.5 | 0.40 | 0.55 | 5.3 | | .6 | 9 | 0 | | | 340 | 8/53 | 1002A | | 22.0 | 11.2 | 0.58 | 0.58 | 6.5 | Π. | 5 6 | 0 | Ţ., | 355 | 4/10 | | P | 38.0 | 15.6 | 0.45 | 0.52 | 7.0 | | .6 | 6 | 0 | | | | 7-0-2 | ,,,,,, | | | | | | | | | 1 | , | 356_ | 5/1_ | 302 | | 55.0 | 16.6 | 0.39 | 0.51 | 6.5 | | .0 | 7 | 0 | | | | | | | | | | | | | | | | 357 | 5/29 | | • | 58.0 | 20.3 | 0.39 | 0.55 | 8.0 | | .6 | .10 | 0 | ** | | | | | | | | | | | | | | | 358 | 7/3 | 242
254 | 9 | 17.0 | 8.0 | 0.85 | 0.52 | 6.8 | | .6 | 6 | 0 | | | | | | | | | | | | | | | | 359 | 7/24 | | P | 35.0 | 14.7 | 0.52 | 0.52 | 7.6 | | .6 | 5 | 0 | | | | | | | | | | | | | | | | 360 | 8/21 | 312 | | 33.0 | 11.5 | 0.43 | 0.56 | 4.9 | | .6 | 5 | 0 | | | ₽. C. Di | st. Form 52 4-46 | | | | FLC
. H | YDRAULIC I | OL DISTRICT
DIVISION | • | | | | no. <u>F37B-R</u> | |--|---|--|--
---|--|---|---|--|---|--|---|--| | Daily | discharge, in s | econd-feet of | COMPION | CREEK ne | ar Greenl | eaf Drive | | | | , for the yea | r ending Septe | mber 30, 1946 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 11 12 2 13 13 14 5 16 17 7 18 19 20 22 24 25 26 27 28 29 30 | 5.6.6.6.1.7.5.9.5.1.1.9.9.9.9.9.7.7.7.7.7.7.7.7.7.7.7.8.9.5.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | 87997799887779144118477114446666155557 | 8.7
7.6.4
5.6.6.4.8.8
4.8.8.4.8.4.4.4.4.4.4.4.4.4.4.4.4 | 8.7.
8.7.
100
100
100
100
100
100
100
100
100
10 | 875
1427
1226 5799
1714686666666666666666666666666666666666 | 4 4 4 1 2 3 7 7 3 4 4 1 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 1 1 0 0 0 1 0 1 | D 7.9
D 7.9
D 7.9
D 4.4
D 4.1
B 7.7
C 6.4
C 7.4
C | 879971179999446444
877177999944644
877797766554455551111199114 | 6486664848667756811111111111111111111111111111111 | 5.61
7.91
4.8
10
9.5
9.5
9.5
8.7.7
8.7.7
7.11
7.11
7.11
6.6.4
10
11
19.5
7.9
9.6
6.4
10
11
10
10
10
10
10
10
10
10
10
10
10 | 951
65649
77961
8571
8571
6444
447
9548
771
6711
6711
6711
7716 | 716
449
7711
7711
7711
7711
7719
8877
8877
899
7719
879
879
879
987
997
997
997
997
997 | | 31 | 22
13 | 8.7 | 7.9
7.9 | 8.7
8.7 | | 230
1014 | 7.9 | 6 .4
4 .8 | 6.4 | 5.6
6.4 | 6.4
7.1 | 7.9 | | | 260.6 | 202.0 | 891.2 | 2949 | 3571 | 716.6 | 2127 | 215.0 | 186.4 | 237.8 | 2032 | 237 A | | MEAN | 8.41 | 6.73 | 28.7 | 9.51 | 12.8 | 23.1 | 7.09 | 6,94 | 6.21 | 7.67 | 6.55 | 7.91 | | ACRE-
UBST | 517. | 401. | 1,770. | 585. | 708. | 1,420. | 422. | 426. | 370. | 472. | 403. | 471. | | | Remarks: | | | | | | | | 7 | TEAR MEA | N I | 1.0 | P. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sts. No. F 378 - R | Daily | discharge, in s | second-feet of | COMPTO | N CREEK n | ear Green | leaf Driv | <u>e</u> | | | , for the year | r ending Septer | nber 30, 19 <u>11</u> | |----------------------------------|-------------------------------------|--------------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 6.4
6.4
7.9
7.9 | 5 .6 · 6 .4 · 5 .6 · 5 .6 · 6 .4 | 6.4
6.4
9.5
8.7
9.5 | 5.6
4.8
6.4
7.1
6.4 | 7 1
7 1
7 1
7 9
7 9 | 6.4
6.4
9.5
8.7
9.5 | 10
11
11
8.7
8.7 | 8.7
8.7
8.7
8.7
8.7 | 8.7
6.4
7.1
8.7
9.5 | 8.7
8.7
8.7
8.7
7.9 | 12
13
10
13 | 4 1
4 .4
7 1
7 1
4 .8 | | 6
7
8
9 | 71
7.9
10
9.5
10 | 5 .6
6 .4
7 .9
5 .6
5 .6 | 25
5.6
4.4
4.4
4.8 | 71
79
79
79
79 | 7.9
9.5
8.7
4.7
8.7 | 6 .4
6 .4
5 .6
5 .6
4 .8 | 9.5
8.7
10
10 | 9.5
9.5
9.5
8.7
18 | 10
6.4
5.6
8.7
10 | 8.7
9.5
10
10 | 12
11
15
11
8.7 | 4 .8
4 .4
4 .4
5 .4
5 .6 | | 11
12
13
14
15 | 10
10
10
10 | 41
474
243
79
79 | 4.8
5.6
4.4
4.1
4.4 | 9.5
8.7
7.9
7.9
7.9 | 7 9
7 9
7 9
7 1
7 9 | 6 .4
6 .4
5 .6
4 .8
5 .6 | 9.5
9.5
8.7
7.9
10 | 7 9
7 1
7 9
9 5
7 1 | 10
10
10
7.9
7.1 | 11
11
9.5
12
14 | 8.7
7.1
8.7
8.7
7.9 | 5.6
5.6
6.4
5.6
7.9 | | 16
17
18
19
20 | 4 4
6 .4
6 .4
6 .4
4 .8 | 7.1
7.9
7.9
8.7
110 | b 4.4
b 4.4
b 4.8
b 4.8 | 8.7
8.7
8.7
7.9
7.1 | 71
8.7
7.9
7.9
7.9 | 5.6
5.6
7.1
6.4
24 | 10
11
12
11 | 8.7
8.7
8.7
8.7
10 | 7 1
7 9
7 9
8 7
8 7 | 13
14
15
16
13 | 7 1
6 4
4 8
7 9
7 1 | 79
71
87
79
71 | | 21
22
23
24
25 | 4.4
6.4
6.4
6.4
7.1 | 9.5
10
403
8.7
7.1 | 6.4
5.6
4.4
3.8
4.50 | 7 1
6 4
7 1
8 7
8 7 | 7.9
7.9
6.4
6.4
7.1 | 12
95
8 95
8 95
8 95 | 10
19
11
10
9.5 | 10
9.5
8.7
9.5
9.5 | 7.9
7.1
7.9
8.7
9.5 | 15
18
12
15
14 | 6.4
5.6
5.6
6.4
7.9 | 79
79
79
79
87 | | 26
27
28
29
30
31 | 6 A
12
5 .6
5 .6
5 .6 | 7 1
7 9
7 9
7 1
7 9 | 77
34
71
5.6
4.8 | 79
79
42
79
79 | 7 1
7 1
7 1 | a 9.5
a 9.5
a 9.7
7.9 | 9.5
9.5
8.7
8.7
7.9 | 8.7
10
7.1
8.7
8.7
7.9 | 9.5
9.5
8.7
8.7
8.7 | 12
10
13
14
13 | 5.6
4.8
4.8
4.8
4.4 | 7 1
7 1
6 4
7 1
7 9 | | | 5.6
272.0 | 1523.4 | 770.9 | 7.9
271.5 | 2541 | 3353 | 301.0 | 2813 | 252.6 | 3674 | 253.8 | 198.8 | | MEAN | 8.77 | 50.8 | 24.9 | 8.76 | 9.08 | 10.8 | 10.0 | 9.07 | 8.42 | 11.9 | 8.19 | 6,63 | | ACRE-
FEET | 540 | 3,020 | 1,530 | 5 39 | 504 | 665 | 59 7 | 558 | 501 | 729 | 503 | 394 | | | Remarks: | | | | | | | | | TEAR MEATOR
OR
ERIOD ACRE | N 13. | | #### STATION FUIC-R COYOTE CREEK at Del Amo Street ``` LOCATION: WATER-STAGE RECORDER, LAT. 33°50'47". LONG. 118°03'30". ON THE RIGHT (WEST) ABUTMENT AND DOWNSTREAM SIDE OF THE DEL AMO STREET (FORMERLY ANAHEIM STREET) HIGHMAY BRIDGE, 30 FEET ABOVE THE UPSTREAM SIDE OF PACIFIC ELECTRIC RAILEDAD TRESTLE. AND 1.8 MILES SOUTHEAST OF ARTESIA. ELEVATION OF ZERO GAGE HEIGHT. 28.38 FEET. ``` DRAINAGE AREA: 110 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - CLAY, COVERED BY TULES DURING THE SUMMER MONTHS ONLY. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING, HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF P.E. RAILROAD TRESTLE. RECORDER: INSTALLEO JANUARY 14, 1930 AT STATION F41-R. MOVED TO STATION F41B-R. ON OCTOBER 30, 1936. REMOVED ON FEBRUARY 17, 1937. INSTALLED FEBRUARY 18, 1937 AT STATION F41C-R OVER AN 18 INCH DIAMETER, CORRUGATED
IRON PIPE STILLING WELL. AN AUCONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. OIVERSIONS: NONE. RECORDS AVAILABLE: AT STATION F41-R - STREAM MEASUREMENTS TAKEN FROM DECEMBER 1, 1928 TO JANUARY 14, 1930. RECORDER RECORDS FROM JANUARY 14, 1930 TO OCTOBER 30, 1936 TO FERBULARY 17, 1937. AT STATION F418-R - OCTOBER 30, 1936 TO FERBULARY 17, 1937. AT STATION F41C-R - FEBRUARY 18, 1937 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: MES UP DISOLUTION 1945-1946 9 MINIMUM 0,2 SECUND-FEET, SEFTEMBER 28, 1946-1947 MAXIMUM 145, SECONO-FEET, NOVEMBER 14, MINIMUM 0,1 SECONO-FEET, JUNE 12, 1929-1947 (STATIONS F41-R, F41B-R, AND F41C-R) MAXIMUM 4,190 SECONO-FEET (AT STATION F41B-R) FEBRUARY 6, 1937MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATEO, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | 1008 1009 | | DISCHARGE | C HEADURE | MENTS OF | LUTU | TE CRE | EK | | | | | | | | | DISCHARGE | HEASURE | SENTE OF COYOTE | VIII | | | | | 16 5 6 6 6 6 6 7 6 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 | | - | | |--|----|-----------|--------------|---|---------------|-------------------------------|---------------------------------|-------------------------|-------------|-------------|--------|----------|---------------|------|-------|-----------|----------------|--|-------|--------------------|---------------------------------|--------------|----------|--|--------|------------------|---------| | Section Sect | | <u> </u> | el Amo | Street | | | DUR | ING THE Y | YEAR ENDING | 3 467 | TEMBER | r 20, 19 | · 148 - | | | AT | <u>De l</u> | Amo Street | | | buæ | INU THE YEAR | R ENDING | I BEPTE | MBER 3 | ю, тэ <u>4</u> 7 | | | 1000 2000 | | DATE | END | NADE BY | WIOTH
FEET | AREA OF
BECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEG. | BAUGE
HEIGHT
FEET | | RAT-
ING | METH- | SEC. C | HT. | | NO. | DATE | END | MADE BY | | SECTION
SQ. FY. | MEAN
VELOCITY
FT.PER BEG. | BAUDE DI | | RAT- M | DD NE | GHANG | er. | | 1906 1907 1907 1907 1908 1909
1909 | 3_ | 10/4 | 400P | BONAD IMAN | 8.0 | 4.30 | 0.86 | 3.47 | 3.7 | | .6 | 5 | _0_ | FC19 | 419 | 10-3 | 312P
320P | BONADIMAN | 13,0 | 6.00 | 0.57 | 3.06 | 3.4 | \sqcup | .6 5 | 0 | FC | | | | 10/10 | 934A | <u> </u> | 7.0 | 1.80 | 0.56 | 3.06 | 1.0 | | 6 | 4 | اه | ** | 420 | 10-10 | 300P | " | 12.0 | 5.00 | 0.60 | 2.98 | 3.0 | | .6 E | 0 | | | 100 | | 10/18 | | ,, | 7.0 | 3.30 | 0.73 | 3.28 | 2.4 | L | .6 | 4 | 0 | | 421 | 10-17 | | " | 7.0 | 2.65 | 0.53 | 2.74 | 1.4 | | .6 4 | . 0 | 1 | | 10 10 10 10 10 10 10 10 | | | | | 8.0 | 3.55 | 0.70 | 3.37 | 1 | | . 6 | 4 | 0 | | 422 | 10-24 | | | 18.0 | 7.71 | 0.40 | 2.86 | 3.1 | | .6 6 | | . . | | | | | 250P | 14 | | | | 1 | | | | | | | | | 132P | ., | | | | | | | - 1 | 1 | T | | 1.77 | - | | 232P | | | | | | | | | | | ., | | | | н | | i l | | | | | | | T | | 1270 1366 | | | 332P | | 1 | 1 | | 1 | 1 | | ١, | | | •• | | | 156P | Dough Lauc | | | | | | | | | - | | 1770 3.65 | 닉 | 11/29 | 334P | | | 1 | | | | H | | | | | | | 1115A | | | | | | | 1 | i | | | | 110-2- 1 | Ч | 12/6 | | ** | 8.0 | 4.20 | 0.81 | 3.32 | 3.4 | | | <u></u> | | - | 425 | 11-14 | | | 58.0 | 77.4 | 0.59 | | | tt- | .6 6 | | + | | 1722 1816 ACCOUNTY 460 880, 0 0.1 4.78 27.5 .6 4 0 .7 429 11.21 346 .8 .8 .8 .8 .8 .8 .8 . | | 12/20 | 31.4P | BONADIMAN | 7.0 | 2.20 | 0.70 | 3.05 | 1.5 | | .6 | 4 | 0 | | 427 | 11-15 | | BONADIMAN | 58.0 | 55.8 | 0.47 | 3.70 | 26.3 | - | 6 6 | - 0 | | | 1272 2360 | 4 | 12/22 | 321A | KASIMOFF
BONADIMAN | 45.0 | 89.0 | 0.31 | 4.25 | 27.5 | - | | - | 0 | | 428 | 11-21 | 344P | | 58.0 | 55.8 | 0.54 | 3.53 | 30.3 | \vdash | -6 7 | 0. | + | | 1/272 1255 MS MS MS MS MS 1 | - | 12/22 | 350P | KASIMOFF | 70.0 | 254. | 2.07 | 6.68 | 526- | | .6 | 7 | .04 | | 429 | 11-23 | | BONADIMAN - LANG | 60.0 | 124. | 1.95 | 4.96 1 | 36. | 1-+ | .6 6 | 0 | | | 1972 1980 | _ | 12/23 | 1215P | | 57.0 | 217. | 2,29 | 6.88 | 497. | _ | .6 | 7 - | -15 | | 430 | 12-12 | 350P | BONAD IMAN | THREE | CHANNE | s | 2.57 | 2.1 | 1 | .6 7 | 0 | 4 | | 1272 1706 | | 12/24 | | BONAD IMAN | 32.0 | 27.4 | 1.78 | 3.86 | 48.9 | | .6 | 4 | 0 | •• | 431 | 12-26 | 1036A | 10 | 62.0 | 117. | 0.95 | 4.58 1 | 11. | Ļļ | .6 7 | 0 | | | 172 | | 12/27 | | | 22.0 | 13.8 | 0.67 | 3.25 | 9.3 | | .6 | 5 | 0 | | 432 | 12-27 | 1125A | BONADIMAN - LANG | Two C | ANNELS | | 3.58 | 34.3 | | .6 7 | | | | 1/10 2229 | | | 212P | | | 7.85 | 0.62 | 2.96 | | | .6 | 5 | 0 | | 433 | 1-2 | | BONADIMAN | 11.0 | 6.51 | 0.88 | 2.52 | 5.7 | | .6 5 | 0 | | | 1177 132° | | , . | 222P | | | 1 | i | İ | | | .6 | | 0 | | 434 | 1-9 | | | 9.0 | 5.23 | 0.74 | 2,52 | 3.9 | | .6 5 | . 0 | Ţ | | 1724 230F | 1 | | 1305 | | 1 | i | | | | | | | | | | | 1052A | n . | | | | | | | | | T | | 1 | + | | 230P | | | į | | | | H | - 0 | | - | | | | 1102A | | | i | | 1 1 | | | - 1 | | | | 1.11 33.00 | 4 | 1/24 | | | | 1 | İ | | 3.3 | | . 6 | T | | | 1 | | 1002A | | 1 | 1 | | 1 1 | | 11 | 1 | | 1 | | 274 10294 " 210 13.9 1.66 3.32 15.0 6.6 0.0 " 459 2-9 1028" " 9.0 5.52 0.56 2.51 2.9 1.5 0 4 0 0 1 251 1064 1 9.0 5.33 0.66 2.52 3.5 6.6 4 0 0 1 251 1064 1 9.0 5.33 0.66 2.52 3.5 6.6 4 0 0 1 251 1064 1 9.0 5.33 0.66 2.52 3.5 6.6 4 0 0 1 251 1064 1 9.0 5.33 0.66 2.52 3.5 6.6 4 0 0 1 251 1064 1 9.0 5.30 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.30 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.30 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.30 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.30 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.30 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.20 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.20 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.20 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.20 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.20 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.20 0.66 2.51 2.59 1.66 4 0 0 1 251 1064 1 9.0 5.20 0.66 2.51 2.51 2.59 1.66 4 0 1 9.0 5.20 0.66 2.51 2.51 2.59 1.66 4 0 1 9.0 5.20 0.66 2.51 2.51 2.59 1.66 4 0 1 9.0 5.20 0.66 2.51 2.51 2.59 1.66 4 0 1 9.0 5.20 0.66 2.51 2.51 2.59 1.66 2.51 2.51 2.59 1.66 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51 | 4 | 1/31_ | | *************************************** | 11.0 | 3.85 | 0.57 | 2.79_ | 2.2 | H | .6 | _4 | | | | | 1102A | | | 1 | | | | 1- | | | + | | 27 3C2F 16.0 7.20 0.58 7.88 5.0 65 0 499 440 2-27 1040A 9.0 5.22 0.56 2.51 2.99 1.8 4 0 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | - | 2/4 | 1029A | н | 21.0 | 13.9 | 1.08 | 3.32 | -15-0 | | .6 | 6 | 0 | | | | 1042A | 1 | | | l | 1 | | ++ | . 1 | | + | | 2/21 3006 16.0 5.20 0.50 2.81 3.0 4.6 4 0 1 1.0
1.0 1. | 4 | 2/7 | 3C2P | | 16.0 | 7.20 | 0.69 | 2,88 | 5.0 | | 6 | 5 | 0. | | 439 | 2-13 | | | 9.0 | 5.33 | 0.66 | 2.52 | 3.5 | + | .6 4 | 0 | + | | 3/7 2266 BONADIMAN 6.0 2.50 0.30 2.71 0.75 6 3 0 FC19 441 3-13 1042A " 9.0 5.50 0.69 2.44 3.8. 6 4 0 0 3.14 2.00 1102A " 9.0 5.50 0.69 2.47 3.8. 6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 3.8. 6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 6.6 5 0 0 0 0.44 4 1.0 1052A " 4.0 0.49 0.72 2.24 0.64 4.6 3 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 1.4 6 4 0 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.71 1.4 6 4 0 0.40 1102A " 9.0 5.50 0.69 2.47 2.70 1104A " 9.0 5.50 0.69 2.47 2.70 1104A " 9.0 5.50 0.69 2.47 2.70 1104A " 9.0 5.50 0.69 2.47 2.47 2.71 1.4 6 4 0 0.40 1104A " 9.0 5.50 0.69 2.47 2.47 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.7 | - | 2/21 | 300P | | 16.0 | 5.20 | 0.58 | 2.81 | 3.0 | | .6 | 4 | 0 | | 440 | 2 • 27 | | " | 9,0 | 5.22 | 0.56 | 2.51 | 2.9 | +-+ | .6 4 | 0 | + | | 3/14 2069 | | .3/7 | | BONAD IMAN | 6.0 | 2.50 | 0.30 | 2.71 | 0.75 | | , 6 | 3 | Q | FC19 | 441 | 3-13 | 1042A | | 9.0 | 5.50 | 0.69 | 2.54 | 3.8 | \sqcup | .6 4 | 0 | 1 | | 408F ASSINDEF SOMADIMAN 19.0 16.3 0.88 3.42 14.3 .6 7 0 443 4*3 1038A 8.0 4.60 0.59 2.47 2.7 6 4 0 0.59 2.79 2.7 2.7 6 4 0 0.59 2.79 2.7 2.7 6 4 0 0.59 2.79 2.7 2.7 6 4 0 0.59 2.79 2.7 2.7 6 4 0 0.59 2.79 2.7 2.7 6 4 0 0.59 2.79 2.7 | | 3/14 | | | 12.0 | 4.20 | 0.36 | ì | | | . 6 | 4 | 0 | | 442 | 3-20 | 1110A | | 9.0 | 3.95 | 0.53 | 2.40 | 2.1 | | .6 | 4 0 | | | 902A 272 902A 372 902 | | | 408P | | | | | l | | | 6 | | ^ | | . 443 | 4-3 | 1038A | | 8.0 | 4.60 | 0.59 | 2.47 | 2.7 | | .6 | ¢ 0 | | | 3/30 21P KASHMOFF 3/30 21P RONDIMN 40.0 88.1 1.73 5.41 153. 5.6 5 0 " 445 4-17 1037A " 5.0 2.03 0.69 2.31 1.4 5.6 4 0 3/31 430P BONDIMN 726.0 35.7 1.132 4.28 54.3 5.6 8 0 " 446 4-23 1032A " 5.0 1.68 0.50 2.28 0.95 6.6 3 0 4/4 257P BONDIMN 727.0 5.80 0.72 2.97 4.2 5.6 6 0 " 447 5-1 1032A " 6.0 2.25 0.58 2.37 1.3 5.6 4 0 4/11 222P " 15.0 5.80 0.72 2.97 4.2 5.6 6 0 " 448 5-8 1030A " 6.0 2.25 0.58 2.37 1.3 5.6 4 0 4/11 222P " 15.0 5.80 0.72 2.97 4.2 5.6 6 0 " 448 5-8 1030A " 6.0 2.23 0.74 2.30 1.7 5.6 4 0 4/11 1034 " 16.0 6.50 0.74 2.98 4.8 6 5 0 " 449 5-15 1022A " 5.0 2.23 0.69 2.21 1.4 5.6 4 0 4/12 1034 " 16.0 6.50 0.74 2.98 4.8 6 5 0 " 449 5-15 1022A " 5.0 2.23 0.69 2.21 1.4 5.6 4 0 4/12 1034 " 16.0 6.50 0.74 2.98 4.8 6 5 0 " 449 5-15 1022A " 5.0 2.23 0.69 2.29 1.4 5.6 4 0 4/12 1034 " 16.0 6.50 0.74 2.98 4.8 6 5 0 " 449 5-15 1022A " 5.0 2.23 0.69 2.29 1.4 5.6 4 0 4/13 1034 " 16.0 6.50 0.74 2.98 4.8 6 5 0 " 449 5-15 1022A " 5.0 2.23 0.69 2.23 1.4 5.6 4 0 4/13 1034 " 16.0 6.50 0.74 2.98 4.8 6 5 0 " 450 5-22 1116A " 5.0 0.22A " 5.0 2.23 0.69 2.29 1.4 5.6 4 0 4/14 1034 " 16.0 4.0 5.45 0.46 2.84 2.5 6 6 5 0 " 450 5-22 1116A " 5.0 0.23 0.74 2.30 1.7 6 6 4 0 4/15 1034 " 17.0 7.05 0.37 3.04 2.6 6 6 5 0 " 450 5-22 388A " 7.0 2.44 0.71 2.25 1.17 1.4 6 4 0 5.75 302P " 14.0 7.20 0.36 3.15 2.6 6 6 5 0 " 451 5-29 388A " 7.0 2.44 0.71 2.25 1.17 1.6 6 4 0 5.76 332P " 14.0 6.50 0.85 3.03 4.2 6 6 4 0 " 452 6-5 1002A " 6.0 2.79 0.72 2.24 2.0 6 5 0 5.76 232P " 20.0 8.50 0.29 3.05 2.5 6 5 0 " 450 6-26 1002A " 6.0 2.79 0.72 2.24 2.0 6 6 5 0 5.72 332P " 14.0 6.50 0.59 3.0 4.2 6 6 4 0 " 455 6-26 1002A " 6.0 2.79 0.72 2.24 2.0 6 6 5 0 5.73 332P " 14.0 6.50 0.59 3.0 4.2 6 6 4 0 " 455 6-26 1002A " 6.0 2.79 0.72 2.24 2.0 6 6 5 0 5.72 332P " 14.0 6.50 0.59 3.0 4.2 6 6 4 0 " 455 6-26 1002A " 6.0 2.00 0.93 2.00 0.11 1.5 6 4 0 5.72 332P " 14.0 6.50 0.59 3.0 5.2 5 6 6 4 0 " 455 6-26 1002A " 6.0 2.00 0.93 2.00 0.11 1.5 6 4 0 5.74 302P " 16.0 6.50 0.59 3.0 5.2 5 6 6 6 0 0 " 455 6-26 1002A " 6.0 0.00 0.31 2.00 0.31 2.00 0.31 1.6 4 0 5.72 302P " 16 | | | 902A | | | | | İ | | | | | | | 444 | 4-10 | | | 4.0 | 0.89 | 0.72 | 2.24 | 0.64 | | .6 | з о | ŀ | | 3/31 310 | | | 20 IP | KASIMOFF | i | | i | ł | | | b | - 1 | | | 445 | 4-17 | 1031A | | 5.0 | 2 03 | 0.69 | 2 31 | 1 1 | | - 1 | , , | T | | 3/31 400° BONADIMAN | 4 | _3/30_ | | | 40.0 | 88.1 | 1.73 | 5.41 | 153. | Н | .6 | - | 0 | | | | | | i | 1 | | 1 1 | | 1 | i | 1 | | | A/A 257 SCHADIMAN 20,0 9,60 0,79 3,17 7,6 6 5 0 447 311 0592A 6 6 0 2,30 0,74 2,30 0,74 2,30 1,77 6 6 4 0 0 0 0 0 0 0 0 0 | 4 | _3/31 | _430P_ | BONADIMAN | 26.0 | 35.7 | 1.52_ | 4.28 | 54.3 | Н | .6 | - 1 | 0 | | | | 1021A | | I | 1 | | | | 1-1 | | | Т | | A/11 222P | 4 | 4/4 | 257P | BONAD I MAN | 20.0 | 9.60 | 0.79 | 3.17 | 7.6 | Н | .6 | 5 | 0 | | - | | 1024A | I | | I | | | | ++ | | | | | A/18 1042A " | - | 4/11 | 222P | - | 15.0 | 5.80 | 0.72 | 2.97 | 4.2 | | . 6 | 6 | 0 | • | 448 | 5-8 | | - | 6.0 | 2.30 | 0.74 | 2.30 | 1.7 | +-+ | -6 4 | 1 0 | + | | 4/25 M32A 14.0 5.45 0.46 2.84 2.5 6 5 0 450 5-22 1116A 5.0 1.88 0.75 2.17 1.4 6 4 0 450 32A 7.0 2.41 0.71 2.25 1.7 6 4 0 451 5-29 338A 7.0 2.41 0.71 2.25 1.7 6 4 0 451 5-29 338A 7.0 2.41 0.71 2.25 1.7 6 4 0 451 5-29 338A 7.0 2.41 0.71 2.25 1.7 6 4 0 451 5-29 338A 7.0 2.41 0.71 2.25 1.7 6 4 0 452 6-5 1020A 6.0 2.79 0.72 2.24 2.0 6 5 0 6 5 0 452 6-5 1020A 6.0 2.79 0.72 2.24 2.0 6 5 0 6 5 0 452 6-5 1020A 6.0 2.79 0.72 2.24 2.0 6 5 0 452 6-5 1020A | | 4/18 | 1042A | | 16.0 | 6.50 | 0.74 | 2.98 | 4,8 | | .6 | 5 | 0 | ** | 449 | 5-15 | | * | 5.0 | 2.23 | 0,63 | 2.29 | 1.4 | +-+ | -6 | 3 0 | + | | 5/2 332P 17.0 7.05 0.37 3.04 2.6 6.6 5 0 451 5-29 938A 7.0 2.41 0.71 2.25 1.7 6.4 0 451 5-29 938A 7.0 2.41 0.71 2.25 1.7 6.4 0 6.5 0.2 79 0.72 2.24 2.0 6.5 0 451 0.02A 6.0 2.79 0.72 2.24 2.0 6.5 0 6.5 0 452 6-5 1020A 6.0 2.79 0.72 2.24 2.0 6.5 0 6.5 0 452 6-5 1020A 30.0 0.60 0.23 1.90 0.14 6.5 0 6.2 0 453 6-12 956A 30.0 0.60 0.23 1.90 0.14 6.5 0 6.2 0 453 6-12 956A 30.0 0.60 0.23 1.90 0.14 6.5 0 6.2 0 453 6-12 956A 30.0 0.60 0.23 1.90 0.14 6.5 0 6.2 0 453 6-12 956A 30.0 0.60 0.23 1.90 0.14 6.5 0 6.2 0 454 6-19 1010A 5.0 1.69 0.65 2.05 1.1 6.6 4 0 455 6-26 1010A 5.0 1.69 0.65 2.05 1.1 6.6 4 0 455 6-26 1010A 5.0 1.94 0.88 2.11 1.7 6.4 0 455 6-26 1010A 5.0 1.94 0.88 2.11 1.7 6.4 0 455 6-26 1010A 5.0 1.94 0.88 2.11 1.7 6.4 0 455 6-26 1010A 5.0 1.94 0.88 2.11 1.7 6.4 0 455 6-26 1010A | | 4/25 | 1032A | | 14.0 | 5.45 | 0.46 | 2.84 | 2.5 | | .6 | 5 | 0 | •• | 450 | 5-22 | 1116A | - | 5.0 | 1.88 | 0.75 | 2.17 | 1.4 | + | .6 | 4 0 | + | | 14.0
7.20 0.36 3.15 2.6 .6 4 0 452 6-5 1020A 6.0 2.79 0.72 2.24 2.0 .6 5 0 5 1.5 2.22 20.0 8.50 0.29 3.05 2.5 6 5 0 453 6-12 956A 3.0 0.60 0.23 1.90 0.14 6 2 0 2.23 2.24 2.0 6 4 0 453 6-12 956A 3.00 0.60 0.23 1.90 0.14 6 2 0 2.25 2.25 0.5 3.03 4.2 6 4 0 454 6-19 1010A 5.0 1.69 0.65 2.05 1.1 6 4 0 455 6-26 1010A 5.0 1.94 0.88 2.11 1.7 6 4 0 455 6-26 1010A 5.0 1.94 0.88 2.11 1.7 6 4 0 455 6-26 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 6-26 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 6-26 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 6-26 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 6-26 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 6-26 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 6-26 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 1010A 4.0 1.56 0.46 1.95 0.72 6 4 0 455 1010A 4.0 1.00 0.31 2.00 0.31 3.6 4 0 455 1010A 4.0 1.00 0.31 2.00 0.31 3.6 4 0 455 | | 5/2 | | | 17.0 | 7,05 | 0.37 | 3.04 | 2.6 | | . 6 | 5 | 0 | ** | 451 | 5-29 | 938A | *** | 7.0 | 2.41 | 0.71 | 2.25 | 1.7 | \perp | -6 | 4 0 | 4 | | Signature Sign | Ц | .5/9 | | | 14.0 | 7.20 | 0.36 | 3.15 | 2.6 | | .6 | 4 | 0 | | 452 | 6-5 | 1020A | | 6.0 | 2.79 | 0.72 | 2.24 | 2.0 | Ш | .6 | 5 0 | _ | | 5/23 32F 14.0 6.50 0.65 3.03 4.2 6.6 4 0 455 6-26 10102 5.0 1.69 0.65 2.05 1.1 6.4 0 6.4 0 455 6-26 10102 5.0 1.94 0.88 2.11 1.7 6.4 0 6.2 10102 5.0 1.94 0.88 2.11 1.7 6.6 4 0 455 6-26 10102 5.0 1.94 0.88 2.11 1.7 6.6 4 0 455 6-26 10102 5.0 1.94 0.88 2.11 1.7 6.6 4 0 455 6-26 10102 5.0 1.94 0.88 2.11 1.7 6.6 4 0 455 6-26 10102 5.0 1.94 0.88 2.11 1.7 6.6 4 0 455 6-26 10102 455 | | | 222P | | 1 | l | | 3.05 | 1 | | . 6 | 5 | 0 | | 453 | 6-12 | 956A | ** | 3.0 | 0.60 | 0.23 | 1.90 | 0.14 | | .6 | 2 0 | \perp | | 6/6 332P 8.0 2.25 0.71 2.93 3.6 .6 4 0 455 6.26 1010A 5.0 1.94 0.88 2.11 1.7 .6 4 0 6/21 352P 15.0 5.95 0.28 3.10 1.77 .6 4 0 456 7.3 1010A 4.0 1.56 0.46 1.95 0.72 .6 4 0 452 1 15.0 | ı | | 317P | | | | | | | | | 4 | 0 | | 454 | 6-19 | 1010A | - | 5.0 | 1.69 | 0.65 | 2.05 | 1.1 | \perp | .6 | 4 0 | | | 6/6 340P | | | 332P | | | | | i | | П | | | - | | | 1 | 1002A | | T | | [| 1 1 | | | | | - 1 | | 150 | + | | 34 2P | † <u> </u> | | Ţ | | | 1 | Н | | - | \rightarrow | | 456 | - | 1002A | | | | | | | | | | \neg | | 321P 321P 16.0 6.30 0.54 3.16 3.4 3.4 3.6 4 0 0 458 8-14 1020A 0 0.58 0.49 0 | 4 | 6/21 | | | 1 | | 0.28 | | T | \vdash | | | | | | | 1011A | | | | | 1 1 | | \Box | | 7— | 7 | | 8/16 331F " 16.0 6.30 0.54 3.16 3.4 6.6 4 0 " 455 8-21 1022A " 7.0 1.75 0.43 2.12 0.75 6.6 4 0 " 455 8-21 1022A " 7.0 1.75 0.43 2.12 0.75 6.6 4 0 0 " 459 8-21 1022A " 7.0 1.75 0.43 2.12 0.75 6.6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 닉 | 7/11 | 302P | | TWO CH | | | | | Н | | | - | | | | 1016A | | 1 | | | | | + | | 1 | -T | | 8/23 328 " 5.0 1.08 0.44 2.76 0.48 .6 4 0 " 4.3 6.7 1.08 0.44 2.76 0.48 .6 4 0 " 4.3 6.7 1.08 0.44 2.76 0.48 .6 4 0 " 4.3 6.7 1.08 0.44 2.76 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 | 4 | 8/16 | 331P. | | 16.0 | 6.30 | 0.54 | 3.16 | 3.4 | \vdash | | - | | | | | 1022A | | | 1 | 1 | 1 1 | | | 1 | 1 | - 1 | | 9/13 200P WADDICOR 2.0 1.75 1.08 2.67 1.9 .6 2 0 FC37 460 8-28 1018A " 7.0 2.25 0.41 2.34 0.93 .8 4 0 200P 150P " 2.0 1.14 0.61 2.40 0.66 .6 2 0 " 461 9-3 230P WADDICOR 4.3 2.10 0.76 2.27 1.6 .6 4 0 200P 200P 200P 200P 200P 200P 200P | 4 | 8/23 | 328P | | 5.0 | 1.08 | 0.44 | 2.76 | 0.48 | \sqcup | .6 | 4 | 0 | | 459 | 8-21 | 1028A
1012A | | 7.0 | 1.75 | 0.43 | 2.12 | 0.75 | +- | .6 4 | 1 0 | + | | 9/19 155P " 2.0 1.14 0.61 2.40 0.66 6 2 0 " 461 9-3 230P WADDICOR 4.3 2.10 0.76 2.27 1.6 6 4 0 4 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P "
4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 5 0 200P " 4.5 1.58 0.76 2.27 1.2 6 0 200P " 4.5 1.58 0.76 2.27 1.2 6 0 200P " 4.5 1.58 0.76 2.27 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 6 0.77 1.2 6 0 200P " 4.5 1.58 0.2 | _ | 9/13 | 200P | WADDICOR | 2.0 | 1.75 | 1.08 | 2.67 | 1,9 | | .6 | 2 | 0 | FC37 | 460 | 8-28 | 1018A | " | 7.0 | 2.25 | 0.41 | 2.34 | 0.93 | +- | .6 | 4 0 | + | | 462 9-10 230° " | | 9/19 | 150P
155P | | 2.0 | 1.14 | 0.61 | 2.40 | 0.66 | Ш | . 6 | 2 | 0 | ** | 461 | 9-3 | 230P | WADDICOR | 4,3 | 2.10 | 0.76 | 2.27 | 1.6 | - | .6 | 4 0 | | | 463 9-17 215P " 3.5 0.96 0.74 2.06 0.71 .6 4 0 | , | | , | - | • | • | • | | • | | | | , | | 462 | 9-10 | 230P | 1 | . 4.5 | 1.58 | 0.76 | 2.27 | 1.2 | 4 | .6 | 5 0 | 4 | | | | | | | | | | | | | | | | | 463 | 9-17 | 215P | , | 3.5 | 0.96 | 0.74 | 2.06 | 0.71 | | .6 | 4 0 | | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.__FUIC-R | ally di: | Oct. | Nov. | COYOTE (| Jan. | Feb. | Mar. | Apr. | Мау | June | July | r ending Septem | Sept. | |----------|----------|------------|------------|--------------|--------------|----------------|--------------------|------------|----------------|--------------|-----------------|------------| | | | | | | | | - | | | - | | | | 1 | 3.8 | 2.3 | 3.1 | S. 6 d | 2.1 | 0.9 | 26 | 2.1 | d 2.4 | 1.6 | 3.5 | 5.2 | | 2 | 3.0 | 2.4 | 3.1 | b 5.5 | 2.0 | 0.9 | 22
b 15 | 3.4 | 1.6 | 11 | 2.3
b 2.4 | 6.1 | | 3 4 | 1.9 | 2.4 | 2.9 | 4.9 | 5.1
12.8 | 8. O | | 2.6
2.9 | 1.8 | 0.3 | | 4.6
3.2 | | 5 | 19 | 2.6 | 3.4
3.3 | 4 .8
4 .8 | 12.8 | 0.8
0.9 | ъ 8.4
62 | 1.9 | 1 2.2
d 1.8 | 0.2 | 2.5 | 3.2
2.8 | | 8 | 3.2 | 2.5 | 3.3 | 4 .6 | 5.5 | 0.9 | 5.7 | 2.9 | 1.8 | 0.7 | 2.5 | 2.3 | | 7 | 4.6 | 3.4 | 3.8 | 4.0 | 5.0 | 0.8 | 5.5 | 3.6 | ودة | 1.9 | 2.7 | 1.5 | | 8 | 3.3 | 3.5 | 3.6 | 3.8 | 5.0 | 0.0 | b 4.6 | 2.5 | ا و ن ه | 3.2 | 2.8 | 13 | | 9 | 0.5 | 0.5 | 3.8 | 3.6 | 5.0 | 0.9 | 42 | 21 | 1 0.e | 1.6 | 2 3 | 1.7 | | 10 | و ن | 0.3 | 3.3 | 3.4 | 4.6 | 1.1 | 4.8 | 33 | 0.8 | 2.5 | 2 2 | 2.9 | | 11 | 2.1 | 1.0 | 4.0 | 3 .6 | 4.4 | 12 | 4.6 | 3.4 | 0.7 | ž Š | 3.0 | 2.2 | | 12 | 2.5 | 2.1 | 3.9 | 3.8 | 4.5 | 1 4 | 4.8 | 3.4 | 0.7 | 1.4 | 3 🗓 | 1.7 | | 13 | 2.6 | 2.0 | 4.0 | 3.8 | 4.2 | 1.5 | 4.8 | 3.9 | d 0.6 | 0.6 | 32 | 0. \$ | | 14 | ا ق ج | 2.4 | 42 | 3.9 | 3.9 | 1.6 | 4.6 | 1.8 | 10.6 | b 0.6 | 33 | 2.9 | | 15 | 2.6 | 4.3 | 3.9 | 3.9 | 4.0 | 1.6 | 4.5 | 2 1 | 0.6 | 1.4 | b 33 | 1.9 | | 16 | 1 1 | 2.6 | 4.0 | 4 .0 | 3.9 | 1.6 | 4.5 | 2.4 | 0.7 | 0.7 | 3 .4 | 1.9 | | 17 | 2.0 | 2 .6 | 4.5 | 4.0 | 3.8 | 1 .6 | 4.5 | 2.8 | 1.4 | b 0.7 | 12 | 12 | | 18 | 2.1 | 2 .6 | 5.0 | 3.9 | 3.4 | 0. \$ | 4.5 | 2.9 | 111 | b 0.9 | b 12 | 8.0 | | 19 | 1.9 | 2.5 | 1.4 | 3.9 | 3.4 | 4 .4 | 4.6 | 2.3 | 0.4 | 1.9 | 13 | 0.7 | | 20 | 1.0 | 3.0 | 1.3 | 3.8 | 3_3_ | 8.8 | 4.6 | 3.1 | d 1.0 | 1.2 | 1.4 | 1.0 | | 21 | 3.1 | 2 .4 | 4.7 | 3.6 | 3.1 | 12.8 | 4.4 | b 2.5 | 1.7 | b 1.2 | b 1.5 | 12 | | 22 | 29 | 0.7 | 224 | 3.4 | a 2.8 | 6.4 | 4.2 | b 1.6 | 1.2 | 1.4 | 1.6 | و ٥ | | 24 | 2.4 | 0.8 | 278 | 3.4 | 2.4 | 4.5 | 2.2 | 2.9 | 1.8 | 12
b14 | b 0.5 | 2.2 | | 25 | 2.1 | 1.3 | 5 4 | 3.3 | 2.1 | b 4.6 | 1.4 | 3.6 | d 1.7 | b 1.4
1.3 | ъ 0.5
5.5 | 1 3
0 9 | | 26 | _ 2.5 | 0.9 | 17 | | | 4.8 | | 4.5
4.0 | 1.6 | d 13 | | 0.9 | | 27 | 0.7 | 1.6
2.4 | b 12
93 | 3 2
3 1 | 1.5
a 1.2 | 1 4.9
5 5 1 | 2.4 | 4.4 | 1.4 | d 12 | 5.0
3.2 | 0.5 | | 28 | 1.7 | 2.5 | | 3.0 | ا وُّهُ ا | 5.2 | 1.5 | d 2.9 | d 13 | 12 | 21 | 0 2 | | 29 | 2.1 | 3.0 | b 8.7 | 2,9 | 03 | 61 | 2.5 | | 12 | 3.0 | b 1.4 | 11 | | 30 | 21 | 2.9 | 7.4 | 2.6 | | 782 | 2.4 | 3.5 | ã.o | 4.0 | b 12 | 1 9 | | 31 | 23 | ~ ~ ~ | b 6.8 | 22 | ļ | 754 | ~ ~ · · | قَا أَ | | 1.6 | b 1.6 | | | | | | | | | | | | | | | | | | 71.6 | | 699.8 | | 1081 | | 174.5 | 000 | 37.0 | 440 | 74.7 | 591 | | | | 671 | | 1184 | | 242.6 | 1 | 3.86 | | 44.0 | | 29-1 | | EAN | 2.31 | 2,23 | 22.6 | 3.81 | 3.86 | 7.82 | 5.82 | 2.86 | 1.23 | 1.42 | 2.41 | 1.97 | | EET. | 142. | 133. | 1.390. | 235. | 214. | 481. | 346. | 176. | 73.4 | 87.3 | 148. | 117. | | | Remarks: | | | | | | | | 3 | EAR MEA | N 4. | 89 | F. C. Dist. Form 52 4-48 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 11 C-R | | | | | | н | YDRAULIC D | IVISION | | | | | | |--|---|---|--|---|--|--|--|--|--|---|--|--| | Daily | discharge, in se | cond-feet of | COYOT | E CREEK a | t Del Amo | Street | | | | , for the yea | r ending Septem | iber 30, 19 <u>47</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5
6
7 | 22223
23112
332 | 32
31
27
237
29
11
4 14
4 12 | 33
33
33
30
30
30
86 | 96555544
44 | 51
49
46
8 46
8 4.4
8 4.2 | 331
29
28
37
37
31 | 88864
1578
1178 | 1.4
1.4
1.6
1.7
2.0
1.6
1.4 | 100120432
1111 | 1 3
0 8
0 7
0 7
0 7
0 7 | 0.3
0.8
1.0
0.8
0.7
0.5 | 0.8
1.4
1.6
1.0
0.7
0.5
0.6 | | 10 | 3 1
2 9 | 2.7
1.6 | 2.5
2.4 | 4 2
4 .0 | a 3.8 | 2.9
2.8 | 0.7 | 1 2
1 0 | 1.0
0.7 | 0.7
0.6 | 0.4 | 0.9 | | 11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 2.9
b 1.8
b 1.5
b 1.5
b 1.5
c 2.6
3.4
b 3.4
b 1.7
c 2.6
3.4
c 3.1
c 1.7
c 2.8
d 3.3 | 1.7
355
701.8
28.8
28.7
15
30
31
30
30
30
30
30
30
30
30
30
30
30
30
30 | 110098888900906
11888900906
679 | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | a a nonnnnnnnnn na a a a a a a a a a a a | 5552225125601256952225555555555555555555555555555555 | 0.6
0.7
0.6
1.6
1.8
1.8
1.1
1.2
1.3
0.0
0.7
0.0
1.7
1.6 | 1.8
1.9
1.2
1.3
1.4
1.0
0.9
1.3
1.3
1.4
1.2
1.9
2.0
0.19
2.0
0.19 | 00000000000000000000000000000000000000 | 0 5 4 8 9 9 7 8 9 9 7 8 9 9 7 8 9 9 7 9 9 9 9 | 077. 65 66 67. 11. 1 86 1 2 9 4 4 9 6 6 7. 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 6 6 0 0 7 7 10 7 11 8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 78.4 | 4081 | 2199 | 145.6 | 100.7 | 882 | 4 4 .0 | 452 | 359 | 17.8 | 233 | 314 | | MEAN | 2.52 | 13.6_ | 7.09 | 4.70 | 3,60 | 2.85 | 1.47 | 1.46 | 1.20 | 0,51 | 0.75 | 1.05 | | ACRE-
FEET | 156 | 809 | 436 | 289 | 200 | 175 | 87 | 90 | 71 | 35.0 | 46 | 62 | | | Remarks: | | | | | | | | | TEAR MEA
OR
ERIOD ACR | | 460 | ### STATION F265-R DOMINGUEZ CHANNEL at Carson Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 33°49'56'*, LONG. 118°15'12'*, ON THE LEFT (EAST) BANK ON THE UPSTREAM SIDE OF THE CARSON BOULEVARD BRIDGE ABOUT ONE-HALF MILE EAST OF AVALON BOULEVARD. ELEVATION OF ZERO GAGE HEIGHT. ABOUT 0.00 FEET. DRAINAGE AREA: 56 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - DREDGED EARTH, CONTROL - CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF BRIDGE. RECORDER: INSTALLED NOVEMBER 23, 1938. OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. A HORIZONTAL RATIONAL RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: REGULATED BY LAGUNA DOMINGUEZ AREA', SUBJECT TO PONDING. DIVERSION: NONE. RECORDS AVAILABLE: NOVEMBER 23, 1938 TO SEPTEMBER 30, 1947. FOR PREVIOUS RECORDS, SEE EARLIER REPORTS ON STATION F46-R, NIGGER SLOUGH AT WILMINGTON AVENUE. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 231 SECOND-FEET, DECEMBER 23, MINIMUM 5.5 SECOND-FEET, MAY 5. MINIMUM 5.5 SECOND-FEET, DECEMBER 26. MINIMUM 5.6 SECOND-FEET, JULY 14. MINIMUM 5,0 SECOND-FEET, FEBRUARY 23, 1944. MINIMUM NO MEASURABLE FLOW, WATER PONDED AT GAGE. ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABURE | (ENTS OF | DOMING | UEZ CH | ANNEL | | | | | | _ | NO. | DATE | BEBIN
END | HADE BY | WIOTH
FEET | AREA OF
MEDYSON
MO. FT. | MEAN
VELUDITY
FT.PER BED. | MAUGE
HEIGHT
FEET | DIEDHARDE
PEG. FT. | NAT- N | ETH- ME/
BE
NO | EHANGE
TOTAL
| METER
NO. | |-------------|-----------|------------------|-------------------------|----------|-------------------------------|----------------------------------|-------------------------|-----------------------|-------------|--------|--------------------------------------|----------|-----|------|----------------|-----------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------------------|----------------------|-----------------|--------------| | | NEAT- | Carso | n Boulevard | | | | O THE YE | AR ENDING | BEPTER | CB E.A | 30. 1 91 [6 | _ | 237 | 3/21 | 11364
1200N | KASIMOFF
BONADIMAN | TWO CHAI | NELS | | 6.56 | 43.5 | | .6 10 | 0 | ļ. <u>.</u> | | | | | | | | | | | | | | | 238 | 3/28 | 211P
230P | BONAD IMAN | TWO CHAP | NELS | | 6.27 | 31.4 | 1 | . 6 10 | 10 | | | ND. | DATE | BEATH
END | MADE BY | WIDTH | AREA OF
MEGTION
MG. FT. | MEAN
VELODITY
FT. PER BEG. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | PAT-
DHI | ETH- | MEAR. D. H
MEG. CHANG
NO. TOTA | T. HETER | 239 | 3/30 | 641P
700P | KASIMOFF
BONADIMAN | TWO CHAI | NELS | | 6.70 | 43.7 | | .6 8 | 0 | 1 | | 214 | 10/4 | 1226P
1234P | BONAD1MAN | 19.0 | 15.0 | 0.49 | 6.06 | 7.4 | | .6 | 6 0 | FC19 | 240 | 3/31 | 1101A
1125A | KASIMOFF
BONADIMAN | 31.3 | 57.5 | | 7.28 | 102. | | .6 12 | T | | | 215 | 10/10 | 1153A
1204P | | 20.0 | 14.8 | 0.59 | 6.08 | 8.7 |] } | - 1 | 6 0 | | 241 | 4/4 | 1052A
1102A | BONAD IMAN | 24.0 | 23.7 | 1.29 | 6.37 | 30.6 | | .6 6 | 0 | | | _216 | 10/18 | 1202P
1212P | | 20.0 | 15.4 | 0.61 | 6.05 | 9.4 | | . 6 | 6 0 | | 242 | 4/11 | 1042A
1052A | | 18.0 | 11.7 | 0.62 | 6.08 | 7.3 | | ,6 6 | 0 | | | 217 | 10/25 | 1105P
1115P | | 18.0 | 13.9 | 0.54 | 6.06 | 7.5 | | 6 | 6 0 | •• | 243 | 4/18 | 207P
217P | | 19.0 | 14.1 | 0.60 | 6.09 | 8.5 | | .6 5 | 0 | | | 218 | 11/1 | 1115A
1125A | | 20.0 | 15.6 | 0.67 | 6.10 | 10.5 | | 6 | 6 0 | 7 | 244 | 4/25 | 152P
202P | | 19.0 | 14.1 | :0.61 | 6.09 | 8.6 | | .6 5 | 0 | T., | | _219 | 11/8 | 1102A
1112A | | 21.0 | 14.7 | 0.71 | 6.09 | 10.4 | | 6 | 6 0 | | 245 | 5/2 | 1147A
1158A | | 19.0 | 13.6 | 0.55 | 6.04 | 7.5 | | .6 5 | 0 | | | _220 | 11/15 | 1052A
1102A | | 20.0 | 15.7 | 0.67 | 6.11 | 10.5 | | 6 | 6 O | | 246 | 5/9 | 1042A
1054A | | 19.0 | 12.8 | 0.44 | 6.04 | 5.6 | | .6 5 | 0 | Ī | | 221 | 11/21 | 1102A
1112A | •• | 20.0 | 16.1 | 0.71 | 6.10 | 11.4 | | 6 | 6 0 | | 247 | 5/16 | 1042A
1052A | | 19.0 | 14.1 | 0.55 | 6.09 | 7.7 | | .6 5 | o | | | 222 | 11/29 | 1221P
1231P | | 10.0 | 15.6 | 0.62 | 6.14 | 9.7 | | 6 | 5 0 | | 248 | 5/23 | 1032A
1042A | | 18.0 | 14.5 | 0.53 | 6.07 | 7,7 | | .6 6 | 0 | | | 223 | 12/6 | 1138A
1150A | | 20.0 | 16.2 | 0.64 | 6.13 | 10.3 | | 6 | 6 0 | | 249 | 5/29 | 1034A
1046A | | 25.0 | . 7. 15 | 1.20 | 6.09 | 8.6 | | .6 8 | 0_ | <u></u> | | 224 | 12/13 | 1202P
1220P | | 21:0 | 16.6 | 0.75 | 6.16 | 12.5 | | 6. | 6 0 | | 250 | 6/6 | 1104A
1116A | | 23.0 | 7.80 | 1,10 | 6.09 | 8.6 | | .6 9 | 0 | | | 225 | 12/20 | 1104A
1120A | | 21.0 | 16.4 | 0.52 | 6.09 | 8.6 | | . 6 | 6 O | | 251 | 6/13 | 1102A
1112A | | 24.0 | 9.45 | 1.17 | 6.07 | .11.1 | | .6 7 | 0 | | | 226 | 12/22 | 203P
214P | BONADIMAN
KASIMOFF | TWO CHAP | NELS | | 6.70 | 59.5 | | 6 | 7 0 | | 252 | 6/21 | 1034A
1045A | | 24.0 | 7.66 | 1.12 | 6.07 | 8.4 | | .6 7 | 0 | | | 227 | 12/23 | 400P
415P | BONAD IMAN
KAS IMOFF | TWO CHAN | NELS | | 8.03 | 223. | | 6 | 8 0 | | 253 | 6/27 | 1048A
1102A | | 26.0 | 8.60 | 1.15 | 6.09 | 10.0 | | .6 8 | | | | 228 | 12/27 | 318P
330P | BONAD IMAN | TWO CHAN | NELS | | 6.48 | 30.5 | | 6 | 8 0 | | 254 | 7/11 | 1102A
1114A | | 27.0 | 9,91 | 1.13 | 6.12 | 11.2 | | .6 8 | | | | 229 | 1/3 | 1014A
1025A | •• | 18.0 | 13.6 | 0.55 | 6.08 | 7.6 | | 6 | 6 0 | | 255 | 7/18 | 1052A
1102A | | 27.0 | 9.30 | 0.95 | 6.13 | 8.8 | | .6 7 | | | | _230 | 1/17 | 1012A
1022A | | 18.0 | 14.1 | 0.57 | 6.08 | 8.1 | | 6 | 5 0 | | 256 | 7/25 | 1051A
1101A | | 27.0 | 12.0 | 1.07 | 6.13 | 12.8 | | .6 6 | | | | 231 | 1/31 | 1102A
1112A | | 19.0 | 14.0 | 0.57 | 6.05 | 8.0 | | 6 | 5 0 | | 257 | 8/2 | 1022A
1032A | | 26.0 | 10.8 | 1.23 | 6.12 | 13.3 | | .6 6 | 0 | | | 232 | 2/7 | 1042A
1053A | | 21.0 | 16.2 | 0.73 | 6.14 | 11.8 | Ш, | 6 | 6 0 | | 258 | 8/9 | 1127A
1137A | BONAD IMAN | 29.0 | 10.8 | 1.09 | 6.14 | 11.8 | $\perp \downarrow$ | .6 7 | | FC19 | | 233 | 2/14 | 1007A
1018A | | 19.0 | 14.8 | 0.60 | 6.04 | 8.9 | | 6 | 5 0 | | 259 | 8/16 | 1132A
1142A | | 27.0 | 12.4 | 1.23 | 6.15 | 15.2 | Ш | .6 7 | | ļ | | 234 | 2/28 | 1022A
1032A | | 18.0 | 14.4 | 0.65 | 6.11 | 9.3 | Ш. | 6 | 5 0 | | 260 | 8/23 | 1052A
1104A | | 27.0 | 11.7 | 1,17 | 6.13 | 13.7 | | .6 8 | | | | 235 | 3/7 | 1052 A
1100 A | | 19.0 | 15.4 | 0.60 | 5 08 | 9.2 | | .6 | 5 0 | | 261 | 8/29 | 1115A
1125A | | 27.0 | 11.5 | 0.91 | 6.13 | 10.5 | | .6 9 | • | <u> </u> | | 2 36 | 3/20 | 433P
447P | BONAD IMAN | TWO CHA | NELS | | 6.58 | 40.7 | | .6 | 8 0 | FC19 | 262 | 9/13 | 1040A
1050A | WADDICOR | 28.0 | 12.2 | 0.94 | 6.12 | 11.5 | | .6 10 | ٥ | ١., | | | DISCHARGE | E MEABURE | MENTA OF DOMINGU | EZ CHA | NNEL . | | | | | | | | | но. | DATE | BEOIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
AG. FT. | MEAN
VELOCITY
FT.PER SEC. | BAUGE
HEIBHT
FEET | DISCHARGE
SEG. FT. | RAT- HETE | MEAS.
BEC.
NO. | G. HT.
CHANGE
TOTAL | HETER
NO. | |------------|-----------|-------------------------|------------------|----------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------------------|----------------|----------------------|---------------------------|--------------|-----|-------------|----------------------|--|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------------|----------------------|---------------------------|--------------| | | ATA C | arson | Boulevard | | | DUR | NO THE Y | EAR ENDING | 3 BEPT | EMBE | R 30, | 19147. | | 289 | 3-13 | 221P
231P | ** | 28.0 | 11.3 | 1.21 | 6.05 | 13.7 | .6 | 8 | 0 | ,, | | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | HEAN
VELOGITY
FT.PER BEG. | SAUGE
HEIGHT
FEET | DISCHARGE
SEG. FT. | RAT- | GD ETR- | MEAB.
BEC.
NO. | G. HT.
CHANGE
TOTAL | HETER
NO. | 290 | 3-27 | 247P
257P
247P | | 28.0 | 12.8 | 0.93 | 5,94 | 11.9 | .6 | 8_ | 0 | | | 263 | 10-3 | 1144A
1156A | BONAD IMAN | 26.0 | _10.5 | 0.84 | 6.06 | 8.8 | | .6 | | 0 | FC19 | 291 | 4-3 | 257P
152P | | 26.0 | 10.6 | 1.02 | 5.96 | 10.8 | .6 | ! | 1 | ,, | | 264 | 10-10 | 1102A
1112A | -11 | 27.0 | 9.12 | 1.05 | 6.08 | 9.6 | ļ | .6 | 8 | 0_ | | 292 | 4-10 | 202P
202P
212P | · n | 28.0 | 13.4 | 0.86 | | 11.5 | .6 | T | | | | 265 | 10-17 | 1122A
1134A
1032A | - | 24.0 | 8.50 | 0,85 | 6.06 | 7-2 | \vdash | .6 | 7 | 0 | | 294 | 4-23 | 232P
244P | ** | 29.0 | 13.0 | 0.89 | 5.94 | 11.5 | .6 | | | • | | 266 | 10-24 | 1042A
1012A | | 27.0 | | 1.20 | 6.07 | | \vdash | .6 | _8 | 0 | ** | 295 | 5=1 | 207P
220P | 71 | 27.0 | 12.8 | 1.05 | 6.12 | 13.4 | | 9 | 0 | /H | | 267 | 10-31 | 1026A
1050A | | 27.0 | 9.2 | | 6.09 | 11.7 | $\dagger \lnot \dagger$ | .6 | 8 | 0 | ** | 296 | 5-8 | 202P
216P
302P | ** | 27.0 | 13.1 | 0.90 | 6.10 | 11.8 | | 9 | 0 | | | | 11:7 | 1100A
418P
439P | BONADIMAN - LANG | 25.0
TWO CH | | 0.80 | 8.88 | 189. | | j | | +.02 | ** | 297 | 5-15 | 312P
221P | ** | 26.0 | 10.8 | 0.90 | 6.06 | 9.7 | | 8 | <u> </u> | | | | 11-13 | 400P
420P | BURADIMAR - LARG | ** | ** | | 9,39 | 177. | | i | 1.1 | Q | | 298 | 5-22 | 232P
218P | ** | 26,0 | 12.7 | 0.84 | 6.07 | 10.6 | 6 | | | + | | 271 | 11-16 | 1100A
1114A | BONAD IMAN | -14 | | | 7.11 | 76.5 | | .6 | 11 | 02 | | 300 | 5-29
6-5 | 228P
202P
212P | | 26.0 | 10.1 | 0.84 | 6.02 | 10.1 | .6 | 8 | 0 | " | | 272 | 11-21 | 1151A
1206P
212P | | | - | | 6.40 | 22,2 | \perp | .6 | 9 | 0 | + | 301 | 6-12 | 127P
138P | ************************************** | 27.0 | 11.8 | 0,92 | 6.02 | 10.8 | | | - | - | | 273 | 11-24 | 228P | ** | | | - | 8.43 | 187. | \square | •6 | 10 | 02 | | 302 | 6-19 | 136P
147P | | 26.0 | 12.0 | 0.63 | 5.97 | 7.6 | | 9 | 0 | | | 274_ | 11-27 | 1126A
1221P | - | | · | | 6,50 | 35.4 | +- | | 10. | 1 | ., | 303 | 6-26 | 322P
334P | • • | 27.0 | 12.0 | 0.87 | 5.97 | 10.4 | | | 0 | l | | 275 | 12-6 | 1233P
1230P
1240P | ** | 26,0 | 11.4 | 1,04 | 6.26 | 12.1 | | .6 | 9 | | ,, | 304 | 7-3 | 142P
154P
240P | • | 27.0 | 10.9 | 0.65 | 5).95 | 7-1 | | 8 | 0 | | | 276
277 | 12-12 | 136P
155P | ** | | ANNELS | | 9.31 | 326. | | and a constant | - | +.02 | | 305 | 7-10 | 250P
1008A | *** | 27.0 | 12.6 | | 5.94 | 9.4 | | | | <u> </u> | | 278 | 12-27 | 323P
336P | BONADIMAN - LANG | | | | 9.34 | 143. | | . 6 | 11 | 0 | " | 306 | 7-17 | 1018A
200P | | 28.0 | 13.2 | 0.71 | 6.02 | 9.4 | 16 | | + | + | | 279 | 12-28 | 1016A
1030A | BONAD I MAN | | - | ļ | 8.22 | 114. | 1 | .6 | 11 | 02 | - 11 | 307 | 7-24 | 210P | | 27.0 | 11.7 | 0.60 | 6.00 | 7.0 | | 1 | | + | | 280 | 1-2 | 251P
304P
247P | | | 11. | - | 6.25 | 17.2 | - | .6 | 9 | 0 | ** | 308 | 7-31
8-7 | 222P
222P
230P | .,, | 27.0 | 12.5 | | 6.00 | 7.3 | | | - | | | 281 | 1-9 | 258P | | | | | 6.15 | 13.4 | + 1 | SURF | 8 | 0 | - | 310 | 8-14 | 232P
244P | э | 27.0 | 13.2 | | | | | 6 8 | | - 11 | | 282 | 1-16 | 240P
252P | | | | | 6,14 | 7.9 | 1- | -6 | _9 | | ** | 311 | 8-21 | 222P
232P
223P | *** | 29.0 | 8.4 | 0.91 | 6.04 | 7.7 | <u> </u> | 5 8 | | | | 283 | 1-30 | 302P | | 25.0 | 11.6 | 1 | 6.12 | | | .6 | 1 | | | 312 | 8-28 | 236P | |
27.0 | 8.1 | 0.97 | 61,04 | 7.9 | <u> .</u> | 5 9 | 0 | | | 284 | 2-6 | 222P
232P
242P | | 36.0 | 16.3 | | 6.18 | 14.0 | | .6 | 1 | | -0 | 313 | 9-3 | 1015A
1035A | WADDICOR | 26.5 | 11.3 | 0.83 | 6.00 | 9.4 | | 6 7 | - | FC37 | | 286 | 2-20 | 202P
212P | | 28.0 | 13.8 | | 5.12 | 12.3 | | .6 | 7 | o | | 314 | 9-10 | 1045A
1010A | * | 27.0 | 10.8 | 1 | | 7.0 | | 5 7 | 1 | | | 287 | 2-27 | 252P
302P | | 29.0 | 15.0 | | 6.10 | T | | .6 | 7 | | | 315 | 9-17 | 1020A
1015A | ** | 26.0 | 10.3 | 1 | <u> </u> | 7.7 | | 5 8 | | - | | 288 | 3-6 | 200P | | 28.0 | 13.2 | 1.04 | 6.07 | 13.7 | 1 | .6 | 7 | | -10 | 316 | 9-24 | 1025A | 1 | 25.0 | 9.5 | 4 0.77 | 0.01 | 1 /.3 | 1 | -1- | + | + | | P. C. Di | at. Form 52 4-46 | | | | FLO | LOS ANGELES
OOD CONTRO
YDRAULIC I | L DISTRICT | | | | Sta. | No. <u>F265R</u> | |--|--------------------------|--|--|---|--|---|----------------------------|---------------------------------|--|--|--|--| | Daily | discharge, in s | econd-feet of | DOMINGUE | Z CHANNEL | at Carso | n Bouleva | rd | | | , for the yes | r ending Septe | mber 30, 19 16 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 | 10
11
10
a10 | 11
10
9.0
9.3
10
10
10
10
10
10
10
10
11
11
11
11
12 | 93.63
100
100,7,7,3,7
99.7,7
122
1122
1122
1123
1124
1129
1129
1129
1129
1129
1129
1129 | 7,663,633,6,6,0,9,5,6,0,0,5,7,7,7,7,8,6,7,7,8,6,7,7,8,6,7,7,8,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | 78102
1102
1102
1102
1109
1109
1109
1109
1 | 8877899998990020989
1111 | 5447937
11429977867888 | 8877666666655666777 | 8.5
7.6
9.0
9.0
9.0
9.0
9.0
9.0
11.2
11.2
11.2
11.0
11.0 | 10
11
10
10
10
10
10
11
10
11
10
11
10
11
10
11
10
10 | 14
14
14
12
14
12
12
12
12
12
13
14
15
13
14
15
14 | 9.7
10
110
112
110
110
110
110
110
112
112 | | 19 | 9.7
9.3
9.7 | 10
10
12 | 12
9.7
8.6 | 8 .0
8 .0
7 .6 | 93
93 | 9.0
17
25 | 8.0 | 73 | 11 | 9.7 | 15
15 | 9.7 | | 21
22
23
24
25
26 | 9.0
8.3
8.0
7.3 | 12
10
10
10
9.0
8.3 | 15
51
195
143
59 | 7.6
8.3
8.3
7.6 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 41
46
34
25
24 | 73
80
83
90
86 | 8 0
8 0
8 3
8 0
6 6 | 9 3
8 3
7 6
10
12 | 9.7
10
12
12
12 | 15
15
14
14
12 | 9.7
8.6
9.0
9.3
10 | | 27
28
29
30
31 | 8 .0
7 .6 | 8.3
8.0
9.0
9.0 | 31
25
21
16
14 | 6.9.3.0.Q
8.8.8 | 8 .6
9 .0 | 22
30
23
42
93 | 8 3
7 3
8 0
8 6 | 8 6
9 0
9 3
8 6
8 0 | 11
10
10
10 | 12
12
13
14 | 14
12
11
10
10 | 9.7
10
9.3
10 | | | 2682 | 2972 | 813.2 | 242.8 | 8687 | 6063 | 4121 | 8.852 | 2991 | 3381 | 408 | 3090 | | MEAN | 8.65 | 9,90 | 26.2 | 7.83 | 9.36 | 19.6 | 13.7 | 7.38 | 9.97 | 10.9 | 13.2 | 10.3 | | ACRE- | | 589. | 1,610. | 482, | 520. | 1,200. | 817 | 454. | 593, | 671. | 809. | 613. | | | Remarks: | | | | | | | | | YEAR MEA | .N1 | 2.3 | | F. | a | Dist. | Forz: | ч | 1-44 | |----|---|-------|-------|---|------| LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAILI C DIVISION Sta No. F 265-R | | | | 000000 | UEZ CHANN | | IDRAULIC I | | | | | | • | |------|------------|----------|------------|------------|----------|------------|----------|----------|--------------------------|--------------------------|------------|------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | nber 30, 19_4
Bept. | | Day | OEL | ļ | | | | | | | | | _ | - | | 1 | 11 | 12 | 21 | 16 | 10 | 14 | 10 | 13 | 8.6 | 7.9 | 6.5 | 8.3 | | 2 | 11 | 10 | 18 | 17 | 10 | 12 | 12 | 13 | 10 | 8.3 | 5.9 | 9.0 | | 3 | 9.3 | 9.7 | 17 | 16
15 | 12
12 | 14 | 11 | 12
12 | 11 | 6.6
7.2 | 5.6
5.9 | 9.7 | | 3 | 9.3
9.0 | 97.0 | a 1 4 | 14 | 14 | 15 | 10 | 12 | 10 | 72 | 6.5 | 9.0 | | В | 83 | 9.0 | a 12 | 15 | 15 | 15 | 1ŏ | 12 | 10 | 7.5 | 6.9 | 8.6 | | 7 | 8.3 | 7.9 | b12 | 14 | 15 | 19 | 10 | 12 | 9.3 | 79 | 6.6 | 8.3 | | 8 | 9.7 | 8.3 | b12 | 14 | 13 | 18 | 11 | 12 | 8.6 | 8.6 | 6.9 | 7.9 | | 10 | 9.7 | 7.2 | b12 | 14 | 12 | 17 | 11 | 12 | 9.0 | 9.0 | 6.6 | 7.6 | | 11 | 9.0 | 8.3 | b13
b13 | 12 | 12 | 16
15 | 11 | 11 | 9.3 | 9.0 | 6.6
7.2 | 7.2 | | 12 | 8.6 | 32 | b13 | 11 | 15 | 15 | 11 | 10 | 10 | . 7.6 | 8.6 | 7.5
8.3 | | 13 | 7 5 | 139 | iż | 9.7 | 14 | 14 | 9 3 | 10 | 10 | 6.6 | 93 | 6.5 | | 14 | 8.3 | 190 | 11 | 0.0 | 12 | 14 | 11 | 10 | 9.3 | 6.9 | 8.6 | 6.6 | | 15 | 8.6 | 143 | 10 | 8.3 | 12 | 13 | 11 | 9.3 | 7.9 | 8.6 | 7.6 | 6.5 | | 18 | 8.3
7.6 | 75
45 | 11
12 | 7.6
7.9 | 11
12 | 13
14 | 93
93 | 9.7 | 8.3
9.0 | 8 £
9 7 | 7.2
6.6 | 7 9
7 £ | | 18 | 8.6 | 33 | 12 | 79 | 12 | 14 | 10 | 8.5 | 8.5 | 9.7 | 6.6 | 7.5
6.9 | | 19 | 8.6 | 27 | 12 | 6.9 | 12 | 14 | l iŏ l | 9 2 | 7 6 | 7.5 | 6.6 | 6.6 | | 20 | 8.3 | 24 | 12 | 7.2 | 11 | 1.5 | 9.7 | 10 | 7.9 | 6.6 | 5.9 | 6.2
5.9 | | 21 | 9.3 | 2.2 | 12 | 8.3 | 12 | 11 | 11 | 11 | 79 | 6.9 | 6.6 | 5.9 | | 22 | 10
11 | 25
67 | 11 | 8 3
8 3 | 12
12 | 11 | 12
12 | 11
11 | 7 <i>9</i>
8.6 | 69
72 | 6.9 | 7 2
8 3 | | 24 | 12 | 177 | 14 | 7 9 | 13 | 13 | 14 | 9.7 | 9.7 | 6.6 | 5.6 | 7.5 | | 25 | îã | 105 | 55 | 7.5 | 14 | 12 | iż | 8.6 | 9.7 | 6.6 | 6.6 | 6 9 | | 26 | 12 | 54 | 263 | 7.9 | 14 | 12 | 13 | 10 | 10 | 6.6 | 72 | 6.2 | | 27 | 11 | 36 | 184 | 8.6 | 14 | 12 | 12 | 10 | 10 | 5.9 | 7.6 | 5.9 | | 28 | 11 | 29 | 102 | 8.6 | 14 | 1.2 | 14 | 11 | 9.3 | 5.9 | 7.6 | 5.9 | | 30 | 11
12 | 26 | 3 4
20 | 8.3
8.6 | | 11
10 | 14 | 10
93 | 8 <i>3</i>
8 <i>3</i> | 5 <i>9</i>
5 <i>9</i> | 7.6
6.9 | 6.6
6.6 | | 31 | 12 | - 23 | 18 | 93 | · | 10 | | 9.0 | - 02 | 5.6 | 7.6. | - 6.5 | | | 302.7 | | 990.0 | | 355.0 | | 336.6 | | 273.5 | | 214.8 | | | | | 13703 | | 3272 | | 420.0 | | 3269 | | 2304 | | 2239 | | EAN | 9.76 | 45.7 | 31.9 | 10.6 | 12.7 | 13.5 | 11.2 | 10.5 | 9.12 | 7.43 | 6.93 | 7.46 | | CRE- | 600 | 2,720 | 1,960 | 649 | 704 | 833 | 668 | 648 | 542 | 457 | 426 | 444 | | | Remarks: | | | | | | | | | DEAR MEA | | .650 | #### STATION FEG-R DUME CREEK at Roossveit Highway LOCATION: WATER-STAGE RECORDER, LAT. 34°01'02". LONG, 118°49'00", ON THE DOWN-STREAM SIDE OF ROOSEVELT HIGHWAY BRIDGE NEAR DUME POINT ABOUT 0,2 MILE FROM PACIFIC OCCEAN, 22 MILES WEST OF SANTA MONICA. ELEVATION OF ZERO GAGE HEIGHT, 10,01 FEET. DRAINAGE AREA: 8.8 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM HIGHWAY BRIDGE. RECORDER: INSTALLED JANUARY 15, 1930. REMOVED NOVEMBER 26, 1937 DUE TO CON-STRUCTION OF NEW BRIDGE. REINSTALLED NOVEMBER 3, 1938 OVER A 21 INCH DIAMETER GALVANIZED IRON PIPE STILLING WELL. A STEVENS. TYPE A. CONTIN-UU REGULATION: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: JANUARY 15, 1930 TO NOVEMBER 26, 1937. NOVEMBER 3, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 142 SECOND-FEET, DECEMBER 23, Minimum NO FLOW FOR SEVERAL MONTHS. MINIMUM NO FLOW FOR SEVERAL MONTHS. 1946-1947 MAXIMUM 490 SECOND-FEET, NOVEMBER 20. MINIMUM NO FLOW MOST OF YEAR. 1990-1947 MAXIMUM DISCHARGE NOT DETERMINED. MAXIMUM DISCHARGE OF RECORD, 6,800 SECOND FEET, JANUARY 24, 1941. MINIMUM NO FLOW AT TIMES EACH YEAR. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | g)BCHARDE | | Roosevelt Highwa | | | DURIN | а тне че | AR ENDING | SEPTI | EMBER | 30, | 1976 | - | | DISCHARGE | | HENTA OF DUME (| CREEK | | DUR | на тне у | EAR ENDIN | 3 S EPT | EMBER | 30, 19_ | <u>47</u> | | |------|-----------|----------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|-------|----------------------|---------------------------|--------------|-----|-----------|--------------|-------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------------|-------|---------|-----------|--------------| | NO. | DATE | MEGIN
END | MADE BY | WIDTH
FEET | AREA OF
BECTION
BO. FT. | MEAN
VELODITY
FT.PER MEG. | GAUSE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT-
IND | HETK- | MEAU.
BEO.
NO. | G. HT.
CHANGE
TOTAL | HETER
NO- | NQ. | DATE | BEGIN | MADE MY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARCK
SEQ. FT. | RAT- | HETH- | EAS. B. | MT. | HETER
NO. | | 180 | 12/23 | 118P
127P | BOLL INGER-ECKERT | 23.0 | 12.8 | 1.31 | 6.24 | 16.8 | | .6 | 10 - | 03 | FC6 | 186 | 11-14 | 354P
359P |
BOLLINGER - PAULL | 2.5 | 0.35 | 0.66 | 5.63 | 0.23 | F | OATS | 3 | _ | | | _181 | 3/30 | 858A
905A | | 9.8 | 6.56 | 1.86 | 6,16 | 12.2 | | .6 | 9 | 02 | | 187 | 11-20 | | " " | 28.0 | 17.1 | 2.91 | | 49.8 | | .6 | | 02 | FCe | | 182 | · 3/30 | 913A
919A | | 10.0 | 6.84 | 1.77 | 6.15 | 12.1 | | .6 | 8 | + .02 | | 188 | 11-20 | 215P
223P | | 28.0 | 15.2 | | | | | | | 02 | | | 183 | 3/30 | 1100A
1106A | | 9.0 | 6.70 | 1.70 | 6.13 | 11.4 | | .5 | 9 | - .01 | | 189 | 11-23 | 337P
347P | BOLL INGER | 27.0 | 12.2 | | 6.35 | | | .6 | | .02 | •• | | _184 | 3/30 | 1110A
1117A | | 9.0 | 6.52 | 1.60 | 6.13 | 10.4 | | .6 | 10 | 0 | | | | | | | | , | | | | | | | | | 185 | 3/31 | 112A
117A | | 5.0 | | 0.29 | | 0.43 | | .6 | 5 | 01 | | | | | | | | | | | | | | | | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT F. C. Dist. Form 52 4-48 Sts. No. F53-R HYDRAULIC DIVISION DUME CREEK at Roosevelt Highway for the year ending September 30, 18 46 ond-feet of Oct Nov. Dec. Jan Mar June July Sept. 0 0 0 0 0 1 2 3 4 4 5 5 6 7 7 8 9 10 11 12 2 13 14 15 16 17 18 19 20 12 1 22 23 24 25 26 27 28 29 30 31 0000 0000000000000000000000000000000 00000 0000000000000000000000000000000000 0 1 8 2 3.0 23 0 01 0 0 0 o 113 0 0 0 0 0.74 0 0.36 0 0 0 0 0 46. 0 22. 0.2 0 0.09 YEAR MEAN 0.09 OR PERIOD ACRE-FEET 68.2 + = 0.05 c.f.s. or less LOS ANGELES COUNTY FLOOD CONTROL DISTRICT F. C. Dist. Form 52 4-48 Sta. No. F 53 - R HYDRAULIC DIVISION DUME CREEK at Roosevelt Highway for the year ending September 30, 19 47 Daily discharge, in sec ond-feet of Oct. Nov. Dec Jan Feb. Mar. June July Aug. Sept. 1 2 3 4 4 5 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 00000000000 0000000000000000000 000000000 000000000000000 8 .4 5 .3 000 | | 0 | 121.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Q. | |---------------|---|-------|---|---|---|-----|---|---|---|---|---|----| | MEAN | 0 | 4.05 | 0 | | 0 | _ 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ACRE-
FEET | 0 | 241 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0000 00000 YEAR MEAN 0.33 OR PERIOD ACRE-FEET 241 0000000000 00000 ### STATION U2-R EATON CREEK above Mouth of Canyon ## STATION U2-R EATON CREEK ABOVE MOUTH OF CANYON LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR, LAT. 34°11'40", LONG. 118°06'15". IN SE 1/4 SEC. 2. T. | N. R 12 W., AT MOUTH OF CAMYON JUST UPSTREAM FROM BRIDGE ON OLD MOUNT WILSON TOLL ROAD, AND 4 MILES NORTH-EAST OF PASADENA. ALTITUDE OF GAGE ABOUT 1,230 FEET. DRAINAGE AREA: 6.5 SQUARE MILES. RECORDS AVAILABLE: MARCH 1918 TO SEPTEMBER 30, 1947- AVERAGE DISCHARGE: 28 YEARS, 2,81 SECOND-FEET. AVERAGE COMBINED DISCHARGE OF CREEK AND DIVERSION, 28 YEARS, 4,12 SECOND FEET. 29 YEARS, 2,77 SECOND-FEET, AVERAGE COMBINED DISCHARGE OF CREEK AND DIVERSION, 29 YEARS, 4,11 #### EXTREMES: EMES: 1945-1946 MAXINUM DISCHARGE, 271 SECOND-FEET, DECEMBER 23. (GAGE HEIGHT 2,12 FEET, NO FLOW FOR SEVERAL MONTHS. 1946-47 MAXIMUM DISCHARGE 230 SECOND-FEET NOVEMBER 13. (GAGE HEIGHT 2,10 FEET). NO FLOW MOST OF YEAR. 1918-1945 MAXIMUM DISCHARGE 2,400 SECOND-FEET MARCH 2, 1938, FROM RECORD OF INFLOW TO EATON FLOOD CONTROL RESERVOIR. NO FLOW FOR SOME PERIODS IN EACH YEAR. REMARKS: RECORDS GOOD BELOW 70 SECOND-FEET AND FAIR ABOVE. RECORDS DO NOT INCLUDE WATER DIVERTED ABOVE STATION BY CITY OF PASADENA. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY. #### DISCHARGE MEASUREMENTS OF EATON CREEK DURING THE YEAR ENDING BEPTEMBER 30, 19 46 above Mouth of Canyon | HO. | DATE | EEGIN | MADE BY | WIDTH | BEGTION | MEAN
VELUCITY
FT.PER BEU. | DAUDK
HEIGHT
PEET | DISCHARGE
SED. FT. | RAT- | DD DD | MEAB.
BEG.
No. | GHANGE
TOTAL | METER
ND. | |-----|-------|-------|----------|-------|---------|---------------------------------|-------------------------|-----------------------|------|-------|----------------------|-----------------|--------------| | 425 | 12-22 | | U.S.G.S. | 24.2 | 29.8 | 5.94 | 1.80 | 177. | | .6 | 19 | +.06
-:03 | | | | 3-30 | | , | 29. | 25.6 | 4.84 | 1.25 | 124. | L. | .6_ | .25 | +:84 | | | | 3-31 | | | 21. | 13.8 | 2.77 | 1.24 | 38.2 | L | .6 | 21 | | | | | 4-1 | | | 15 | 8.8 | 1.34 | .73 | 11.8 | L | .6 | 15 | +.01 | | | 428 | | | | 13 | 7.2 | | .73 | 1 | | 6 | | 0 | | Above Mouth of Canyon During the YEAR ENDING BEFTEMBER 30, 19-17 DISCHARGE MEASUREMENTS OF _____EATON_CREEK NO. DATE 430 11-12 U.S.G.S. 13.6 4,52 1.46 0.42 11-14 2.21 0.98 22.8 431 16.0 10.3 .6 9 .01 5,04 1,52 114 432 11-20 29 22.5 _433 11-21 20.1 11,8 1.97 1.00 23.3 434 11-23 16.3 2.96 | 1.30 | 48.2 435 11-25 1,47 0,44 9.7 15.6 6.6 8.0 1.69 0.67 13.5 14.5 12-6 436 3.46 1.39 70.0 12-26 _437_ 255P 305P 0.81 0.43 7.4 .6 10 <u>0</u> MOON _438_ 1:9 5.5 0.70 0.27 3.86 U.S.G.S. 439. 1-15 F. C. Diet. Form 52 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION 440 1-29 Sta. No. U2-R 0.15 0.60 0.01 0.09 | aily d | ischarge, in s | econd-feet of | EATON CE | EEK above | Mouth o | f Canyon | | | | , for the yes | r ending Septer | mber 30, 19 <u>4</u> | |----------------------------------|----------------|---------------|----------------------|----------------|---------------|-----------------------------|--------------------------|-------------|-------|---------------|-----------------|----------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3 | 0 | 0 | 0 | 0 | 0
0
7.4 | 0 | 1.8
9.5
5.6 | 0 | 0 | 0 | 0 | 0 0 | | 4 5 | ŏ | 0 | 0 | 0 | ė. ė | 0 | 6.6 | 0 | 0 | 0 | 0 | 0 | | 6
7
8
9 | 0 | 0 | 0 0 0 | 0 .1
0
0 | 0 | 0 0 | 1.9
3.6
8.4
6.2 | 0 0 | 0 | 0 0 0 | 0 0 | 0 0 0 | | 10
11 | | 0 | ŏ | Ö | 8 | Ö | 2.0 | 0 | 8 | Ö | ě – | , ŏ | | 12
13
14
15 | 0 | 0 0 | 0 0 | 0 0 | 0 . | 0 0 0 | 0
0
0 | 0
0
0 | 0 0 | 0 0 | 0 0 | 0 0 | | 16
17
18
19
20 | 0 0 0 | 0 0 0 | 0000 | 0000 | 0 0 0 | 0
0
0
1 9
0 2 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0000 | | 21
22
23
24
25 | 0 0 0 | 0 0 | 19
94
77
20 | 0 0 0 | 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | | 26
27
28
29
30
31 | 0 0 0 0 0 | 0 0 0 0 0 | 193 | 0 0 0 | 0 0 | 0
0
0 1
0 4
103 | 0 0 0 | 00000 | 0 0 0 | 0 0 0 | 00000 | 0 0 0 0 | | | 0 | 0 | 2193 | 0.1 | 8.2 | 144.6 | 65.4 | 0 | 0 | 0 | 0 | 0 | | IEAN | 0 | 0 | 7.07 | .003 | .29 | 4.66 | 2.18 | 0 | 0 | .0 | | 0 | | CRE-
FEET | O
Remarks: | l o | 435 | .2 | 16 | 287. | 130. | | _ 。 | O MEA | 0 | 0 | | | nemarks; | 4 | | | | | | | | OR | | 868. | #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U2-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct | Day | |-------|-------------|------|------|------------------|----------|------|------------|------|----------|-------|-----|----------| | 0 | ō | 0 | 0 | 0 | 0 | 0 | 0 | 8.4 | 19 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0.6 | 0 | 0 | 2 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.4 | 0 | 0 | 0 | 3 | | 0 | 0 | 0 | o | o | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 4 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.8 | 0 | 0 | 0 | 5 | | 0 | σ | 0 | 0 | 0 | 0 | 0 | 0 | 6.2 | 5.8 | 0 | o | 6 | | 0 | 0 | 0 | 0 | 0 | o o | 0 | 0 | 5.5 | 1.4 | 0 | 0 | 7 | | 0 | 0 | 0 | 0 | ŏ | 0 | 0 | 0 | 2.6 | 0 | 0 | 0 | 9 | | ö | ŏ | ŏ | ŏ | ه ۱ | 0 | ŏ | 0.6
0.6 | 2.8 | 0 | g | 0 | 10 | | - 8 | | ğ | 8 | - ö • | ŏ | - 6 | 0.5 | 3.6 | 8 | ŏ | | 11 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 22 | ŏ | 18 | ŏ | 12 | | ŏ | ŏ | ŏ | ŏ | ŏ | l ŏ l | ŏ | ŏi | ã.ã | ŏ | 62 | ŏ | 13 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 2.8 | ŏ | 21 | ŏ | 14 | | ŏ | ŏ | o l | o l | ŏ | ō | Ö | ŏ | 3.8 | ŏ | 6.5 | ŏ | 15 | | 0 | 0 - | 0 | 0 | ō | 0 | 0 | Ö | 2.7 | 0 | 0.5 | ŏ | 16 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | ō | 17 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 84 | 0 | 20 | | 0 | 0 | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 0 | 21 | | 0 | 0 | o | o i | o | 0 | 0 | o | o | 0 | 12 | 0 | 22 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | o o | 23
24 | | 0 | 0 | 0 | 0 | 0 | 0 | Ŏ. | 0 | 0 | 0.4 | 17 | 0 | 25 | | 0 | 0 | 0 | 0 | 0 | | - 0 | - 0 | 9 | 3.5 | 9.5 | 0 | 26 | | 0 | ŏ | 0 | 8 | 0 | 0 | ŏ | 8 | 0 | 58
53 | 6.7 | 0 | 7 | | ŏ | ŏ | ŏ | 0 | ., | ŏ | 0 | 8 | 60 | 28 | 8.6 | 0 | 28 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ő | ١ | 33 | 18 | 1.8 | 0 | 29 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 0 | 14 | 1.6 | ŏ | 30 | | | 0 ! | ŏ | | ŏ | | ŏ | | ŏ | 15 | | ă | 31 | | | | | | | · | | | | | | | 1 | | | 0 | • | 0 | _ | 0 | • | 1.2 | ~ | 2311 | | 0 | | | 0 | | 0 | | 0 | | 0 | | 773 | | 317.0 | | , | | 0 | 0 | 0 | . 0 | _ 0 | 0 | 0 | 0.43 | 2.49 | 7.45 | 10.6 | 0 | AN | | Q | 0
v 1.72 | 0 | . 0 | 0 | <u> </u> | _ 0 | 2.4 | 153 | 458 | . 629 | 0 | ET | #### STATION F271-R EATON WASH below Eaton Wash Dam LOCATION: WATER-STAGE RECORDER, LAT. 34°10'05". LONG. 118°05'28", ON THE RIGHT (WEST) BANK OF THE CONCRETE OUTLET CHANNEL 190 BEET BELOW THE BEGINNING OF THE OPEN SECTION AT THE BASE OF EATON WASH DAW. ELEVATION OF GAGE ABOUT 840 FEET. DRAINAGE AREA: 9.5 SQUARE MILES CHANNEL AND CONTROL: CHANNEL - RECTANGULAR, CONCRETE 12 FEET DEEP AND 26 FEET WIDE WIMM 0.5 FOOT FILLETS. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBRIDGE AT GAGE. RECORDER: INSTALLED OCTOBER 10, 194D OVER A 4 FT. X 4 FT. CONCRETE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY EATON WASH DAM. DIVERSIONS: THE PASADENA WATER DEPARTMENT DIVERTS FLOW ABOVE THE MOUTH OF EATON CANYON. RECORDS AVAILABLE: RESERVOIR OUTFLOW RECORDS FROM FEBRUARY 2, 1937 TO OCTOBER 10, 1940. RECORDER RECORDS FROM OCTOBER 10, 1940 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 121, SECOND-FEET, DECEMBER 22, MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 86, SECOND-FEET, DECEMBER 26.
MINIMUM NO FLOW MOST OF YEAR. 1940-1947 MAXIMUM 1,080 SECOND FEET, JANUARY 23, 1943-MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: FAIR. SEQUENCE OF GATES OPERATED AT EATON WASH DEBRIS DAM AFFECTS GAGE HEIGHT DISCHARGE RELATION. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. DISCHARGE MEASUREMENTS OF EATON WASH below Eaton Wash Dam DURING THE YEAR ENDING MERTEMBER 30, 19 16 | • | | | PERIN | HADE BY | WIDTH | AREA OF | MEAN | DAUGE | DISCHARGE | RAT- | METH- | | CHANGE | METER
NO. | |---|-----|-------|-------|---------------|-------|---------|--------------|-------|-----------|------|-------|-----|--------|--------------| | | ND. | DATE | END | FADE 81 | FEET | ag. 77. | FT. PER SEC. | FEET | acc. | | | NO. | TOTAL | | | | | | 1235P | | | | | | | | | 1 | | | | | 97 | 12/22 | 1240P | MOON | 25.0 | 7.50 | 5.76 | 0.42 | 43.2 | | £ | _6_ | 0 | FC22 | | - | | | 100P | | | | | | | | } | | | | | _ | 98 | 12/24 | 110P | MOON - HOLMES | 24.0 | 6.80 | 5.16 | 0.37 | 35.1 | | 6 | 6 | | | DISCHARGE MEASUREMENTS OF EATON WASH | NO. | DATE | END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUSE
HEIGHT
FEET | DISCHARGE
SEC. FT. | | METH- | HEAS.
SEC.
NO, | G. HT.
CHANGE
TOTAL | HEYER
NO. | |-----|-------|----------------------|--------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---|-------|----------------------|---------------------------|--------------| | 99 | 11-21 | 320P
330P | MOON - ROCKENMEYER | 5.0 | 2.61 | 6.36 | 0.23 | 16.6 | | .6 | 7 | 0 | FC22 | | 100 | 11-21 | 345P
355P | Py 19 | 5.0 | 2.94 | 9.28 | 0.27 | 27.3 | | .6 | 7 | 0 | н | | 101 | 11-21 | 416P
420P | | 5.0 | 2.94 | 6.36 | 0.27 | 18.7 | | .6 | 7 | 01 | РІТОТ | | 102 | 11-23 | 1050A | MOON | 24.0 | 6.00 | 4.53 | 0.30 | 27.2 | , | LOA | s | 0 | | | 103 | 11-23 | 220P
230P | | 12.0 | 12.5 | 4.38 | 0.43 | 54.7 | | .6 | 6 | ٥ | F.C22 | | 104 | 11-23 | 245P
255P
123P | | 24.0 | 8.54 | 5.85 | 0.43 | 50.0 | | 6 | | _0_ | | | 105 | 12-26 | 133P | MOON - STEVENS | 22.0 | 21.1 | 3,93 | 0.60 | 83.0 | L | .6 | 8 | 0 | -11 | | 106 | 12-27 | 815A
822A | | 14.0 | 14.4 | 2.20 | 0.32 | 31.7 | | .6 | 7 | 0 | " | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F271-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | Day | |-------|------|------------------|------------------|------|----------------|-------------|-------|------|------|---------------|--------------|-----| | 0 | 0 | 0 | 0 | 0 | 0 | - 0 | 0 | 0 | o o | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 { | 0 | 0 | 0 | 0 | 0 | 2 | | 0 | 0 | 0 | 0 | o i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | | 0 | 0 | 0 | 0 | o i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | 0 | 0 | 0 | 0 | 0 | 0 | o l | 0 | Ö | o l | 0 | 0 | 8 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o o | 0 | 0 | 0 | 0 | 9 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | ō | 0 | 0 | 0 | 0 | 0* | 0 | Ŏ | Ŏ | Ŏ. | 1 | | 0 | 0 | 0 | ö | ŏ | ŏ | ŏ | ŏ | 0 | 8 | 0 | 0 | 2 | | | | ŏ | ŏ | ŏ | ŏ | 8 | ŏ | 0 | ŏ | ŏ | ŏ | 3 | | 0 | 0 | ŏ | ö | ŏ | ō | ŏ | ŏ | 8 | 8 | 0 | 0 | 15 | | - 8 | 0 | - 6 - | - 6 - | | - ö | | | - 6 | - 6 | 6 | | 16 | | ŏ | ŏ | ŏ | ő | 3.2 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 17 | | ŏ | ŏ | 8 | ŏ | 9.0 | ŏ | ŏ | ŏ | ŏ | ŏ | | ŏ | 8 | | ŏ | ŏ | ŏ | ŏ | 0.0 | ŏ | ŏ | ŏ | ŏ | o l | ŏ | ŏ | 19 | | ŏ | ŏ | ŏ | ŏ | 3.0 | ŏ | ŏ | ŏ | ŏ | ŏ | 0 | ŏ | 20 | | - 0 | ŏ | - 6 | - 8 - | 2.2 | ŏ | ő | ŏ | - 6 | ŏ | ŏ | 8 | 21 | | ŏ | ŏ | ŏ | ŏ | õ~ | ŏ | ŏ | ŏ | ŏ | 43 | Ö | ŏ | 22 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 25 | ŏ | ŏ | 23 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 35 | lŏl | ŏ | 24 | | ŏ | ŏ | ŏ | ŏ l | ō | ŏ | ŏΙ | l ŏ l | ŏ | ő | l ŏ l | | 25 | | 8 | ō | Ö | o | Ö | Ō | ō | 0 | 0 | o | 8 | 8 | 26 | | ō | ō | ō | ō | ŏ | ō | ŏ | Ö | ō | ō | o | ō | 27 | | ō | ō | Ō | Õ | o l | ō | ō l | o l | Ō | Ō | ŏ | ŏ | 28 | | 0 | Ò | 0 | 0 | 0 | 0 | 0 | | 0 | ø | i o i | 0 | 29 | | 0 | 0 | 0 | 0 | 0 | 0 | 4.4 | | 0 | 0 | Ö | Ō | 30 | | | 0 | 0 | | 0 i | | 8.9 | | 0 | 0 | | 0 | 31 | | | 0 | | 0 | | 0 | | 0 | | 103 | | 0 | | | 0 | J | 0 | | 174 | | 133 | | 0 | 100 | 0 | • | | | 0 | 0 | 0 | 0 | 0.56 | 0 | 0.43 | | . 0 | 3-32 | 0 | 0. | AN | | 0 | 0 | 0 | 0 | 35. | . 0 | 26. | 0 | 0 | 204. | 0 | 0 | RE- | | .37 | | EAR MEA | | | | | | | | | Remarks: | | | 265. | | OR
ERIOD ACRE | · | | | | | | | | | | F. C. Dist. Form 52 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 271-R | | r ending Septem | | | | | | | WASH belo | | cond-feet of | | | |------------------|-----------------|------------------|------|------------------|------|------|------|-----------|----------|--------------|----------|--------| | Sept | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct | ъy | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | ò | 0 | ò | 0 | 0 | 0 | 0 | 0 | 2 | | ŏ | ŏ | ŏ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3
4 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ğ | ŏ | ŏ | ŏ | 5 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 6 | | 0 | o l | o | o | Q | | o o | 0 | o | 0 | 0 | 0 | 7 | | 0 | 0 | 0 | ŏ | ò | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 9 | | ŏ | ŏ | ŏ | 8 | 8 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ő | | 0 | Ō | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | ŏ | 1 | | 0 | o l | 0 | 0 | o | ō | o | Ō | o | 0 | 0 | 0 | .2 | | 0 | 0 | 0 | 0 | o l | Ó | 0 | 0 | o o | 0 | 13 | 0 | 3 | | ŏ | ŏ | ŏ | . 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | | ŏ | ŏ | - 8 | ŏ | - 8 - | - ŏ | ŏ | ö | ŏ | ŏ - | 8 | - ŏ | 6 | | 0 | 0 1 | 0 | 0 | 0 | Ó | 0 | 0 | 0 | 0 | 0 | ō | 7 | | 0 | 0 | 0 | 0 | o | 0 | o | 0 | 0 | 0 | 0 | 0 | 8 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | | - ŏ - | ŏ | - 6 | - 6 | - 8 | - 6 | - 6 | 0 - | . 8 | ŏ | 9.2 | - 6 | 1 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 63 | ŏ | 2 | | 0 | 0 | С | 0 | Q | 0 | 0 1 | 0 | 0 | 0 | 27 | 0 | 3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 29 | 0 | 4 | | 0 | 0 | 0 | 0 | 0 | 0. | 0 | 0 | 0 | 1.7 | 6.7 | - 8 | 6 | | ŏ | 0 | ŏ | 0 | ö | ŏ | ŏ | ŏ | 0 | 63
31 | 0 | ŏ | 7 | | ŏ | l ŏ l | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 31 | ŏ | ŏ | 8 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 28 | ŏ | ŏ | 9 | | 0 | 0 | ō | 0 | 0 | 0 | 0 | | 0 | 9.9 | 0 | 0 | 10 | | | 0 | 0 | | 0 | | 0 | | 0 | 0 | | 0 | 1 | | o | 0 | o | 0 | 0 | 0 | o | 0 | o | 1646 | 91.2 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.31 | 3.04 | 0 | AN | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 326 | 181 | 0 | ET. | | | N 0.70 | EAR MEA | Y. | | | | | | | | Remarks: | | | 7 | G-FEET 50 | OR
ERIOD ACRI | Tar | | | | | | | | | | ### STATION FIGH-R EATON WASH at Ellis Lane LOCATION: WATER-STAGE RECORDER, LAT. 34°05'08". LONG. 118°03'21''. ON THE LEFT (NORTH) BANK, TEN FEET UPSTREAM OF THE ELLIS LANE BRIDGE (FORMERLY SUMSET AVENUE) ABOUT ONE MILE NORTHWEST OF EL MONTE. ELEVATION OF ZERO GAGE HEIGHT. 291.29 FEET. DRAINAGE AREA: 18.4 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL. SEWER LINE CROSSING FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING, HIGH FLOWS MEASURED FROM FOOTBRIDGE ON UPSTREAM SIDE OF HIGHWAY BRIDGE. RECORDER: INSTALLED OCTOBER 1, 193G. REMOVED DECEMBER 1930 DUE TO BRIDGE CON-STRUCTION. REINSTALLED NOVEMBER 10, 1931. MOVED DECEMBER 11, 1945 TO NORTH BANK 10'UPSTREAM OF BRIDGE OVER AN 18 INCH CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY EATON WASH DAM. DIVERSIONS: THE PASADENA WATER DEPARTMENT DIVERTS SOME WATER JUST ABOVE THE MOUTH OF EATON CANYON. RECORDS AVAILABLE: OCTOBER 1, 1930 TO SEPTEMBER 30, 1947. FROM DECEMBER 28, 1930 TO NOVEMBER 10, 1931, THE RECORDER WAS LOCATED AT BROADWAY (DESIGNATED AS STATION FIO4B-R). EXTREMES OF DISCHARGE: EMES OF DISCHARGE. 1945-1946 MAXIMUM 266 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 674 SECOND-FEET, NOVEMBER 13. MINIMUM NO FLOW MOST OF YEAR. 1930-1947 MAXIMUM 2,280 SECOND-FEET, JANUARY 23, 1943. MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: FAIR. SHIFTING CONTROL. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABURE | MENTS OF EATON V | ASH | | | | | | | | _ | | DISCHARD | E MEABURE | MENTE OF EATON WA | SH | | | | | | | | | |-----|-----------|----------------|--------------------|---------------|--------------------|----------------------------------|-------------------------|-----------------------|---------|--------|---------|-----------|-----|-------------|-------------------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|--------|------------------------------|--------------| | | nêTr | E | liis Lane | | | DURIN | G THE YE | AR ENDING | BEPTEMI | 8ER 3 | D, 19 4 | 5_ | | <u>-2T.</u> | EUI | s Lane | | | DUR | IND THE Y | EAR ENDIN | 3 BEPTE | MBER 3 | 3, 1 9_1 7 | L | | HD. | DATE | BEGIN | MADE BY | WIOTH
FEET | SECTION
SQ. FT. | HEAN
VELDOITY
FT. PER RED. | BADGE
HEIGHT
FEET | DISCHARGE
SEC- FT. | RAT- ME | TH- ME | AN G. H | METER HO. | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | BAUBE
HEIGHT
FEET | DISCHARSE
SEC. FT. | RAT- H | | E. G. HT.
CHANGE
TOTAL | HETER
No. | | 272 | 12/21 | 943P
950P | MOON | 36.0 | 16.5 | 4.20 | 2.20 | 69.4 | | 6 5 | | FC22 | 283 | 10-1 | 955A
1002A | MODN | TWO CH | ANNELS | | 1.84 | 21.6 | Π. | 5 8 | .09 | FC22 | | 273 | 12/22 |
645P
728P | COLE - ROCKENMEYER | 42.0 | 35.8 | 6.03 | 2.55 | 216. | | 6 12 | +.02 | FC20 | 284 | 11-12 | 1002A
1004A
1012A | ** | ** | | | 1.46 | 4.1 | 1 1 | 6 7 | 0 | - | | 274 | 12/24 | 1020A
1035A | MOON - HOLMES | TWO CH | ANNELS | | 1.93 | 21.7 | | 6 11 | C | FC22 | 285 | 11-13 | 1250A
100A | BLAKELY-KASIMOFF | 35.0 | 9.83 | 2.12 | 1.75 | 20.8 | | 6 10 | 03 | FC35 | | 275 | 2/3 | 402P
415P | MOON | | | | 1.94 | 14.9 | | 6 11 | 03 | <u> </u> | 286 | 11-13 | 105P | MOON-ROCKENMEYER | 12.0 | 6.50 | 3.26 | 1.71 | 21.2 | | 6 6 | 02 | FC22 | | 276 | 3/19 | 913A
925A | | | | | 1.95 | 11.2 | | 6 8 | | | 287 | 11-20 | 934A
939A | ** . ** | 41.0 | 33.3 | 6.00 | 2.66 | 200. | Ι. | 6 5 | 02 | | | 277 | 3/20 | 118P
129P | WADD!COR-HOLMES | | | | 1.89 | 11.2 | . 6 | 5 12 | 0 | FC37 | 288 | 11-22 | 815A
825A | MOON | 10.0 | 3.30 | 2.61 | 1.59 | 8.6 | | 6 5 | 0 | | | 278 | 3/20 | 300P
310P | MOON + ROCKENMEYER | THREE | | | 1.83 | 3.7 | | 5 10 | +.02 | FC22 | 289 | 11-24 | 1005A
1015A | ** | 21.0 | 8.20 | 4.05 | 1.82 | 33.2 | | 6 7 | 0 | | | 279 | 3/28 | 918A
930A | MOON | | | | 1.90 | 12.0 | | 5 12 | +.02 | | 290 | 12-25 | 357P
402P | ** | 13.0 | 5.40 | 3.89 | 1.70 | 21.0 | . | 6 4 | +.01 | ., | | 280 | 3/30 | 636A
649A | COLE - HOLMES | 39.0 | 16.3 | 4.24 | 2.16 | 69.1 | | 9 | 07 | FC20 | 291 | 12-25 | 1130P
1155P | •• | 46.0 | 47.3 | 6.28 | 2.88 | 297 - | L. | 6 11 | 15 | | | 281 | 3/30 | 750A
800A | MOON - ROCKENMEYER | TWO CHA | NNEL S | | 2.07 | 27.3 | . 6 | 3 10 | 02 | FC22 | 292 | 12-27 | 1223P
1232P | MOON - STEVENS | Two Ci | ANNELS | | 1.77 | 16.6 | | 6 7 | 0 | | | 282 | 3/30 | 222P
233P | COLE - HOLMES | | | | 1.87 | 12.8 | | 3 10 | 02 | FC20 | 293 | 12-27 | 522P
542P | KASIMOFF - HAIG | 40.0 | 11.8 | 2.18 | 1.82 | 25.8 | LI. | 5 12 | 02 | FC47 | | | | | | | | | | | | | , | | 294 | 9-23 | 150P
200P | WADDICOR | 3.0 | 0.51 | 1.37 | 1.59 | 0.7 | 1. | 6 6 | 0 | FC37 | | F. C. Dist | Form 52 4-45 | | | | FLO
H | LOS ANGELES
OD CONTRO
YDRAULIC I | L DISTRICT | ; | | | | _{No} F <u>1014−</u> R | |---|-----------------|---------------------------------------|---|-----------|---|---|------------|-----|------|------------------------------|------------------|---| | Daily d | ischarge, in se | cond-feet of | EATON | WASH at E | llis Lane | | | | | , for the yes | er ending Septer | nber 30, 19 47 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 30 | 1.4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | | | | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 31 | 0 | | 14 | ŏ | | ō | | ō | | 0 | 0 | | | | 1 .4 | 1943 | 218.0 | 1.1 | 3 .0 | 0 .5 | 0 | 0 | 0 | 0 | 0 | 5.5 | | MEAN | 0.05 | 6.48 | 7.03 | 0.04 | 0.11 | 0.02 | 0 | 0 | 0 | ļo | 0 | 0.18 | | ACRE- | 2,8 | 385 | 432 | 2.2 | 6.0 | 1.0 | 0 | 0 | 0 | 0 | 0 | 11.0 | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACR | E-FEET 84 | | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F | 04-R | | | | | | H | DHAULIC D | IVISION | | | | | | |--------|----------------|---------------|-----------|--------------|------------|--------------|---------|--------------|------|-------------------|----------------|--| | aily d | ischarge, in s | econd-feet of | EATON | WASH at | Ellis Lane | | | | | for the yea | r ending Septe | mber 30, 19 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 0 | 0 | 0 | ō | Q | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0 | 0 | 0 | o o | 0 | 0 | 11 | o | 0 | 0 | 0 | 0 | | 3 | 0 | 0 | 0 | o
O | 13 | 0 | 0 | 0 | 0 | 0 | 0 | ő | | 4 5 | 0 | 8 | 0 | 0 | 0 | ŏ | ŏ | ŏ | 8 | 6 | 0 | 0 | | 6 | - 6 | 1 ŏ | ŏ | - 6 | | - | ō | o | ō | + ō | ō | + ŏ - | | 7 | ŏ | ŏ | ŏ | ō | ,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | В | ŏ | Ō | 101 | 0 | 0 1 | 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 0 | 0 | _ 0 | | n | 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | | 12 | 0 | 0 | 0 | o | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | | 13 | 0 | 0 | 0 | 0 | o l | ŏ | o l | 0 | 0 | 0 | 0 | 0 | | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ö | 6 | 0 | | 16 | ŏ | 0 | - 6 | ŏ | ŏ | ŏ | ŏ | - ö | ŏ | ŏ | - ŏ | ŏ | | 17 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | Ŏ | Ŏ | Ŏ | l ō | | 18 | ò | ŏ | l o l | + | 0 | o l | o | 0 | 0 | 0 | 0 | 0 | | 19 | ŏ | ŏ | Ò | 0 | 0 | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | | 20 | 0 | 0 | 0 | 0 | 0 | 1.9 | - 8 | 0 | 0 | 0 | 0 | 0 | | 21 | 0 | 0 | 11 | + | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 22 | 0 | 0 | 105 | o | 0 | 0 | o l | 0 | 0 | 0 | 0 | 0 | | 23 | 0 | o | 56 | o | 0 | 0 | 0 | 0 | 0 | 0 | o o | 0 | | 25 | 0 | o o | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 26 | - 8 | 8 | 1.3 | - 8 | 0 | - ö | ~~~~ | - 8 | 8 | 1 8 | Ö | | | 27 | ŏ | 0 | 6 | ŏ | ő | ŏ | ŏ | ŏ | ŏ | l ŏ | ŏ | ŏ | | 28 | ŏ | ŏ | 6 | ¥ | ŏ | 0.7 | ŏ | " ŏ | ŏ | ŏ | ŏ | ŏ | | 29 | ŏ | ŏ | ŏ | Ó | | ō i | ō l | ō | Ō | Ō | o | Ō | | 30 | ŏ | ŏ | Ŏ | 0 | | 3 4 | 0 | Ó | 0 | 0 | 0 | 0 | | 31 | Ö | | 0 | 0 | | 8.8 | | 0 | | - 0 | 0 | | | | 0 | | 1943 | | 13 | | 1.1 | | 0 | | 0 | | | | • | 0 | | | - | 48.6 | | 0 | | 0 | | 0 | | EAN | 0 | 0 | 6.25 | + | 0.46 | 1.57 | 0.04 | 0 | 0 | 0 | 0 | 0 | | CRE- | 0 | 0 | 385. | + | 26. | 96. | 2.2 | 0 | 0 | 0 | 0 | 0 | | | | ~ | c.f.s. or | less. | | | | | | YEAR MEA | | .70 | | | | . 3,03 | | | | | | | | OR
PERIOD ACRI | E-FEET | _509. | | | | | | | | | | | | | | | #### STATION U7-R FISH CREEK above Mouth of Canyon ## STATION U 7-R FISH CREEK ABOVE MOUTH OF CANYON LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR CONTROL, LAT. 34°10'00" LONG, 117°55'25". IN SW 1/4 SW 1/4 SEC. 15, T. 1 N., R. 10 W., 0,8 MILE UPSTREAM FROM MOUTH OF CANYON AND 3 MILES NORTHEAST OF DUARTE. ALTITUDE OF GAGE ABOUT 1,000°FEET. DRAINAGE AREA: 6.5 SQUARE MILES. RECORDS AVAILABLE: JULY TO SEPTEMBER 1916: JULY 1917 TO SEPTEMBER 30. 1947. AVERAGE DISCHARGE: 29 YEARS (1917-46) 4.59 SECOND-FEET. 30 " 47 4.57 " " EXTREMES: 1945-1946 MAXIMUM DISCHARGE 540 SECOND-FEET DECEMBER 23. (GAGE HEIGHT 3.59 FEET). MINIMUM DAILY DISCHARGE 0.1 SECOND-FOOT SEVERAL PERIODS IN AUGUST AND SEPTEMBER. 1946-1947 MAXIMUM DISCHARGE 400 SECOND-FEET DECEMBER 26. (GAGE HEIGHT 3.22 FEET). MINIMUM DAILY DISCHARGE 0.1 SECOND-FOOT SEVERAL PERIODS IN AUGUST AND SEPTEMBER. 1916-1947 MAXIMUM DISCHARGE ABOUT 2.180 SECOND-FEET APRIL 4. 1925. NO FLOW DURING PERIODS IN 1919-21. 1924. 1929-30. REWARKS: RECORDS GOOD. NO DIVERSIONS OR REGULATION ABOVE STATION. COOPERATION: RECORDS FLRNISHED BY THE UNITED STATES GEOLOGICAL SURVEY WITH THE EXCEPTION OF 23 MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | 01 5 CHARGI | E MEABURE | MENTE OF FISH C | REEK | | | | n | | | | Γ. | NO. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.FER BED. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- MI | 7H- ME | AN. D. | HT. | HETER
ND. | |-------|--------------------|--------------|-----------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|--|---------------------------|----------|--------------|------|--------------|---------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|--------|--------|------------|--------------| | | | above N | louth of Canyon | | | DUR | ING THE Y | EAR ENDING | SEPTEM | BER 3G, | 19_46 | 16 | 95 3 | -30 | | • | 22. | 34.6 | 6.73 | 2.66 | 233- | | 5 - | 9 | .08 | | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA DF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER BEG. | BAUGE
HEIBHT
FEET | DISCHARGE
SEC. F7. | FAT- MET | H. MEAB. | B. HT.
CHANGE
TOTAL | METER 16 | 96 3 | - 30 | | | 22. | 35.3 | 5,58 | 2.58 | 197- | | 5 | 9 | .Q2 | | | | | END | | 7867 | 9Q. FT. | FT.PER BEG. | FEET | BEG. 17. | INO I GE | ND. | TOTAL | 16 | 97 3 | - 30 | | | 21.5 | 31.7 | 5.33 | 2,53 | 169. | <u> </u> | 3 | 9 | .04 | | | 1665 | 10-3 | | u.s.g.s. | 2.8 | 81 | 28 | 05_ | - 23. | 6 | -11 | 0 | 16 | 98 3 | - 30 | | n | 20. | 29.8 | 4.77 | 2.34 | 142. | - | 5_ | 8 | 09 | | | 1666 | 10-19 | | | 3.5 | 1.36 | 68_ | .13 | 92 | 6 | i7 | 0 | 16 | 99 3 | -30 | | | 20. | 24.5 | 4.24 | 2.26 | 104. | | 5 | 8 | 03 | | | 1667 | 10-26 | | | 2.5 | .68 | -66 | 09_ | -45 | 6 | 5 | 0 | 170 | 00 B | -31 | | | 23. | 16.0 | 2.42 | 1.31 | 38-8 | . | 5 .3 | 21 | 0 | | | 1668 | 11-1 | - | | 2.6 | .94 | .88 | 13 | . 83 | .6 | 5 | -0- | 170 | 01 4 | -3 | | | 16. | 8.2 | 1.65 | <u>•77</u> | 13.5 | - | 5 | 16 | 0 | | | 1669_ | 11-7 | - | h | 2.5 | 1.07 | 1.07 | 15 | 1.15 | 6 | 10 | 0 | 17 | 02 4 | -12 | | | 9.8 | 4,32 | 1.23 | .50 | 5.3 | | 5 | 10 | 0 | | | 1670 | 11-16 | | <u>"</u> | 3.3 | -82 | 1.06 | 13_ | .87. | 6 | <u>. </u> | 0 | 17 | 03 4 | -19 | | | 6.7 | 3.09 | 1.25 | 38 | 3.86 | L - | 5 | 10 - | .01 | | | 1671 | 11-23 | + | | 3.3 | .70 | -96 | .12 | 67 | -6 | | 0 | 17 | 04 4 | -24 | | | 6.8 | 2.76 | 1.20 | 29 | 3.32 | | 5 | ш | Ω | | | 1672 | 11-27 | - | | 3.3 | .79 | .92 | .12 | 73 | -6 | - 7 | | 17 | 05 5 | -2 | | | 6.6 | 2.54 | 1.03 | .27 | 2.61
 <u> </u> | 6 | 11 | 0 | , | | 1673 | 12-4 | - | ** | 3.2 | 77 | .96 | .13 | .74 | -,6 | <u>- 7</u> | _0_ | 17 | 06 5 | -10 | | | 6.6 | 2.73 | 1.08 | .28 | 2.95 | Ļļ. | 6 | 10 | 0 | | | 1674 | 12-12 | <u> </u> | , ,, | 3.2 | 81 | 1.06_ | - 14 | -86 | -6 | 7 | 10 | 17 | 07 5 | -16 | | | 6.4 | 2,29 | 1.08 | 26 | 2.47 | ļ., | 6 | 12 | .0 | | | 1675 | 12-20 | | * | 3.1 | 70 | 1.00 | 13 | 70 | 6 | Z | 0. | 17 | 08 5 | -22 | | | 6.5 | 2,20 | 1.14 | -26 | 2,50 | 1 | 6 | 10 | 0 | | | 1676 | 12-27 | | ** | 8.0 | 5.0_ | 1.46 | .57 | 7.3 | 6 | 16 | - | 17 | 709 5 | 5-29 | | ., | 6.6 | 2,00 | .98 | .24 | 1,95 | <u>.</u> | 6 | 9 | 0 | | | 1677 | 1 - 5 | | * | 7.7 | 3,17 | 1.07 | -31 | 3.38 | .6 | -8 | - | 17 | 710 6 | 6-5 | | | 6.2 | 1.72 | 0.72 | 0.19 | 1.23 | <u> </u> | 5 | 11 | <u>a</u> . | | | 1678 | 1-10 | - | - | 7.3 | 2.84 | .87 | .26 | _2.48 | 6 | . В | | | 711 6 | 6-11 | | | 3.0 | 1.20 | _1.02 | 21 | 1.23 | | .6 | 6 | 0 | | | 1679 | 1-17 | - | MOON | 2.2 | .61 | 2.74 | .23 | 1.67 | -5 | 5 | -01 | C22 1 | 712 6 | 5-18 | | ,, | 3.0 | 1.14 | .94 | 18. | 1.07 | | 6 | 6 | 0 | | | 1680 | 1-17 | <u> </u> | U.S.G.S. | 7.3 | 2.34 | .76_ | .23 | 1.77 | .6 | - 7 | 0 | | 713 6 | 6-25 | <u> </u> | ** | 3.0 | 1.14 | .86 | -17 | .98 | | 6 | 6 | 0 | | | 1681 | 1-24 | - | | 7.2 | 2.68 | .63_ | 20 | 1.68 | -6 | В | 0 | | 714 7 | 7-3 | | | 3.1 | 1.00 | .95 | .15 | .95 | | .5 | z | 0 | | | 1682 | 1-31 | | MOON | 2.2 | .54 | 2.65 | 17 | 1.43 | 5 | В | 0_1 | C22 | Z15. Z | 7-9 | | | 2.0 | .60 | 88 | 11 | .53 | | 6 | 4 | 0 | | | 1683 | 1-31 | ļ | U.S.G.5. | 7.6 | 2.60 | .60 | .17_ | 1.55 | .6 | В | 1-0-1 | 17 | 716 | 7-16 | | | 2.0 | .40 | 65 | .06 | .26 | | 6 | 4 | 0 | | | 1684 | 2-7 | ļ | | 8.5 | 2.18 | 1.24 | .25 | 2.70 | .6 | .17 | 0 | | 717 7 | | | ., | 2.0 | .40 | | •07 | ì | Ιi | 6 | . 4 | 0 | | | 685 | 2-14 | _ | ** | 5.0_ | 1.49 | LO3 | .22 | 1.53 | .6 | 5 | 0 | 1 | 718 7 | | | | 2.0 | .40 | .58 | .04 | 1 | | 6 | | 0 | | | 1686 | 2-21 | 1 | <u> </u> | 6.5 | 2.01 | .93 | .20 | 1.86 | .6 | 11 | +.01 | | 719 8 | 3-7 | | | 1.5 | .32 | 1.09 | .05 | .35 | 1 1 | 5 | | 0 | | | 1687 | 2-28 | | * | 6.5 | 1.97. | 0.95 | 0.19 | 1.88 | 6 | ىد_ ن | 0 | | 720 8 | | | | 1.5 | .21 | .76 | .03 | | 1 | 5 | T | 0 | | | 1688 | 3-7 | ļ | " | 6.5 | 1.92 | .95 | 18 | 1.82 | 5 | 10 | 0 | | 721 8 | | | | 1.5 | .18 | .50 | .02 | i | | 5 | | 0 | | | 1689 | 3-13 | | | 6.0 | 1.99 | 1.45 | 31 | 2.88 | .5 | 24 | +.02 | 1 | 722 8 | | | ,, | 1.5 | .18 | .61 | 02 | | 1 | 6 | 6 | 0 | | | 1690 | 3-14 | | MOON | 2.2 | .62 | 2.94 | .24 | 1.82 | .5 | i4 | 0 | FC22 | 723 9 | | T | | 1.5 | .18 | 61 | .01 | .11 | | 6 | 5 | 0 | | | 1.691 | 3-19 | ļ | U.S.G.S. | 9.0 | 4.77 | 1.99 | 67 | 9.5 | .6 | 17 | +.01 | | 724 | | | | 1,5 | .18 | .52 | ,01 | .094 | | .5 | 4 | 0 | | | 1692 | 3-19 | | ** | 8.0 | 4.17 | 2.06 | -61 | 8.6 | | 13 | | - | 725 | | | ,, | 1.4 | .16 | .69 | .02 | | 1 1 | 5 | 6 | 0 | | | 1693 | 3-20 | | H | 11. | 4.32 | 1,50 | .56 | 6.5 | .6 | | 0 | | , <u></u> 2 | , 20 | | + | | 1. 1.0 | | | | | h | | h | | | 1694 | 3-28 | | - | 6.0 | 2.48 | 1.59 | | 3,95 | 5 | DISCHARGE | MEARUREI | MENTS OFFISH_C | REEK | | | | | | | | | | | DATE | BEDIN | MADE BY | WIDTH | AREA OF | MEAN | SAUSE | DISCHARGE | RAT- HETP | MEAS. | G. HT. | METER | |-------|---------------|--------------|----------------|---------------|--------------------|-------------------------|----------|-----------------------|----------|-----------|-------|---------------------------|--------------|---------|-------------|-------------------------|--------------|-------|--------------------|-------------------------|----------------|-----------|----------------|-------|--------|-------| | | a a | bove M | outh of Canyon | | | DUR | NO THE Y | EAR ENDING | BEPT | EMBE | R 30, | . <u>.47</u> | | | | 1015A | MOON | FEET | BECTION
BQ. FT. | VELOCITY
FT.FER SEC. | HEISHT
FEET | BED. FT. | ING DD | NO. | TOTAL | NO. | | | , | BERIN | | | ANEA OF | MEAN | BAURE | Γ | 1 | _ | | | | 1755 | 3-20 | 1022A
1030A
1035A | moore | 5.5 | | 0.90 | 0.40 | 2.8 | -5 | 5 | 0 | FC22_ | | но. | DATE | END | MADE BY | WIDTH
FEET | SECTION
SQ. FT, | VELODITY
FT.PER SED. | HEIGHT | DISCHARGE
SEC. FT. | ING | GD. | NG. | E, HT.
SHANGE
TOTAL | HETER
HD. | 1756 | 3-20 | I G35A | | | | 1 | | | | | | | | 1726 | 10-3 | | u.s.g.s. | 2.0 | 0.89 | 1.29 | 0.14 | 1.15 | | .6 | 8 | 0 | | 1757 | 3-26 | 145P |),5,6.S. | 5,6 | | 0.72 | 0.37 | 2.29 | - 6 | 1 | 01 | | | 1727 | 10-9 | | | 2.0 | | 0.85 | 0.10 | 0.62 | | .6 | 6 | 0 | | 1.758 | 4-2 | 150A | MOON | 2.4 | 1.01 | | 0.42 | 2,9 | ,5 | 5 | 0 | FC22 | | 1728 | 10-17 | | ,, | 1.4 | | 1,41 | 0.14 | 0.86 | | .6 | 6 | 0 | | 1759 | 4-9 | 1035A | U.S.G.S. | 5.6 | 3.07 | | 0.41 | 2.23 | i i | 12 | 0 | | | _1729 | 10-23 | | ** | 1,4 | 0.57 | 1.14 | 0.12 | 0.65 | | .6 | 4 | 0 | | 1760_ | 4-17 | 10434 | | 5.5 | 2.98 | 0.64 | 0.39 | 1.91 | -5 | | 9 | FC22 | | 1730 | 10-31 | | | 1.4 | | 1,44 | 0.15 | 0,92 | | .6 | 4 | 0 | | 1761 | 4-23 | 940A | U.S.G.S. | 5.5 | 3.04 | | 0.33 | 1.97 | | 12 | 0 | | | 1731 | 11-7 | | | 1.5 | 0.62 | 1.16 | 0.12 | 0,72 | | .6 | 5 | 0 | | 1762 | 5-1 | 945A | T | 2.3 | | 2.35 | 0.29 | 1.7 | | 5 | 0 | FC22 | | 1732 | 11-13 | | ,, | 30 | 22.2 | | 1.60 | 56.7 | | ı | | +.18 | | 1763 | 5-7 | 1147A | u.s.g.s. | 3,7 | 2.10 | 0.74 | 0.27 | 1.56 | .6 | 10_ | 0 | | | 1733 | 11-13 | | | 19 | 26.1 | 3.08 | 1,88 | 80.5 | | .6 | | +.04 | | 1764 | 5-15 | 1154A | | 2.3 | 0.67 | 2,27 | 0.26 | 1,52 | -5 | 5 | 0 | FC22 | | 1734 | 11-14 | | ,, | 10.5 | 6.9 | 1.87 | 0.82 | 12.9 | | .6 | 11 | 01 | | 1765 | 5-21 | 358P | J.S.G.S. | 3.2 | 1.54 | 0.92 | 0.22 | 1.42 | -6 | 9 | 0 | | | 1735 | 11-21 | | ,, | 11.6 | 13.6 | | 1.03 | 22.5 | | .6
2.8 | 15 | 0 | | 1766 | 5-28 | 404P | MOON | 2.2 | 0.54 | 1.80 | 0.20 | 0.97 | - 5 | 5 | 0 | FC22 | | | | | | 23.0 | 18.2 | | 1.39 | 43.9 | | .6 | | 01 | | 1767 | 6-4 | 122P | U.S.G.S. | 2.7 | 1.27 | 1.08 | 0.22 | 1.37_ | -6 | 8_ | 0 | | | 1735 | 11-23 | | , | | | | | i | | | | | | 1768 | 6-12 | 129P | MOON | 2,6 | 1.13 | 0.86 | 0.20 | 0), 97 | .5 | 4 | 0 | FC22 | | 1737 | 11-27 | | | 11.0 | 5.4 | | 0.58 | 8.8 | | .6 | | 0. | | 1769 | 6-18 | 335P | u.s.g.s. | 2.6 | 1.06 | 0.83 | 0.18 | 0,98 | - 6 | 8 | 0 | | | 1738 | 12-4 | | | 4.6 | 2.82 | | 0.40 | 3.92 | | .6. | 10 | 0 | | 1770 | 6-25 | | MOON | 2,2 | 0.97 | 1,03 | 0.19 | 1.0 | .5 | 4 | 0 | FC22 | | 1739 | 12-11 | | ,, | 2.3 | | 3.22 | 0.32 | 2.48 | | .6 | _7_ | 0 | | 1771 | 6-30 | 245P | J.S.G.S. | 2,3 | 0,90 | c.89 | 0.15 | 0.80 | .6 | 10 | 0 | | | 1740 | 12-18 | | <u> </u> | 4.5 | 2.39 | | 0.26 | 2.76 | | -6. | 9 | 0 | - | 1772 | 7-9 | 254P | MOON | 1,4 | 0.42 | 0,57 | 1.05 | 0.24 | .5 | 3 | 0 | FC22 | | 1741 | 12-23 | | | 4.5 | | 1.03 | 0.23 | 2.15 | | -6 | 9 | 0 | | 1773 | 7-15 | 1114A | u.s.g.s. | 1.4 | 0.42 | 0.67 | 0.06 | 0.28 | .5 | 6 | 0 | | | 1742 | 12-26 | | , | 28 | 29,2 | | 1,92 | 96.5 | 1 | .6 | | 02 | | 1774 | 7-24 | 1119A | MOON | 1.4 | 0.42 | 0,62 | 0.05 | 0.26 | .5 | 3 | 0 | FC22 | | 1743 | 12-27 | | | 30 | 33.0 | 2.97 | 1.95 | 98.0 | - | .6 | | 01 | | 1775 | 7-28 | | J.S.G.S. | 1.0 | 0.22 | 0.40 | 0.00 | 0.087 | .5 | 5_ | 0 | | | 1744 | 1-3 | 837A | | 15 | 8.9 | 1.37 | 0.78 | 12.2 | - | .6_ | 15 | 0 | | 1776 | 8-7 | 100P
103P | MOON | 0.9 | 0.18 | 0.33 | -0.01 | 0.06 | .5 | · 2 | 0 | FC22 | | 1745 | 1-9 | 842A | MOON | 2.6 | 1.44 | 5.56 | 0.62 | 8.0 | - | .6 | 5 | .0_ | FC22 | 1727 | 8-11 | | U.S.G.S. | 0.9 | 0,27 | 0.70 | 0,02 | 0.19 | .5 | 5 | 0 | | | 1746 | 1-15 | 845A | u.s.c.s. | 6.0 | 4,59 | 1.35 | 0,49 | 6.2 | - | .6 | 9 | 0 | | 1778_ | 8-20 | 245P
248P | MOON | 0.9 | 0.27 | 0.74 | 0.02 | 0.20 | .5 | 2 | o | FC22 | | 1747 | 1-23 | 851A | MOON | 2.4 | 1.05 | 4.50 | 0.41 | 4.7 | - | .5 | 5 | 0 | FC22 | 1779_ | 8-25 | | U.S.G.S. | 0.9 | 0.27 | 0.81 | 0.03 | 0.22 | .5 | 5 | o | | | 1748 | 1-29 | 847A | U.S.G.S. | 6.1 | 4,61 | 1.21 | 0.46 | 5.6 | ļ., | .6. | 12 | 0 | | 1780 | 9-4 | 1106A
1110A | STUNDEN | 1.0 | 0.20 | 0.25 | 0.02 | 0.05 | .5 | 2 | ٥ | FC36 | | 1749 | 2.6 | | MOON | 2.4 | 0.88 | 3.86 | 0.31 | 3.4 | | .5 | .5 | 0 | FÇ22 | 1781 | 9-8 | | J.S.G.S. | 0.9 | 0.20 | 0.36 | 0,01 | 0.073 | .5 | 5 | 0 | | | 1750 | 2-10 | 1000A | U.S.G.S. | 5.6 | 3.67 | 1.02 | 0.33 | 3.75 | | | 12 | 0_ | | 1782 | | 1105A
1110A | STUNDEN | 1.4 | 0.50 | | 0.10 | 0.49 | [₅ | 3 | 0 | FC40 | | 1751 | 2-20 | | MOON | 2,6 | 1.13 | 3.89 | 0.42 | 4.4 | _ | .5 | 5 | 0 | FC22 | 1783 | 9-22 | T | U.s.g.s. | 1.4 | 0.40 | 1 | 0.05 | 0.29 | 5 | | 0 | | | 1752 | 2-26 | | u.s.g.s. | 5.7 | 3,69 | 0.91 | 0.42 | 3,35 | ļ_ | .6 | 11_ | 0 | | 1.00 | | | | 1 | 1 | | 1 | , | 1 1 | -, " | - | | | ,1753 | 3-6 | 840A
847A | MOON | 2.4 | 1.07 | 3.18 | 0.45 | 3.4 | <u> </u> | .5 | 5 | 0 | FC22 | 1 | | | | | | | | | | | | | | 1754 | 3-12 | | U.S.G.S. | 5.6 | 3.26 | 0.85 | 0.47 | 2.79 | 1_ | .6 | 12 | 0 | <u> </u> | | | | | | | | | | | | | | | P. C. Di | st. Form 52 4-48 | | | | | los angele
OOD CONTR
TYDRAULIC | OL DISTRIC | r | | | Sta. I | No. U7-R | |----------------------------|---------------------------------|--|---------------------------------|---------------------------------|---|--------------------------------------|--|---------------------------------|--------------------------------------|---|---------------------------------------|----------------------------| | Dage | discharge, in a | record feet of | FISH CR | EEK above | | | DIAISION | | | | | | | _ | | | T | EEN BOOVE | 7 | Callyon | | ***** | | , for the yea | ar ending Septem | nber 30, 19_4B | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3 | \$ 0
\$ 0
\$ 0 | 8, 0
8, 0 | 8. O
8. O | 3.8 | 1.5 | 1.7 | 24 | 2.7 | 1.6
1.6 | 8. 0
8. 0 | 0.1 | 01
| | 4 5 | 0.2
0.2
0.4 | 0.7
0.7
0.8 | 8. O
8. O
8. O | 4.7
3.5
3.5 | 1.5
6.0
3.6 | 1.7 | 14
11
9.0 | 2.7
2.6
2.5 | 1.5
1.2 | 0.8
0.7
0.7 | 0 1
0 1
0 1 | 01
01
01 | | 6
7
8 | 0.6
1.0
0.9 | 11 12 1.0 | 8, O
8, O
8, O | 2.6 | 3.2
2.9
2.6 | 1.8
1.8
1.6 | 8.0
7.3
6.9 | 2 2 2 2 2 | 1 1
1 1
1 2 | 0.7
0.7
0.6 | 02 | 01 | | 9
10 | 8, O
8, O | 0.9 | 8. O
8. O | 2.5 | 2.3 | 1.6 | 6.5 | 2.5
2.7 | 12 | 0.6
0.5 | 0.2 | 0.2 | | 12
13
14
15 | 0.8
0.8
0.7
0.7 | 0.9 | 8. 0
8. 0
8. 0
8. 0 | 2 2
2 1
2 0
2 0
1 8 | 2 | 1.6
1.6
3.3
1.8
1.1 | 5.8
5.5
5.1
4.9 | 97.655
8888 | 1 0
1 0
1 0
1 0
9 | 0.5
0.4
0.3
0.3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01
01
01 | | 16
17
18
19
20 | 8.0
e.0
e.0 | 0, 0
9, 0
8, 0
8, 0 | 0 .8
0 .8
0 .7
0 .7 | 1.7
1.7
1.7
1.7 | 2.5
2.1
2.0
1.8 | 1.0
1.0
1.0
5.9 | 4.7
4.6
4.4
4.2 | 2 3
2 2
2 3
2 3 | 8
6
6 | 0 2
0 3
0 4
0 5 | 0 2
0 2
0 1
0 1 | 01
01
01
01 | | 21
22
23
24
25 | 0.8
0.8
0.8
0.7
0.6 | 0.7
0.7
0.7
0.7 | 0.7
35
151
156
24 | 1.7
1.7
1.7
1.7
1.7 | 1.8
1.8
1.8
1.8 | 6.0
4.9
3.3
3.2
3.0 | 4 1
3 9
3 6
3 5
3 5 | 2 3
2 5
2 5
2 5
2 1 | 0.8
0.9
1.0
0.9 | 0.5
0.5
0.4
0.4 | 01
01
01 | 01
01
02
02
02 | | 26
27
28
29
30 | 0.5
0.5
0.6
0.8
1.3 | 0.7
0.7
0.7
0.7
0.7
0.8 | 7.6
7.3
6.3
5.7
4.9 | 1.6
1.6
1.6
1.6
1.5 | 1.8
1.8
1.8
1.8 | 2.6
2.3
2.2
3.8
4.1 | 3 3
3 0
3 0
3 0
3 0
2 9 | 23 22 21 18 17 | 9.00
9.00
9.00
9.00
9.00 | 0.4
0.3
0.0
0.0
0.0
0.0
0.0 | 01
01
01
01 | 01
01
01
01
01 | | 31 | 0.9 | | 41 | 1.5 | | 41 | | 1.6 | | οã | 01 | - <u>`</u> - | | | 21.7 | 24.6 | 429.6 | 691 | 76.2 | 221.6 | 1941 | 72.8 | 30.9 | 14.1 | 4.2 | 3.7 | | MEAN | 0.70 | .82 | 13.9 | 2_23 | 2 72 | 7.15 | 6,47 | 2.35 | 1.03 | .45 | 7.1 | .12 | | ACRE- | 43. | .49. | 852. | 137 | 151. | 440. | 385. | 144. | 61. | 28. | 8.3 | 7.3 | | | Remarks: | | | | | | ا دندن | | Y | EAR MEA | | | | | | | | | | | | | P | OB | | 2.310 | #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION. Sta. No. U 7-R | Daily dia | charge, in see | cond-feet of | FISH | CREEK abo | ve Mouth | of Canyon | | | | , for the year | ending Septemb | er 80, 19.47 | |----------------------------------|-------------------------------------|---------------------------------|---|--|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 5 1
1 1
0 7
0 8
0 7 | 0.8
0.7
0.7
0.7
0.7 | 4 6
4 2
3 8 | 17
14
13
12 | 4 1
3 8
3 5
3 5
3 5
3 5 | 3 2
3 3
3 4
3 7 | 2.8
2.9
2.7
2.7
2.5 | 1.6
1.4
1.4
1.4
1.4 | 1 3
1 3
1 3
1 3
1 3 | 0.7
0.6
0.5
0.4
0.4 | 0 1
0 1
0 1
0 1
0 1 | 0 £
0 1
0 1
0 1 | | 6
7
8
9 | 0.7
0.6
0.5
0.5 | 0.7
0.7
1.1
0.9
0.8 | 4.8.29.65
33222 | 10
9 2 2
7 8
7 3
6 9 | 33 2 2 2 4 1 3 6 | 3.4
3.2
3.1
3.0
3.0
2.9 | 2 A
2 2
2 1
2 1
2 1 | 1 A
1 5
1 A
1 A
1 5 | 1.2
1.2
1.2
1.3 | 0.4
0.4
0.4
0.3 | 0 1
0 1
0 2 | 0 1
0 1
0 1
0 3 | | 11
12
13
14
15 | 0.5
0.5
0.5
0.6 | 19
19
43
13 | x x x x x x x x x x x x x x x x x x x | 999999
94449 | 953333
33333 | 2.8
2.7
2.7
2.8 | 2.0
1.8
1.8
1.8 | 1.5
1.4
1.3
1.4
1.5 | 1 2
1 1
1 0
1 0
0 9 | 0 3
0 4
0 4
0 3
0 3 | 00000000000000000000000000000000000000 | 0 1
0 1
0 1 | | 16
17
18
19
20 | 1 1
0 .8
0 .8
0 .8
0 .7 | 4.7
3.2
2.5
2.2
116 | 277.65
200
200
200
200
200 | 5 .8
5 .7
5 .5
5 .5 | 7,0
7,2
5,1
4,2
3,9 | 2.8
3.0
3.1
3.1
3.0 | 1.8
1.9
2.0
1.9 | 1 4
1 3
1 3
1 2
1 2 | 0.8
0.9
0.9
1.0 | 0 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.2
0.4
0.4 | | 21
22
23
24
25 | 0.7
0.7
0.6
0.5 | 26
11
31
24
15 | 2 2
2 3
3 2
71 | 4.9
4.6
4.4
4.1 | 3.8
3.5
3.3
3.3 | 2.9
2.8
2.6
2.4 | 0,00,09,9 | 1 2
1 3
1 3
1 2
1 1 | 1.0
0.9
0.9
1.0 | 0 &
0 &
0 &
0 & | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0
0 0 0 | | 26
27
28
29
30
31 | 0.5
1.6
1.7
1.2
1.0 | 10
8.7
6.5
5.5
5.1 | 140
84
47
31
26
20 | 4 1
3 9
9 4
5 7
5 1
4 4 | 33
33
33 | 2.3
2.4
3.8
2.8
2.7
2.7 | 19
19
18
17 | 1 0
1 4
1 3
1 1
1 4 | 1 0
0 9
0 9
0 .8 | 0 2
0 1
0 1
0 1
0 1 | 00000
00000 | 0.1
0.1
0.1
0.1
0.1 | | | 281 | 3631 | 4933 | 2262 | 107.7 | 91.6 | 62.5 | 41.5 | 31.6 | 9 1 | 5.5 | 4 .8 | | MEAN
ACRE-
FEET | 0,91
56 | 12.1
720 | 15.9
978 | 7.30
449 | 3.85
214 | 2.95
182 | 2.08 | 1.34
82 | 1.05 | 0.29
18 | 0.28 | 0.16
9.5 | | banasia. | Remarks; | · | | | | | | |)
Pr | PAR MEAN
CR ACMB | | .0 | ### STATION U12-R HAINES CREEK above Mouth of Canyon LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR, LAT. 34°15'50". LONG. 118°16'15". IN NW 1/4 NW 1/4 SEC. 17. T. N., R. 13 W., HALF A MILE UP-STREAM FROM MOUTH OF CANYON AND 11 MILES NORTHEAST OF TUJUNGA. ALTITUDE OF GAGE ABOUT 2,430 FEET. DRAINAGE AREA: 1.2 SQUARE MILES. RECORDS AVAILABLE: FEBRUARY 1917 TO SEPTEMBER 1934, OCTOBER 1935 TO SEPTEMBER 30, 1947. AVERAGE DISCHARGE: 28 YEARS, 0.179 SECOND-FOOT. 29 " 0.175 " " EXTREMES: 1945-1946 MAXINUM DISCHARGE, 12 SECOND-FEET MARCH 30. (GAGE HEIGHT 2.20 FEET). MINIMUM DAILY DISCHARGE, 0.01 SECOND-FOOT, OR LESS ON MANY DAYS. 1946-1947 MAXIMUM DISCHARGE, 6.2 SECOND-FEET DECEMBER 25. (GAGE HEIGHT 1.88 FEET). MINIMUM DAILY DISCHARGE LESS THAN 0.01 SECOND-FOOT ON MANY DAYS. 1917-1934, 1935-1947 MAXIMUM DISCHARGE OF RECORD, 265 SECOND-FEET MARCH 2, 1938. (GAGE HEIGHT 4.86 FEET). MINIMUM DISCHARGE LESS THAN 0.1 SECOND-FOOT DURING PERIODS IN MOST YEARS. REMARKS: RECORDS FAIR. A DEBRIS WAVE (COMMONLY CALLED A MUD FLOW) ATTAINED A GAGE MEIGHT OF APPROXIMATELY || FEET JANUARY |, 1934. (DISCHARGE NOT DETERMINED. DIVERSIONS ABOVE STATION FOR DOMESTIC USE. | _ | | | | | | | | | | | | | 11 | | | | | | | | | | | | |----------|--------------|--------------|----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------------------|----------|----------|--------------|------------|-------|--------------|---------------|---------------|-------------------------------|--|--------------------------|-----------------------|----------|---------|------------------| | | -AT-
NEAR | abcy | e Mouth of Can | yon | | DUR | ING THE Y | EAR ENDING | #CPT1 | CHBER 3 | 10, 19_4 | 3. | | ***** | above | Mouth of Cany | on | | DUR | IND THE Y | EAR EMPING | UEPTE | HBER : | 30, 19. | | NO. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELDEATY
FT.FER SEC. | GAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- H | ETH. MEA | D. B. H | METER
NO. | но. | DATE | BESIN
END | MADE BY | WIDTH
FEET | AREA OF
BENTION
SQ. FT. | MEAN
VELDOITY
FT.PER BED. | PALISE
HEISHT
FEET | DISCHARGE
BEG. FT. | RAT- M | ETH- HE | AB. E.
EO. CH | | 49 | 10-4 | | U.S.G.S. | | | | 1.04 | _005 | ļ | OL. | | | 504 | 10-1 | | U.S.G.S. | | | | 1.04 | 0.004 | | OL | + | | | 10-9 | | | | ļ | | 1.04 | _005 | _ k | QL. | | ļ | 505 | 10-8 | ļ | | | | | 1.08 | 0.053 | <u> </u> | OL | + | | 1 | 10-17 | | ** | - | ļ | | 1.04 | .005 | \ \rac{1}{2} | OL. | - | | 506 | 10-15 | ļ | 39 | | | | 1,05 | 0,011 | <u> </u> | OL. | + | | 52 | 10-31 | | | ļ | <u> </u> | | 1.04 | -007 | | oL | | | 507 | 10-22 | ļ | | - | - | | 1.05 | 0.007 | T | OL. | + | | 53 | 11-8 | | | | | | 1.04 | 006 | | QL. | + | · | 508_ | 10-29 | | 11 | | | | 1.05 | 0.006 | П | OL | + | | 54 | 11-15 | | | - | | | 1.04 | .008 | 1 | OL. | +- | | 509 | 11-5 | | | | | | 1.04 | 0.007 | П | OL. | + | | 55 | 11-21 | | | + | | | 1.04 | -010 | | OL. | - | - | 510
511 | i | | | | | | 1.07 | 0.030 | 1 1 | OL. | \top | | 56 | 11 - 28 | | | | | | 1.05 | .010 | l I | OL. | | T | 512 | 11-19 | | ., | | | | 1.13 | 0.16 | 1 1 | OL. | | | 58 | 12-13 | | | | | | 1.07 | -017 | 1 1 | OL. | | | 513 | 11-26 | | | | | | 1.13 | 0.17 | 1 ! | OL. | | | 9 | 12-19 | | ** | | | | 1.06 | 1017 | 1 | OL. | | | 514 | 12-10 | | 11 | | | | 1.10 | 0.086 | 1 ! | OL. | _ | | 50 | 12-22 | | | 4.2 | 0.33 | 3.21 | 1.44 | 1.06 | | .5 | 90 | 2 | 515 | 12-17 | | " | | | | 1.12 | 0.13 | | OL. | 4 | | 51_ | 12-28 | | () | | ļ | | 1.13 | .13 | <u> </u> | OL. | + | - | 516 | 12-26 | | " | .0.8 | ,125 | 5.60 | 1.41 | 0.70 | \vdash | .5 | + | | 62 | 1-4 | | ** | ļ | ļ | | 1.12 | .14 | \ \ | OL. | - | - | 517 | 1-14 | | . 17 | 1.1. | 0.19 | 1.32 | 1_19 | 0.25 | \vdash | .5 | 6 - | | 63 | 1-9 | | | | | | 1.10 | .10 | <u> </u> | OL. | | - | 518 | 1-28 | | " |
0.8 | 0.15 | 1.60 | 1.19 | 0.24 | - | | 4 (| | 34 | 1-16 | | | - | | | 1.10 | .10 | Y | OL. | + | | 519 | 2-12 | | | 0.5 | 0.10 | 1 | 1.13 | 0.15 | \vdash | - 1 | 3 0 | | 55 | 1-23 | | | | | | 1.11 | 10 | 1 | OL. | +- | + | 520 | 2-25 | + | | 0.45 | 01.07 | 1.14 | 1.10 | 0.078 | 1 1 | .5 | 5 (| | 56 | 1-30 | | ** | | | | 1.12 | -10 | | OL. | + | | 521 | 3-11 | - | " | | | | 1,09 | 0.075 | 1 | OL. | + | | 57 | 2-6 | | | 1 | - | | 1,13 | .13 | | OL. | 10 | | 522 | 3-23 | | | | | | 1.08 | 0.045 | 1 1 | OL. | \forall | | 58 | 2-13 | | | | 1 | | 1.11 | 11 | | OL. | | | 523
524 | 4-8 | 1 | | | | <u> </u> | 1.08 | 0,030 | ТП | OL. | 1 | | 70 | 2-20 | | H | | | | 1.10 | .086 | | OL- | | | 525 | 5-6 | | | | | 1 | 1,04 | 0,008 | | OL. | | | 71 | 3-6 | | | | | 1 | 1.10 | 1 | 1 1 | OL. | | | 526 | 5-20 | | | | | | 1.05 | 0.005 | 1 1 | /OL. | \Box | | 72 | 3-12 | | | | | | 1.10 | .057 | | OL. | | | 527 | | | н | | <u> </u> | <u> </u> | 1.05 | 0.00 | В | VOL. | \perp | | 73 | 3-21 | | м | 1.0 | 0.079 | 0.62 | 1.13 | _049 | | 1 | 5 0 | | 528 | i i | | | | ļ | ļ | 1.04 | 0.00 | 4 | VOL . | _ | | 74 | 3-27 | | ** | ļ | ļ | ļ | 1.08 | .053 | | OL. | 4 | | 529 | 7-1 | - | 11 | | — | | 1.04 | 0.00 | 3 | VOL. | + | | 75 | 3-31 | | | 1.5 | .48 | 1.00 | 1.28 | .48 | | .5 | 5 0 | | 530 | 7-18 | ļ <u>.</u> | | | - | | 1,03 | 0.00 | 1 | VOL | \dashv | | 76 | 4 - 1 | | | 1.5 | .36 | .89 | 1.20 | .32 | \sqcup | .6 | 3 0 | | 531 | 7-31 | | | | | + | 1.02 | 0.00 | | VOL. | \dashv | | 77 | 4-4 | <u></u> | | 1.2 | .26 | 1.02 | 1.18 | .:27 | \vdash | -6- | 3 0 | | 532 | 8-12 | | - | - | - | - | 1.03 | ı | T | VOL. | + | | 78 | 4-11 | | ·# | - | - | | 1.15 | 23 | | ۸. | _ | - | _533 | | + | " | - | | + | 1.03 | | | VOL. | + | | 79 | 4-18 | | " | + | \vdash | - | 1.15 | .23 | 1 1 | OL. | +- | + | _594 | | + | " | | | | 1.03 | 1 | 1 | VOL. | \top | | 30 | 4-24 | | | - | + | - | 1.15 | ,23 | \Box | OL. | + | | _ 535 | 9-23 | | | | ļ | | 1.03 | 0.00 | 11 | YULA | | | 31 | 5-1 | | | 1.5 | .22 | | 1,15 | .23 | ĦĬ | 0L.
5 | 4 0 | | 1 | | | | | | | | | | | | | 32
33 | 5-8 | | ** | 1,5 | .23 | ,83 | 1.15 | .19 | \dagger | QL. | 4 | 1 | 1 | | | | | | | | | | | | | 84 | 5-15 | | | | | | 1.13 | .17 | 1 1 | OL. | | | | | | | | | | | | | | | | 85 | 5-22 | | ** | | | | 1,12 | 1 | | OL. | | |] | | | | | | | | | | | | | 86 | 5-29 | | | | | | 1.09 | | 1 1 | OL. | | | 1 | | | | | | | | | | | | | 87 | 6-5 | | | | ļ | ļ | 1.07 | .063 | 1 | OL. | | | 1 | | | | | | | | | | | | | 88 | 6+12 | | - 100 | | ļ | <u> </u> | 1.05 | -016 | $\downarrow \downarrow$ | OL. | | - | 4 | | | | | | | | | | | | | 89 | 6+19 | | | | ļ | - | 1.04 | .009 | - | OL. | | - | 4 | | | | | | | | | | | | | 90 | 6-26 | | | | | - | 1.05 | .010 | 1 4 | OL. | | | - | | | | | | | | | | | | | 91 | 7-3 | - | | | | | 1.07 | 1 | 1 1 | OL. | | +- | 1 | | | | | | | | | | | | | 92 | 7-10 | | | + | + | | 1.05 | .007 | | OL. | + | + | - | | | | | | | | | | | | | 93 | 7-18 | | ** | + | + | - | 1.05 | 1 | 1 | OL | - | +- | 1 | | | | | | | | | | | | | 94 | 7-23 | 1 | | | | | 1.05 | | 1 1 | OL. | + | + | | | | | | | | | | | | | | 95
96 | 7-30
8-6 | | | <u> </u> | 1 | T | 1.04 | | 1 1 | /OL . | \top | + | 1 | | | | | | | | | | | | | 97 | 8-14 | | | | | | 1.04 | 1 | 1 1 | OL. | | 1 | 1 | | | | | | | | | | | | | 98 | 8-21 | | ** | | | | 1.05 | | 1 1 | OL. | | | 1 | | | | | | | | | | | | | 99 | 8-28 | | 794 | | | | 1.04 | .002 | 1 1 | OL. | | | | | | | | | | | | | | | | 00 | 9-5 | | * | | | | 1.03 | 1 | i l | OL. | \perp | | _ | | | | | | | | | | | | | | 9-11 | | • | | | | 1.03 | 1 | 1 1 | OL. | | _ | H | | | | | | | | | | | | | 01 | LOS ANGELES COUNTY Sts. No. U12-R | FLOOD CONTROL DISTRI | ¢ | |----------------------|---| | HYDRAULIC DIVISION | | | | | | | | н | DRAULIC D | IAIRIÓN | | | | | | |----------------------------------|-----------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|---|--|--------------------------------------|--------------------------------------|----------------|----------------------| | Daily d | ischarge, in se | cond-feet of | HAINES | CREEK abo | ve Mouth | of Canyon | | | | for the year | ending Septem | ber 30, 19 <u>16</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | | | 0.01
0.01
0.01
0.01
0.01 | 0 13
0 13
0 13
0 13
0 13 | 0.08
0.08
0.27
0.17
0.13 | 0.06
0.06
0.06
0.06
0.06 | 0 3 4
0 3 5
0 2 6
0 2 4
0 2 4 | 0 2 4
0 2 4
0 2 4
0 2 1
0 2 1
0 1 9 | 0.08
0.08
0.08
0.08
0.06 | 0.01
0.02
0.01
0.01
0.01 | | | | 7
8
9 | | e 0.006 | 0.01
0.01
0.02
0.02 | 0 1 1
0 1 1
0 0 9
0 0 9 | 0 1 1
0 1 1
0 1 1
0 1 1 | 0 .0 8
0 .0 6
0 .0 6 | 0 2 6
0 2 4
0 2 4
0 2 4 | 0 1 9
0 1 9
0 2 1
0 2 1
0 1 9 | 0.05
0.05
0.05
0.05 | 0.01
0.01
0.01
0.01 | e 0.004 | | | 11
12
13
14
15 | | | 00000
00000
000000 | 0.09
0.09
0.09
0.09 | 0 11
0 11
0 11
0 11 | 0.06
0.06
0.06 | 0 26
0 26
0 26
0 26 | 0 1 7
0 1 7
0 1 7
0 1 7 | 0.02 | 0.01
0.01
0.01 | | • 0.002 | | 16 a
17
18
19 | 0.005 | 0.01
0.01
0.01
0.01 | \$0.0
\$0.0
\$0.0
\$0.0 | 0 0 9 | 0 11
0 11
0 11
0 11
0 11 | 0.06
0.06
0.06
0.06 | 0 2 6
0 2 4
0 2 6
0 2 6 | 0 1 7
0 1 7
0 1 7
0 1 7
0 1 5 | 0,02
0,02
0,01
0,02 | | | | | 21
22
23
24
25 | | 0.01
0.01
0.01
0.01 | 0.68
1.4
1.2
0.25
0.17 | 0000 | 0 11
0 11
0 11
0 09
0 08 | 0.05
0.04
0.05
0.05 | 00000
00000 | 0 1 3
0 1 3
0 1 3
0 1 1
0 1 1 | 00000
00000
00000
00000 | e 0.005 | • 0.002 | | | 28
27
28
29
30
31 | | 0.01
0.01
0.01
0.01
0.01 | 0 1 5
0 1 3
0 1 3
0 1 3
0 1 3 | 999998 | | 0.06
0.01
0.27
4.3
0.65 | 0 2 4
0 2 4
0 2 4
0 2 4 | 0 13
0 19
0 0 8
0 0 8 | 0.02 | | | 0.01
0.02 | | 1 | 0.155 | 0.240 | 4 .8 6 | 3.04 | 3 1 2 | 7.00 | 7.63 | 5,01 | 110 | 0.240 | 0.092 | 0.086 | | MEAN | 0.0050 | ,0080 | .157 | .098 | .111 | .226 | ,254 | .162 | .037 | .0077 | .0030 | .0029 | | ACRE- | 0.3 | 5 | 9.6 | 6.0 | 6,2 | 14. | 15. | 9.9 | 2.2 | .5 | .2 | .2 | | | Remarks: | • - Даз | cimum dai | ly discha | rge durin | g period | less than | 0.01 sec | .ft. | YEAR MEA
OR
ERIOD ACR | N08
E-FERT6 | | F. C. Disc. Form 52 8-44 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U 12-R | | | | | | H | YDRAULIC I | NOISIVIC | | | | | | |----------|--|--------------|-----------|----------------|----------------|------------|-------------|-----------|--|----------------|---------------|-------------------------| | illy (| ischarge, in se | cond-feet of | HAINES C | REEK abov | e Mouth o | f Canyon | | | | , for the year | ending Septem | ber 80, 19 1 17. | | Day | Oct. | Nov. | Dec. | Jan. | Feb, | Mar. | Apr. | May | June | July | Aug. | Sept. | | î | \$60.003 | 7 | 011 | 0.26 | 0.17 | 0.0 B | 0.04 | 0.01 | 1 | 1 | \ | 1 | | 2 | ا ا | | 0.09 | 0.26 | 0.15 | 0.08 | 0.04 | 0.01 | | 1 | | \ | | 8 | 0.01 | } | 0.08 | 026 | 015 | 8 0.0 | 0.04 | 0.01 | ii l | | 1 | | | 5 | 0.05 | 1 1 | 0.08 | 026 | 015 | 8 O. O | 0.04 | 0.01 | ll 1 | | 1 1 | 1 | | 6 | 0.05 | 20.006 | 0.13 | 0 2 6 | 0.15 | 0.08 | 0.04 | 0.01 | | | | | | 7 | 0.05 | 10.00 | 0 1 1 | 026 | 0.15 | 0.08 | 0.03 | 0.01 | [[] | | 1 | 1 | | 8 | 0.05 | 1 | 0.09 | 0 2 6 | 0 1 5 | 0.08 | 0.03 | 0.01 | | 1 | ! | | | 9 | 0.05 | 1 1 | 0.08 | 0 2 4 | 0.15 | 80.0 | 0.04 | 0.01 | | 1 | | | | 10 | 0.04 | 1 | 0.08 | 0.24 | 015 | 0.08 | 0.03 | 0.01 | H | | ļ | | | 11
12 | 0.01 | ا ۵۵۰′ | 8 O. O | 0 2 4
0 2 4 | 0 1 5
0 1 5 | 9.08 | 2 Q Q | 0.01 | !! ! | 1 1 | } | | | 18 | 001 | 032 | 0 11 | 0 2 4 | 015 | 0.08 | 0.03 | 0.01 | | 1 |] | 1 | | 14 | 0.01 | 0.09 | 0 11 | 0 2 4 | 0.15 | 0.05 | 2002 | 0.01 | | | 1 | 1 | | 15 | 0.01 | 0.05 | 0 1 3 | 0.24 | 015 | 0.05 | 0.03 | 001 | 0.005 | 20.000 | 0.001 | e 0.0 o | | 16 | 0.01 | 0.04 | 013 | 021 | 015 | 0.04 | 0.03 | 0.01 | 1 | | - | | | 17 | 0.01 | 0.03 | 0 1 3 | 0.21 | 0.15 | 0.04 | 0.03 | 0.01 | 11 | 1 1 | 1 | ł | | 18 | 0.01 | 0.03 | 0 1 3 | 0 2 1 | 0 1 5 | 0.05 | 0.03 | 0.01 | [] | 1 1 | | .1 | | 19
20 |) | 0.03 | 013 | 021 | 0 1 5
0 1 5 | 0.04 | 0.03 | 0.01 | | ļ | | | | | ļ | 015 | 0 1 3 | 019 | 013 | 0.04 | 0.03 | 0.01 | H | + | + | H | | 21
22 | 00006 | 015 | 0 1 3 | 019 | 0 12 | 0.04 | 0.03 | 0.01 | 11 | 1 | | | | 28 | 1 | 0.24 | 0 1 3 | 019 | وَقَنَ | 0.04 | 0.03 | 0.01 | 11 | 1 | | | | 24 | 1 | 0.19 | 017 | 021 | 0.0 B | 0.04 | 0.03 | 0.01 | 11 | .) | 1 | | | 25 | ا ــــــــــــــــــــــــــــــــــــ | 0.17 | 0.88 | 019 | 0.08 | 0.04 | 0.03 | 0.01 | <u> </u> | | | | | 26 | 0.01 | 0.17 | 13 | 017 | 0.09 | 0.04 | 0.03 | 0.01 | | 1 | | | | 27 | 0.03 | 0 1 5 | 036 | 017 | 0.0.9 | 0.05 | 0.03 | 0.01 | 11 | -1 | | | | 28
29 | 0.005 | 0 1 3 | 029 | 024 | 009 | 0.06 | 0.03 | 0.01 | 11 | 1 | | lf | | 80 | اد و مره- د | 011 | 029 | 0 1 9 | | 0.05 | 0.03
2Q0 | 0.01 | 11 | | | 1 | | 81 |) | | 029 | 0 1 9 | | 0.05 | - 0 2 2 | 0.01 | <u> </u> | <u> </u> |) | | | | 0.558 | | 639 | | 3.79 | | 0.94 | | 0150 | | 0.031 | | | GEAR | f | 2.836 | . 2.1 | 6.93 | | 1.83 | | 031 | 1 | 0.062 | | 0.03 | | ACRE
| 0.0180 | 0.0945 | 0.206 | 0.224 | 0.135 | 0.059 | 0.031 | 0.010 | 0.005 | 0.002 | 0.001 | 0.001 | | harr | 1.1 | 5.6 | 13 | 14 | 7.5 | 3.6 | 1.9 | 0.6 | 0.3 | 0.1 | 0.06 | 0.06 | | | Remarks: 6 | Indicate | s maximus | ı dischar: | re during | period 1 | ess than | 0.01 sec. | rt. | YEAR MEAN | | | | | | | | | | | | | 1 | MATERIA VOER | PRET 48 | · | | | | | | | | | | | | | | | # STATION F287-R LA TUNA CREEK at Belmont Country Club LOCATION: WATER-STAGE RECORDER, LAT. 34°14'16", LONG. 118°19'14", ON THE RIGHT (NORTHERLY) END OF THE UPSTREAM SIDE OF THE WOODEN BRIDGE AT LA TUNA CANYON ROAD ABOUT 3.7 MILES NORTHEAST OF ROSCOE. ELEVATION OF GAGE ABOUT 1158 FEET. DRAINAGE AREA: 5.1 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL CONFINED BY PIPE AND WIRE FENCE. CONTROL - CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF WOODEN BRIDGE. RECORDER: INSTALLED MARCH 13, 1946 OVER A 21 INCH CORRUGATED BROW PIPE STILLING WELL. A STEVENS TYPE "L" MEEKLY RECORDER WAS IN SERVICE FROM MARCH 13, 1946 TO SEPTEMBER 30, 1947. REGULATION AND/OR DIVERSIONS: NONE. RECORDS AVAILABLE: MARCH 13, 1946 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 102, SECOND-FEET FOR PERIOD OF RECORD. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 132 SECOND-FEET, DECEMBER 26. MINIMUM NO FLOW MOST OF YEAR. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED, AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHANGE
AT | | MENTE OF | | TUNA | DURIN | 0 THE YE | AR ENDING | BCPT | ENBER | 20, 1 | | | | | | Country Club | | | DUR | IND THE Y | EAR ENDIN | 3 OKPT1 | EMBER | 20, 11 | . 47 | | |-----|-----------------|--------------|----------|----------------|--------------|----------------------------------|----------|-----------|------|-------|---------------|--------|--------------|----------------|-------|----------------------|----------------|-------|-------------------------------|---------------------------------------|-------------------------|-----------------------|---------|-------------|------------------------------|------|--------------| | но. | DATE | BERIN
END | HADE BY | WIDTH
FEET. | , | MEAN
VELODITY
FT. PER SEC. | | | | | | G. HT. | METER
ND- | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BEGTION
BQ. FT. | MEAN
VELODITY
FT.PER BED. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | 1ETH- | FEAS. 6.
BEG. 01
MG. 1 | HT. | HETER
HO. | | 1 | 3/19 | 1045A | DEVORE | 2.4 | 0.32 | 0.47 | | 0.15 | Τ | FLOAT | | na . | | | 11-13 | 1040A
1050A | TURNER - RILEY | 22.0 | 8.19 | 1.97 | 3,26 | 16,1 | | | | | FC43 | | 2 | 3/30 | 937A | WADDICOR | | 6.56 | | 3.23 | 12.5 | | 6 | | .02 | ECOO | , | 11-14 | 155P | * * | 8.0 | 2.11 | 0.90 | | | 1 1 | .5 | T | 0 | <u> </u> | | 3 | 3/31 | 1240P | ., | 6.0 | | 1 47 | 3.00 | 2 9 | Г | 6 | | | | 7 | 11-20 | 200P
235P
245P | | 18.0 | 5.25 | 1.31 | | | 1 | .6 | | 0 | | | 4 | 4/3 | 702A
710A | | | | | 2.84 | 0.5 | | | | | | 8 | 11-21 | 115P
123P | | 9.0 | 1.59 | · · · · · · · · · · · · · · · · · · · | | | Τİ | | | 0 | | | | | | İ | 1 2-2 | i u ov. | | LZ.04 | | - | 1-5-1 | - | | | 9 | 11-23 | 1010A
1015A | 11 11 | 6.0 | 2,93 | | ì | | | | | 0 | • | | | | | | | | | | | | | | | | 10 | 12-25 | 1105A
1125A | TURNER | 23.5 | 18.9 | 4,33 | | | 1 | .6 | 7 - | | | | | | | | | | | | | | | | | | 11 | 12-26 | 905A
920A | i | 15.7 | 5,24 | | | | 1 | .6 | | 0 | - | | | | | | | | | | | | | | | | ''' | 12-20 | 220P
255P | | 7.0 | | | | | TT | 12 | 1-9 | 220P
225P | | 5.0 | 0,81 | 0.51 | 2,80 | | | .5
.0AT: | 6
5 5 | 0 | | F. C. Dist. Form 52 4-45 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 287-B | ay | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | |-----------------------|---------|---------------------------------|-----------------------------|--------------------------|-------|--------|-------------|-------|-------|-------------------------------|-----------|--------| | 1
2
3 | 0 0 | 0
0
0 | 0 0 0 | 0 4 | 0 0 | 0000 | 0
0
0 | 0 0 | 0 0 0 | 0 0 | 0 0 0 | 0000 | | 5 | ō | 0 | 0 | 3. O
3. O | 0 | 0.1 | 0 | 0 | 0 | 0 | Ō | 0 | | 7 | 0 | 0 | 0.000 | 0 .6
0 .5
0 .4 | 0 | 000 | 0 | 0.000 | 000 | 0 | 0 | 000 | | 9 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1
2
3
4
5 | 0 0 0 0 | 0
0
3 2
5 7 | 0000 | 0 2
0 2
0 1
0 1 | 00000 | 0000 | 00000 | 0000 | 0000 | 0000 | 0 0 0 0 0 | 0 0 0 | | 6
7
8
9 | 0 0 0 | 0.
0
0
0
5 3 | 90000 | 0 0 0 0 | 00000 | 00000 | 00000 | 0.0 | 0 0 0 | 0 0 | 0 0 0 | 00000 | | | 00000 | 0.4
0.3
1.2
0.2 | 0000 | 0 0 0 | 0000+ | 90000 | 00000 | 0.000 | 00000 | 0000 | 00000 | 00000 | | 3 | 000000 | 0000 | 27
29
0.4
0.1
0 | 0 3 | 01 | 000000 | 0 0 0 | 00000 | 0000 | 00000 | 000000 | 000000 | | | 0 | 183 | 565 | 4.5 | 01 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | | LN | 0 | 0.61 | 1.82 | 0.15 | + | + | 0 | 0 | 0 | 0 | 0 | 0 | | S. | 0 | 36.3 | 112 | 8.9 | 0.2 | 0.2 | 0 | 0 | ٥ | 0 | 0 | 0 | | 1 | | | .f.s. or | | | | | | | YEAR MEA
OR
PERIOD ACRE | N 0.22 | | #### STATION F149-R LIMEKILN WASH at Devonshire Avenue LOCATION: WATER-STAGE RECORDER, LAT. 34°15'27", LONG. 118°33'29", ON THE LEFT (EAST) ABUTMENT OF A CONCRETE, DOUBLE BOX CULVERT UNDER DEVONSHIRE AVENUE ABOUT 21 MILES EAST OF CHATSWORTH. ELEVATION OF GATE ABOUT 970 FEET. DRAINAGE AREA: 3.8 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND SMALL BOULDERS. CONTROL - CULVERT ENTRANCE ACTS AS 'A CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM TOP OF CULLVERT. RECORDER: INSTALLED NOVEMBER 9, 1939: MOVED TO UPSTREAM SIDE OF BRIDGE NOVEMBER 30, 1943 OVER A 12 INCH IRON PIPE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. RECORDS AVAILABLE: NOVEMBER 9, 1939 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 93 SECOND-FEET, DECEMBER 21, MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 33 SECOND-FEET, DECEMBER 25, MINIMUM NO FLOW MOST OF YEAR. 1939-1947 MAXIMUM 318 SECOND-FEET, FEBRUARY 17, 1941, MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: GOOD. 5.8 9.9 59. Remarks: + = 0.05 c.f.s. or less. + 3.8 20. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | HEASURE | (ENTS OF | LIMEKILI | N WASH | | | | | | | | | | DIBCHARDE | E MEABURE) | HENTE OF LIMEKIL | N. WASH. | | | | | | | | | |------|-----------|----------------|---------------|----------|-------------------------------|----------------------------------|-------------------------|-----------------------|-------------|-------|----------------------|---------------------------|--------------|-----|-----------|----------------------|------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------|---------|----------------|---------------------| | | AT. | Devo | nshire Avenue | | | DUR(N | IO THE YE | AR ENDING | EEPTI | EMBER | 30, | , <u>,46</u> | - | 1 | -NET | Devonsh | ire Avenue | | | DUR | ING THE Y | EAR ENDING | BEPTE | 48ER 3 | 0, 19. 4 | 7. | | MQ, | DATE | BESIN | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT. PER MEC. | RAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT-
IND | METH- | MEAB.
BEG.
NO. | G. HT.
CHANGE
TOTAL | METER
NO: | NO. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA DF
SECTION
SQ. FT. | MEAN
VELUDITY
FT.PER BEG. | BAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- ME | TH- MEA | GHAND
TOTAL | HT. METER
DE NO. | | _105 | 12/22 | 248A
255A | DEVORE | 5.6 | 3.84 | 3,52 | 0.60 | 13.5 | | .6. | 4 | 0 | FC42 | 113 | 11-12 | 900A
905A | TURNER | 2.5 | 0.27 | 0,67 | 0.17 | 0.18 | | 4 | 0 | FC13 | | 106 | 12/23 | 441P
449P | | 5.0 | 0.50 | 2.00 | 0.46 | 1.0 | | FLOAT | 7 | 0_ | | 114 | 11-13 | 905A
830A
840A | TURNER - RILEY | 7.0 | 4.20 | 3.47 | 0.64 | 14.6 | ۱, ا | s | 01 | FC43 | | .107 | 12/27 | 313P
317P | | 1.6 | 0.12 | | 0.39 | 0.12 | П | | 2 | 0 | | 115 | 11-14 | 1130A
1135A | TURNER | 2.0 | 0.30 | 0.50 | 0.09 | 0.15 | | 4 | 0 | <u> </u> | | 108 | 1/2 | 135P | | 1 3 | 0.07 | 0.43 | 0.34 | 0.03 | П | | 4 | 0 | | 116 | 11-20 | 1018A
1023A | TURNER - RILEY | 5.0 | 1.28 | 1.95 | 0.26 | 2.5 | | 5 | 0 | | | .109 | 3/20 | 107P | | 3-5 | G.31 | 1.35 | 0.28 | 0.42 | | | 5 | . 0_ | | 117 | 12-26 | 1245P
1250P | TURNER | 5.0 | 1.62 | 2.96 | 0.44 | 4.8 | ., | | o | ** | | 110 | 3/30 | 707A | WADDICOR | 4.4 | 1.81 | 2.71 | 0.42 | 4.9 | | .6 | 5 | +05 | FC22 | 118 | 12-31 | 1220P
1223P | 17 | 1.0 | 0.10 | 1.10 | 0.16 | 0.1 | SU!
FLC | AT 2 | 0 | | | 311 | 3/30 | 1117A
1124A | | 4.3 | 0.82 | 1.59 | 0.39 | 1,3 | | .6 | 5 | 0_ | | 119 | 1-29 | 435P
440P | 19 | 2.0 | 0.05 | 0,20 | 0.10 | 0.01 | | . 2 | . 0 | | | | 3/31 | 155P | | | 0.18 | | 0.29 | 0.10 | | .6 | 3 | 0 | | 120 | 2-27 | 1020A
1023A | | 1.0 | 0.08 | 1.00 | 0.16 | 0.08 | | . 1 | 0 | | | | . Form \$3 4-46 | cond-feet of | LIMEKI | LN WASH a | | YDRAULIC | ol district
division | | | for the year | | NoF149-R | |----------------------------------|----------------------|---------------------------|---------------------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-----------------------|-------------|--------------|------------|------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0
0
0
0 | 00000 | 0 1 | ÷
÷
÷
÷ | +
+
1.4
0.5
+ | 0000 | f 0.9
b 0.7
b 0.5
0.2
0.3 | ++000 | 946 | | | | | 6
7
8
9 |
1.9
0
1.0
0 | 0
1 3
2 4
0
0 | 0 0 0 | 0
+
+
+ | 0000 | 00000 | + + + + | 00++0 | May 29, 1 | Summer | Summe r | Summer | | 11
12
13
14
15 | 00000 | 1.2
0.1
0
0 | ÷
0000 | + 0000 | 00000 | +
0.5
0.5
+ 2 | +
+
+
+ | 0000+ | Summer 1 | d for | for | for | | 18
17
18
19
20 | 0000 | 0000 | 0
+
0
+
01 | 0000 | 0000 | 0 .4
+
0
1.0
+ | ++++
+++ | +
+
+
+
+ | ped for | er stoppe | er stopped | er stopped | | 21
22
23
24
25 | 0 0 0 0 | 000 | 11
12
5 2
+ | 0000 | 0000 | †
0
0
0 | +
+
+
+ | +
+
+
+
+ | der stopped | Recorder | Recorder | Recorder | | 26
27
28
29
30
31 | 0 0 0 0 | 0
0
0
0 | 03
f 01
d +
d +
d + | 0 0 0 0 | o
o | +
+ 2
2 4
3 8
0 3 | †
†
†
† | ÷
•
• | Recorder | | | | | | 2.9 | 5 .0 | 29.7 | + | 1.9 | 103 | 2.6 | + | | | | | | MEAN | 0.09 | 0.17 | 0.96 | + | 0.07 | 0.33 | 0.09 | + | | | | | 5.2 YEAR MEAN_OR PERIOD ACRE-FEET_ MEAN 0.14 104. | | st. Form 53 4~46 | | | | FLC
H | LOS ANGELES
COD CONTRO
YDRAULIC I | ol district
Division | | | | | √о. F ¥9 - | |----------------------------------|-----------------------------|----------------|---------------------------------|----------------------|----------------------|---|---------------------------|-----------|-------|--------|-----------------|----------------| | | iischarge, in se | | LIME | ILN WASH | | shire 'Ave | une | | | | r ending Septer | nber 30, 19_47 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4 | 0 | 0000 | 0000 | 03
02
01
01 | 0000 | ** | 0
0
+
0 3 | 0000 | 0 | 000 | 0 | 0 0 0 | | 5 | ō | 0 | ō | 8 | 0 | 0.5 | Q | + | Ō | O | o I | 0 | | 6
7
8
9 | 0000 | 00000
N | 20000 | 00000 | 0
0
0 5
0 1 | 0000 | 00000 | 0000 | 0000 | 0000 | 0000 | 0 0 0 | | 11
12
13
14
15 | 0 0 0 4 | 1134Q
00510 | 0.0.0.0.0 | 00000 | 00000 | 0 0 0 | 0000 | 0 0 0 | 0 0 0 | 0 0 0 | 0000 | 0 0 0 | | 16
17
18
19 | 1.4
0.9
0
0
0 Q | 000014 | 00.000 | 00000 | 00000 | 0000+ | 0 0 | 0 0 0 0 | 0 0 0 | 00000 | 0000 | 0 0 0 | | 21
22
23
24
25 | 0
0
0
0 | 000000
1196 | 0 A
0 0
1 8 1 | 0000 | 0000+ | • 0000 | 00000 | 0
0 | 0 0 0 | 0000 | 0 0 0 | 0 0 0 | | 26
27
28
29
30
31 | 00000 | 0.4 | 4 1
2 2
1 3
0 6
0 1 | 001000 | 0.1 | 0
1 9
0
0
0 | 0
0
+
0 3
0 3 | 0 0 0 0 0 | 0000 | 000000 | 00000 | 00000 | | | 3.1 | 162 | 20.7 | 23 | 9. 0 | 2.4 | و٥ | | 0 | 0 | 0 | o | | MEAN | 0.10 | 0.54 | 0.67 | 0.07 | 0.03 | 0.08 | 0.03 | + | 0 | 0 | 0 | 0 | | ACRE-
FEET | 6.1 | 32 | 41 | 4.6 | 1.6 | 4.8 | 1.8 | * | 0 | 0 | 0 | 0 | OD ACRE-FEET 91.9 #### STATION FEER-H LITTLE DALTON CREEK above Houth of Canyon LOCATION: WATER-STAGE RECORDER, LAT. 34°10'05", LOMG. 117°50'07", ON THE LEFT (EAST) BANK ABOUT 120 FEET ABOVE GLENDORA MOUNTAIN ROAD CROSSING, 0,8 MILE ABOVE MOUTH OF CANYON AND ABOUT 3 MILES NORTHEAST OF GLENDORA. ELEVATION OF ZERO GAGE HEIGHT. 1334,38. DRAINAGE AREA: 2.7 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - ROCK AND GRAVEL WIGH WIRE MAT RIPRAP ON SIDES, CONTROL - RUBBLE AND CONCRETE CHECK IN CHANNEL BOTTOM. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM BRIDGE CROSSING 122 FEET BELOW STATION. RECORDER: INSTALLED JANUARY 1929 AT STATION F65-R AT MOUTH OF CANYON (DRAINAGE AREA 3.3 SQUARE MILES). REMOVED NOVEMBER 23, 1938. REINSTALLED NOVEMBER 30, 1938 AT STATION F658-R OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NOME, GLENDORA IRRIGATING COMPANY DIVERTS BELOW STATION. RECORDS AVAILABLE: AT STATION F65-R - JANUARY 28, 1929 TO NOVEMBER 23, 1938. AT STATION F658-R - NOVEMBER 30, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: MES OF DISCHARGE: 1945-1946 MAXIMUM 111 SECOND-FEET, DECEMBER 21, MINIMUM NO FLOW FOR SEVERAL MONTHS. 1946-1947 MAXIMUM 57. SECOND-FEET, NOVEMBER 20, MINIMUM NO FLOW FOR SEVERAL MONTHS. 1929-1947 MAXIMUM 960 SECOND-FEET, ESTIMATED MARCH 2, 1938, MINIMUM NO FLOW SEVERAL MONTHS EACH YEAR. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LDS ANGELES COUNTY FLOOD CONTROL DISTRICT WITH COOPERATION OF THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH, | | DIRCHARGE | C HEABURE | GENTB OF | TITLE D | ALTON | CREEK | | | | | | 1 | | DIECHARGE | MEABURE | MENTA OF | TLE DAL | ION CI | CEK. | | | | | | | |--|-----------|------------------------|-----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------|----------------------|---------------------------|--------------|-----|-----------|------------------------|---------------------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--|--------------------|---------------------------|----------------| | - | -AT 1 | bove M | outh of Canyon | | | pur | ING THE Y | EAR ENDING | BEPTEMBI | R 30, | 19 <u>116</u> | | | - th | pove | mouth of Canyon | | — | DURI | NG THE Y | EAR ENDING | DEPTE | ner at | , . <u>4</u> 7 | 2 | | | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA DF
SECTION
SQ. FY. | MEAN
VELOUITY
FT.PER SEO. | GAUGE
HEIGHT
FEET | DIRCHARGE
REG. FT. | RAT- METH- | MEAS,
SEU.
No. | G. RY.
DHANGI
TOTAL | METER
NG. | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA DF
SEUTION
SQ. FT. | MEAN
VELOGITY
FT.PER SEG. | BAUBE
HEIGHT
FEST | DISCHARGE
SEC. FT. | RAT- HE | HEAD
SED
NO. | G. HT.
DHANGE
TOTAL | MET | | 9 | 12/22 | 948A
1000A | BREWSTER | 20.0 | 12.8 | 6.57 | 0.90 | 84.1 | | 5 | 0 | FC12 | 417 | 11-12 | 758A
802A
100P | BREWSTER | 2.0 | 0.28 | 0.79 | 0.12 | 0.22 | <u> </u> | 6 2 | 0 | FC1; | | 0 | 12/22 | 318P
330P | | 16.0 | 8.30 | 2.92 | 0.88 | 24.2 | 6 | 5. | | FC12 | 418 | 11-12 | 105P | ** | 3.0 | 0.44 | 2,07 | 0.27 | 0.91 | <u> </u> | 6 3 | 0 | | | 1 | 12/23 | 1147A
1159A | | 18.0 | 9.80 | 3.51 | 0.89 | 34_4. | | -5. | | · | 419 | 11-13 | 1202P
1210P | BREWSTER - VINES | 6.0 | 1.85 | 2.92 | 0.45 | 5,4 | <u>.</u> | 6 4 | 0 | ٠. | | | 12/24 | 1220P
1230P | | 8.0 | 3.20 | 1.94 | 0.65 | 6.2 | | 4 | | | 420 | 11-14 | 1107A
1115A | " | 3,0 | 1.31 | 1.15 | 0.37 | 1.5 | <u></u> | 6 3 | 0 | - | | 3_ | 12/26 | 1030A
1040A | | 8.0 | 2.60 | 1.00 | 0.28 | 2.6, | | . 4. | 0 | | 421 | 11-15 | 314P
320P | BREWSTER | 3.0 | 0.99 | 0.84 | 0.24 | 0.83 | <u>.</u> | 6 3 | 0 | | | | 172 | 10 30 A
10 40 A | | 4.0 | 1.55 | 1.16 | 0.20 | 1.8. | 6 | 4. | | - | 422 | 11-20 | 1110A | BREWSTER - VINES | 12.0 | 10.3 | 5.04 | 0.99 | 51.9 | ١. | 6 5 | 02 | ** | | | 1/9 | 1140A
1150A | | 4.0 | 1.10 | 0.85 | 0.17 | 0.94 | | 4 | 0 | | 423 | 11-20 | 310P
320P | | 10.0 | 6.20 | 2.60 | 0.84 | 16.1 | <u> </u> | 6 5 | 02 | | | i | 1/16 | 1120A
1130A | ., | 5.0 | 1.50 | 0.46 | 0.17 | 0.69 | | 5 | 0 | | 424 | 11-21 | 135P
145P | BREWSTER | 10.0 | 3.00 | 1,17 | 0.49 | 3.5 | Ц. | 6 5 | 0 | " | | z . | 1/23 | 10 20 A
10 30 A | | 4.0 | 1.06 | 0.63 | 0.16 | 0.67 | 6 | .4 | 0. | | 425 | 11-23 | 1120A
1130A | ., | 1.2.0 | 4.80 | 2.08 | 0.64 | 10.0 | <u> </u> | 6 5 | 0 | | | 3 | 1/30_ | 908A
917A | ** | 4.0 | 1.10 | 0.46 | 0.14 | 0.51 | e | 4_ | ٥ | | 426 | 11-24 | 1005A
1015A
935A | | 10.0 | 2.80 | 1.25 | 0.50 | 3.5 | <u> </u> | 6 5 | 0 | | | a | 2/3 | 443P
455P
1030A | | 12.0 | 3.60 | 1_86_ | 0.46 | 6.7 | 6 | | 01 | | 427 | 11-27 | 935A
945A
932A | | 4,0 | 1.26 | 1.11 | 0.35 | 1.4 | 1-1. | 6 4 | 0 | ļ.: | | 2 4 | 2/4 | 1040A | | 5.0 | 1.50 | 0.93 | 0.21 | 1.4 | 6 | 5 | 0 | •• | 428 | 12-4 | 932A
940A
935A | | 4.0 | 1.06 | 0.70 | 0,25 | 0.74 | ↓ | 6 4 | 0 | ļ., | | | 2/6 | 1033A
1045A
855A | •• | | 1.32 | 0.59 | 0.18 | 0.78 | 6 | 5 | 0_ | •• | 429 | 12-11 | 945A
920A | <u> </u> | 4.0 | 0.92 | 0.71 | 0.22 | 0.65 | 1. | 6 4 | 0 | <u> "</u> . | | 2 | 2/13 | 905A
940A | | 5.0 | 1.26 | 0.54 | 0.15 | 0.68 | 6 | 5 | _0 | | 430 | 12-18 | 930A
950A | | 4.0 | 0.78 | 0.60 | 0.20 | 0.47 | 1-1- | 6 4 | 0 | " | | - | 2/20 | 950A | | 4.0 | 1.00 | 0.53 | 0.14 | 0.53 | | 4 | 0 | | 431 | 12-26 | 1000A
145P | BREWSTER - VINES | 10.0 | 4.00 | 1,52 | 0.61 | 6.1 | | 6 5 | 0 | " | | 4 | 2/27 | 907A
915A | <u></u> | _4.0 | 0.98. | 0.41 | 0.14 | 0.40 | | 4 | | | 432 | 12-27 | 155P | | 11.0 | 5.00 | 2.14 | 0.70 | 10.7 | 1 | 6 6 | 0 | " | | <u>. </u> | _3/6 | 950A
958A
927A | | 3.0 | 0.85 | 0.42 | 0.13 | 0.36 | е | 3 | | | 433 | 1-2 | 135P
145P
930A | BREWSTER | 6.0 | 2.20 | 1.18 | 0.42 | 2.6 | 1-1- | 8 8 | 0 | - | | 5 | 3/13 | 935A | | 3.0 | 0.76 | 0.54 | 0.13 | 0.41 | | 3 | 0 | | 434 | 1-8 | 940A
850A | | 5.0 | 1.68 | 0.89 | 0.36 | 1.5 | | 6 5 | . 0 | <u> </u> | | 7 | 3/19 | 100P
932A | <u></u> | 4.0 | 1.49 | 0.66 | 0.18 | 0.99 | _ 6 | 4 | 0 | | 435 | 1-15 | 900A
920A | | 5,0 | 1.42 | 0,77 | 0.31 | 1.1 | | 6 5 | 0 | <u> "</u> | | 3. | 3/20 | 940A
854A | | a.a | 0.87 | 0.94 | 0.17 | 0.82 | | 3_ | 0 | •• | 436 | 1-22 | 930A
918A | | 5.0 | 1,32 | 0.73 | 0.25 | 0.96 | 1-1- | 6 5 | 0 | | | 3 | 3/27 | 902A
942A | BREWSTER | 3.0 | 0.77 | 0.61 | 0.13 | 0.47 | 6 | 3_ | 0. | -" | 437 | 1-29 | 930A
800A | | 5.0 | 1.50 | 0.80 | 0,33 | 1,2 | - | 6 5 | 0_ | | | \dashv | . 3/30_ | 954A
226P | COOLEY | 12.0 | 5.20 | 3.13 | 0.71_ | 16.3 | | 6 | 0 | •• | 438 | 2-5 | 812A | - " | 5.0 | 1,24 | 0.72 | 0.22 | 0.89 | ++ | 6 5 | 0 | +- | | Н | 3/30 | 240P | COOLEY BREWSTER | 13.0 | 6.75
 2,95 | 0.74 | 19.9 | | | 01 | ** | 439 | 2-11 | 910A
920A
855A | 11 | 5.0 | 1.04 | 0.67 | 0.25 | 0.70 | ++ | 6 5 | 0 | - | | 2 | ,3/31 | 1025A
816A | COOLEY | 12.0 | ,3,52 | 1.56 | 0.54 | .5.5 | | 6_6 | 01 | FC12 | 440 | 2-19 | 905A
810A | - | 5,0 | 1.10 | Į. | 0.25 | 1 | ++ | 6 5 | 0_ | ** | | 3_ | 4/3 | 830A
800A | BREWSTER | 12.0 | 2.64 | 1.17 | 0.35 | 3.1 | | 66 | 0 | | 441 | 2-27 | 820A | | 5.0 | 1.16 | 0.64 | 0.20 | 0.74 | ++ | .6 5 | + | | | 4 | 4/10_ | | | 4.0 | 1.48 | 1.01 | 0.24 | 1.5 | | 4. | | | 442 | 3-6 | 1055A
805A | <u> </u> | 5.0 | 1.14 | 1 | 0.23 | | +-+ | ,6 5 | | | | 5 | 4/17 | 1030A
754A | | _ 5.0 | 1.42 | 0.85 | 0.19 | 1.2 | | 5 | 0 | <u></u> | 443 | 3-13 | 817A
805A | | 5,0 | 1.06 | | 0.18 | 0.53 | ++ | .6 5 | .0_ | | | 6_ | 4/24 | 800A
1000A | | 4.0 | 1.06 | 0.75 | 0.17 | 0.80 | | 6 4 | 0 | | 444 | 3-20 | 815A
920A | . " | 5.0 | 1.02 | | 0.19 | | + | | - 0 | | | 7 | 5/1 | 10.10A
802A | | 4.0 | 1.02 | 0.66 | 0.15 | _0.67 | | 6 4 | 0 | | 445 | 3-27 | 930A | | 5.0 | 1,00 | 1 | | | ++ | .6 5 | | | | 8 | .5/8 | 810A
90 CA | | 4.0 | 0.90 | 0.54 | 0.14 | 0.49 | | 6 4 | 0 | •• | 446 | 4-3 | 850A | | 5.0 | 0.96 | 0.49 | 0.18 | 0.47 | + | .6 5 | 0 | | | 9 | 5/15 | 910A
800A | | 4.0 | 0.98 | 0.51 | 0.14 | 0.50 | <u> </u> | 6 4 | 0 | | 447 | 4-9 | 1035A | | 1.0 | 0.31 | | T | 1 | + | .6 2 | 0 | | | ٥ | 5/22 | 808A
758A | | 4.0 | 0.96 | 0.52 | 0.14 | 0.50 | | 6 4 | 0_ | | 448 | 4-16 | 11554 | · | 1.5 | .0.36 | | | | 1 | .6 3 | | | | 1 | 5/29 | 806A
905A | | 4.0 | 0.90 | 0.38 | 0.13 | 0.34 | | 6 _4 | 0_ | | 449 | 4-24 | 9504
124F | · · · · · · · · · · · · · · · · · · · | 1.5 | 0.44 | | | | | .6 3 | | +: | | 2 | 6/6- | 905A
915A
902A | | 4.0 | 0.86 | 0.24 | Ω05. | 0.21_ | | 6 4 | 0 | | 450 | 4-30 | 130F | , | 1.0 | 0.29 | | | T | 177 | .6 2 | | + | | 3 | _6/12. | | | 1.5 | 0.46 | 0.39 | 0.05 | 0.18 | | 6 3 | 0 | | 451 | 5-7 | 1 230F | · · · · · · · · · · · · · · · · · · · | 2.0 | 0.34 | | 0.1 | | T = I | .6 2 | - | " | | 4 | _6/19 | 805A
900A | | 1.0_ | 0.23 | 0.43 | 0.05 | 0.10 | <u> </u> | 2 | 0 | | 452 | 5-15 | 1000 | | 1.0 | 0.30 | 0.77 | 0.1 | 0.23 | + | .6 2 | | +: | | 5 | 6/26 | | 1 11 | ــمـــ إــ | 0.12 | 0.50 | 0.03 | 0.06 | 1 | 6 2 | -0 | ** | 453 | 5-21 | 1130 | , | 1.0 | 0.26 | | T | | $\neg \neg \neg$ | .6 2 | | +: | | 6 | 7/3 | 808A | | 1.0 | 0.14 | 0.71 | 0.06 | 0.10 | 1. | 6 2 | _0_ | | 454 | 5-29 | 1212F | | 0.5 | 0.12 | 0,92 | 0.1 | 0.11 | + | .6 1 | 0 | - - | | | | | | | | | | | | | | | 455 | 6-4 | 1045/ | <u> </u> | 1.0 | 0.2 | 5 0.36 | 0.0 | 0.09 | +1 | .6 2 | 0 | | | | | | | | | | | | | | | | 456 | 6-11 | 929/ | | 0,5 | 0.0 | 7 0.57 | 0.0 | 0.04 | \perp | .6 1 | Q. | FC: | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F65B+R | ay | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | |-------------|---------|------|-------|------------|--------------|------|------|------|------|--------------|--------------|-------| | 1 | 0 | 0 | 0 | 1.6 | 0.5 | 0.3 | 2.8 | 0.6 | 0.2 | 0 | 0 | 0 | | 2 | 0 | 0 | 0 | 1.6 | 0.4 | 0.3 | 4.7 | 0.6 | 0.3 | 0 | 0 | 0 | | 3 | 0 | 0 | 0 | 19 | 3.8 | 0.3 | 2.4 | 0.6 | 0.3 | o | 0 | 0 | | 4 | 0 | o | 0 | 1.6 | b 19 | 0.3 | 1.7 | 0.6 | 0.3 | ō | 0 | 0 | | 5 | 0 | 0 | 0 | 1.6 | 1.1 | 0.3 | 1.6 | 0.6 | 0.2 | 0 | 0 | Q | | 3 | 0 | 0 | 0 | 12 | 8.0 | 0.3 | 1.6 | 0.6 | 0.1 | 0 | 0 | 0 | | 7 | 0 | o o | 0 | 1.1 | 8.0 | 0.3 | 1.6 | 0.5 | 0.1 | 0 | 0 | 0 | | 8 | 0 | 0 | 0 | 1.0 | 8.0 | 0.2 | 1.5 | 0.4 | 0 | 0 | 0 | 0 | | 9 | 0 | 0 | 0 | 1.0 | 8.0 | 0.2 | 1.5 | 0.4 | 0 | 0 | 0 | | | 0 | . 0 | 8 | 0 | 1.0
0.8 | 9. 0
8. 0 | 03 | 1 4 | 0.5 | -6-1 | 8 | | - 0 | | 1 2 | 0 | ő | 0 | 0.7 | 0.8 | 03 | 11 | 0.5 | 01 | ŏ | 0 | 0 | | 3 | ŏ | ŏ | 0 | 0.7 | 0.7 | 0.5 | 11 | 0.5 | 01 | ŏ | ŏ | 0 | | 4 | ŏ | ŏ | l ŏ l | 0.7 | 0.6 | 0.5 | 12 | 0.5 | 0.2 | ŏ | 0 | l ŏ | | 5 | ŏ | ŏ | l ŏ l | 0.7 | 0.6 | 0.4 | 111 | 0.5 | 0 Z | ŏ | l ŏ | | | 6 | ŏ | ŏ | - 6 | 0.7 | 0.7 | 0.4 | 12 | 0.5 | 01 | ö | 0 | - 8 | | 7 | ŏ | ŏ | l ŏ l | 0.7 | 0.6 | 0.4 | 12 | 0.5 | ŏŤ | ŏ | l ŏ | ŏ | | 8 | ŏ | ŏ | l ŏ l | 0.7 | 0.5 | ŏ 5 | 1 2 | 0.5 | ŏл | ŏ | Ιŏ | ŏ | | 9 | ŏ | ŏ | ľŏl | ŏä | ŏ 4 | ŏ.ĕ | 11 | 0.5 | 01 | ŏ | l ŏ | ō | | 20 | ŏ | ŏ | lõl | ŏ.; | ŏã | 10 | 11 | 0.5 | 01 | Q | l ŏ | | | 1 | 0 | 0 | 18 | 0.7 | 0.5 | 0.8 | 1.0 | 0.5 | 01 | Ô | 0 | 8 | | 2 | ŏ | ŏ | 57 | 0.6 | 0.5 | 0.6 | 10 | 0.5 | 0.1 | Ó | l ō | l ó | | 3 | ō | Ö | 27 | 0.6 | 0.4 | 0.6 | 0.7 | 0.5 | ο - | Ó | Ó | 0 | | 4 | o i | Ö | 6.8 | 0.6 | 0.4 | 0.5 | 0.7 | 0.4 | 0 | 0 | 0 | 0 | | 5 | ō i | Ö | 3.2 | 0.6 | 0.5 | 0.5 | 0.6 | 0.3 | 0 | 0 | | 0 | | 6 | 0 | 0 | 2.4 | 0.5 | 0.4 | 0.4 | 0.6 | 0.4 | 0 | 0 | 0 | 0 | | 7 | 0 | 0 | 0.5 | 0.5 | 0.4 | 0.4 | 0.6 | 0.4 | 0 | 0 | 0 | 0 | | 8 | 0 | 0 | 2.0 | 0.5 | 0.4 | Ов | 0.7 | 0.3 | 0 | o | O O | 0 | | 9 0 | 0 | 0 | 1.9 | 0.5
0.5 | | 0.7 | 0.7 | 0.2 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 1.7 | 0.5 | | 15 | 0.6 | 0.2 | 0 | 0 | 0 | 0 | | <u>' </u> | 0 | | 1.6 | 0.5 | | 6.1 | 1 | 0.2 | | 0 | 0 | | | | 0 | | 1236 | | 21.4 | | 39.4 | | 2.7. | | 0 | | | | | 0 | | 26.8 | | 343 | | 143 | | 0 | | 0 | | N | 0 | 0 | 3.99 | 0.86 | 0,76 | 1.11 | 1.31 | 0.46 | 0.09 | 0 | 0 | 0 | | B-
T | 0 | 0 | 245. | 53. | 42. | 68. | 78. | 28. | 5.4 | 0 | 0 | l o | | B | emarks: | | | | | | | ., | Y | EAR ME | N 0. | 72 | F. O. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 65 8-R | Daily di | scharge, in se | cond-feet of | LITTLE D | ALTON CRE | EK above | Mouth of | Canyon | | | _, for the yea | r ending Septem | iber 30, 19, 47 | |--|---|---|--|---|---|---|--|---|--|---|---|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 000000000000000000000000000000000000000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 1 1 0 0 8 7 0 7 1 1 1 8 0 8 0 7 0 6 6 0 6 5 0 5 5 | 33 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.6
0.7
0.7
0.7
0.8
0.8
0.8
1.1
0.5
0.5
0.4 | 000000000000000000000000000000000000000 | 055555
0000000000000000000000000000000 | 011
011
011
012
002
002
001
012
002 | 00000000000000000000000000000000000000 | 0 | 000000000000000000000000000000000000000 | 0 | | 16
17
18
19
20
21
22
23 | 0 0 0 0 | 0.6
0.3
0.2
0.2
19.3
4.6
2.8
6.7 | 0.5
0.5
0.4
0.4
0.4 | 0.7
0.6
0.8
1.0
0.8
0.8 | 0.4
0.9
1.1
0.6
0.5
0.5 | 0 4
0 5
0 6
0 7
0 7
0 6 | 0 3
0 3
0 4
0 3
0 3
0 3 | 0 1
0 1
0 1
0 1
0 1
0 1
0 1 | 0 0 0 0 0 0 0 | 0
0
0
0
0
0 | 0
0
0
0
0 | 0000 | | 24
25
26
27
28
29
30
31 | 0 0 0 0 0 0 | 3.6
2.4
1.7
1.4
1.2
1.2
1.1 | 0.5
4.5
7.8
8.7
7.4
6.0
4.6
3.6 | 0.7
0.6
0.7
2.4
1.1
0.8
0.7 | 0 6
0 6
0 6
0 7
0 7 | 0 5 4 5 5 8 7 6
0 0 0 0 0 0 0 | 0 .4
0 .4
0 .4
0 .4
0 .4
0 .4
0 .3 | 0 1
0 1
0 3
0 3
0 1
0 3
0 3 | 0
0
0
0
0 | 0
0
0
0
0 | 0 0 0 0 0 | 0 0 0 0 | | · | 0 | 529 | 581 | 384 | 18.6 | 17.8 | 10.5 | 4.4 | 09 | 0 | 0 | 0 | | MEAN | 0 | 1.76 | 1.87 | 1,24 | 0.66 | 0.57 | 0.35 | 0,14 | 0.03 | 0 | 0 | 0 | | CRE- | 0. | 105 | 115 | 76 | 37 | 35 | 21 | 8.7 | 1.8 | 0 | 0 | 0 | | | Remarks: | | | | | | | | | EAR MEA
OR
ERIOD ACR | | .00 | #### STATION LI-R LITTLE ROCK CREEK above Little Rock Dam LOCATION: WATER STAGE RECORDER, LAT. 34°27'50", LONG, 118°01'03", ON THE RIGHT (EAST) BANK ABOUT 2 MILES ABOVE LITTLE ROCK PALMDALE IRRIGATION DISTRICT'S DAW, APPROXIMATELY 1506 FEET UPSTREM FROM SANTIAGO CREEK, AND 5 MILES SOUTH OF LITTLE ROCK, ELEVATION OF GAGE, ABOUT 3,290 FEET. DRAINAGE AREA: 49.0 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND BOULDERS. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING NEAR GAGE. HIGH FLOWS MEASURED FROM CABLE CAR BELOW GAGE. RECORDE F: INSTALLED SEMTEMBER, 1930. WASHED OUT DURING MARCH 2, 1938 STORM. REINSTALLED MARCH 31, 1939. STATION DISMANTLED MAY 20, 1943 AND MOVED ABOUT 500 FEET UBSTREAM OVER A 24" CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE RECORDS AVAILABLE: OCTOBER 1, 1930 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 1100 SECOND-FEET, DECEMBER 21, MINIMUM NO FLOW PART OF YEAR. 1946-1947 MAXIMUM 3180 SECOND-FEET DECEMBER 26, MINIMUM NO FLOW PART OF YEAR. 1930-1947 MAXIMUM 317,000 SECOND-FEET ESTIMATED MARCH 2, 1938, MINIMUM NO FLOW AT TIMES EACH YEAR. ACCURACY: GOOD. OPERATION: ORIGINALLY LOCATED AND INSTALLED BY LITTLE ROCK PALMDALE IRRIGATION DISTRICT, REINSTALLED BY THE LOB ANGELES COUNTY FLOOD CONTROL DISTRICT AND OPERATED IN COOPERATION WITH THE U.S.G.S. WATER RESOURCES BRANCH. | | | | HENTE OFLIT | | K CRE | EK | | | | | | _ | | DISCHARDI | | | LITT | | | | | | | | | na. | |-----|--------|----------------|-------------------|---------------|-------------------------------|----------------------------------|-------------------------|-----------------------
--------|--------|----------------------|--------------|-----|-----------|----------------------|------|------------|-------|-------------------------------|---------------------------------|-------------------------|------------------------|--------|-----------------------|-----------------|----------| | | -AT- | above | Little Rock Dam | | | DURIN | O THE YE | AR ENDING | BEPTEN | (BER 3 | ID, 19-14 | 6 | İ | شئند | | bove | Little Roc | k Dam | | DUR | ING THE Y | EAR ENDIN | 9 8EPT | EMBER : | 10, 19 <u>1</u> | <u>7</u> | | NO. | DATE | BEBIN | HADE BY | WIDTH
FEET | AREA OF
MECTION
MU. FT. | MEAN
VELOCITY
FT, PER SEC. | BAUSE
HEIGHT
FEET | DISCHARGE
BED. FT. | RAT- M | ETH MI | G. DHANG
D. TOTAL | HETER
NO- | ND. | DATE | BEBIN
END | | HADE BY | WIDTH | AREA OF
BECTION
80. FT. | MEAN
VELOCITY
FT.PER BEG. | EAUBE
HEIGHT
FEET | DISTRIBUTE
SEG. FT. | RAT- | METH- ME.
BE
NO | AF. E. N' | 12 | | 151 | 10-15 | 1020A
1025A | TURNER - HUGHES | 12.0 | 3.16 | 0.48 | 3.25 | 1.5 | | .5 | 6 0 | FC43 | 167 | 10-10 | | LUCE | | 2.5 | 0.72 | 0.56 | 3.21 | 0.41 | M | .6 | 5 0 | FC39 | | 152 | 11-16 | 1014A
1022A | TURNER - LINDSAY | 14.0 | 5.06 | 0.69 | 3.38 | 3.5 | | . 6 | 8 0 | | 168 | 11-1 | 415P
425P | | | 9.0 | 4.57 | | | | 1 | | 5 0 | ., | | 153 | 12-12 | 1010A
1020A | TURNER | 14.5 | 5.29 | 0.53 | 3.40 | 2.8 | | 6 | 8 0 | | 169 | 11-14 | 410P
422P | | | 21.5 | | 1.83 | | | | .6 1 | | - | | 154 | 12-24 | 1008A
1018A | TURNER - PALMER | 49.0 | 42.2 | . 2.88 | 4.75 | 118. | | 6 1 | 301 | | 170 | 11-20 | 300P
330P
410P | LUCE | - WRIGHT | 38.0 | | 5.97 | 1 | | | 7 | +.0 | | | 155 | 1-14 | 1230P
1240P | TURNER - WADDICOR | 17.0 | 6.76 | 1.18 | 3.64 | 8.0 | | . 6 | 9 0 | ٠. | 171 | 11-20 | 410P
425P | | ** | 38.0 | | 6.31 | | 516. | | | 30 | | | 156 | 1-30 | 1015A
1025A | TURNER | 16.0 | 6.16 | 1.06 | 3.60 | 6.5 | | 6 | 8 0 | | 172 | 11-22 | 350P
400P | | ** | 24.0 | 21.7 | 2.50 | 4.25 | 54.4 | П | .6 12 | 2 0 | FC39 | | 157 | 2 - 25 | 1100#A | | 18.0 | 8.08 | 1.23 | 3.69 | 9.9 | | .6 | 9 0 | <u> </u> | 173 | 12-19 | 1030A
1038A | LUCE | | 17.5 | 12.2 | 1.37 | | | | | 9 0 | | | 158 | 3-20 | 1050A
1105A | | 18.0 | 8.88 | 1.28 | 3.74 | 11.4 | | .6 | 9 0 | <u></u> | 174 | 12-28 | 100P
115P | LUCE | - WRIGHT | 50.5 | | 3.56 | | | T | .6 14 | | | | 159 | 3-30 | 1220P
1230P | TURNER - WRIGHT | 38.0 | 78.3 | 7.23 | 6.25 | 566. | | . 6 | 8 0 | | 175 | 12-28 | 115P
130P | | " | 50.5 | | 3.67 | | | T | . 6 14 | | - | | 160 | 3-30 | 1230P
1240P | | 38.0 | 78.3 | 6.99 | 6.25 | 547. | | .6 | 8 0 | | 176 | 1-3 | 125P
135P | LUCE | | 25.0 | | 2.24 | | | | | 9 0 | | | 161 | 3-30 | 130P
140P | | 39.0 | 81.5 | 8.13 | 6.45 | 663. | | . 6 | 8 0 | | 177 | 1-16 | 855A
910A | LUCE | | 23,0 | | 1.22 | | | П | .6 10 | | - | | 162 | 4-9 | 1030A
1045A | TURNER | 27.0 | 28.8 | 2.77 | 4.50 | 80. | | .6 1 | 5 0 | | 178 | 1-32 | 1025A
1035A | | | | 14.4 | 1.11 | | | | .6 | | | | 163 | 5-3 | 230P
245P | ,, | 21.5 | 15.2 | 1.88 | 3.96 | 29. | | .6 | 1 0 | | 179 | 2-21 | 140P
155P | | | 18.5 | | 0.90 | | | | .6 9 | | | | 164 | 6-12 | 1115A
1120A | LUCE | 6.0 | 3.89 | 1.00 | 3.49 | 3.9 | | .6 | 6 0 | FC39 | 180 | 3-13 | 240P
250P | | | 18.0 | | 0.90 | | 9.6 | П | .6 .6 | | | | 165 | 7-10 | 610P
615P | | 5.7 | . 1 . 89 | 0.58 | 3.25 | 1.1 | - | . 6 | 6 0 | | 181 | 4-4 | 1240P
1250P | | | 18.5 | | 1.30 | | | | 8 (| . 0 | - | | 166 | 8-9 | 1040A
1045A | | 2.5 | 0.70 | 0.46 | 3.16 | 0.32 | | . 6 | 5 0 | | 182 | 4-18 | 350P
400P | | | 17,5 | | 1.11 | | | | .6 8 | | ., | | | | - | | | | t | | | | - | - | 1 | 183 | 5-1 | 915A
930A | | | 17.0 | 9.09 | | | 8.2 | П | .6 9 | | - | | | | | | | | | | | | | | | 184 | 5-15 | 105P
115P | ., | | 15.7 | 7.87 | | | 5.1 | П | . 5 7 | | | | | | | | | | | | | | | | | 185 | 6-4 | 415P
425P | | | 12.0 | 4.60 | | 1 1 | | | .6 6 | | - ** | | | | | | | | | | | | | | | 186 | 7-10 | 1020A
1025A | ,, | | 1.8 | 0.28 | | | | | .6 3 | | | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. L-1-R | Daily d | lischarge, in sc | cond-feet of | LITTLE | ROCK CRE | EK above | <u>little R</u> | ock_Dam | | | , for the year | ending Septem | ber 30, 19_116. | |----------------------------------|---------------------------------------|-------------------------------------|--|------------------------------|---------------------------------|------------------------------------|-------------------------------|--|---------------------------------|--|--------------------------------------|--------------------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 3
5 .6
4 .0
3 .4
3 .2 | 8 3 1
3 1
3 .0
3 .0
3 .0
3 .0 | 15
13
13
12
11 | 6.6
6.3
12
11
11 | 9 1
8 7
8 7
8 7
8 3 | 85
72
68
76
85 | 3 2
3 0
3 0
2 7
2 4
2 2 | 9 6 3 6 3 5 5 5 5 5 | 2.0
1.9
2.0
1.8
1.6 | 0.6
0.6
0.5
0.4
0.4 | 0.02
0.02
0.02
0.03
0.01 | | 7
8
9
10 | 4.5
5.3
4.7
3.0 | 3 B
4 .7
4 .7
4 .2 | 29929 | 10
10
91
91 | 8.7
8.7
8.3
8.3 | 7.5
7.5
7.2
6.9 | 94
78
82
94 | 21
20
20
19 | 5.0
5.0
4.4
4.4 | 1 .4
1 .4
1 .4
1 .3 | 03
03
03
03 | 0.01
0.01
0 | | 12
13
14
15 | 1.8
1.4
1.3
1.3 | 3.8
3.8
3.6
3.6 | 8 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 61
87
79
75 | 9 1
8 7
8 7
9 1
9 6 | 6 9
7 2
8 3
7 5
7 2 | 111
104
101
107 | 17
16
16
15 | 3 &
3 &
3 &
2 &
2 & | 1 2
1 2
1 2
1 0 | 0 2
0 2
0 2
0 1 | 0 0 0 | | 17
18
19
20
21 | 1 4
1 3
1 2
1 0 | 3.5
3.4
3.4
3.4 | 8. S
8. S
8. S
8. S | 72
72
72
75 | 9 1
9 1
9 6
9 6 | 7 2
6 9
1 3
1 2 | 119
114
104
92
78 | 14
13
12
12 | 2 .6 .6 .6 .4 | 0 8
2 0
5 6
5 3 | 0 1
0 1
0 1 | 0 0 | | 22
23
24
25 | 1 .0
0 .8
0 .8
0 .8
0 .8 | 3 3
3 3
3 3
3 3 | 117
604
358
118
60 | 7 2
7 2
6 9 | 10
10
10 | 10
14
19
19 | 64
56
53
54 | 11
11
10
10 | 2.4
2.6
2.6
2.8 | 2 2
1 9
1 9
2 2 | 0.08
0.05
0.03 | 000 | | 26
27
28
29
30
31 | 1.0
1.0
1.2
2.0
15
15 | 3 2
3 2
3 2
3 2
a 3 1 | 41
31
25
21
18
16 | 6 6 3 3 6 3 6 3 | 9.6
9.1 | 17
17
18
20
370
170 | 52
48
44
39
35 | 10
10
9 1
8 3
7 2
6 9 | 2.8
2.6
2.6
2.4
2.4 | 1 8
1 2
1 0
0 8
0 7
0 7 | 0.03
0.03
0.03
0.03
0.03 | 0 0 0 0 | | | 73.0 | 1138 | L 4 6 6 .4 | 262.8 | 2591 | 847.6 | 2417 | 4975 | 111.0 | 54.6 | 6 .0 2 | 012 | | MEAN
ACRE-
FEET | 2.35
145. | 3.79
226, | 47.3
2,910. | 8.48
521. | 9.25
514. | 27.3
1.680 | 80.6
4,790. | 16.0
987. | 3.70
220 | 1.76
108. | 0.19 | .004 | | | Remarks: | | | | | | | | | EAR MEAN
OR
ERIOD ACRE | N | 16.7
12,150. | F. G. Dist. Form 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. LI-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Ock | ву | |--------------------|-------|-------|------------|------------|----------|------------|------------|----------|--------------|----------|------------|----------| | b 0 | b 0 1 | 0.1 | 3.8 | 8.3 | 19 | 11 | 16 | 82 | 4.4 | 2.2 | 0 | 1 | | 0 | 0 1 | 0.1 | 3.5 | 7.5 | 17 | 11 | 16 | 68 | 41 | 2.0 | 0 | 2 | | 0 | 0.1 | 0.1 | 3.6 | 6.9 | 16 | 10 | 16 | 5 4 | 39 | 1.6 | 0 | 3 | | 0 | 0.1 | 0.1 | 3.4 | 6.6 | 16 | 10 | 16 | 51 | 42 | 1.4 | 0 | 4 | | 0 | 0.1 | 0.1 | 3.4 | 6.8 | 14 | 10 | 16 | 4 9 | 44 | 1.6 | 0 | 3 | | 0 | 01 | 0.1 | 3.2
2.8 | 5.6
5.6 | 13 | 10 | 15 | 4.4 | 57 | 1,4 | 0 | 6 | | 0 | 01 | 0.2 | 2.8 | 5.6 | 13
12 | 10 | 15 | 40 | 55 | 1.4 | | 7 | | l ŏ | 01 | 02 | 2.6 | 5.6 | 12 | 10
10 | 14 | 38
35 | 4.5 | 1.8 | 0.1 | В | | 1 8 | 01 | 0.2 | 2.0 | 5.6 | 11 | 10 | 1 4
1 4 | 31 | 37
32 | 19 | o z | 9 | | - - ŏ | 01 | ŏž | 1.7 | 5.0 | ii | 10 | 14 | 29 | 27 | 19 | 0 4 | 10 | | ŏ | 01 | ŏž | 1.6 | 5.6 | 10 | 10 | 13 | 27 | 24 | 8.5 | 0.4 | 11 | | ŏ | 0.1 | 0 Z | 1.4 | 5.3 | 11 | 10 | 13 | 26 | 23 | 78 | 0.4 | 13 | | 1 0 | 0.1 | 0.2 | 12 | 5.0 | 11 | 10 | 13 | 24 | 22 | 37 | 0.4 | 4 | | 0 | 0 | 02 | 0.8 | 5.0 | 11 | īŏ | 13 | 23 | 21 | i žo l | 0.4 | 15 | | 0 | 0 | 0.2 | 0.7 | 5.3 | 11 | 10 | 12 | 2.2 | 20 | 15 | 0.4 | 18 | | 0 | 0 | 0.2 | 0.6 | 4.7 | 12 | 10 | 12 | 21 | 19 | 14 | 0.5 | 17 | | 0 | 0 | 0.2 | 0.6 | 4.4 | 12 | 10 | 12 | 20 | 15 | 15 | 0,8 | 18 | | 0 | 0 | 0.2 | 0.5 | 4.2 | 12 | 11 | 11 | 20 | 17 | 16 | 0.7 | 19 | | 0 | 0 | 0.2 | 0.4 | 4.2 | 12 | 13 | 11 | 19 | 16 | 225 | 9.0 | 20 | | 0 | O. | 0.2 | 0.4 | 4.2 | 12 | 26 | 11 | 19 | 16 | 117 | 8. 0 | 21 | | 1 8 | 0 | 02 | 0.3
0.2 | 4.0 | 12 | 23 | 11 | 19 | 15 | 63 | 8.0 | 22 | | 0 | 0 | 0 2 | 02 | 3.6
3.4 | | 2 O
2 O | 11 | 18 | 16 | 425 | 1.0 | 23 | | 1 8 | ŏ | 0 2 | 0 2 | 3.2 | 11
11 | 18 | 11 | 18
18 | 50 | 188 | 8.0 | 24
25 | | 1 8 | 1 ŏ | 0 2 | 0 2 | 3.0 | 11 | 17 | 11 | 17 | 780
1740 | 89 | 0.7 | 26 | | Ιŏ | l ŏ | o ã l | οź | 3.4 | 11 | 1 7 | 11 | 17 | 269 | 60
54 | 0.7 | 27 | | lŏ | lŏ | 01 | οź | 4.0 | 10 | žź | 11 | 17 | 202 | 52 | 0.8
1.4 | 28 | | lõ | ١ŏ | b 01 | | 4.0 | 9.6 | ž ~ | | 17 | 150 | 50 | 4.0 | 29 | | b o | lò | b 01 | ō z | 3.6 | 91 | 23 | | 16 | 117 | 48 | 3.4 | 30 | | | b 0 | b 01 | | 3.8 | | 20 | | 16 | - 9 <u>5</u> | — | žĒ | 31 | | | 1 4 | | 43.0 | | 364.7 | | 364 | | 4090 | | 231 | | | 0 | | 5 1 | |
1530 | ···· | 439 | | 914 | | 15941 | | | | 0 | 0.05 | 0.16 | 1.43 | 4.94 | 122 | 14.2 | 13.0 | 29.5 | 132 | 53.1 | 0.75 | AN | | 0 | 2.8 | 10 | 85 | 303 | 723 | 871 | 722 | 1,810 | 8,110 | 3,160 | 46 | ET. | ### STATION U3-R LITTLE SANTA ANITA CREEK above Sierra Madre Dam LOCATION: WATER-STAGE RECORDER AND CONTROL, LAT. 34°11'15", LONG. 118°02'35". NEAR CENTER OF NW 1/4 SEC. 9 T. 1 N. . R 11 W. 1,3 MILES UPSTREAM FROM SIERRA MADRE DAM. ALTITUDE OF GAGE ABOUT 2,200 FEET (FROM TOPOGRAPHIC MAP). DRAINAGE AREA: 1.9 SQUARE MILES. RECORDS AVAILABLE: APRIL 1916 TO SEPTEMBER 30, 1947. AVERAGE DISCHARGE: 28 YEARS (1916-25, 1926-46). 1.00 SECOND-FOOT. 30 " " 47 " " EXTREMES: 1945-1946 MAXIMUM DISCHARGE 62 SECOND-FEET DECEMBER 21. (GAGE HEIGHT 2.05 FEET). MINIMUM DAILY 0.1 SECOND-FOOT JULY 31 TO SEPTEMBER 30. 1946-1947 MAXIMUM DISCHARGE 60 SECOND-FEET NOVEMBER 13. (GAGE HEIGHT 211 FEET). MINIMUM DAILY DISCHARGE 0.1 SECOND-FOOT ON MANY DAYS. 1916-1947 MAXIMUM DISCHARGE 536 SECOND-FEET MARCH 2. 1938 COMPUTED ON BASIS OF INCLOW TO SIERRA MADRE FLOOD CONTROL RESERVOIR. NO FLOW DURING PERIODS IN 1919. 1924, AND 1925. REMARKS: RECORDS GOOD. NO DIVERSIONS ABOVE STATION. COOPERATION: RECORDS FURNISHED BY UNITED STATES GEOLOGICAL SURVEY WITH THE EXCEPTION OF 9 MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | NO. 0ATE 23 10-4 24 10-11 25 10-31 26 11-7 27 11-15 28 11-21 30 12-5 31 12-13 32 12-20 33 12-28 | END END | MADE BY U.S.G.S. | 2.0
2.0 | AREA DF | MEAN
VELOCITY
FT. MER BEG. | BAUGE
HEIGHT
FEET | DISCHARGE SEC. FT. | RAT- ME | | | 9-4 6 - | .8 | 147 | 4-2 | | | 1 | i | | | | ÌΠÌ | | Ť | 一 | | |---|----------|------------------|------------|--------------------|----------------------------------|-------------------------|-----------------------|----------|---------|---------|----------------|-----|-----|------|---------|----|-------|------|------|---------------|-------|-------------------------|-----|-----|-----|--| | 23 10-4
24 10-11
25 10-31
26 11-7
27 11-15
28 11-21
29 11-28
30 12-5
31 12-13
32 12-20 | END | U.S.G.S | 2.0 | BECTION
BQ. FT. | HEAN
VELOCITY
FT.WER BEQ. | HEIGHT | DISCHARGE
MEG. FT. | RAT- ME | | | | | | 4-3 | | | 4.5 | 2.66 | 1.01 | .92 | 2.69 | 1 | .6 | 9 | ٥ | | | 23 10-4
24 10-11
25 10-31
26 11-7
27 11-15
28 11-21
29 11-28
30 12-5
31 12-13
32 12-20 | END | U.S.G.S | 2.0 | | FT.FER BEC. | FEET | MEC. FT. | | ETH. ME | EAS. G | ь ит. | B. | 48 | 4-11 | | | 4.4 | 1.68 | .75 | .78 | 1.25 | 14 | .6 | 8 | 0 | | | 24 10-11
25 10-31
26 11-7
27 11-15
28 11-21
29 11-28
30 12-5
31 12-13
32 12-20 | 1 | 7 | 2.0 | 0.40 | | | | ING C | DD N | EC. C | TOTAL | но. | 49 | 4-19 | | ** | 3.8 | 1.15 | -66 | .73 | .76 | \vdash | .6 | 8 | 0 | | | 25 10-31
26 11-7
27 11-15
28 11-21
29 11-28
30 12-5
31 12-13 | | " | | | -40 | .52 | .16 | \vdash | .6 | -8 | | 8 | 50 | 4-25 | | 49 | 3.3 | .94 | .84 | .70 | .79 | 11 | .6 | 7 | ٥ | | | 26 11-7
27 11-15
28 11-21
29 11-28
30 12-5
31 12-13
32 12-20 | | | 1 . | .45 | .44 | .55 | .20 | | .6 | 4 | 0 | 8 | 51 | 5-2 | | ** | 3.0 | .70 | .97 | 1.68 | ,68 | \sqcup | .5 | 8 | 0 | | | 27 11-15
28 11-21
29 11-28
30 12-5
31 12-13
32 12-20 | | 1 | 2.6 | .56 | .45 | .57 | .25 | | .6 | 6 | 0 | 8 | 52 | 5-9 | | ٠, | 3.1 | .84 | .73 | .66 | .61 | \sqcup | .5 | 7 | 0 | | | 28 11-21
29 11-28
30 12-5
31 12-13
32 12-20 | 5 | | 2.5 | .61 | .44 | .58_ | .27 | L.L | .6 | 10 | 0 | 8 | 53 | 5-17 | | * | 3.6 | .85 | .65 | .66 | .55 | Ш | .5 | 8 | . 0 | | | 29 11-28
30 12-5
31 12-13
32 12-20 | i | | 2.4 | .60 | .42 | .56 | .25 | | .6 | 8 | 0 | 8 | 54 | 5-23 | ļ | | 2.4 | 58 | 1.02 | .65 | .59 | $\downarrow \downarrow$ | ,5 | .6 | 0 | | | 30 12-5
31 12-13
32 12-20 | <u> </u> | | 2.5 | .55 | .42 | 55 | .23 | | .6 | .5 | _0 | 8 | 55 | 5-31 | ļ | ** | 3.2 | .58 | .88 | .63 | .51_ | 44 | -5 | 7 | ۰ | | | 31 12-13
32 12-20 | 3 | | 2.5 | .54 | .39 | 55 | . 21 | ļļ. | .6 | .5 | 0 | 8 | 56 | 6+7 | <u></u> | ** | 3.1 | .47 | .77 | .61 | .36 | | .5 | 6 | 0 | | | 32 12-20 | | | 2.5 | .55 | .33 | .55 | - 18 | | .6 | 5 | ٠ | 8 | 57 | 6-12 | | | 2.0 | .48 | .56 | .61 | .27 | Ш | .5 | 4 | 0 | | | 32 12-20 | 3 | ,, | 2.5 | -56 | 141 | .55 | 23 | | .6 | 5. | 0 | 8 | 58 | 6-19 | | | 1.5 | .33 | 67 | 58 | .22 | | .5 | 3 | ٥ | | | 33 12-28 | , | ,,, | 2.5 | .56 | .34 | .55 | .19 | | .6 | 5 | 0 | 8 | 59 | 6-26 | | ** | 1.5 | .33 | .64 | .58 | J21 | Ш | .5 | 3 | 0 | | | | 3 | | 3.2 | 1.70 | .82 | -76 | 1.39 | | .6 | 6 | | 8 | 60 | 7-5 | | ** | 1.2 | .23 | 1.04 | .56 | .24 | $\perp \downarrow$ | .5 | 4 | ٩ | | | 34 1-5 | | | 3.6 | 1.52 | .84 | ,70 | 1.27 | | .6 | 8 | 0 | 8 | 61 | 7-10 | L | | 1.2 | .24 | .75 | .55 | .18 | | .5 | 3 | ۰ | | | 35 1-10 | | | 3.4 | 1.19 | .50 | .66 | .59 | ١. | .6 | 7 | 0 | 8 | 62 | 7-18 | | | 1.2 | -22 | .82 | .53 | .18 | | .5 | 3 | ٥ | | | 36 1-17 | | ., | 3.5 | 1.26 | .42 | .65 | .53 | | .6 | 7 | 0 | 8 | 63 | 7-24 | | | 1.2 | .22 | .77 | .53 | .17 | | - | 3 | Į. | | | 37 1-24 | | ** | 3.2 | 1.00 | ı . 51 | .63 | .51 | | .6 | 7 | 0 | | | 7-31 | | 17 | 1.2 | .22 | .68 | .52 | .15 | | .5 | 4 | 0 | | | 38 1-31 | | * | 3.5 | 1.13 | .47 | .62 | .53 | | .6 | 7 | 0 | 8 | 65 | 8-9 | | ., | 1.2 | .16 | -56 | .49 | .09 | | .5 | 4 | Q | | | 39 2-7 | | | 3.0 | 1,07 | .43 | .65 | .46 | III | ,6 | 12 | 0 | - # | | 8-16 | | ., | .9 | .10 | .70 | .48 | .07 | | | 3 | 0 | | | 40 2-14 | | 41 | 4.0 | .82 | 1 | .63 | ŀ | | | 8 | 0 | | | 8-22 | ļ | | .9 | .12 | 1,00 | .49 | .12 | | | 3 | 1 | | | 41 2-20 | | - | 3,9 | ,93 | .62 | 1 | ,58 | 1 | .6 | 8 | 0 | 8 | 68 | 8+30 | | | 0.8 | | | | 0.08 | \prod | - 1 | 3 | - 1 | | | 42 2-27 | | | 3.8 | .87 | .55 | .61 | 1.48 | 1 | .5 | В | 0 | | | 9-6 | 1 | , | .8 | .09 | .67 | 48 | 06 | | | | | | | 43 3-7 | | | 4.0 | .89 | 158 | .61 | .52 | | .5 | 8 | 0 | | | 9-20 | | | -8 | .10 | .70 | .48 | .07 | | .6 | 4 | 0 | | | 44 3-13 | | | 4.5 | 1.59 | .63 | .74 | | 11 | .6 | | 0 | Г | | 9-26 | T | | | -10 | .71 | -48 | 107 | \Box | .5 | 4 | -01 | | | | | | 4.0 | 1.55 | | 0.72 | | | | | ±201 | - 1 | | 8*20 | - | | · ··• | | +/ | 48 | 1-10/ | + | -0 | .44 | | | | 45 3-20
46 3-28 | 1. | | 4.0 | 1.55 | 0.55 | 0.74 | V.90 | ++ | -14 | ٠, | Table | | | | | | | | | | | | | | | | | | DISCHARGE | MEABLRE | MENTE OF L.LTI | LE SANIA | ANLIA | | | | | - | | | | ΝD. | DATE | BEGIN | - MADE BY | WIOTH | AREA OF
BECTION
EQ. FT. | MEAN
VELODITY
FT. PER SEC. | HEIGHT
FEET | DISCHANGE
EEG. FT, | NAT- METH
ING GO | MEAS.
HO, | DHANGE
TOTAL | HETE! | |-----|-----------|-----------------------|-----------------|----------|-------------------------------|----------------------------------|-------------------------|-----------------------|----------------|-------|------|---------------------------|--------------|-----|------|--------------|-----------|-------|-------------------------------|----------------------------------|----------------|-----------------------|---------------------|--------------|-----------------|-------| | | HEAR | above | Sierra Madre. | Dam | = | DUA | ING THE Y | CAR ENDIN | 3 BEPT | EMBER | 30, | 47 | | 892 | 3-12 | | | 2.0 | 0.87 | 0.87 | 0.68 | 0.76 | .6 | 6 | ٥ | | | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT, PER SEC. | GAUGE
HEIGHT
FEET | DIBEMARDE
BEG. FT. | RAT- | GD M | EAS. | G. HT.
SHANGE
TOTAL | METER
NO. | 893 | 3-26 | 833A | | 2.0 | 0.86 | 0.79 | 0.66 | 0.68 | .6 | 6 | 0 | ļ | | | | | | | | | | | П | | | | | 894 | 4-2 | 8384 | MOON | 1,8 | 0.80 | 0.99 | 0.67 | 0.79 | .5 | 4 | 0 | FC22 | | 872 | 10-3 | | U.S.G.S. | . 1.01 | 0.24 | | | | | | 4 | 0 | | 895 | 4.9 | | U.S.G.S. | 1.9 | 0.81 | 0.85 | 0.66 | 0.69 | .6 | 6 | ٥ | | | 873 | 10-10 | | | 1.00 | 0.23 | 0.70 | 0.52 | 0.16 | } | .6 | 5 | 0 | | 896 | 4-23 | | 19 | 1.8 | 0.69 | 0.78 | 0.65 | 0,54 | ,6 | 6 | | | | 874 | 10-17 | | * | 0.9 | 0.26 | 0.77 | 0.55 | _0.20 | | .6 | 4 | 00 | | 897 | 4-30 | 905A
910A | MOON | 1.8 | 0.72 | | 0,64 | 0.61 | | 3 | 1 | F0 | | 875 | 10-24 | | | 0.9 | 0.25 | .0.64 | 0.53 | 0.16. | 1. | القا | 5 | ۵ | | 898 | 5-7 | 1 | u.s.g.s. | | 1 | | | | | | | FC22 | | 876 | 10-31 | and and a contract of | | 0.8 | 0.24 | 0.88 | 0.5 | 0.21 | | .6 | 5 | Q | | | 1 | | 0.5.6.5. | 1.8 | 0.72 | | 0.62 | Q.47 | | . 7 | 1 | + | | 877 | 11-6 | | | 0.8 | 0.24 | 0.79 | G.54 | 0.19 | | .6 | 5 | 0 | | 899 | 5-21 | 835A | | 1.8 | 0.71 | 0.63 | 0.61 | 0.45 | 1.6 | 7 | 0 | + | | | | | | 5.5 | 3,83 | | | | П | - | 7 | .04 | | 900 | 5-28 | .840A | MOON | 1.8 | 0.70 | 0.79 | 0.62 | 0.55 | 15 | 4 | Δ | FC22 | | • | 11-13 | | T | | | | | F, | | | | | | 901 | 6-4 | | ų.s.g.s. | 1.8 | 0.72 | 0.72 | 0.61 | 0.52 | 6 | | | | | 879 | 11-21 | | <u> </u> | 4.5 | 2,52 | 1.58 | 1.04 | 3.98 | +-+ | .6. | 7 | 0 | | 902 | 6-18 | | ., | 1.4 | 0.48 | 0.73 | 0.57 | 0.35 | - 5 | a | a | | | 880 | 11-26 | | | 4.0 | 2.06 | 1.25 | 0.88 | 2.58 | + | .5 | 8 | Q | } | 903 | 6-25 | 920A
925A | MOON | 1.4 | 0.48 | 0.83 | 0.58 | 0.40 | 5 | , | ٥ | FC22 | | 881 | 12-4 | | · · | 4.0 | 1.38 | 0.77 | 0.75 | 1.06 | - | .6 | 8 | .0 | | 904 | 7-1 | | v.s.g.s. | 1,3 | | 0.69 | | | ,5 | | Ī | 1.522 | | 882 | 12-10 | | | 2.2 | 0.86 | 1.09 | 0.72 | 0.94 | 1 | .5 | 6 | 0 | | | | | 1 | | 0.45 | | Ī | i | 6 | Z | 10 | | | 883 | 12-18 | | | 2.5 | 0.90 | 0.90 | 0.68 | 0.81 | | .6 | 6 | 0 | | 905 | 7-15 | 252P | 1 | 1.3 | 0.39 | 0.56 | | 0.22 | | 1 | | + | | 884 | 12-23 | | | 2.5 | 0.89 | 0.80 | 0.66 | 0.71 | | .6 | 5 | ο. | | 906 | 7-24 | .256P | MOON | 1.4 | 0.36 | 0.53 | 0.50 | 0.19 | 5 | 3 | 0 | FC22 | | | | | | 14.0 | 4.31 | 1 | | | | -6 | _ | ο | | 907 | 7-28 | <u> </u> | u.s.g.s. | 1.1 | 0.32 | 0.56 | 0.50 | 0.18 | .5 | 6 | 0 | ļ | | 885 | 1.2 | | 1 | | | 1 | | | 1 | - | | | | 908 |
8+11 | | | 0.9 | 0.25 | 0.64 | 0.51 | 0.16 | ,5 | 5 | 0 | | | 886 | 1-15 | 345P | †- " | 2,4 | 1,36 | 1.48 | 0.82 | 2.01 | Н | -6 | 7 | 0 | | 909 | 8-21 | 825A
827A | MOON | 1.0 | 0.20 | 0.80 | 0.50 | 0.16 | .5 | 2 | 0 | FC22 | | 887 | 1-22 | 350P | MOON | 4.0 | 1.55 | 1.06 | 0.77 | 1.64 | ++ | -5 | 4 | | FC22 | 910 | 8-25 | | U.S.G.S. | 1.0 | 0.16 | 0.75 | 0.50 | 0 12 | 5 | 5 | 0 | | | 888 | 1-29 | | U.S.G.S. | 2.25 | 1.20 | 1.29 | 0.78 | 1.55 | 1-1 | .6 | 7 | | | 911 | 9-8 | Γ''' | , | | | | | | | | | 1 | | 889 | 2-10 | | ļ | . 2.1 | 1.08 | 1.08 | 0.74 | 1.17 | 11 | .6. | 6 | Ω | _ | | | 815A | CTINOCH | | İ | 0.48 | | i | - 5 | 1 | Ī | 1 | | 890 | 2-22 | 1115A
1121A | MOON | 1.9 | 0.94 | 1.17 | 0.70 | 1.05 | | ,5 | 4 | <u> </u> | FC22 | 912 | 9-17 | 82UA | STUNDEN | 1.0 | | 0.65 | | i | - 5 | 2 | 0 | FC40 | | 891 | 2.26 | | U.S.G.5. | 1.9 | 0.88 | 1.02 | 0.70 | 0.90 | | .6 | 6 | 0 | | 913 | 9-22 | ļ.,., | U.S.G.S. | 1.0 | 0.26 | 0.58 | 0,50 | 0,15 | 5 | 6 | 0 | ↓ | | F. C. Dist | i. Form 52 4-44 | | | | FLO | LOS ANGELES
DOD CONTRO
YDRAULIC I | OL DISTRICT | ; | | | Sta. N | _{ro.} _U3-R | |---|--|---|---|--|---|---|--|--|--|--|--|----------------------| | Daily d | ischarge, in se | cond-feet of | LITTLE | SANTA ANI | TA CREEK | above Sie | rra Madr | e Dam | | for the yes | ar ending Septem | ber 36, 19 46 | | Day | Oet. | Nov. | Dec. | Јап. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 27 28 27 28 29 30 11 | 00000000000000000000000000000000000000 | 9.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 02
02
02
02
02
02
02
02
02
02
02
02
02
0 | 111321
11007.66665555
005555555555555555555555555555 | 4 4 5 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5 | 144840084499999441111111110099999447777777 | 0.7. 9. 6. 6. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 0 4
0 4
0 4
0 4
0 4
0 4
0 4
0 4
0 4
0 4 | 0200200200200200200200200200200200200000 | 0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1 | | | | 6.6 | 6.6 | 55.4 | 20.4 | 15.7 | 36.0 | 41.6 | 18.0 | 10.5 | 61 | 31 | 3.0 | | MEAN | 0.21 | .22 | 1.79 | .66 | .56 | 1.16 | 1.39 | .58 | .35 | . 20 | .10 | .10 | | ACRE-
FEET | 13. | 13. | 110. | 40. | 31. | 71. | 83. | 3 5 . | 21. | 12. | 6.1 | 6.0 | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRE | | 142. | #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U 3-R | Daily d | ischarge, in see | ond-feet of | LITTL | E SANTA A | NITA CREE | K above S | ierra Mad | re Dam | | , for the year | ending Septemi | er 30, 19_17. | |--------------------------------------|---|---------------------------------------|---|--|--|--|--|--|--|--|-------------------------------------|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5
6
7
8 | 0.6
0.2
0.2
0.2
0.2
0.2
0.2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1.5
1.2
1.2
1.1
1.4
1.2
1.1 | 5 1
4 7
4 3
3 7
3 4
3 1
2 8
2 7 | 1 2
1 1
1 1
1 1
1 1
1 1 | 0000000 | 0.8
0.7
0.8
0.7
0.7
0.7 | មានមានមាន
១០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០ | 0.5
0.5
0.5
0.5
0.5
0.4
0.4
0.4 | 00000000000000000000000000000000000000 | 0 1
0 1
0 1
0 1
0 1 | 0 1
0 1
0 1
0 1
0 1
0 1
0 1 | | 9
10
11 | 02 | 0 3
0 3
0 4 | 1 1
1 0
0 9 | 2.4
2.3
2.2 | 1 1
1 1
1 1 | 8. O
8. O
8. O | 0.7
0.6
0.6 | 0.5
0.5
0.5 | 0 .4
0 .4
0 .4 | \$ 0
\$ 0
\$ 0 | 0 2
0 2
0 2 | 0 1
0 1
0 1 | | 12
13
14
15 | 0 1
0 1
0 1 | 2.6
7.8
2.6
1.3 | e 0
e 0
e 0
e 0 | 2 1
2 0
1 9 | 1 0
1 0
1 0
0 9 | 0.8
0.7
0.7 | 0.6
0.6
0.6 | 0.5
0.5
0.5
0.5 | 0.4
0.3
0.3 | 0 Q
0 Q
0 Q
0 Q | 0 1
0 1
0 1
0 1 | 0 1
0 1
0 1 | | 16
17
18
19
20 | 0 3
0 2
0 2
0 2
0 2 | 0.8
0.6
0.5
0.5 | 0.8
0.8
0.9
0.7
0.7 | 1.8
1.7
1.7
1.6 | 00000 | 0.7
0.7
0.8
0.8 | 0.6
0.6
0.6
0.6
0.6 | 0.5
0.5
0.5
0.5
0.5 | 03
03
03
04 | 00000
00000
00000 | 0 1
0 1
0 1 | 0 1
0 2
0 2
0 1
0 1 | | 21
22
23
24
25 | 00000
00000
00000 | 4 3
2 3
4 3
4 1
3 1 | 0.7
0.7
0.7
0.8
8.5 | 1.5
1.4
1.4
1.4
1.3 | 9
9
9
8
9 | 0.8
0.8
0.8
0.7 | 0.6
0.6
0.6
0.6 | 0 .5
0 .5
0 .4
0 .4 | 0.4
0.3
0.3
0.4 | 00000 | 0 1
0 1
0 1
0 1 | 0 1
0 1
0 1 | | 26
27
28
29
30
31 | 133888
8888
8888 | 2.6
2.2
2.0
1.7
1.6 | 15
15
11
93
75
62 | 1 2
1 2
2 1
1 5
1 4
1 3 | 000 | 0.7
0.7
1.0
0.8
0.8
0.8 | 0 0 0 0 5
0 0 0 5 | 0.5.5
0.0.5.5
0.0.5.5 | 0.4
0.4
0.3
0.3 | 0000111100 | 0 1
0 0 2
0 0 2
0 1
0 1 | 0 1
0 1
0 1 | | | 6.3 | 60.5 | 95.6 | 68.9 | 27.7 | 24.7 | 19.0 | 151 | 11.4 | 5 .9 | 3 .8 | 3.3 | | MHAN | 0.20 | 2.02 | 3.08 | 2,22 | 0.99 | 0.80 | 0.63 | 0.49 | 0.38 | 0.19 | 0.12 | 0.11 | | ACRE- | 12 | 120 | 190 | 137 | 55 | 49 | 38 | 30 | 23 | 12 | 7.5 | 6.5 | | | Remarks; | | | | | | | | | YEAR MEAN
OR ACRE- | | | ### STATION F678-R LITTLE SANTA ANITA CREEK below Sierra Madre Dam LOCATION: WATER-STAGE RECORDER, LAT 34°10'33", LONG, 118°02'33", ON THE LEFT (EAST) BANK ABOUT 270 FEET BELOW SIERRA MADRE DAM AND ABOUT 1-1/4 MILES NORTHEAST OF SIERRA MADRE. ELEVATION OF BERG GAGE HEIGHT 1082.69 FEET. DRAINAGE AREA: 2.4 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - RUBBLE MASONRY, DEPTH 7.5 FEET, WIDTH 24.6 FEET AT TOP AND 22.5 FEET AT BOTTOM. ARTIFICIAL CONCRETE CONTROL WITH LOW FLOW CHANNEL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING NEAR STATION. HIGH FLOWS MEASURED FROM FOOT BRIDGE AT STATION. RECORDER: INSTALLED JANUARY 28, 1929 AT STATION F67-R ABOUT 1000 FEET OOWN-STREAM FROM PRESENT LOCATION. REMOVED MAY 20, 1936. REINSTALLED MAY 21, 1936 IN A 4 FT. X 3 FT. COMMINATION CONCRETE STILLING WELL AND HOUSE. AN N.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: THE 30 INCH DIAMETER GATE VALVE IN THE SIERRA MADRE DAM REMAINS OPEN EXCEPT IN EMERGENCY CONDITIONS. DIVERSIONS: UNDERGROUND AND SURFACE FLOW DEVELOPED AND DIVERTED BY SIERRA MADRE WATER DEPARTMENT, RECORDS AVAILABLE: AT STATION F67-R - JANUARY 28, 1929 TO MAY 20, 1936. AT STATION F678-R - MAY 21, 1936 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 60 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW FOR SEVERAL MONTHS. 1946-1947 MAXIMUM 55 SECOND-FEET, NOVEMBER 13, MINIMUM NO FLOW MOST OF YEAR. 1929-1947 MAXIMUM 620 SECOND FEET, ESTIMATED MARCH 2, 1938, MINIMUM NO FLOW SEVERAL MONTHS DURING MOST YEARS. CPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DIECHARGE | MEABURE | MENTS OF | L11 | TLE SA | NTA_AN | ITA CR | EEK | | | | | | - | | DIBCHARGE | HEASURE | MENTO OF LITTLE | SANTA | ANITA | CREEK | | | | | | | | |-----|-----------|---------------------|----------|-------------|---------------|--|----------------------------------|-------------------------|-----------------------|------|-------|--------------|---------------------------|--------------|-----|-----------|----------------|--------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------|----------------------|----------------------|---------------------------|--------------| | | *** | beid | ow.Sie | rra Madre I | Dem | ************************************** | | O THE YE | AR ENDING | 7438 | EMBEI | R 30, | 1 46 _ | - | | 47-
 | b | elow Sierra Madr | e Dam | | bua | ING THE Y | EAR ENDIN | 3 9EPT | FEMBE | R 30, | 1947 | ! | | HO. | DATE | BEBIN
END | | MADE BY | WIDTH
FEET | AREA OF
SECTION
SO, FT. | MEAN
VELOCITY
FT. PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT, | RAT- | METH- | MEAS
SEC. | G. HT.
GHANGE
TOTAL | METER
NO: | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
BEGTION
BQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAY- | м ет и-
оо | MEAS.
SEC.
ND, | B, NT.
CHANDE
TOTAL | METER
NO. | | 226 | 12/24 | 145P
148P | MOON | - HOLMES | 1.3 | 0.28 |
8.21 | 0.84 | 2.3 | | .6 | 2 | 0 | FC22 | 228 | 11-14 | 130P
133P | MOON - ROCKENMEYER | 1.6 | 0.27 | 11,1 | 0,88 | 3.0 | | .5 | 4 | 0 | РІТОТ | | 227 | 3/30 | 1020A
1027A | MOON | ROCKENMEYER | 2.2 | 1.63 | 12.6 | 1,55 | 20.5 | | PITOI | 3 | 0 | | 229 | 11-20 | 1035A | | 5.5 | 3.57 | | | | | .5 | 3 | 01 | | | | 7 | , | | | 1 | | | | † | - | | 1 | + | | 230 | 11-29 | 335P
340P | STUNDEN | 2.5 | 0.48 | 1.42 | 0.75 | 0.68 | | .5 | 3 | 0 | FC36 | | | | | | | | | | | | | | | | | 231 | 12-27 | 135P
142P | MOON - STEVENS | 2.0 | 1.42 | 11.8 | 1.49 | 16.7 | | .6 | 4 | 0 | PITOT | | | | | | | | | | | | | | | | | 232 | 1-8 | 915A
925A | MOON | 4.0 | 1.56 | 1.15 | 0.82 | 1.8 | | .6 | 7 | 0 | FC22 | | | | | | | | | | | | | | | | | 233 | 1-15 | 410P
415P | | 4.0 | 1.21 | 0.99 | 0.79 | 1.2 | | .6 | 5 | 0 | | | | | | | | | | | | | | | | | | 234 | 1-29 | 1015A
1020A | | 2.5 | 0.56 | 1.11 | 0.74 | 0.62 | | .6 | 4 | 0 | | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F678-R | Dally dis | charge, in s | cond-feet of | LITTLE | SANTA AL | ITA CREEK | below Si | erra Madr | e Dam | | , for the yea | ar ending Septe | mber 30, 19, 4 | |----------------------------------|--------------|--------------|-------------------------------|------------------|--------------------|-------------------------------|---------------------------------|---------|------------------|------------------------------|-----------------|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Жау | June | July | Aug. | Sept. | | I
2
3
4 | 0
0
0 | 0 0 | 0000 | 0 0 0 | 0
0
0.5
0 | 0 0 | 2.6
2.3
1.8
1.0 | 0000 | 0 | 0 0 | + | + | | 5
6
7
8 | 0 0 0 | 0 0 | 0000 | 0 0 0 | 0
0
0
0 | 0
0
0
0 | 0.4
0.5
0.6
0.6
0.4 | 0 0 0 0 | 0 0 | 00000 | + | + | | 10
11
12
13
14 | 0 0 0 0 | 0 0 0 | 00000 | 0
0
0
0 | 0 0 0 | 0
0
0
0 | 0 2
0 1
0 1
0 1
0 1 | 00000 | 0 0 + + 0 | 0 +0 0 0 0 | + | + | | 16
17
18
19 | 0000 | 0000 | 00000 | 0 0 0 | 0 0 0 | 0 0 2 | 00000 | 0 0 0 | 0000 | 0000 | + | + | | 21
22
23
24
25 | 0 0 0 | 0 0 0 | 6.8
21
20
2.9
1.4 | 0 0 0 | 0 0 0 0 | 0
0
0
0 | 0000 | 0 0 0 | 0
0
0
0 | 0 0 0 | + | + | | 26
27
28
29
30
31 | 0 0 0 | 00000 | 0.5
0.5
0.2
0.1 | 00000 | 0.
0
0 | 0
0
0
0
16
5 3 | 0 0 0 | 0000 | 0 0 0 | 00000 | + | + | | 31 | 0 | 0 | 0 <u>.1</u>
54.1 | 0 | 0.5 | 21.5 | 10.5 | 0 | | -1 | | | | MEAN | 0 | 0 | 1.75 | 0 | 0.02 | 0.69 | 0.36 | | ± | t | ļ | + | | ACRE-
FEET | 0 | 0 | 107. | 0 | 1.0 | 43. | 21. | 0 | + | + | + | <u> + </u> | | 1 | Remarks: | + = 0.05 | c.f.e. or | less. | | | | | | YEAR MEA
OR
PERIOD ACR | e-feet | 172. | F. C. Dist. Form 52 4-46 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 67 8-R | | | | | | TATRICIA | DRAULIC D | n, | | | | | | |--------------|--------------------|------------------------------|---|---|---|---|--|--|--|---------------------------------------|----------------|--| | ber 30, 19 1 | r ending Septen | for the year | | re Dam | ierr e Mac | K below S | IITA CREE | E SANTA AN | LITTL | cond-feet of | scharge, in se | aily d | | Sept. | Aug. | July | June | Мау | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oet. | ау | | | | | 0 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 011100110001000000000000000000000000000 | 0.54333300333000333000330000000000000000 | 64
477
305
211
1199
1199
1185
1155
1155
1157
007
0065
0044
1139 | 0.7
0.53
0.32
0.33
0.33
0.34
0.41
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 | | ٥ | 0 | 0 | 0 | 0 | 0 | 8 | | 0.8
0.7 | 8 .4
8 .2 | 0.9 | 0 | 30 | | 0 | 0 | 0 | o | 0 | 0 | 12 | 5.9 | 52.4 | 911 | 743 | 0 | '- | | 0 | 0 | 0 | 0 | 0 | 0 | 0.04 | 0.21 | 1.69 | 2.94 | 2.48 | 0 | EAN | | 0 | 0 | 0 | 0 | 0 | 0 | 2.4 | 12 | 104 | 181 | 147 | 0 | CRE- | | | N 0.62
FEET 446 | TEAR MEA
OR
ERIOD ACRE | P | | | | | | | , | Remarks: | | #### STATION F267-R LITTLE SANTA ANITA CREEK at Woodland Avenue LOCATION: WATER-STAGE RECORDER, LAT. 34°09'19", LONG. 118°01'41", ON THE LEFT (NORTHEAST) CHANNEL WALL ABOUT 30 FEET UPSTREAM FROM SANTA ANITA WASH. ABOUT 20 FEET EAST OF THE INTERSECTION OF WOODLAND AVENUE AND FIRST STREET AND ABOUT ONE MILE NORTH OF ARCADIA. ELEVATION OF ZERO GAGE HEIGHT, 557.22 FEET. DRAINAGE AREA: 3.8 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - RECTANGULAR CONCRETE, 6 FEET DEEP AND 10 FEET WIDE. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING, HIGH FLOWS MEASURED FROM DOWNSTREAM ROAD CULVERT HEADWALL AT STATION, RECORDER: INSTALLED DECEMBER 30, 1938 OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. A STEVENS TYPE L RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: PARTIALLY REGULATED BY SIERRA MADRE DAM. USUAL REGULATION AFFECTS HIGH FLOWS ONLY. DIVERSIONS: UNDERGROUND AND SURFACE FLOW DEVELOPED AND DIVERTED BY SIERRA MADRE WATER DEPARTMENT. FLOW ALSO DIVERTED ABOUT ONE MILE ABOVE STATION FOR SPREADING IN SIERRA MADRE SPREADING GROUNDS. RECORDS AVAILABLE: SEE REMARKS. EXTREMES OF DISCHARGE: MES OF DISCHARGE: 1945-1946 MAXIMAM 188 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMAM 112 SECOND-FEET, NOVEMBER 13, MINIMUM NO FLOW MOST OF YEAR. 1938-1947 MAXIMUM NOT DETERMINED, MARCH 2, 1938MAXIMUM NOT DETERMINED, MARCH 2, 1938MAXIMUM NOT DISCHARGE OF RECORD. 542 SECOND-FEET, JANUARY 22, 1943. MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. REMARKS: SEVERAL PRIOR YEARS RECORDS ARE NOT PUBLISHED DUE TO INSUFFICIENT RELIABLE RECORDS, | | DISCHARGE | HEAMURE | MENT# DF | TTLE S | ANTA AN | LITA C | REEK | _ | | | | | _ | | DIECHARG | E MEABURSH | SENTE OF LITTLE SE | ANTA AN | LTA CF | REEK | | | | | | | |-----|-----------|----------------|-----------------|--------|-------------------------------|---------------------------------|----------------|-----------------------|-------------|-------|---------------------|---------------------------|--------------|-----|----------|----------------|--------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------------------|-----------|----------------------|--------------| | | nêT. | | Woodland Avenue | | | DURIN | D THE YE | ENIDING RA | BEFT | EMBER | 30, | 1 9 146 | - | | ₩ | Wood | Land Avenue | | | | NO THE Y | EAR ENDING | BEPTEMB | CR 30, 19 | ¥7 | | | HO. | DATE | BEDIN
END | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER BEC. | HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT-
ING | METH- | HEAR
BEG.
NO. | G. HT.
CHANGE
TOTAL | HETER
NO. | ND. | DATE | EEGIN
EHD | HADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | BAUDE
HEIGHT
FEET | DISCHARGE
SEG. FT. | RAT- HETH
ING DO | | HT.
HANGE
DTAL | METER
ND. | | _72 | 11/5 | 1232P
1234P | MOON | 10.0 | 0.60 | 3.00 | 0.06 | 1.8 | | | 2 | 0 | FLOATS | 73 | 11-20 | 1144A
1146A | MOON-ROCKENMEYER | 10.0 | 5.40 | 10.2 | 0.63 | 54.8 | 6 | 5 +. | 01 P | LTOT | | | | | | | | | | | | | | | | 74 | 11-20 | 1212P
1214P | | 10.0 | 4.60 | 9.51 | 0.52 | 43.7 | .6` | 5 | 02 | *** | | | Form 52 4-46 | | LITTLE CA | N74 AVIT | FLC
H | LOS ANGELES
OD CONTRO
YDRAULIC D | L DISTRICT
DIVISION | | | | | vo. F267-R | |----------------------------------|---------------|---------------|----------------------|-----------|-----------|--|------------------------|-------|------|----------------|------------------|----------------| | | scharge, in a | econd-feet of | LITTLE SA | NIA ANIIA | CREEK AT | woodiano | Avenue | | | , for the year | ar ending Septem | nber 30, 19 40 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3 | 000 | 0 | 00.00 | 0 1 | ,0
3.1 | 0000 | 0 A
0 | 0 | 0 | 000 | 000 | 0000 | | 5 | 0 | 0 | 6 | 0 | ŏ | ŏ | ŏ | ŏ | 0 | 6 | 0 | ŏ | | 8
9 | 0 0 0 | 0 0 | 0000 | 00000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0 0 0 | 00000 | 00000 | | 11
12
13
14 | 0 0 0 | 0 0 | 1 2
0
0
0 | 0000 | 0 0 0 | 0 0 4 | 0000 | 0 | 0 0 | 0 0 | 0 0 | 0000 | | 15
18
17
18
19 | 0 0 0 | 0 0 | 0 0 0 | 0 0 | 0 0 | 0
0
0
0 | 0 0 0 | 0 | 0000 | 0 0 0 | 0 0 0 | 0000 | | 20 | ō | 8 | 0 1 | 0 | 0 | ō | ŏ | Ó | 0 | 0 | 0 | 0 1 | | 21
22
23
24
25 | 00000 | 00000 | 18
35
28
02 | 00000 | 00000 | 00000 | 0000 | 00000 | 0000 | 0000 | 00000 | 00000 | | 26
27
28
29
30
31 | 000000 | 00000 | 00000 | 00000 | 0 | 0
0 &
0 &
1 &
0 | 0 0 0 0 | 00000 | 0000 | 0 0 0 | 000000 | 0 0 0 | | <u> </u> | 0 | 0 | 824 | 0.1 | 3 2 | 21.0 | 0.4 | 0 | 0 | 0 | 0 | 0 | | MEAN | 0 | 0 | 2.66 | + | 0.12 | 0.68 | | | 0 | | 0 | 0 | | ACRE- | 0 | 0 | 163. | 0.2 | 6.3 | 42. | 0.8 | 0 | 0 | 0 | 0 | 0 | | 1 | Remarks: | | c.f.s. or | | *** | | | | ** | YEAR MEA | | 30 | YEAR MEAN 0.30
OR PERIOD ACRE-FEET 212. F. O. Dist. Form \$3 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 267- R | Bept | Aug. | July | June | Мау | Apr. | Mar, | Feb. | Jan | Dec. | Nov. | Oct | ay | |------|--------|--------|------|----------|------|------|------|-------------|------|------|----------|-----| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | 0 | 0 | 1.8 | 1 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 1.4 | ŏ | ŏ | 5.0 | 2 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ō ~ | ŏ | ŏ | ŏ | 3 | | ŏ | o. | ŏ | ·ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 4 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō | 0 | Õ | 0 | o l | 5 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō | Ö | 10 | Ö | 0 | 8 | | 0 | 0 | 0 | 0 | 8 | o | o | 0 | Q | Q | 0 | 0 | 7 | | 0 | 0 | 0 | 0 | o l | 0 | 0 | 0 | 9 1 | O O | 1.6 | 0 | 8 | | 0 | 0 | 0 | 0 | o
g | 8 | 0 | 12 | 9 | 0 | 0 | 0 | 8 | | . 0 | 0 | - 8 | 8 | 8 | 8 | 0 | - 8 | 0
0
0 | 8 | 8.0 | 8 | 11 | | 0 | ŏ | ŏ | ŏ | o l | . 6. | ŏ | ŏ | ő | ŏ | 6 D | ŏ | 12 | | ŏ | ŏ | ŏ | ŏ | ŏ | 8 | ŏ | ŏ | ŏ | ŏ | 17.7 | ŏ | 13 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ă | 2.4 | ŏ | 14 | | 0 | O | o l | 0 1 | ō | 0 | ŏ. | o l | - 8 | o l | õ | 0 1 | 15 | | Ò | 0 | 0 | 0 | 9 | 0 | 0 | 0 | | 6 | 0 | 0.3 | 18 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Q | 0 | 0 | 0 | 17 | | 0 | 0 | 0 | o | ō | 0 | 0 | 0 | 0 | g | o | 0 | 18 | | 0 | 0 | 0 | o l | 0 | 8 | 0 | 0 | Q | 0 | 0 | 0 | 20 | | 0 | - 8 | Ö | 0 | 8 | 8 | 0 | 0 | 0 | | 26 | 0 | 21 | | ŏ | ŏ | 0 | 8 | ŏ | 8 | ŏ | ŏ | ŏ | 8 | ŏ | ŏ | 22 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 3.4 | ŏ | 23 | | ŏ | ŏ | ŏ | ŏ | - 5 | ğ | ŏ | ŏ | ŏ | ŏ | 6.7 | ŏ | 24 | | ŏ | . 0 | 0 | 0 | 9 | | ŏ | ŏ | 0 | 142 | ŏ | ŏ | 25 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.7 | 0 | 0 | 26 | | 0 | 0 | Q | 0 | 0 | 0 | 0 | 0 | 0 | 104 | 0 | 0 | 27 | | 0 | 0 | 0 | o l | Q. | ò | o l | 0 | 1.6 | 4.6 | o | 0 | 28 | | o | 0 | 0 | 8 | ģ | 8 | o l | | Q | 2.7 | 0 | 0 | 30 | | 0 | 0 | 0 | | õ l | 0 | 0 | | 8 | 1.8 | 0 | 0 | 31 | | | | | | | | | | | 1.4 | | | | | _ | 0 | _ | 0 | _ | 0 | _ | 12 | | 488 | | 21 | | | 0 | | 0 | | <u>o</u> | | 0 | , | 4 4 | | 579 | | _ | | 0 | 0 | G | o | | 0 | o | 0.04 | 0.14 | 1.57 | 1.93 | 0.07 | BAN | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.4 | 81,7 | 97 | 115 | 4.2 | RE- | | | v 0.3d | OR MEA | Y | | | | | | | | Remarks: | | #### STATION FIG-R LITTLE TUJUNGA WASH at Foothill Boulevard ``` LOCATION: WATER-STAGE RECORDER, LAT 34° 6'28", LONG. 118°22'20", ON DOWNSTREAM SIDE OF FOOTHILL BOULEVARD BRIDGE, 4 MILES EAST OF SAN FERNANDO. ELEVATION OF ZERO GAGE HEIGHT, 1067.8% FEET. ``` DRAINAGE AREA: 21.0 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND SILT. CONCRETE CONTROL BELOW GAGE. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM HIGHWAY BRIDGE. ER: INSTALLED DECEMBER, 1928 OVER AN 18 INCH DIAMETER CORRUGATED IROM PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NONE KNOWN. RECORDS AVAILABLE: DECEMBER 26, 1928 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 244 SECOND-FEET NOVEMBER 11. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 200 SECOND-FEET, NOVEMBER 20. MINIMUM NO FLOW MOST OF YEAR. MAXIMUM 8,500 SECONO-FEET, ESTIMATED MARCH 2, 1938-MINIMUM NO FLOW PART OF EACH YEAR. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES DRANCH. | | DISCHARDE | MEABUREN | ENTS OFLITLE | TUJUNG | SA WASH | L | | | | | | | | | DIEGHARGE | MEABURE | MENTS OF LITT | LE TUJU | NGA W | ASH | | | | | | | | |-------|-----------|----------------------|----------------|--------------|-------------------------------|----------------------------------|-------------------------|-----------------------|-----------|-----|----------|-------|--------|----|-----------|------------------------|----------------|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|-------------|----------|---------------|--------------| | | AT. | Foot | hill Boulevard | | | DURIN | D THE YE | ENIONS RA | SEPTEM | BER | 30, 19 | 46 | | | MŽĪA. | Footh | nill Boulevard | | | סטת | ІНО ТНЕ Ч | EAR ENDIN | 888 | TEMBE | R 30, 19 | 47. | | | ND. | DATE | REGIN | HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAH
VELOCITY
FT. PER SEC. | SAUSE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT: MI | | BEC. CHA | | ETER N | р. | DATE | END . | MADE BY | WIDTH | AREA DF
SECTION
BQ. FT. | MEAN
VELGOITY
FT.PER BEG. | BAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT-
ING | METH-
00 | SEC. DI | HANDE
DTAL | HETER
NO. | | 384 | 12/21 | 918P
930P | DEVORE | 37.0 | 21.1 | 4.69 | 3.79 | 98.9 | | 6 | 6 -0 | 3 FC | 42 39 | 2 | 11-13 | 1245P
1255P
825A | TURNER - RILEY | 30.0 | _Z.10 | 3.79 | 3.58 | 26.9 | ļ | .5 | . 9. | 0 | FC43 | | 385 | 12/23 | 209P
223P
948A | | TWO CHA | NELS. | | 3.38 | 20.5 | - | 6 | 9 | 01 : | . 39 | 3 | 11-20 | 845A
115P | TURNER | THREE | CHANNE | Ls | 3.90 | 155. | - | .6 | 11 - | ~.20 | | | 386 | 3/19 | | | 12.4 | 2.59 | 2.51 | 3.28 | 6.5 | - | 5 | 7 -0 | 1 - | . 39 | 94 | 11-20 | 128P | TURNER - RILEY | 38.0 | 16.6 | 5.02 | 3.68 | 83.4 | - | .6 | 11 | 0 | | | _ 387 | 3/30 | 1030A | WADDICOR | TWO CH | MNELS. | | 3.76 | 96 | | 6/1 | 1 | O FC | 39 | 5 | 11-21 | 1111A
755A | | 10.0 | 1.99 | 1.76 | 3.11 | 3.5 | + | .5 | 8 | 0 | | | _388 | 3/31_ | 332P
347P | | | ·· | | 3,48 | 21. | ļ., | 6 1 | 2 4 | - | 39 | 6 | 11-23 | 805 A | | 31.0 | 13.0 | 3.45 | 3,53 | 44.8 | ļ | .6 | 8 | 0 | | | 389 | 4/3 | 943A
954A | | 10.0 | 2.54 | 2,76 | 3,27 | 6.9 | <u></u> . | 6 1 | 0 0 | - | 39 | 7_ | 11-25 | 149P
945A | TURNER | 9,6 | 1.94 | 1.55 | 3.10 | 3.0 | <u> </u> | .5. | 9 | ۵ | | | 390 | 4/10 | | | 4.3 | 0.82 | 1.71 | 3.26 | 1.4 | - | 6 | 5 | - | 39 | 98 | 11-27 | 950A
822A | | 5.5 | 0.94 | 1.38 | .3.10 | 1.3 | ļ | .5 | -7_ | 0 | | | 391 | 4/17 | 845A
850A | | 1.1 | 0.05 | 0.60_ | 3.21 | 0.03 | - | 6 | 2 | o FC | 37 39 | 9 | 12-26 | 837A
805A | TURNER - RILEY | 31.0 | 14.1 | 3.57 | 3.69 | 50.3 | ļ., | .6 | 9 | 0 | | | | | | | | | | | | | | | | 40 | 00 | 1-3 | 815A
955A | TURNER | 10.5 | 1.82 | 2.53 | 3.21 | 4.6 | | .5 | 6 | ٥ | | | | | | | | | | | | | | | | 40 | 1 | 1-15 | 1000A | | 6.0 | 0.60 | 1.42 | 3.18 | 0.85 | <u> </u> | .5 | 6 | 0 | | | | | | | | | | | | | | | | 40 | 02 | 1-23 | 1110A
1235P | 21 | 3.0 | 0.30 | 0.87 | 3.02 | 0.26 | ļ | .5 | 4 | 0 | | | | | | | | | | | | | | | | 40 | 3 | 1 - 29 | 1241P | | 9.0 | 1.03 | 0.97 | 3.12 | 1.0 | 1 | .5 | 6 | 0 | | | | | | | | | | | | | | | | 41 | 04 | 2-10 | 935A | | 3.5 | 0.71 | 1.48 | 3.07 | 1.05 | <u> </u> | .5 | 4 | | | | | | | | | | | | | | | | | 40 | 05 | 2-27 | 405P
410P | , | 1.5. | 0.16 | 0.56 | 2.94 | 0.09 | 1 | .5 | 3 | 0 | | | 7. C. DI | st. Form 52 4-46 | | | | FLO | LOS ANGELES
DOD CONTRO
YDRAULIC I | L DISTRICT | • | | | Sta. 1 | _{No.} FIQ≠R | |-----------------------|------------------|----------------|-----------------------|----------|----------------------|---|------------------------------|-------------|----------|-------------|-----------------|-----------------------| | Dally | discharge, In | second-feet of | LITTI | E TUJUNG | A WASH at | Footniii | Boulevar | d | | for the yea | r ending Septer | mber 38, 19 <u>46</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Msr. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4 | 0 0 | 0 0 | 0 0 | 0 0 0 | 0
0
9 9
2 2 | 0 0 | 12
8.8
5.6
4.3 | 0000 | 0 | 0 0 | 0 0 | 0 0 0 | | 5 | - 8 | 0 | 8 | 0 | 7 | ŏ | 3.5 | 9 | 0 | 8 | 8 | 8 | | 7
8
9 | 0000 | 0000 | 0000 | 00000 | 0000 | 0000 | 4 .0
3 .0
1 .8
0 .8 | 0000 | 0000 | 0000 | 0000 | 0000 | | 11
12
13
14 | 000 | 000 | 000 | 00000 | 000 | 0000 | 0000
0000 | 0000 | 0000 | 0000 | 0000 | 0 0 | | 15
16
17 | 0 | , 0 | 0 | 000 | 0.2 | 0 | 01 | 0 | 0 | 0 | 0 | 8 | | 19
19
20 | 0 | 0 0 | 0 | 000 | 0 | 0
19
01 | +
+
+ | 0 | 0 | 0 | 0 | 0 | | 21
22
-23
24 | 0 0 | 0 0 | 16
49
36
2.4 | 0 0 0 | 0 0 0 | 0000 | ++00 | 0
0
0 | 0 0 | 0 0 | 0000 | 0 0 0 | | 25
26
27
28 | 0 0 | 0 0 | + 000 | 0 | 0 0 | 0
0
0
1.0 | 0 0 | 0
0
0 | 0 0 | 0 0 | 0 0 | 0 0 | | 29
30
31 | 0 | 0 | 0 | 0 | | 3.5
96
24 | 0 | 000 | 0 | 000 | 0
0
0 | 0 | | | 0 | + | 1034 | 0 | 124 | 126.5 | 483 | 0 | 0 | 0 | 0 | 0 | | MEAN | 0 | o | 3.34 | 0 | 0.44 | 4.08 | 1.61 | 0 | 0 | 0 | 0 | 0 | | ACRE-
PEET | 0 | + | 205. | 0 | 25. | 251. | 96. | 0 | <u> </u> | YEAR MEA | 0
N 0 | 0 | | | Remarks: | + = 0.05 | o.f.s. or | , Teee. | | | | | | OR MEA | -N | <u> </u> | F. C. Dist. Form 52 4-40 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta No. F 19-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | ау | |-------|------|----------|----------|-------|------|------|------|-------------|-----------|------------|----------|----| | 0 | 0 | 0 | 0 | 0 | 0 | + | + | 6.4 | + | 0 | 0 | 1 | | Õ | 0 | 0 | 0 | 0 | 0 | + | + | 5.2 | + + | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | + | + | 4.0 | 0 | 0 | 0 | 3 | | 0 | 0 | 0 | 0 | 0 | 0.1 | * 1 | + | 2.7 | 0 | 0 | 0 | 5 | | 0 | 0 | 0 | 0 | Q | 0 | 0.6 | ÷ | 2 .0
3 2 | 9
0.6 | 8 | <u> </u> | + | | 0 | 0 | 0 | 0 | Ö | ò | 0.1 | , , | | 0.5 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | ŏ | ō | 0.6 | 2.5
1.8 | 0.1 | 8 | ŏ | П | | o | ŏ | Ŏ | 0 | 0 | 0 | ŏ | 12 | 18 | 7 - | ŏ | ŏ | ı | | 0 | 0 | o | 0 | , , | 0 | ŏ | 1.0 | 22 | ŏ | 0 | ŏ | 1 | | 0 | 8 | 0 | ö | 9 | 0 1 | ŏ | 3.0 | 2 2 | ă | ŏ | ŏ | Ť | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 0.5 | 1 9 | õ | 0.7 | ŏ | 1 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 0.4 | iż | l ă l | 10 | ŏ | | | ŏ | ŏ | ŏ | ă l | ŏ | o l | o i | 02 | 12 | Õ | 12 | Ó | l | | ŏ | ŏ | ŏ | ŏ | . o ! | 0 1 | Ó | 0.1 | 0.7
| 9 9 9 9 9 | 0 | 0 | L | | ō | ō | 0 | 0 | 0 | 0 | 0 | 01 | 1.2 | Q | 0 | 0 | T | | 0 | 0 | o | Q | 0 | 0 | 0 | 0.1 | 12 | | 0 | 0 | ı | | 0 | 0 | 0 | 0 | à | 0 | o | 0 1 | 1.0 | Q | 0 | 0 | | | 0 | 0 | 0 | 0 | o i | 0 | 0 | 01 | 0.8
0.6 | 0 | _0 | 0 | | | 0 | 0 | <u> </u> | 0 | 0 | - 8 | 0.3 | + | 0.2 | - 4 | 52 | 0 | + | | 0 | 0 | 0 | 0 | 2 | ŏ | 01 | 0.1 | 03 | ŏ | 6.0
2.2 | ŏ | | | 0 | 8 | 0 | 8 | ž l | ŏ | + - | + | 84 | ŏ | 35~ | ŏ | | | ŏ | ŏ | ŏ | ŏ | ă | ŏi | 0.1 | + | | ŎА | ووَ | ŏ | 1 | | ŏ | ŏ | ŏ | ŏ | 0000 | ŏ | ŏ | + | 0 2 | 26 | 3.2 | ŏ | 1 | | ŏ | ŏ | ŏ | ō | ŏ | 0 | 0 | + | 0.1 | 54 | 2.0 | 0 | Г | | ŏ | ōΙ | ŏ | ō l | ō | 0 | 0 1 | + | 0 2 | 36 | 1.0 | 0 | 1 | | ō | ō | ō | 0 | 0 | 0 | 1.3 | + | 2.5 | 24 | 0.4 | 0 | ı | | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | | 10 | 17 | 01 | o | ı | | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 0.6 | 8.4 | | 0 | | | | 0 | 0 | | 0 | | 0.1 | | 011 | 72 | | | L | | | 0 | | 0 | | 0 1 | | 5 1 | | 174.0 | | 0 | | | . 0 | | 0 | | 0 | | 3.8 | | 49.6 | | 123.7 | | | | 0 | 0 | 0 | 0 | 0 | + | 0.12 | 0.18 | 1.60 | 5.61 | 4.12 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0.2 | 7.5 | 10.1 | 98.4 | 345 | 245 | 0 | | #### STATION F31-R LIVE CAK CREEK near Mouth of Canyon ``` LOCATION: WATER-STAGE RECORDER, LAT. 34°07'34". LONG. 117°44'37". ON THE RIGHT (WEST) BANK OF STREAM NEAR MOUTH OF CANYON ABOUT 0.5 MILE BELOW LIVE OAK DAM. AND ABOUT 2 MILES NORTHEAST OF LA VERNE. ELEVATION OF GAGE, ABOUT 1,035 FEET. ``` DRAINAGE AREA: 2.6 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND ROCKS. CONTROL - CONGRETE WITH A 2 FOOT CIPOLLETTI WEIR 12 INCHES DEEP. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM BRIDGE 350 FEET BELOW STATION. RECORDER: INSTALLED JANUARY 4, 1928 IN A CONCRETE HOUSE OVER A 3 FT. X 4' FT. CONCRETE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY LIVE CAK DAM. DIVERSIONS: NONE. RECORDS AVAILABLE: JANUARY 4, 1928 TO SEPTEMBER 30, 1947- EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM &O SECOND FEET, DECEMBER 23. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 1.9 SECOND-FEET, JANUARY 1. MINIMUM NO FLOW MOST OF YEAR. 1928-1947 MAXIMUM 257 SECOND-FEET, MARCH 2, 1938MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: GOOD. OPERATION: LOCATEO, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. DISCHARGE MEASUREMENTS OF LIVE OAK CREEK | NO. | DATE | BESIN | MADE BY | WIDTH
FEET | AREA OF
BESTION
SQ. FT. | HEAN
VELOGITY
FT.PER MEG. | GAUGE
HEIDHT
FEET | DIECHARDE
SEC. FT. | BAT- | METH- | MEAR
BEC.
NO. | g. HT,
CHANGE
TOTAL | METER
NO. | |-----|-------|----------------|----------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------|-------|---------------------|---------------------------|--------------| | 143 | | | | | | | | | | | | | | | 144 | 12/22 | 1133A
1145A | BREWSTER | 7.0 | 1.87 | 1.02 | 0.42 | 1,9 | | 6 | 6 | + .03 | FC12 | | 145 | 12/23 | 1102A | ** | 4.0 | 0.86 | 0.93 | 0.24 | 0.80 | | 6 | 4. | | ٠, | | 146 | 12/26 | 237P
245P | | 4.0 | 1.44 | 1.18 | 0.40 | 1.7 | | .6 | 4 | 0 | | | 147 | 1/2 | 231P
240P | | 4.0 | 1.55 | 1.03 | 0.39 | 1.6 | | .6 | 4 | . 0 | •• | | 148 | 1/9 | 240P
250P | | 4.0 | 1.15 | 1.13 | 0.34 | 1.3 | | .6 | 4 | 0 | | | 149 | 2/3 | 526P
530P | • • | 1.0 | 0.24 | 0.50 | 0.06 | 0.12 | | 6 | 2 | 01 | •• | | 150 | 3/30 | 309P
313P | | 1.0 | 0.29 | 1.21 | 0.13 | 0.35 | | .6 | 2 | 0. | | | 151 | 3/31 | 941 A
945A | | 0.5 | 0.11 | 0.45 | 0.03 | 0.05 | | .6 | ı | | | | 152 | 6/12 | 217P
225P | ** | 2.0 | 0.85 | 0.91 | 0.21 | 0.77 | | .6 | 4 | | | | 153 | 6/19 | 1220P
1230P | | 2.0 | 1.11 | 0.68 | 0.23 | 0.75 | | 6 | 4 | ٥ | | | 154 | 6/26 | 150P
158P | | 1,5 | 0.66 | 0.52 | 0.13 | 0.34 | | .6 | 3 | . 0 | | DISCHARGE MEASUREMENTS OF LIVE OAK CREEK mouth of Canyon DURING THE YEAR ENDING SEFTEMBER 30, 1417.... DATE .6 3 0 FC12 155 11-20 1.5 0.39 1.59 0.20 0.62 920A 358P 404P 1010A 1020A 340P 350P 1122A .6 3 0 0.56 0.77 0.16 0.43 3.0 156 12-27 .6 0 0.41 1.8 157 3.5 1.64 1.10 5.0 1.32 1.21 0.36 1.6 .6 5 0 158 1-8 2.0 0.49 1.06 0.18 0.52 159 5-14 1130A F. C. Dist. Form 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F31-R | iber 30, 19 | ending Septe | , for the yea | | | ı N | of Canyo | IEEL MOUT! | IN CHEEN | | econd-feet of | acmarge, m a | ung us | |-------------|--------------|---------------|------------|-----|------|----------|------------|------------|------|---------------|--------------|----------| | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | ay | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.6
1.6 | 0 | 0 | 0 | 1 2 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 1.5
1.5 | 0 | 0 | 0 | 3 | | ŏ | o | 0 | o l | ō | o l | ŏ | 8 1 | 1.5 | 0 1 | ŏ | ŏ | 5 | | 0 | 0 | 0 | ō | 0 | 0 | 0 | 0 | 1.4 | 0 | 0 | 0 | 6 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 4
1 3 | 0 | 0 | 0 | 7 8 | | ŏ | ŏ | ŏ | 6 | ŏ | ŏ | ŏ | ö | 8.0 | ŏ | 0 | ŏ | 9 | | Ó | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ö | 0 | 0 | 0 2
0 7 | 0 | 0 | 0 | 0 | 0 | Ŏ | 0 | o o | 11 | | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | ŏ | 8 | 0 | 0 | 13 | | ŏ | ō | Ó | 0.9 | Ō | 0 | o i | 0 | 0 | 0 | 0 | 0 | 14 | | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16
17 | | ŏ | ŏ | ŏ | O.B | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 0 | ŏ | 8 | | 0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | | 0 | . 0 | 0 | 0.7 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | | 0 | 0 | 0 | 0.7 | 0 | ŏ | 0 | 0 | 0 | 0.6 | 0 | 0 | 21 | | ŏ | ŏ | ŏ | 0.5 | ŏ | ŏ | ŏ | ŏ | ŏ | 2.7 | l ŏ l | ŏ | 23 | | 0 | 0 | 0 | 0.6 | 0 | 0 | 0 | ō | o l | 0 | 0 | 0 | 24 | | - 0 | 0 | 0 | 0.5 | - 8 | 0 | - 8 | 0 | 0 | 0.6 | 0 | <u>-</u> | 25 | | ŏ | ŏ | ŏ | 0.4 | ŏ | ŏ | ŏ | 0 | ŏ | 1.7 | ŏ | ŏ | 26 | | ŏ | ŏ | ŏ | o l | ŏ | ŏ | ŏ | ŏ | ŏ | 1.7 | ŏ | ŏ | 28 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | o | 1.7 | 0 | 0 | 19 | | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 0 | 1.6 | 0 | 0 | 31 | | | | | | | | 011 | | | | 11 | | | | 0 | 0 | 0 | 113 | 0 | 0 | 0.3 | 0 1 | 126 | 139 | 0 | 0 | | | . 0 | 0 | 0 | 0.38 | 0 | 0 | 0.01 | .004 | 0.42 | 0.45 | 0 | 0 | AN | | 0 | 0 | . 0 | 22. | 0 | _ 0 | 0.60 | 0.20 | 25. | 28, | 0 | 0 | ET | | .10 | ٧٧ | AR MEA | YE | | | | | | | | Remarks: | | | 76. | FEET. | LOD ACRE | PE | | | | | | | | | | #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Ste. No. F 31-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | ау | |-------|------|----------|-------|------------|------|--------------|--------|--------------|--------|-------|------------------|----------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.9 | 0 | 0 | | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.8 | 0 | 0 | 0 | 2 | | 0 | o l | 0 | o | 0 | 0 | o | 0 | 1.8 | O | 0 | 0 | 3 | | 0 | 0 | 0 | 0 | Ö | 0 | 0 | 0 | 1 .6
1 .6 | 0 | 0 | 0 | 5 | | - 6 | - 0 | | | | | ŏ | | 1.6 | - 6 | | ŏ | 6 | | ŏ | ŏ | ŏ | o l | ŏ | ŏ | ŏ | ŏi | 1.6 | ŏ | ŏ | ŏ | 7 | | ō | ŏ | ŏ | i ŏ i | ŏ | ō | ŏ | ŏl | 1.2 | ŏ | ō | ò | 8 | | 0 | 0 | o | 0 | 0 | O | 0 | | 0.0 | 0 | 0 | ó | 9 | | 0 | 0 | . 0 | . 0 | <u>8</u> - | 0 | 0 | 0 | - 8 | 0 | 0 | 0 | 0 | | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 12 | | 0 | 0 | 0 | 0 | 0
0 2 | 0 | 0 | o
o | 8 | 0 | 0 | 0 | 13 | | ŏ | ŏ | ŏ | ŏ | 0.5 | ŏ | ŏ | ŏ | 8 | ŏ | ŏ | ŏ | 14 | | ŏ | ŏ | ŏ | ŏ | 0.6 | ŏ | 0 | ŏl | ŏ | ŏ | ŏ | ŏ | 15 | | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | | 0 | o l | 0 | 0 | 0.4 | o | o | 0 | 0 | o l | 0 | 0 | 7 | | 0 | 0 | 0 | o l | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | | ŏ | ŏ | 0 | 0 | 0 | 0 | ŏ | ő | ŏ | ő | B 0.1 | ŏ | 20 | | ~ ŏ | ŏ | - 6 | - ŏ | - 6 | ö | - 0 | ŏ | ŏ | ŏ | 0 4 | - ŏ - | 21 | | ō | ō | ō | ō | ŏ | ō i | 0 | 0 | U | 0 | Ó | Ó | 22 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 23 | | 0 | 0 | ō | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | | - 8 | 0 | <u> </u> | 0 | <u> </u> | - 8 | - 8 | - 8 | 0 | 0.02 | | 0 | 25 | | ő | ŏ | 0 | ŏ | 0 . | ŏ | ŏ | ŏ | ŏ | 0.4 | 8 | ő | 27 | | ŏ | ő | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ιŏΙ | 0.0 | ŏ | ŏ | 28 | | ŏ | ŏ | ŏ | ŏ | ŏΙ | ŏ | ŏ | _ 1 | iol | 0.01 | ŏ l | ŏ | 29 | | Ó | 0 | Ó | Ó | 0 | 0 | 0 | | 0 | 1.0 | 0 | 0 | 30 | | | 0 | 0 | | 0 | | . 0 | | 0 1 | 1.8 | | 0 | 31 | | | 0 | | 0 | | 0 | | 0 | , | 3 .4 7 | | 0 | | | 0 | | 0 | | 2.4 | | 0 | 1 | 1314 | | 0.3 | | | | 0 | 0 | 0 | 0 | 0.08 | o | 0 | 00 | 0.42 | 0.11 | 0.01 | 0 | AN | | 0 | 0 | 0 | O | 4.8 | 0 | o | 0 | 26 | 6.9 | 0.60 | 0 | et
et | #### STATION FEB-R LOS ANGELES RIVER below Sepulveda Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°09'42". LONG. 118°27'45", ON THE LEFT (NORTH) BANK ABOUT 700 FEET BELOW SEPULYEDA BOULEVARD AND ABOUT 0.5 MILE BELOW SEPULYEDA DAM. ELEVATION OF ZERO GAGE HEIGHT. 654.31 FEET. DRAINAGE AREA: 157 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - NATURAL ADDBE OVERGROWN WITH GRASS, REEDS AND TREES DURING SUMMER MONTHS. CONTROL - CONCRETE SLAB AT GAGE. DISCHARGE MEASUREMENTS: AT STATION F58-R - LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 7 FEET ABOVE GAGE. RECORDER: INSTALLED DECEMBER 19, 1928 AT STATION F5-R. REMOVED MARCH 2, 1938. REINSTALLED APRIL 28, 1938. MOVED TO STATION F50-R ON AUGUST 23, 1941 AND INSTALLED OVER A 24 INCH DIA MATER. CORRUGATED IRON PIPE STILLING WELL. COMMUNICATION TO WELL IS THROUGH 31 FEET DF 36 INCH CORRUGATED IRON PIPE. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1944 TO SEPTEMBER 30, 1947. REGULATION: INFLOW TO SEPULVEDA DAM PARTIALLY REGULATED BY CHATSWORTH RESERVOIR, UPPER AND LOWER SAN FERMANDO RESERVOIRS, TWIN LAKES DAMS, ENCINO RESERVOIR AND SEVERAL SMALL DAMS IN VARIOUS MOUNTAIN TRIBUTARIES. DISCHARGE LESS THAN 1,000 SECOND-FEET PASSES UNRESTRICTED THROUGH UNGATEO OPENINGS OF SEPULVEDA DAM. DISCHARGE ABOVE 1,000 SECOND FEET REGULATED BY SEPULVEDA
DAM. DIVERSIONS: SEVERAL DIVERSIONS FOR IRRIGATION ON THE MOUNTAIN TRIBUTARIES. SEVERAL WATER SUPPLY RESERVOIRS DIVERT AND/OR RELEASE FLOW. FLOW MAY INCLUDE IRRIGATION WASTE AT VARIOUS TIMES. RECORDS AVAILABLE: AT STATION F5-R - DECEMBER 19, 1928 TD MARCH 2, 1938, AND FROM APRIL 28, 1938 TO AUGUST 23, 1941. AT STATION F58-R - AUGUST 23, 1941 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: #ES UP DISCHARGE. 1945-1946 MAXIMUM 2,500 SECOND-FEET, DECEMBER 21. MINIMUM 6,0 SECOND-FEET, VARIOUS TIMES. MINIMUM 6,0 SECOND-FEET, NOVEMBER 2 g. 1929-1947 MAXIMUM 12,000 SECOND-FEET, ESTIMATED MARCH 2, 1938MINIMUM FLOW NEGLIGIBLE AT VARIOUS TIMES. ACCURACY: RECORDS FAIR. OPERATION: LOCATED AND CONSTRUCTED BY CORPS OF ENGINEERS, U.S. ARMY, OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH CORPS OF ENGINEERS, U.S. ARMY, AND THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. DIRCHARGE MEABUREMENTS OF LOS ANGELES RIVER DISCHARGE HEASUREMENTS OF LOS ANGELES RIVER below Sepulyeda Bouleyard During the year ending beptember 30, 19, 47. | • | | Beic | w Sepulveda Boul | evaro | | DURIN | 3Y 3HT D | AR ENDING | SEPTI | EMBEF | ŧ 30, | :116 | 1. | | 4E | ьеі | ow Sepulyeda Bou | evarq | | DUR | NO THE Y | EAR ENDIN | 3 BEPT | CMBE | 2 30, 1 | 9. 41. | | |-------|--------|-------------------------|--------------------|-------|-------------------------------|----------------------------------|-------------------------|-----------------------|-------------|-------|--------------|--|---|--------------|-------|----------------|--|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------------------|-------------|---------|------------------|--------------| | NO. | DATE | BEBIN | MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | HEAN
VELUCITY
FT. PER SEC. | GAUGE
HEIBHT
FEET | DISCHARGE
SEC- FT. | RAT- | METH- | HEAS
BEC. | G. HT.
CHANGE
TOTAL | METER
NO. | ND. | DATE | SEGIN | HADE BY | WIDTH | AREA OF
SECTION
BO. FY. | MEAN
VELOGITY
FT.PER SEC. | GAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | GD. | MEAS. | EHANGE
TOTAL | METER
NO. | | | | 1038A | | | | | | | | | | | | | | 1003A | | ĺ | İ | | | | | | 1 | 1 | | | _376 | 10/4 | 1046A
823A | BOLL INGER | 14.0 | 10.3 | 1.04 | 1.25 | 10.7 | | : | 10 | | FCI5 | 435 | 10-3 | 1014A
1040A | WADDICOR | 13.5 | 21.8 | 1.06 | 1.85 | 23.2 | - | .6 | 7 | 01 | FC37 | | 377 | 10/11 | 332A
1017A | ** | 14.0 | 9.13 | 1.12 | 1.10 | 10.2 | | .6 | 10 | +.01 | | 436 | 10-10 | 1048A
1008A | 1 | 12.8 | 9.34 | 0.79 | 0.77 | 7.4 | | .6. | 8 | _0 | | | 378 | 10/18 | 1028A
211P | DEVORE - LINDSEY | 18.5 | 10.2 | 1.02 | 1,13 | 10.4 | | .6 | 11. | 0 | FC42 | 437 | 10-17 | 1018A
944A | WADD1COR | 13.5 | 17.9 | 0.99 | 1.45 | 17.7 | | .6 | 7 | 0 | | | _379 | 10/25 | 225P
252P | DEVORE | 18.0 | 9.76 | 1.00 | 1.09 | 9.8 | | .6 | 11 | 0 | 1., | 438 | 10-24 | 954A
944A | • | 14.0 | 21.0 | 1.07 | 1.76 | 22.4 | \vdash | .6 | 8 | 0 | | | _380 | 11/1 | 307P
255P | ., | 18.0 | 10.0 | 1.05 | 1.13 | 10.5 | | 6 | 12 | 0 | ļ | 439 | 10-31 | 954A
1004A | * | 13.0 | 11.5 | 0.69 | 0.92 | 8.0 | H | .6 | 8 | 0 | | | _381 | 11/8 | 310P
1135A | HAIG | 15.5 | 10.0 | 0.99 | 1.10 | 9.9 | | .6 | 11 | 0 | FC35 | 440 | 11-7 | 1014A
847A | ļ " | 12.5 | 9.8 | 0.60 | 0.80 | 5.9 | H | .6 | 7 | 0 | | | 382 | 11/15 | 1145A
140P | | 15.0 | 8.36 | 1.01 | 1.00 | 8.4 | | .6 | 10. | 0 | + | .441 | 11-12 | 904A
103P | WADD I COR-OCAMPO | 12.0 | 19.8 | 0.76 | 1.88 | 15.1 | $\left - \right $ | -6 | 6 | 01 | | | -383 | 11/23 | 200P | | 16.0 | 8.12 | 0.96 | 0.98 | 7.8 | <u> </u> | .5 | 10 | _0_ | 1 | 442 | 11-13 | 120P
155P | ** ** | 39.0 | 251. | 2.48 | 8.81 | 623. | \vdash | -6 | 8 | +.22 | <u></u> | | 384 | 11/29 | 210P
1250P | •• | 16.0 | 9.12 | 1.00 | 1.05 | 9.1 | | .5 | 10 | 0 | ļ:: | 443 | 11-13 | 214P
953A | , | 45.0 | 261. | 2.58 | 9.07 | 673. | \vdash | .6 | 9. | 15 | | | 385 | 12/6 | 110P | •• | 27.0 | 64.7 | 1.04 | 3,65 | 67.3 | | .6 | 14 | 0 | ļ., | 444 | 11-14 | 1005A
208P | n 11 | 27.0 | 79.0 | 1.82 | 4.32 | 144. | \square | .6 | 6 | 07 | •• | | 386 | 12/13 | 1146A
1130A | | 26.5 | 62.0 | 1.06 | 3.42 | 65.7 | | .6 | 13 | 0 | | 445 | 11-20 | 217P | * * * | 21.0 | 39.0 | 1.41 | 2.67 | 55.0 | H | .6 | .5 | 01 | | | 387 | 12/20 | 1155A
320P | | 25.5 | 54.2 | 1.12 | 3.25 | 62.5 | | .6 | 19 | 0 | + | 446 | 11-23 | 1245P
933A | ** ** | 40.0 | 215. | 2.20 | 7.98 | 473. | + | .6 | 8 | +.11 | | | 388 | 12/23 | 340P | | 30.0 | 104. | 2.12 | 4.98 | 220. | | .6 | 7 | 12 | 1.7 | 447 | 11-29 | 943A
957A | | 14.0 | 13.7 | 0.69 | 0.87 | 9.5 | | -6 | 7 | 0 | | | _389 | 12/27 | 1240P
1256P
1124A | | 26.0 | 61.4 | 1.29 | 3.29 | 79.0 | | .6 | 8 | 0 | ļ | 448 | 12-5 | 1008A | • | 13.0 | 11.5 | 0.70 | 0,83 | 8.0 | \vdash | .6 | 7 | 0 | | | 390 | 1/3 | 1158A
1225P | ., | 23.0 | 53.4 | 1.29 | 2.92 | 69.0 | Ш | .6 | 8 | +.01 | 1 | 449 | 12-6 | 112P
947A | WADD I COR-OCAMPO | 13.0 | 15.4 | 0.83 | 1.14 | 12.8 | \vdash | .6 | 7 | 0 | | | _391 | 1/10 | 1245P
1210P | | 12.0 | 40.6 | 1.60 | 2.86 | 64.9 | | .6 | 14 | 0 | ļ:: | 450 | 12-19 | 958A
220A | WADDI COR | 12.5 | 10.9 | 0.70 | 0.82 | 7.6 | + | .6 | 7 | 0 | | | 392 | 1/17 | 1225P
1005A | , | 22.5 | 43.5 | 1.59 | 2,83 | 69.2 | | .6 | 12 | 0 | | 451 | 12-26 | 235A
1008A | WADDICOR-OCAMPO | 41.0 | 282. | 3.10 | 9.50 | 874. | | .6. | 6 | +. 10 | | | _393 | 1/24 | 1025A | ., | 21.0 | 39.7 | 1.52 | 2.80 | 60.3 | | .6 | 12 | 0 | ļ | 452 | 12-26 | 1018A | * | 30.0_ | 126. | 2.54 | 5. 75 | 320. | + | -6 | 6 | 02 | * | | 394 | _1/31 | 1125A
1140A | | 15.0 | 11.4 | 0.97 | 1.13 | 11.0 | | .6 | 11 | 0 | ļ., | 453 | 12-27 | 1205P
1045A | * " | 25.0 | 47.0 | 1.86 | 3.05 | 87.3 | $\left\{ -\right\}$ | -6 | 6 | 01 | | | 395 | 2/7 | 1025A
1040A | | 16.0 | 8.75 | 1.23 | 0.93 | 10.8 | | .5 | 10 | 0 | ٠٠. | 454 | 1-2 | 1055A
1038A | | 12.5 | 16.0 | 0.52 | 0.89 | 8.3 | ╁╌╏ | -6 | 7 | 0 | <u> </u> | | 396 | 2/14 | 115P
130P | | 16.0 | 9.39 | 1.00 | 0.93 | 9.4 | | .6 | 10 | 0 | ••• | 455 | 1-9 | 1048A
947A | | 13.5 | 17.1 | 0.90 | _1.00 | 15.4 | 1-1 | -6 | 7 | 0 | | | _397 | 2/18 | 205P
218P | | 15.5 | 8.85 | 1.08 | 9.92 | 9.5 | | .6 | 8 | 0 | ļ | 456 | 1-16 | 957A
946A | | 13.0 | 14,8 | 0.57 | 0.88 | 8.4 | | -6 | 7 | 0 | | | - 308 | 2/21 | 1105A | | 15.5 | 9.06 | 1.03 | 0.89 | 9.3 | | .6 | 10 | 0 | 1 | 457 | 1-23 | 956A
1014A | | 12.0 | 12.9 | 0.56 | 0.83 | 7.2 | - | -6 | 8 | 0 | | | 399 | 2/27 | 1113A
1125A | HAIG | 16.5 | 8.69 | 1,00 | 0.87 | 8.7 | | .6 | 10 | | FC35 | 458 | 1+30 | 1024A
1052A | ** | 11.5 | 13.4 | 0.51 | 0.82 | 6.8 | - | .6 | 8 | 0 | | | 400 | 3/7 | 258P
313P | | 16.0 | 8.43 | 1.02 | 0.87 | 8,6 | | .6 | 11 | 1 | | 459 | 2-6 | 1100A | WADDICOR | 15.5 | 20.0 | 0.51. | موءم | 10.2 | - | -6 | 8 | 0 | FC37 | | 401 | 3/14 | 1258P
112P | | 18.5 | 9.30 | 1.00 | 0.85 | 9.3 | | .6 | 11 | 04 | | 460 | 2-13 | 1025A | WADDICOR-BLAKELY | 24.5 | 60.0 | 1,64 | 3.61 | 98.3 | 1 | 6 | 6 | 0_ | | | 402 | 3/20 | 1103A
1118A | | 20.0 | 15.1 | 1.21 | 1.18 | 18.2 | | .6 | 10 | 05 | <u></u> | 461 | 2-20 | 1052A | BLAKELY | 26.0 | 59.0 | 1.71 | 3,58 | 101. | \vdash | .6 | 6 | 01 | FC35 | | 403 | 3/21 | 1050A
1100A | | 16.5 | 10.7 | 1.16 | 0.89 | 12.4 | | .5 | 10 | | , | 462 | 2-27 | 1054A | | 20.0 | 35.0 | 1.42 | 2.48 | 49.6 | + | •6 | 6 | 0 | | | 404 | 3/25 | 235P
245P | ., | 15.5 | 8.38 | 1.07 | 1.05 | 8.9 | | .5 | 10 | 0 | <u> </u> | 463 | 3-6 | 1051A | | 21.0 | 36.0 | 1,60 | 2,50 | 57.5 | | .6 | 7 | 0 | | | 405 | 3/28 | 815A
830A | . , , | 20.0 | 14.7 | 1.07 | 1.37 | 15.8
 | .6 | 11 | 10 | ··· | 464 | 3-13 | 1035A | | 15.0 | 15.0 | 0.88 | 1.00 | 13.2 | | .6 | 8 | 0 | | | 406 | 3/30 | 250A
305A | | 26.0 | 65.8 | 1.46 | 3.80 | 96.1 | | .6 | 6 | +.17 | <u> </u> | 465 | 3-20 | 1039A | | 15.5 | 15.2 | 0.84 | 0.94 | 12.7 | 1-1 | 6. | .9 | +.01 | <u>.</u> | | 407 | 3/30 | 1205P
1222P | ., | 33.0 | 114. | 2.18 | 5.33 | 249. | | .6 | 7 | 04 | | 466 | 3-27 | 1100A
1050A | *1 | 15.4 | 12.9 | 0.88 | 0.88 | 11.4 | +-1 | .6 | 8 | 0 | ** | | 408 | 4/4 | 250P
300P | | 16.0 | 10.0_ | 1.07 | 1.04 | 10.7 | | .6 | 8 | ļ., | <u> </u> | 467 | 4-3 | 1058A | <u> </u> | 15.0 | 11.7 | 0.90 | 0.87 | 10.5 | | .6 | 9 | 01 | | | 409 | 4/11 | 1055A
1107A | | 15.5 | 9.14 | 1.33 | 1.04 | 12.2 | | .6 | 9 | - | | 468 | 4-10 | 1148A
1206A | *1 | 15.4 | 12.5 | 0.86 | 0.92 | 10.7 | - | •6 | 8 | 0 | | | 410 | 4/18 | 1032A
1042A | | 15.0 | 9.38 | 1.06 | 1.02 | 9.9 | | .6 | 9 | | , | 469 | 4-17 | 1212P | BLAKELY - JOHNSON | 14.5 | 11.1 | 0.82 | 0.83 | 9.1 | + | .6 | .B. | 0 | | | _411_ | 4/25 | 1015A
1035A | | 25.0 | 59.9 | 1.44 | 3.46 | 86.1 | | .6 | 13 | 02 | 2 | 470_ | 4-24 | 1025A
1048A | | 15.0 | 11.5 | 0.85 | 0.84 | 9.8 | + | .6 | 8 | 0 | | | 412 | 5/2 | 1040A
1050A | | 15.0 | 9.85 | 1.03 | 1.00 | 10.2 | | .5 | 9 | C | | 471 | 5-1 | 1052A
1052A | - 44 | 15.5 | 10.9 | 0.90 | 0.79 | 9.8 | | .6 | 8 | 0 | ** | | 413 | 5/9 | 1118A
1130A | | 15.0 | 9.08 | 0.95 | 0.95 | 8.6 | | .5 | 10 | 0 | · · · | 472 | 5-8 | 1058A
1016A | ** | 15.0 | 10.8 | 1.00 | 0.79 | 10.8 | - | -6. | 8 | 0 | | | 414 | 5/16 | 954A
1004A | •• | 16.0 | 9.06 | 0.90 | 0.92 | 8.2 | | .5 | 10 | (| <u> </u> | 473 | 5-15 | 1023A
1045A | + | 14.7 | 9,73 | 1.00 | 0.74 | 9.7 | \vdash | .6 | 8_ | 0 | ** | | 415 | 5/21 | 240P
250P | | 14.5 | 8.62 | 1.00 | 0.94 | 8.7 | | .5 | 10 | | , | 474 | 5-21 | 1105A
1237P | STUNDEN | 12.0 | 11.7 | 0.67 | 0.69 | 7.8 | +- | .6. | 12 | _0 | FC36 | | _416_ | 5/23 | 1035A
1050A | | 15.0 | 9.23 | 1.02 | 0.93 | 9.4 | | .5 | 9 | - | | 475 | 6-2 | 1245P
1123A | BLAKELY | 14.7 | 8.93 | 0.94 | 0.67 | 8.4 | ┼╌┤ | -6- | в. | 0 | FC35 | | 417 | 5/31 | 1110A
1123A | | 13.5 | 8.68 | 0.94 | 0.91 | 8.2 | | .5 | 10 | 1 | | 476 | 6-5 | 1128A
1116A | TO THE PERSON OF | 14.6 | 9.35 | 0.93 | 0.70 | 8.7 | \vdash | .6 | 8 | 0 | <u> </u> | | 418 | 6/6 | 1055A
1108A | | 16.0 | 8.84 | 0.92 | 0.92 | 8.1 | _ | .6 | 11 | 1_9 | <u> </u> | 477 | 6-12 | 1121A
1135A | | 14.8 | 10.7 | 0.93 | 0.75 | 10.0 | | •6 | 8 | _0 | | | 419 | 6/13 | 935A
948A | BROWN | 17.5 | 10.2 | 0.95 | 1.04 | 9.7 | L | .6 | 9 | - | FC24 | 478 | 6-20 | 1141A
1123A | ** | 14.5 | 9.71 | 0.88 | 0.69 | l | \vdash | .6 | 8 | 0 | | | 420 | 6/20 | 1040A
1055A
1210P | HAIG | 16.0 | 10.4 | 0.82 | 0.97 | 8.5 | L | .6 | 10 | 1 | FC35 | 479 | 6-26 | 1130A
103P | | 14.5 | 9.68 | | 0.67 | 8.4 | + | | 8 | 0 | | | 421 | 6/27 | 1222P | ., | 17.0 | 9.26 | 0.93 | 0.95 | 8.6 | | | 10 | 4 | ٠ | 480 | 7-2 | 112P
214P | | 13.2 | 9.16 | 1 | 0.62 | 7.7 | + | .6 | | 0 | FC6 | | 422 | 7/5 | 1130A | HAIG | 15.4 | 8.55 | 0.91 | 0.90 | 7,8 | | .5 | 13 | - | 0 FC35 | 481 | 7-10 | 220P | A | 14.6 | 8.54 | | 0.60 | ļ. | \vdash | .6 | - 1 | | FC35 | | 423 | . 7/11 | 1140A
1158A | •• | 15.5 | 8.58 | 0.92 | 0.84 | 7.9 | | .5 | 13 | - | 0 | 482 | 7-17 | 1109A | | 14.7 | 9,60 | 0.90 | 0.64 | 8.6 | 1 | .6 | 8 | . 0 | | | 424 | 7/17 | 115P
130P | •• | 15.5 | 9.03 | 0.92 | 0.89 | 8.3 | | .6 | 13 | | 0 | 483 | 7-24 | 1121A | | 14.5 | 9.56 | 0.90 | 0.65 | 8.6 | + | 6 | .8 | 0 | FC35 | | 425 | 7/25 | 115P
125P | | 16.0 | 8,52 | 0.87 | 0.87 | 7.4 | _ | :5 | 11 | <u> </u> | o | 484 | 7-31 | 1037A | BLAKELY | 14.8 | 9.64 | 0.87 | 0.65 | 8.4 | | _£_ | 8 | 0 | | | 426 | 8/1 | 1015A
1030A | | 15.5 | 8.50 | 0.94 | 0.87 | 8.0 | | .5 | 11 | <u> </u> | 0 | 485 | 8-7 | | VAN DER GOOT | 14.5 | 8.67 | 0.86 | 0.60 | 2.5 | | -6. | 8 | 0 | | | 427 | 8/7 | 338P
350P | | 15.0 | 7.67 | 0.99 | 0.86 | 7.6 | L | ٤, | 10 | | 0 | 486 | 8-13 | 1000A
855A | TURNER | 13,5 | 8.11 | 0.90 | 0.62 | _7.3 | +- | -6 | 8 | ٥ | FC43 | | 428 | 8/15 | 925A
935A | BOLL INGER | 16.0 | 8.89 | 0.94 | 0.89 | 8.3 | _ | | 12 | <u> </u> | o FC6 | 487 | 8-20 | 905A
1039A | * | 14.0 | 8.07 | 0,92 | 0,59 | 7.4 | + | .6 | . 8 | 0 | | | 429 | 9/22 | 823A
835A | | 16.0 | 9.20 | 0.86 | 0.94 | 7.9 | | .6 | 12 | + .0 | | 488 | 8-28 | 1050A | BLAKELY | 14.5 | 10.2 | 0,98 | 0.67 | 10.0 | +- | -6. | . 8. | 0 | FC35 | | 430 | 8/28 | | WADDICOR-BOLLINGER | 16.0 | 9.04 | 0.87 | 0.94 | 7.9 | L | , 6 | 10 | 0 | 1 | 489 | 9-4 | 1016A | * | 14.5 | 9.23 | 0.91 | 0.61 | 8.4 | - | -6. | .8. | 0 | | | 491 | 9/4 | 907A
915A | WADDICOR | 14.3 | 8.76 | 0.99 | 0.92 | 8.7 | | .6 | 8 | _ | 0 FC37 | 490 | 9-11 | 1108A | | 14.5 | 8.40 | 0,92 | 0.59 | 7,7 | - | -6. | .8. | ۵ | <u></u> | | 432 | 9/13 | 928A
937A | BOLLINGER | 13.5 | A.03 | 1.00 | 0.85 | 8.0. | | a | ١, | L_ | o FCE | 491 | 9-18 | 1115A
1045A | * | 147.5 | 7.82 | 0.93 | 0.56 | 7.3 | - | .6 | .8 | 0 | | | 433 | 9/20 | 917A
927A | | 14.0 | 9.22 | 1.04 | 0.94 | 9.6 | | _6 | ı | 1 | d | 492 | 9-25 | 1051A | | 14.1 | 7.19 | 0.96 | 0.56 | 6.9 | 1 | <u>.</u> 6. | . 8 | 0 | | | 434 | 9/27 | 800A
812A | ,. | 13.0 | 8.15 | 0.92 | 0.96 | 7.5 | \bigsqcup | 6 | 1 | | o ··- | 1 | | | | | | | | | | | | | | | | _ | F. C. Dist. Form 52 4-48 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. FBB-R | Sept | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | Day | |-----------------------|--|--------------------------------------|---|----------------------------------|---------------------------------|--|---|----------------------------|-------------------------------|---------------------------------|-----------------------------|----------------------------| | 8 8 8 8 | 8.0
7.9
8.0
8.6.6 | 8 .0
8 .0
8 .0
7 .7 | 8 4
8 5
8 5
8 8 | 10
10
9.9
9.6
9.4 | 12
36
54
31
a 11 | 8 8 7
8 6
8 6
8 6 | 9 <i>9</i>
9 <i>6</i>
4 1
1 6
1 1 | 69
69
70
67
68 | 8.5
8.5
8.7
8.6 | 11
10
10
10 | 10
10
11
10
9.8 | 1
2
3
4
5 | | 8 .
8 .
8 . | 8 6.8
8 7.1 | 7 .7
7 .7
7 .9
7 .6
7 .6 | 88888888888888888888888888888888888888 | 9 2
8 9
8 9
8 7 | 8 14
8 41
8 82 | 8 8 6
8 6
8 6
8 6 | 11
11
11
11
11 | 70
92
68
67
65 | 50
70
70
69
68 | 9.8
9.2
9.4
9.1 | 11
11
11
10
10 | 6
7
8
9 | | 8
7
7
8
8 | 8.0
7.9 | 7.9
8.0
8.2
8.8 | 8 8 9 9 8 8 9 9 8 8 9 9 8 9 8 9 9 9 9 9 | 8.7.4
8.5.3
8.5.3
8.5.3 | 12
12
12
11
11 | 5555 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9 9
9 7
9 5
9 4 | 65
65
67
68
70 | 67
67
66
64 | 8.7
8.6
8.5
8.3 | 10
10
10
10 | 1
2
3
4 | | 8 .
8 .
8 . | 8 .4
8 .5
8 .2
7 .9 | 8 4
8 5
8 8
7 8 | 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 2
8 4
8 7
8 7 | | a 92
a 92
a 92
17
16 | 9 5
9 6
9 5
9 5 | 69
68
67
66 | 64
65
65
65
63 | 83
83
98
85 | 10
10
10
10 | 6
7
8
9 | | 8 9 8 9 | 7.8
7.7
7.7 | 7 9
7 7
7 6 | 8 8 8 8
8 8 8 | 8.7
9.4
9.2
9.1 | 9.6
1.4
4.7
8.5
8.8 | 12
11
10
9.8
8.9 | 93
92
99
88 | 63
62
60
60 | 256
479
228
59
68 | 8.5
8.2
7.8
8.5
8.3 | 10
11
10
10 | 1
2
3
4
5 | | 9
15
20
23 | 7.2
7.4
7.7
7.7
7.9
8.0 | 7 65
7 75
7 7 7
8 5
8 6 | 8 7 8 8 8 8 8 8 8 8 | 99.8.6.4.Q.Q | 72
66
67
69
40 | 8.8
8.9
12
11
140
26 | a 8.7
a 8.7
8.7 | 58
58
59
14
11 | 78
77
69
78
78 | 8 3
8 5
8 5
9 0
8 6 | 10
10
12
12
12 | 26
27
28
29
30 | | 288 | 2402 | 246.7 | 254.0 | | 1023.0 | 4489 | 3083 | | 25629 | 267.0 | 321.7 | | | 9.61 | 7,75 | 7.96 | 8.47 | 8.86 | 34.1 | 14.5 | 11.0 | 61.0 | 82.7 | 8,90 | 10.4 | AN | | 573. | 476. | 489. | 504. | 545. | 2,030. | 890. | 611. | 3,750. | 5,080. | 530. | 638. | RE-
EZT | OR PERIOD ACRE-FEET 16,120 F. C. Dist. Form 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sts. No. F 5B-R | | | | 100 41 | ACL CO 10:44 | | DRAULIC | | | | | | | |----------|------------------|--------------|------------------|--------------|------------|-------------------|------------|--------------------|----------------|----------------|----------------|----------------| | - 1 | lischarge, in se | cond-feet of | LUS AN | GELES RIV | ER below | Sepulveda | boulevar | ٠ ۵ | , | , for the year | r ending Septe | mber 30, 19_47 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | May | June | July | Aug. | Sept. | | 1 2 | 26
24 | 8 7.0
6.0 | 8 .6
8 .4 | 8.6
8.3 | 4 7
3 0 | 5 1
5 0 | 10
10 | 9 <i>9</i>
9 .7 | 8.3
8.6 | a 79
f 78 | 8 1
7 9 | 7.8
8.1 | | 3 | 23 | 6.0 | 81 | 22 | 9.0 | 49 | 10 | 93 | 8.4 | 8.1 | 8.5 | 8.1 | | 5 | 18
11 | 6.0 | 7.8 | 5 6
4 2 | 9.3 | 4 9
6 5 | 10
9.9 | 9.0
9.1 | 8.4 | 8 1
7 9 | 8 1
7 8 | 8.4 | | 6 | 17 | 6.0 | 16 | 13 | 10 | 5.8 | 10 | 9.1 | 8.4 | 7.6 | 8.1 | 8.1 | | 7 | 18 | 6.0 | 13 | 13 | 22 | 58 | 10 | 9.7 | 8.6 | 7.8 | 7.4 | 8.3 | | 8 | 18
79 | 17 | 8 3
7 9 | 13
20 | 49
54 | 58
58 | 10 | 10
9.5 | 8.8 | 7 3
7 3 | 7.9 | 8 1
7 .8 | | 10 | 7.4 | 7.0 | 16 | 38 | 84 | 54 | 10 | 9.9 | 8.8 | 7.3 | 7.5 | 7.4 | | 11
12 | 12 | 10
50 | 4 8
4 8 | 6 4
3 3 | 101 | 29
21 | 9.7
9.1 | 9.5 | 9.1
9.5 | 7 A
7 6 | 7.6
7.3 | 7.6 | | 13 | 21
21 | a300 | 48 | 9.7 | 99
 15 | 91 | 9.3 | 9.0 | 7.8 | 73 | 7.4 | | 14 | 22 | 101 | 48 | 93 | 100 | 12 | 9.5 | 9.5 | 8.6 | 7.9 | 7 1 | 7.1 | | 15 | 22 | 19
13 | 31
7.8 | 9.0 | 100 | 12 | 9.5
9.5 | 9.5
9.3 | 8.4 | 8.8 | 7 A | 7.0 | | 17 | 21 | 11 | 7.6 | 25 | 101 | 12 | 9.5 | 10 | 83 | 8.8 | 7.4 | 7 4 | | 18 | 2 21 | 10 | 7.4 | 47 | 101 | 13 | 9.9 | 9.7 | 8.3 | 8.8 | 7.3 | 73 | | 19 | 8 2 1
8 2 2 | 10 | 21.6 | 30 .
7.8 | 101 | 12
13 | 10
9.7 | 93
83 | 83 | 8.B
9.0 | 7 £ | 7.6
7.6 | | 21 | a 22 | 54 | 4.6 | 7.4 | 101 | 14 | 9.5 | 7.8 | 79 | 8.3 | 7.8 | 73 | | 22
23 | 22 | 51 | 30 | 73 | 102 | 15 | 91 | 79 | 7 B | 8.6 | 7.9 | 7.1 | | 24 | 23 | 213 | 7 <i>9</i>
15 | 73
24 | 102 | 16
13 | 9.3
9.5 | 8.4
8.3 | 83 | 8.4
8.6 | 81 | 7 1
7 1 | | 25 | 22 | 53 | 74 | 4.8 | 8.5 | 12 | 9.5 | 7.6 | 8.3 | 8.8 | 8.3 | 7.1 | | 26
27 | 22 | 51
38 | 358
91 | 28
7.4 | 51
61 | 12 | 9.7 | 73
79 | 8 1
7 9 | 8.6
9.0 | 8.8
9.7 | 7.0 | | 28 | 23 | 93 | 63 | 7 4 | 50 | 16 | 9.7 | 7 9 | 79 | 8.4 | 9.7 | 7.0 | | 29
30 | 23 | 93 | 47 | 7.0 | | 12 | 9.9 | 8.4 | 8 7.9
8 7.9 | 8.3 | 9.1 | 6.8 | | 31 | 18
a 8.0 | 9.0 | 25
9.0 | 6.8
23 | | 11
10 | 10 | a.8 | £ 79 | 8.3
8.3 | 8.4 | 7.0 | | | 604.3 | | 1423 | | 1974.6 | | 291.5 | | 250.9 | | 2471 | | | | | 1220.5 | | 650.8 | | 843.0 | | 2782 | | 2539 | | 2244 | | IEAN | 19.2 | 40.7 | 36.8 | 21.0 | 70.5 | 27.2 | 9.72 | 8.97 | 8,36 | 8.19 | 7.97 | 7.48 | | CRE- | 1,200 | 2,420 | 2,270 | 1,290 | 3,920 | 1,670 | 578 | 552 | 498 | 504 | 490 | 445 | | | Remarks: | | | | | | | | | YEAR MEA | | | | | | | .* | | | | | | 1 | PERIOD ACRI | E-FERT1 | 840 | | | | | | | | | | | | | | | #### STATION F266-R LOS ANGELES RIVER at Mariposa Street LOCATION: WATER-STAGE RECORDER, LAT. 34°09'17". LONG. 118°18'40". ON THE LEFT (NORTH) CHANNEL WALL ABOUT 60 FEET EAST FROM THE CENTER LINE OF MARIPOSA STREET EXTENDED. AND ABOUT 2 MILES SOUTHEAST OF BURBANK. ELEVATION OF ZERO GAGE HEIGHT.468.51 FEET DRAINAGE AREA: 430 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - CONCRETE 130 FEET WIDE WITH 18 FOOT VERTICAL SIDE WALLS. BOTTOM FORMS A REGULAR TRAPEZOIDAL SECTION 130 FEET X 82 FEET ON THE BOTTOM BY 1,25 FEET DEFF. CHANNEL FORMS CONTROL. CHANNEL BOTTOM USUALLY COVERED BY MID, MOSS AND GRASS DURING SUMMER MONTHS. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM EQUESTRIAN BRIDGE 70 FEET ABOVE STATION. RECORDER: INSTALLED DECEMBER 20, 1938 IN A CONCRETE HOUSE OVER A 4 FT. X 4.3 FT. CONCRETE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION AND/OR DIVERSIONS: SUBJECT TO SAME REGULATION AS STATION F58-R AND IN ADDITION, BY PACOIMA DAW, HANSEN DAW AND BIG TUJUNGA DAM ND, 1. DIVERSIONS: SEVERAL IRRIGATION DIVERSIONS IN THE MOUNTAIN TRIBUTARIES, OTHER FLOW IS DIVERTED AT THE SEVERAL WATER SUPPLY RESERVOIRS, AND THE LOS ANGELES WATER DEPARTMENT DIVERTS FLOW FOR SPREADING ABOVE THE STATION. RECORDS AVAILABLE: FROM DECEMBER 20, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: MES OF BISCOND. 1945-1946 MAXIMUM 2,250 SECOND-FEET, DECEMBER 22. MINIMUM 6,0 SECOND-FEET, MARCH 14 & 23. MINITION 0.1 1946-1947 MAXIMUM 1,220 SECOND-FEET, NOVEMBER 13. MINIMUM 4.0 SECOND-FEET, MARCH 13. MAXIMUM 9,040 SECOND-FEET, FEBRUARY 22, 1944. MINIMUM 4.0 SECOND-FEET, MARCH 13, 1947. ACCURACY: FAIR. 145. 130.0 610A 120P 135P 6.88 1.18 95.0 35.9 2.22 0.36 79.7 997. OPERATION: LOCATED AND CONSTRUCTED BY CORPS OF ENGINEERS, U.S. ARMY, AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN CONJUNCTION WITH THE CORPS OF ENGINEERS, U.S. ARMY. | | DISCHARGE | MEASUREN | EN76 OF | LOS ANG | ELES R | IVER | | | | | | - | HO. | DATE | BEGIN | HADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | HEAN
VELOGITY
FT. PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
BEG- FT. | RAT- | HETH- | EAR. D. | HT. | METER
NO. | |------|-----------|----------------|-------------------------|---------|-------------------------------|----------------------------------|-------------------------|-----------------------|--|---------|-----------------|----------------|------|----------|-----------------------------|-----------------------|--------------|-------------------------------|----------------------------------|-------------------------|-----------------------|---------------|----------|---------|-----|--------------| | - | AT. | Maripo | sa Street | | | Dilais | IN THE YE | AR ENDING | | ero an | -ALR | | | · | 125P | | | - | | | | | \dashv | + | | | | | | | | | | | | | | | | | 442 | 4/11 | 138P | | 86.0 | 9,95 | 0.95 | 0.16 | 9.5 | \vdash | .5 1 | 0 | 9 | - | | ĸа. | DATE | EKGIN | MADE BY | WIDTH | AREA OF
BECTION
BQ. FT. | MEAN
VELDOITY
FT, PER MEC. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FY. | RAT- ME | TH MEAN | GHANGE
TOTAL | HETER
NO- | 443 | 4/18 | 1130A
1110A | | 88.0 | 15.5 | 1.02 | 0.22 | 15.9 | + | .5 1 | 1 | 0 | | | 416 | 10/4 | 200P
214P | BOLL INGER
ODEK I RK | 85.0 | 16.7 | 0.95 | 0.23 | 15.8 | | 6 16 | | FC6 | 444 | 4/25 | 1130A
1225P | ., | 95.0 | 43.3 | 2.89 | 0.41 | 125. | \vdash | .5 1 | 3 | 0 | | | 417 | 10/11 | 920A
940A | BOLL INGER | 85.0 | 16.6 | 1.00 | | 16.5 | | 6.17 | | 1 | 445 | 5/2 | 1240P
110P | | 88.0 | 13.2 | 0.87 | 0.18 | 11.5 | \vdash | .5 1 | 1 | • | ** | | 418 | | 330P
349P | DEVORE | 88.5 | 16.0 | 1.13 | | 18.1 | | 5. 10 | | FC42 | 446 | 5/9 | 126P | *** | 90.0 | 17.4 | 0.89 | 0.23 | 15.6 | \vdash | .5 1 | 3 - | 01 | <u> </u> | | 419 | 11/8 | 1250P | HAIG | 83.0 | 13.7 | | | 13.4 | | 6 15. | | FC35 | 447 | 5/16 | 1145A
1135A ⁵ | | 86.0 | 15.4 | 0.90 | 0.24 | 13.8 | \vdash | .5 1 | 2 | 0 | ·· | | 420 | 11/15 | 920A
950A | 11 | 86.0 | 16.4 | 0.81 | 0.21 | 13.2 | | 5 21 | 0 | | 448 | 5/23 | 1150A
1230P | | 80.0 | 14.4 | 1.02 | 0.23 | .14.6 | \vdash | .5 1 | 3 | 0 | | | | | 1128A | | | | | | 11.9 | | | | 1 | 449 | 5/31 | 1245P
1208P | 11 | 83.0 | 14.9 | 0.98 | 0.29 | 14.6 | \vdash | .6 1 | 3 | 0 | <u> </u> | | 421 | 11/23 | 1150A
1210P | | 85.0 | 14.5 | | | | | 5 16 | - | l | 450 | 6/6 | 1226P | | 82.0 | 15.9 | 0.86 | 0.26 | 13.7 | \vdash | ,5 1 | 5 | ٥ | ** | | 422 | 11/29 | 1226P
220P | | 85.5 | 14.5 | | 0.20 | 13.9 | | 5 15 | <u> </u> | <u>;</u> | 451 | 6/13 | 1225P
1240P | G. BROWN | 90.0 | 26.2 | 0.89 | 0.29 | 23.4 | \vdash | .6 1 | 6 | 0 | FC24 | | 423 | .12/6 | 287P | | 86_0 | 15.2 | | 0.21 | 13.4 | | 5 15 | -0- | | 452 | 6/20 | 100P | HAIG | 91.0 | 18.7 | 0.86 | 0.25 | 16.0 | - | .5 1 | 5 - | .01 | FC35 | | 424 | 12/13 | 126P
110P | | 89.0 | 35.2 | 1.99 | 0.36 | 70.0 | | 5 17 - | - | <u>"</u> | 453 | 6/27 | 120P
125P | | 91.0 | 19.4 | 0.86 | 0.27 | 16.7 | | .5 1 | 9 | 0 | | | 425. | 12/20 | 130P
250P | ** | 89.0 | 35.1 | 1 88 | 0.38 | 65.9 | - | 5 16 | - | | 454 | 7/5 | 1240P
1257P | | 92.0 | 24.5 | 0.73 | 0.35 | 17.8 | | .5 1 | 9 | 0 | | | 426 | 12/27 | 306P
115P | | 100. | 39_2 | 2.91 | 0.46 | 114. | | 5 12 | | -:- | 455 | 7/11 | 1255P
108P | • •• | 95.0 | 17.5 | 0.87 | 0.38 | 15.2 | | .5 1 | 4 | 0 | | | 427 | 1/3 | 140P
155P | ** | 98.0 | 35.3 | 2.75. | 0.46 | 96.9 | | 5 15 | +.01 | | 456 | 7/18 | 1212P
1230P | | 91.0 | 17.1 | 0.93 | 0.34 | 15.9 | | .5 1 | , | 0 | ., | | .428 | 1/10 | 215P
150P | ** | 96.0 | 35.3 | 2.67 | 0,45 | 94.4 | | 5 16 | - | | 457 | 7/25 | 1125A
1137A | | 89.0 | 13.0 | 1.00 | 0.33 | 13.0 | | .5 1 | 4 | 0 | | | 429 | 1/17. | 208P | ** | 95.0 | 37.4 | 2.50 | 0.38 | 93.4 | | 12 | 0 | | 458 | 8/1_ | 1135A
1155A | | THREE C | ANNELS | | 0.29 | 12.5 | | .5 1 | 9 | 0 | | | 430 | 1/24 | 1125A
110P | ** | 95.0 | 36.4 | 2.43 | 0.37 | 88.6 | 2.5 | 5 13 | | | 459 | 8/8 | 938A
952A | | 80.0 | 12.2 | 0.96 | 0.21 | 11.7 | | .5 1 | | 0 | | | 431 | 1/31 | 122P | | 90.0 | 25.2 | 1.59 | 0.30 | 40.0 | يـــــــــــــــــــــــــــــــــــــ | 5 9 | _0_ | | 460 | .8/15 | 103P
118P | BOLLINGER | 81.0 | 11.2 | 0.95 | | 10.7 | | .5 1 | 2 | a | EC6 | | 432 | 2/7 | 858A
916A | ** | 90.0 | 25.7 | 1.65 | 0,29 | 42.4 | : | 5 11 . | 0 | | 461 | 8/22 | 1000A
1012A | | 85.5 | 12.6 | 0.93 | 0.20 | 11.7 | | .5 | , | 0 | | | 433 | 2/14 | 232P
246P | | 92.0 | 26.6 | 1.55 | 0.32 | 41.3 | : | 5 12 | _0_ | | 462 | 8/28 | 105P
115P | BOLLINGER
WADDICOR | 79.5 | 13.8 | 0.82 | | 11.3 | П | .6 | | 0 | | | 434 | 2/21 | 1250P
106P | | 92.0 | 27.5 | 1.62 | 0.35 | 44.5 | | 5 8 | 0 | | 463 | 9/4 | 1021A
1035A | WADDICOR | 80.0 | 10,5 | 0.89 | | 9.3 | П | .6 10 | , [| | FC37 | | 435 | 2/27 | 1045A
1102A | | 90-0 | 27.2 | 1.51 | 0.32 | 41.0 | ا | 5 11 | 0 | | 464 | 9/13 | 1108A
1121A | BOLL INGER | 85.0 | 10.6 | 0.97 | | 10.3 | П | 5 | 7 | | FC6 | | 436 | 3/7 | 1255P
110P | ** | 90.0 | 25.7 | 1.49 | 0.30 | 38.3 | ., | 5 11 | 0 | | 465 | 9/20 | 1050A
1104A | BOLLINGER | 85.0 | 10.7 | 0.86 | 1 | 9.2 | | .5 (| | 0 | | | 437 | 3/14 | 242P
255P | | 850 | 8.47 | 0.80 | 0, 17 | 6.8 | <u> </u> ., | 5 10 | 0 | | 466 | 9/27 | 933A
946A | | 87.0 | 11.2 | 0.95 | | 10.6 | | 5 | | `\ | | | 438 | 3/21 | 905A | HAIG | 91.0 | 27.9 | 1.61_ | 0.31 | 44.8 | | 5 13 | | FC35 | 1400 | -, 5/ E/ | 240.0 | | | | 10.33 | N | 1.U.B | | | | V | | | 439 | 3/28 | 1125A
1145A | ** | 100.0 | 45.1 | 2.77 | 0.48 | 125 | | 5 13 | 01 | | | | | | | | | | | | | | | | | 440 | 3/30 | 535A | ** | 130.0 | 145 | 6.88 | 1.18 | 997. | R.R | | 1 . 12 | | | | | | | | | | | | | | | | | | DISCHARDS | E MEABLIREN | HENTE OF LOS ANG | LES RI | YER . | | | | | | | | No | . [| DATE | BE GIM | HADE BY | WIDTH | AREA OF | MEAN
VELOCITY
FT.PER BEG. | BAUGE
HEIGHT
FEET | DIBCHARGE
SEG. FT. | RAT- | | EAS. G.
ED. C>
40. 7 | HT. | HETER
NO. | |-------------|-----------|-------------------------|--------------------------
--|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------|-------------------|---|------------|-----|------------------|-----------------------|--------------------|--------|---------|---------------------------------|-------------------------|-----------------------|----------|--------|----------------------------|-----|--------------| | | MATA | Marip | osa Street | | | DUR | NO THE Y | EAR ENDING | BERTE | МВЕЯ | 30, 19) | 47 | 489 | _ 4 | -10 | 131P
140P
930A | 11 | - | | | 0.28 | 15.9 | | .5 | 12 | 0 | - | | NO. | DATE | BEGIN | NADE BY | WIDTH
FEET | AREA OF
BEGTION
BO. FT. | MEAN
VELOCITY
FT.PER SEC. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- ME | ETH- ME | A9. 8.
BC. BHJ | HT. | 490
ND. | 4 | 1-17 | 940A | BLAKELY-JOHNSON | н | | | 0,29 | 17.4 | | .5 | 13 | 0 | | | 467 | 10-3 | 1100A
1112A | WADDICOR | 86.0 | 15.7 | 0,89 | 0.21 | 14.0 | | .6 | 10 0 | n FC | 37 491 | | 1-24 | 1133A
120P | BLAKELY | ** | " | | 0.30 | 16.2 | \vdash | | | .0 | | | 468 | 10-17 | 1114A
1135A | | | 14.9 | 0.80 | 0.21 | 11.9 | | .6 | \neg | | 492 | П | -15 | 130P
106P
120P | | | " | | 0.34 | 16.2 | | | T | 0 | - | | 469 | 10-31 | 1054A
1110A
1208P | | 79.5 | 15.0 | 0.91 | 0.23 | 13.6 | | .6 | 10 | ٠. | 494 | | i-21 | 1210P
1235P | STUNDEN | THREE | CHANNEL | s | 0.39 | 14.3 | | | 17 | Ì | FC36 | | 470 | 11-14 | 1220P | WADD! COR-OCAMPO | 81.0 | 51.2 | 3.48 | 0.56 | 178. | | .6 | 10 - | .01 ' | 495 | 6 | -2 | 131P
141P | BLAKELY | TWO CH | ANNELS | | 0.34 | 12.6 | | | 11 | | FC35 | | 471 | 11-21 | 1050A
1050A | WADDICOR | | 31.7 | 2,33 | 0.40 | 73.8 | ΤŤ | | 9 (| | 496 | 6 | •5 | 305P
315P | ** | • • • | | | 0.32 | 12.2 | Ц | .5 | 12 | 0 | - | | _472 | 11-29 | 1105A
750A | | | 21.7 | 1.38 | 0.29 | 29.9 | | | 9 (| J | 497 | 6 | -12 | 101P
115P
1136A | - 01 | | | | 0.31 | 13.9 | | .5 | 16 | 0 | | | _473
474 | 12-6 | 802A
1127A
1139A | WADDICOR-OCAMPO WADDICOR | | 25.8
HANNELS | 2.37 | 0.41 | 46.6 | - | | 9 (| | | | | 1152A
400P | ** | ** | | <u> </u> | 0.31 | 13,9 | | | | 0 | | | 475 | 12-19 | 1056A | | | | | 0.43 | 34.7 | | .5 | | | | | -26 | 414P
205P | | ,, | | - | 0,32 | 15.3 | | .5 | | 0 | | | | 1-2 | 1230P
1242P | ** | 82.0 | 23.6 | 1.39 | 0,30 | 32.8 | | .6 | 10 | 0 | . 500 | | -10 | 225P
306P
317P | BOLL INGER BLAKELY | | | | 0.33 | 13.8 | | .5 | | | FC35 | | 477 | 1-9 | 1213P
1223P | | 85.0 | 23,3 | 1.47 | 0.31 | 34.2 | | .6 | <u> </u> | <u>. </u> . | | | -17 | 1245P
1255P | PLANEL! | | | | 0.34 | 13.6 | | | | 0 | ** | | 478 | 1-16 | 1105A
1120A
1105A | | 83.5 | 23.2 | 1.47 | 0.30 | 34.1 | | .6 | 10 0 | 2 | 503 | 7 | -24 | 157P
207P | - 41 | | - 44 | | 0.34 | 12.5 | | | | 0 | | | 479_ | 1-23 | 1118A
1123A | w- | 81 .5 | - | 1.51 | 0.32 | 31.8 | l i | | 10 | | 504 | | 1-31 | 844A
855A | ** | | • •• | | 0.36 | 12.7 | Ш | .5 | u | ٥ | | | 480 | 1-30 | 1135A
1137A | | | 22.6 | 1.36 | 0.30 | 30.7 | ii- | | 10 (| -+- | 505 | 8 | i - 7 | 413P
422P
120P | ** | | ** | ļ | 0.38 | 13.0 | Ш | .5 | 12 | 0 | | | | 2-13 | 1147A
116P
130P | WADDICOR-BLAKELY BLAKELY | 93.0 | 46.4 | 2.63 | 0.47 | 106. | T T | | 11 0 | 0 , | 506 | 8 | -13 | 135P
145P | TURNER | 38.0 | 11.5 | 1.18 | 0.38 | 13.6 | | .5 | 10 | 0 | FC48 | | | 2 - 27 | 122P
137P | BLAKEL! | 100.0 | - | 2.72 | 0.47 | 95.6 | \vdash | | 12 (| - | 507 | | -20 | 200P
125P | -91 | | CHANNE | | 0.33 | 12.1 | \vdash | .5 | 11 | 0 | | | 484 | | 126P
140P | * | The second secon | HANNELS | | 0.49 | 91.9 | | .5 | | _ | 508 | | -28 | 131P
1125A | BLAKELY | COMPO | · · · · | TWO ME | AS. | 13.9 | | | + | | FC35 | | 485 | | 1120A
1131A | | | ** | | 0.40 | 49.9 | | .5 | 11 0 | <u>, </u> | 510 | | 1-4
1-11 | 1130A
100P
108P | ** | | | <u> </u> | | 13,5 | H | + | + | | - | | .486 | 3-20 | 107P
115P | | | ** | | 0.30 | 13.3 | | .5 | 11 9 | 2 . | 511 | | -18 | 115P
122P | - 41 | ,, | | - 11 | | 13.2 | | \top | + | | | | _487 | 3-27 | 125P
134P
1252P | ** | | ** | | 0.27 | 15.0 | - | .5 | 10 1 | 0 . | 512 | | -25 | 192P
109P | | | | | | 12.2 | | | | | | | 488 | 4-3 | 1252P | | ** | | | 0.26 | 14.0 | LJ. | .5 | 12 (|) · | - 1 | 12 | | | | i | 1 | 1 | 1 | 1 | | + | - | | | | P. C. D | lst. Form 52 4-46 | | | | H | LOS ANGELE
OOD CONTRO
YDRAULIC | ol distric:
Division | т | | | Sta.: | No. F286-R | |----------------------------------|----------------------------|---------------------------------|--|-------------------------------|---------------------------------|--------------------------------------|---------------------------------|----------------------------|------------------------------|------------------------------|----------------------------|-------------------------------| | Dally | discharge, in a | econd-feet of | LOS ANGE | LES RIVER | at Marip | osa Stree | t | | | , for the year | r ending Septer | nber 30, 19 116 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Bept. | | 1
2
3
4
5 | 14
14
14
19
19 | 19
16
16
16 | 14
14
11
11 | 116
110
105
110 | 34
31
190
68
46 | 3 8
3 8
3 8
3 4
4 2 | 58
78
84
68
46 | 37
11
19
46
34 | 11
14
14
14 | 16
16
16
16
19 | 8.6
8.6
8.6 | 11
11
11
8.6
8.6 | | 8
7
8
9
10 | 19
19
19
16 | 16
14
14
14
14 | 23
63
68
68
68 | 110
116
100
94
89 | 4 2
4 6
5 0
4 6
3 8 | 3 8
3 4
3 4
3 4 | 50
73
94
105
50 | 16
16
16
16 | 14
14
16
16
11 | 23
23
27
19 | 14
14
11
11 | 8.6
8.6
8.6
11
11 | | 11
12
13
14
15 | 16
16
16
16 | 1 4
1 4
1 4
1 4
1 4 | 73
73
68
68
68 | 94
78
73
78
84 | 3 8
4 6
4 6
4 6
5 0 | 34
31
17
6.0
8.6 | 23
8.6
34
24
11 | 16
16
16
11 | 6.0
8.5
16
19
19 | 16
19
19
8 6
8 6 | 11
11
11
11 | 11
11
11
8.6 | | 16
17
18
19
20 | 19
19
19
19 | 16
14
11
11 | 68
63
63
68 | 89
94
94
94
89 | 4 6
3 8
4 2
4 2
4 6 | 11
16
23
104
66 | 11
14
14
16
16 | 14
14
14
14 | 19
19
23
23 | 14
16
16
14 | 11
11
11
11 | 8.6
11
11
8.6
8.6 | | 21
22
23
24
25 | 19
19
19
19 | 1'1
11
11
11 | 300
792
361
251
158 | 8 9
8 9
9 4
8 9 | 38
42
38
31
38 | 42
20
6.0
8.6
11 | 16
16
81
116
116 | 14
14
16
23
23 | 16
16
14
14 | 14
11
14
14 | 11
14
11
11 | 8.6
11
11
11 | | 26
27
28
29
30
31 | 19
19
19
23
23 | 14
14
14
14
14 | 128
110
128
134
122
116 | 8 9
8 9
5 8
3 8 | 42
42
38 | 14
19
93
84
446
89 | 105
100
105
110
105 | 23
23
19
16
16 | 14
16
16
14 | 11
11
11
8 &
8 & | 11
11
11
11
11 | 11
11
8.6
14
14 | | | 561 | 413 | 3631 | 2784 | 1340 | 15212 | 1747.6 | 571 | 461.6 | 4714 | 3428 | 3072 | | MEAN | 18.1 | 13.8 | 117. | 89.8 | 47.8 | 49.1 | 58.3 | 18.4 | 15.4 | 15.2 | 11.1 | 10.2 | | ACRE- | 1,110. | 819. | 7,200. | 5,520. | 2,660. | 3,020. | 5,470. | 1,130 | 916. | 935. | 680. | 609. | | | Remarks: | | | | | | | | | EAR MEAN
OR
ERIOD ACRE | | .8
8,070. | P. C. Dist. Porm 52 4-44 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. F 266-R | | | | | | н | YDRAULIC I | DIVISION | | | | | | |----------------------|----------------------
----------------------------|---------------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------------|------------------------------| | Osily | discharge, in | second-feet of | LOS AN | GELES RIV | ER at Mar | lposa Str | eet | | | , for the ye | ar ending Septe | mber 30, 19 <u>47</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Bept | | 2 | 4 8
1 4 | 11
11 | 27 | 3 4
3 4 | 100
78 | 100 | 1 4
1 4 | 16
16 | 13 | 1 4
1 4 | 13 | 14 | | 4 5 | 19
16
16 | 8.6
8.6 | 27
23
23 | 4 2
6 8
5 0 | 4 2
4 2
4 2 | 100
100
135 | 14
14
14 | 16
16
16 | 13
12
12 | 1 4
1 4
1 4 | 13
13
13 | 14
14
14 | | 8
7
8 | 16
16
16 | 8 £
11
24 | 39
31
19 | 31
27
23 | 4 2
4 6
8 9 | 9 4
8 4
8 4 | 15
15
16 | 16
16
16 | 12
12
13 | 14
13
13 | 13
13
13 | 14
14
14 | | 9
10 | 16
14
11 | 11
8.6 | ▼19
 19
 37 | 3 8
4 2
5 8 | 113
¥ 90 | 9 4
8 9
7 3 | 16
16 | 16
16
16 | 13
14
14 | 13
13
13 | 13 | 14
14
14 | | 12
13
14
15 | 11
11
11 | 241
500
192
54 | 47
47
47
47 | 46
27
27
31 | 130
130
130
130 | 58
33
4.0 | 16
17
17 | 16
16
16 | 14 14 14 14 | 13
13
14
14 | 14
14
14
14 | 14
14
14
14 | | 16
17
19
19 | 55
11
14
14 | 38
31
27
31 | 4 0
3 5
3 5
3 5 | 31
34
63
58 | 130
130
130
130 | 14
16
16
14 | 17
17
17
17 | 16
15
15 | 14
14
14 | 14
14
14
14 | 13
13
12
12 | 13
13
13 | | 20
21 | 14 | 73 | 3.5
5.5 | 31 | 130 | 25
36 | 17
16 | 14 | 14
14
14 | 13 | 12 | 13
13
13 | | 22
23
24
25 | 16
16 | 68
292
94 | ▼40
58 | 31
31
38
73 | 130
130
130
130 | 14
14
14 | 16
16
16
16 | 14
14
14
14 | 14
14
14
14 | 12
12
12 | 12
13
13 | 12
12
12
12 | | 26
27
28
29 | 16
16
36
11 | 68
63
54
31
31 | 341
498
167
▼140 | 63
38
59 | 100
100
100
100 | 14
16
81
40 | 16
16
16
16 | 14
14
13
13 | 14
14
14
.14 | 12
12
12
13 | 13
14
14
14
14 | 12
12
12
12
12 | | 30
31 | 11
11 | 27 | 68 | 31
50 | | 1 4
1 4 | 16 | 13
13 | 14 | 13 | 14 | 12 | | | 533 | 2221 | \$ 2 2 2 | 1271 | 2934 | 1515 | 481 | 464 | 407 | 409 | 410 | 395 | | CEAN | 17.2 | 74.0 | 71.7 | 41.0 | 105 | 48.9 | 16.0 | 15.0 | 13.6 | 13.2 | 13.2 | 13.2 | | CRE | 1,060 | 4,410 | 4,410 | 2,520 | 5,820 | 3,000 | 954 | 920 | 807 | 811 | 813 | 783 | | | Remerks: | | | | | | | | | YEAR MEA | N 36.3 | . 310 | ### STATION F570-R LOS ANGELES RIVER above Arroyo Seco LOCATION: WATER-STAGE RECORDER, LAT. 34°04'58", LONG. 118°13'35", ON THE RIGHT (WEST) CHANNEL WALL 800 FEET ABOVE THE JUNCTION WITH THE ARROYO SECO. THE FORMER STATION F578-R WAS 450 FEET ABOVE THE JUNCTION WITH THE ARROYO SECO. ELEVATION OF ZERO GAGE MEIGHT, 292,58 FEET. ### DRAINAGE AREA: 510 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - RECTANGULAR CONCRETE 177 FEET WIDE AND 29 FEET DEEP WITH AN INVERT 20 FEET WIDE AT TOP. 16 FEET WIDE AT BOTTOM AND 1 FOOT DEEP. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 15 FEET ABOVE GAGE. RECORDER: INSTALLED MAY 26, 1938 AT STATION F578-R. REMOVED APRIL 5, 1939. INSTALLED AT STATION F57C-R DECEMBER 8, 1939 IN A 4,5 FT. X 4,5 FT. CONCRETE HOUSE AND STILLING WELL COMBINED. A FRIEZ CONTINUOUS RECORDER, FURNISHED BY CORPS OF ENGINEERS, U.S. ARMY, WAS IN SERVICE FROM OCTOBER 1 1945 TO SEPTEMBER 30, 1947. REGULATION AND/OR DIVERSIONS: SUBJECT TO SAME REGULATION AS STATION F266-R. SEVERAL DEBRIS BASINS REGULATE FLOW ON ADDITIONAL TRIBUTARIES. THE LOS ANGELES WATER DEPARTMENT SPILLS SURPLUS FLOW INTO THE CHANNEL FROM WATER DEVELOPED IN THE GRIFFITH PARK AREA. DIVERSIONS: SEVERAL IRRIGATION DIVERSIONS IN THE MOUNTAIN TRIBUTARIES; OTHER FLOW IS DIVERTED AND/OR RELEASED AT THE SEVERAL WATER SUPPLY RESERVOIRS, AND THE LOS ANGELES WATER DEPARTMENT DIVERTS FLOW FOR SPREADING. RECORDS AVAILABLE: DS AVAILABLE: AT STATION F57-R - DECEMBER 1929 TO MAY 26, 1938-AT STATION F57B-R - MAY 26, 1938 TO APRIL 5, 1939 APRIL 5, 1939 TO DECEMBER 8, 1939, BI-WEEKLY MEASUREMENTS. AT STATION F57C-R - DECEMBER 8, 1939 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: MINIMUM 2,8 SECOND-FEET, DECEMBER 22, MINIMUM 2,8 SECOND-FEET, SEPTEMBER 15. MINIMUM 2,8 SECOND-FEET, SEPTEMBER 15, 1946-1947 MAXIMAM 5,320 SECOND-FEET, DECEMBER 25, MINIMAM 1,6 SECOND-FEET, AUGUST 6. 1929-1946 (STATIONS F57-R, F578-R AND F57C-R) MAXIMAM 68,000 SECOND-FEET, ESTIMATED, MARCH 2, 1938MINIMAM NO FLOW AT TIMES EACH YEAR FROM 1929-30 TO 1933-34. ACCURACY: FAIR. OPERATION: LOCATED AND CONSTRUCTED BY THE CORPS OF ENGINEERS, U.S. ARMY, OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, AND CORPS OF ENGINEERS, U.S. ARMY, WITH THE COOPERATION OF THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH, | | DISCHARG | E MEASURE | MENTS OF | LOS AN | GELES | RIVER | | | | | | | | į | Dimentance | MESSINE | MENTS OFLOS | ANGELES | RIVER | | | | | | | | | |-----------------|-------------|----------------------|--------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------------|-----------|--------|---------|--------------|------|------------|-------------------------|--|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------------------------------|------------|--------------------|--|-------------| | | | | Arroyo Seco | | | A U.C. | ING THE | FEAR ENDING | S EPTE | MBER | 39, 1 | a 718 - | | [| AT. | | ve Аггоуо Seco | | | | NO THE Y | EAR ENDING | SEPTE | MBER | 30, 19 | 47 | | | KG. | pA7% | BEGIN | MADE BY | WIDTH
FEET | AREA DF
SECTION
SQ. FT. | MEAN
VELUCITY
FT-PER BEG. | BAURK
HEIGHT
FEET | DINGHANDE
NEG. FT. | RAT- ME | тн. м | EAS. G | S. HT. | METER
NO. | NO. | DATE | PEGIN | YE ICAH | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELDEITY
FT.PER BEG. | BAUGE
HEIBHT
FEET | DISCHARGE
BEC. FT. | RAT- N | ETH- ME | EAS. B.
EG. GHA | HT. H | ETER
NO. | | 743 | 10/4 | 354P
405P | BOLL INGÉR | 17.6 | 6.49 | 1.94 | | 12.6 | | | 13 | 0 | FC6 | 801 | 19-3 | 100P
110P | WADDICOR | 16.7 | 4.39 | 1.61 | 0.32 | 7.1 | | _ | 10 0 | | 37 | | 744 | 10/11 | 1128A
1143A | | 17.5 | 6.67 | ĺ | | 15.1 | FΤ | - i | 14 | 0 | | 802 | 10-10 | 1252P
100P | WADDICOR
VAN DER GOOT | 16.9 | 5.13 | 1.31 | 0.32 | 6.7 | | | 10 0 | | | | 745 | 10/18 | 335P
345P | DEVORE
L INDSAY | 17.3 | 7.07 | 2.40 | 0.41 | 17.0 | | 6 | 10 | 0 | FC42 | 803 | 10-17 | 130P
142P | WADD I COR | 16.0 | 4.90 | 1.67 | 0.35 | 8.2 | | .6 | 10 0 | | | | 746 | 10/25 | 453P
509P | DEVORE | 17.7 | 7.82 | 2.44 | 0.46 | 19.1 | | 6 | 11 | 0 | | 804 | 10-24 | 1250P
100P | | 16.3 | 6.56 | 1.68 | 0.45 | 11.1 | | .6 | 9 0 | | | | _747_ | 10/30 | 340P
352P | DEVORE | 18.5 | 11.8 | 3.19 | 0.66 | 37.6 | | 6 | 9 | 02 | • | 805 | 10-31 | 1247P
103P | | 16.9 | 6.53 | 1.56 | 0.43 | 10.2 | | .6 | 0 0 | | • | | _748 | 11/1 | 1030A | ODEKIRK | 17.7 | 8.07 | 2.55 | 0.48 | 20.6 | | 6 | 11 | 0 | • | 806 | 11-7 | 1247P
1259P
817P | | 16.0 | 6.32 | 1.33 | 0.47 | 8.4 | | .6 | 9 0 | <u> </u> | | | 749 | 11/8 | 1040A
505P | HAIG | 17.7 | 7.75 | 2.41 | 0.43 | 18.7 | 4 | 5 | 11 | 0 | FC35 | 807 | 11-12 | 850P
912A | WADDICOR - OCAMPO | 177. | 248. | 7.61 | 1.98 | 1887. | - | . č. | 13 | 21 | | | 750 | 11/15 | 525P
850A | | 18.0 | 7.67 | 2.17 | 0.45 | 16.7 | | 6 | 10 | 0 | •• | 808 | 11-13 | 950A
107P | | 177. | 304. | 8,28 | 2.48 | 2516. | F | - | 12 +. | 10 | | | 751 | 11/23 | 908A
920A | | 18.0 | 8.86 | 1.94 | Q.50 | 17.2 | -+- | 5 | 14 | 0 | | 809 | 11-14 | 112P
314P | * " | 177. | 96.1 | 4.65 | 1,43 | 448. | - | - | 5 | 03 | | | 752 | 11/29 | 936A
420P | | 18.0 | 9.77 | | | 20.0 | + | - 1 | 12 - | | | 810 | 11-20 | 326P | WADDICOR | 177. | 78.2 | 3,94 | 1.34 | | \vdash | - | 9 | | | | 753 | 12/6 | 310P | <u></u> | 18.0 | 9.06 | ļ | 0.52 | 20.0 | | T | | +.01. | | 811 | 11-21 | 1224P
1040A
1047A | WADDICOR - OCAMPO | 20.0 | 18.0 | 4.67 | 1.05 | | | .6
OATS | 10 0 | | | | 754 | 12/13 | 328P
330P
358P | | 49.2 | 17.7 | 3.79
4.04 | 0.90 | 69.8 | H | - | 12 | . O | | 813 | 11-29 | 1249P
1259P | WADDI COR | 17.9 | 11.5 | 3.27 | 1.73 | 37.6 | | \neg | 7 | | C37 | | 755
756 | 12/27 | 358P
412P | | 19.3 | HANNELS | | 1.09 | 72.8 | | | 10 | 0 | | 814 | 12-5 | 1222P
1232P | ** | 17.3 | 10.4 | 3.59 | | 37.3 | | .6 | 9 | Τ, | | | 757 | 1/3 | 340P
400P | | 1 | HANNELS | | 1.08 | 107. | ı. | | 12 | 0 | | 815 | 12-6 | 832A
838A | WADDICOR - OCAMPO | 177. | 41.0 | 3.73 | 1,13 | 153. | F | DATE | | | _ | | 758 | 1/10 | 405P | | THREE C | i | | 1.08 | 96.8 | | | 12 | 0 | | 816 | 12-12 | 1255P
107P | WADDICOR | 20.0 | 16.9 | 3.78 | 0.94 | 64.0 | | | 10 0 | F | C37 | | 759 | 1/17 | 352P
408P | | 19.5 | 18.9 | 4.87 | 1,08 | 92.0 | ╽. | .6 | 11 | 0 | | 817 | 12-19 | 1247P
105P | * | 18.6 | 11.2 | 3.22 | 0.65 | 36.4 | | .6 | 10 0 | | | | _760_ | 1/24 | 215P
230P | | 19.5 | 20.4 | 4.53 | 1.07 | 92.3 | <u>.</u> | 6 | 12 | 0 | | 818 | 12-25 | 1115P
1130P | WADDICOR - OCAMPO | 177. | 328. | 10.3 | 3.02 | 3380. | | .6 | 12 | | • | | 761 | _1/31 | 325P
340P | ** | 18.7 | 12.9 | 4.23 | | 54.6 | <u>.</u> | 6 | 10 | 0_ | | 819 | 1+2 |
232P
242P | WADD I COR | 18.6 | 13.6 | 4.67_ | | 63.5 | | .6 | 10 | <u> </u> | | | _762 | 2/7 | 405P
415P
330P | | 19.5 | 13.3 | 3.72 | | 49.6 | <u></u> , | 6 | 8 | | | 820 | 1-9 | 200P
215P
105P | • | 16.9 | 14:1 | 4.06 | 0.82 | 57.2 | | .6 | 9 0 | | | | 763 | 2/11 | 345P
330P | | 18.5 | 12.1 | 3.70 | 0.66 | 44.8 | - | 6 | .8 | 0 | n | 821 | 1-16 | 120P | | 18.0 | 11.7 | 3.59 | 0.66 | 42.0 | \vdash | .6 | 10 0 | · - | | | 764 | 2/14_ | 340P
338P | ** | 18.5 | 12.5 | 3.66 | 0.66 | 45.8 | H | 6 | 8 | 0 | | 822 | 1-23 | 122P | - | 16.4 | 11.1 | 3.54 | 0.68 | 39.1 | \vdash | .6 | 9 0 | ' | ·· | | 765 | 2/21 | 350P
855 A | ** | 38.5 | 14.4. | 3.53 | 0.70 | 50.7 | | | | ±01 | ., | 823 | 1-30 | 202P
132P | D | 18,4 | 12.6 | 3.44 | 0.70 | , 43.3 | \vdash | • 6 | 10 0 | <u>' </u> | - | | 7.66 | ,2/27 | 910A
1140A | HATG | 18.5 | 12.6 | 3.88 | 0.71 | 49.1 | | 6 | | 0 | FC35 | 824 | 2-6 | 142P
110P | " | 18.4 | 12.0 | 3.45 | 0.62 | 41.4 | | | 10 0 | | | | _767 | 3/7 | 1158A
455P | •• | 18.5 | 12.4 | 3.70 | 0.71 | 45.8 | | - } | | 0.1 | | 825 | 2-13 | 125P
220P | WADDICOR - BLAKELY | | CHANNEL | S | 1.10 | 114. | \vdash | • | 11 0 | | | | _768_ | 3/14 | 334P | | 17.3 | 5.93 | ł | 0.37 | 12.3 | | 6 | 9 | 0 | | 826 | 2-20 | 228P
240P | BLAKELY | | | | 1.09 | | \vdash | | 7 0 | | 35 | | 769
770 | 3/20 | 355P
342P
358P | | 177.0 | 39.2 | 3.46 | 0.73 | 136.
55.1 | | | 10 | 01 | | 827 | 2-27 | 248P
240P
249P | | 20.0 | 18.8
CHANNEL | 4.53 | 0.95 | 85.2
96.4 | H | | 10 C | <u> </u> | -
- | | 771 | 3/28 | 232P
305P | | 177.0 | 13.7
38.0 | 3.73 | 1,13 | 142. | | 6
SUR. | | 02 | | 828 | 3-6 | 147P | | | 13.2 | 3,71 | 0.70 | 48.9 | | | 10 0 | | | | 772 | 4/4 | 846A
903A | | 169.5 | 26.6 | 3.53 | 1.06 | 93.8 | | | 13 | 0 | | 829 | 3-13 | 154P
227P
234P | | 19.0 | 6.39 | 1.91 | 0.42 | 12.2 | Ħ | .6 | 7 0 | | | | | 4/5 | 1218P
1228P | ** | 18.5 | 12.9 | | 0.73 | 52.3 | | 6 | 8 | 0 | | 831 | 3-21 | 1031A
1041A | * | | CHANNEL | ľ | 0.86 | 68.2 | П | \neg | 10 0 | | | | _774 | 4/11 | 430P
442P | P. HAIG
W. HAIG | 18.3 | 11.0 | 3,38 | 0.60 | 37.2 | ┈. | 6 | 9 | 03 | | 832 | 3-27 | 304P
310P
250P | | 17.4 | 6.16 | 1.69 | 0.36 | | | | 10 C | | | | 775 | 4/12 | 320P
235P | HAIG | 17.4 | 6.42 | 1.95 | 0.37 | 12.5 | <u>.</u> | 6 | 11 | 0 | | 833 | 4-3 | 300P | | 18.0 | 8.96 | 2.30 | 0.50 | 20.6 | | .5 | 10 0 |) | | | 776 | 4/18 | 210P
230P | | 17.5 | 7.07 | 2.12 | 0.40 | 15.0 | Ι. | 5 | 11 | 0 | | 834 | 4-10 | 250P
300P | ,, | 17.8 | 8.45 | 1.27 | 0.46 | 10.7 | | ,5 | 10 (| | ** | | 777 | 4/25_ | 205P
216P
440P | | 177.0 | 36.7 | 3.27 | 1.10 | 120. | <u>.</u> | 6 | 11 | 0 | " | 835 | 4-17 | 303P
310P | BLAKELY - JOHNSON | 17.2 | 5.53 | 1.34 | 0.34 | 7.4 | $\downarrow \downarrow \downarrow$ | .5 | 10 0 | | | | _778 | 5/2 | 450P
420P | ,, | 17.5 | 7.40 | 2.27 | 0.43 | 16.8 | | 5 | 13 | 0 | | 836 | 4-24 | 121P
238P | BLAKELY | 17.3 | 5.76 | 1.58 | 0.35 | 9.1 | | .6 | 10 0 | 2 | • | | 7 79 | _5/9 | 430P
150P | •• | 18.0 | .8.38 | 2,21 | 0.54 | 18.5 | | 6 | | 0 | | 837 | 5-1 | 245P
226P | " | 17.4 | 6.01 | 1.46 | 0.37 | 8.8 | - | .5 | 10 C |) | | | _780 | 5/16 | 210P
850A | | 18.0 | 10.5 | 2.23 | 0.60 | 23.3 | | | 13 - | +.09 | | 838 | 5-8 | 232P
300P | | 17.6 | 6.05 | 1.16 | 0.41 | 7.0 | \vdash | -5 | 10 0 | 2 | | | _781 | 5/21 | 910A
200P | | 17.5 | 9.59 | ł | l | 23.8 | | | 12 | 0 |
 | 839 | 5-15 | 307P
240P | | 17.8 | 7.06 | 1.39 | 0.39 | ı | + | .5 | 10 0 | | | | -782 | 5/23 | 216P
303P | | 18.0 | 9.56 | 1.75 | 0.58 | 21.5 | | 6 | 10 | 0 | | 840 | 5-21 | 300P | | 17.6 | 7.49 | 1.12 | 0.45 | 1 | | Ţ | 12 0 | | C36 | | 783 | 5/31
6/6 | 315P
210P
221P | | 19.0 | 9.76 | | | 17.9 | | 6 | _ | +.02 | | 841 | 6-2 | 252P
455P | BLAKELY | 17.6 | 6.29 | 1.19 | 0.37 | | $\dagger \dagger$ | | 10 0 | | C35
 | | _784
_785 | 6/13 | 328P
338P | BROWN | 18.5 | 8.54 | 1 | | 15.3 | | _ | 12 | | FC24 | 842 | 6-5 | 505P
306P
314P | | 17.5 | 5.55 | 1.28 | 0.39 | | | | 10 0 | | | | 786 | 6/20 | 350P
406P | HAIG | 17.6 | 8.38 | 1 | 0.52 | 15.0 | | 5 | | 0 | FC35 | 844 | 6-19 | 201P
208P | | 17.2 | 5.20 | 1.33 | 0.30 | | | | 10 0 | | | | 787 | 6/27 | 325P
340P | | 17.7 | 7.61 | 1.66 | 0.51 | 12.6 | | 5 | 10 | 0 | | 845 | 6-26 | 238P
244P | | 17.3 | 5.27 | 1,31 | 0.32 | 6.9 | | | 10 0 | | | | 788 | 7/5 | 140P
155P | | 17.2 | 7.30 | 1.71 | 0.40 | 12.5 | | 6 | 11 | . 0 | | 846 | 7-2 | 510P
522P | BOLLINGER | 17.3 | 5.43 | 1 | 1 | 5.5 | | | 11 0 | | C6 | | 789 | 7/11 | 250P
305P | HAIG | 18.0 | . 7.56 | 1.53 | 0.45 | 11.6 | | .6 | 41 | | FC35 | 847 | 7-10 | 1005A | | 17.3 | 5.41 | 1.18 | | 6.4 | | ,5 | 10 0 | | C35 | | 790 | 7/18 | 255P
310P | | 17.4 | 7.79 | i | 0.52 | 11.4 | 1 | .6 | - i | 0 | ., | 848 | 7-17 | 312P
320P | " | 17.3 | 5.09 | 1.20 | | 6.1 | | .5 | 10 O | - 1 | | | 791 | 7/25 | 302P
316P | | 17.3 | 5.95 | | 0.40 | 9.4 | | - i | 12 | ٥ | | 849 | 7-24 | 408P
416P | | 17.1 | 4.98 | 1.18 | 0.32 | 5.9 | Ш | .5 | 10 0 | | * | | _792 | 8/1 | 150P
202P | | 17.1 | 5.15 | 1.66 | 0.32 | 8.5 | \sqcup | .5 | 12 | _0 | | 850 | 7-31 | 320P
329P | | 17.2 | 4.61 | 0.87 | 0,20 | 4.0 | \perp | .5 | 10 0 | _ | " | | 793 | 8/8 | 1055A
1110A | | 17.3 | 6.24 | 1.91 | 0.37 | 11.9 | \vdash | .5 | 12 | 0 | | 851 | 8-7 | 925A
937A | | 16.8 | 2.91 | 0.69 | 0.20 | 2.0 | | .5 | 10 0 | \perp | * | | _794 | 8/15 | 240P
254P | BOLL INGER | 17.3 | 5.86 | 1.47 | 0.38 | 8.6 | <u> </u> | .6 | 11 | 01 | FC6 | 852 | 8-13 | 250P
300P
245P | TURNER | 16.5 | 3,11 | 0.87 | 0.16 | 2.7 | ┵ | 5 | 11 0 | E | C43 | | 795 | 8/22 | 355P
407P
250P | BOLL INGER | 17.4 | 6.19 | 1.29 | 0.38 | 8.0 | | .6 | 10 | 0 | | 853 | 8-20 | 255P
340P | ., | 16.2 | 2.56 | 0.82 | 0.18 | 2.1 | +- | .5 | 11 0 | _ - | - | | _796_ | 8/18 | 302P. | WADDICOR | 17-1 | 5.01 | 1.36 | 0.32 | 6,8 | | .6 | 10 | 0 | •• | 854 | 8-28 | 348P | BLAKELY | 16.9 | 4.06 | 1 | 0.24 | 3.9 | +- | .5 | 10 0 | | C35_ | | 797 | 9/4 | 1230P
256P | -WADD LCOR | 17.0 | 4.74 | 1.18 | l | 5.6 | 1 1 | | 11 | | FC37 | 85.5 | 9-4 | 228P | ,, | 16.9 | 3.57 | | 0.22 | 3.8 | + | | 11 0 | _ | | | 798 | 9/13 | 308P | BOLLINGER | 17.0 | 4.68 | | | 5.3 | | - | 10 | 0 | FC6 | 856 | 9-11 | 310P
252P | " | 17.1 | 3.97 | 1.16 | T | 4.6 | 1- | .5 | 11 0 | _ | - | | 79,9 | 9/20 | 319P
1240P | | 16.9 | 4.23 | | | 4,2 | - | .6 | | 0 | ., | 857 | 9-18 | 300P
428P | | 17.0 | 4.73 | 1.20 | 1 | 5.7 | | .5 | 10 0 | _ | - | | 800 | 9/27 | 1255P | | 16.6 | 3.66 | 1.26 | 0.28 | 4.6 | - | .5 | 10 | 0_ | ļ | 858 | 9-24 | 438P | | 17.1 | 4.71 | 1.27 | 0.27 | 6.0 | | 5 | 10 0 | | | | 7 . 0 | Dist. | Form I | 81 4-46 | | |--------------|-------|--------|---------|--| | | | | | | Remarks: # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F57C-R | aily | discharge, in sc | cond-feet of | LOS AN | GELES RIV | ER above | Arroyo Se | co | | | , for the year | r ending Septer | nber 80, 19_11 | |------|------------------|--------------|--|-----------|----------|-----------|----------|--------|----------|----------------|-----------------|----------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 16 | 21 | 19 | 109 | 38 | 4.5 | 88 | 54 | 22 | 14 | 8.8 | 5.2 | | 2 | 15 | 18 | 17 | 107 | 20 | 4.6 | 121 | 18 | 2 ۱٬ | 15 | 10 | 4.5 | | 3 | 13 | 17 | 19 | 107 | 710 | 46 | 95 | 20 | 23 | 13 | 8.8 | 5.2 | | 4 | 12 | 15 | 21 | 107 | 104 | 4 3 | 94 | 30 | 21 | 13 | 8.2 | 5.2 | | 5 | 12 | 12 | 2.5 | 106 | 5 4 | 4.4 | 65 | 41 | 21 | 12 | 8.2 | 7.0 | | 6 | 11 | 50 | 20 | 104 | 51 | 47 | 71 | 16 | 21 | 12 | 8.8 | 7.0 | | 7 | 8.8 | 25 | 4.3 | 104 | 50 | 4 7 | 94 | 16 | 20 | 12 | 10 | 7.0 | | 8 | 15 | 19 | 62 | 102 | 48 | 4.6 | 106 | 19 | 20 | 11 | 12 | 7.0 | | 8 | 16 | 17 | 63 | 99 | 47 | 4 3 | 113 | 19 | 17 | 12 | 13 | 6.4 | | 10 | 15 | 16 | 64 | 97 | 47 | 4.4 | 80 | 21 | 18 | 12 | 12 | 5.4 | | 11 | 1.5 | 16 | 76 | 97 | 4.4 | 4.4 | 4.6 | 20 | 18 | 12
12 | 11 | 6.4 | | 12 | 12 | 14 | 71 | 95 | 4.4 | 40 | 12 | 19 | 19 | 12 | 10 | 7.0 | | 13 | 13 | 16 | 71 | 95 | 4.6 | 4 2 | 24 | 20 | 16 | 12 | 10 | 5 B | | 14 | 14 | 16 | 71 | 94 | 4.6 | 13
13 | 38 | 20 | 16 | 12 | 10 | 4.6 | | 15 | 16 | 16 | 69 | 94 | 57 | 13 | 13 | 20 | 15 | 10 | 9.4 | 3.4 | | 16 | 1.6 | 16 | 69 | 92 | 50 | 13 | 14 | 26 | 13 | 12 | 8.8 | 4.0 | | 17 | 17 | 17 | 68 | 92 | 4 3 | 17 | 14 | 24 | 13 | 12 | 10 | 4.6
5.2 | | 18 | 17 | 16 | 71
71 | 92 | 43 | 18
219 | 16 | 24 | 14 | 11 | 9.4 | 5.2 | | 20 | 18
17 | 16 | 72 | 92 | 44 | 113 | 18 | 24 | 15 | 12
13 | 8-8 | 5.2 | | 21 | 16 | 21 | 488 | 94 | 4 6 | 62 | 19 | 23 | 16
15 | 12 | 10 | 4.5 | | 22 | 15 | 19 | 1880 | 94 | 46 | 40 | 20 | 23 | 14 | 11 | 9.4 | 4.0 | | 23 | 16 | 17 | 860 | 94 | 47 | 17 | 62 | 23 | 12 | 11 | 8.2 | 3 4 | | 24 | 16 | 18 | 320 | 92 | 44 | 16 | 109 | 23 | 12 | iò | 7.5 | | | 25 | 17 | 20 | 208 | 88 | 46 | 15 | 118 | 22 | 12 | 9.4 | 7.0 | 4.0 | | 26 | 17 | 19 | 120 | - 52 - | 46 | 19 | 116 | 21 | 12 | 8.8 | 6.4 | 4.0 | | 27 | 17 | 21 | 116 | 85
82 | 48 | 18 | 111 | 21 | 12 | 9.4 | 6.4 | 4.0 | | 28 | 16 | 21 | 115 | 7 9 | 48 | 216 | 111 | 23 | 13 | 8 2 | 6.4 | 4.6 | | 29 | 39 | 21 | 113 | 69 | +0 | 151 | 111 | 24 | 14 | 8 2
8 2 | 7.0 | 4 .0
5 .8 | | 30 | 61 | 20 | 113 | 51 | - | 983 | 109 | 22 | 15 | 8.8 | 6.4 | 3.4 | | 31 | 29 | 20 | 111 | 56 | | 102 | 109 | 22 | 13 | 8.8 | 6 A
5 2 | | | | | | ' | | · | | <u> </u> | | | | <u> </u> | | | | 549.8 | 540 | 5506 | 2861 | 2001 | 2623 | 2027 | 722 | 491 | 349.6 | 2742 | 1518 | | EAN | 17.7 | 18,0 | 178. | 92.3 | 71.5 | 84.6 | 67.6 | 23.3 | 16.4 | 11.3 | 8.84 | 5.06 | | RE- | 1,090. | 1,070 | 10,920. | 5,670. | 3,970. | 5,200. | 4,020. | 1,430. | 974. | 693. | 544. | 301. | E.C. Dist. From
81 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Daily discharge, in second-feet of LOS ANGELES RIVER above Arroyo Seco Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. 8ta. No. F 57C-R YEAR MEAN 49.6 OR PERIOD ACRE-FEET 35.880. | 3 7.4 6.4 b 3.8 b 70 42 90 26 7.9 8.4 5.2 2 2 5 7.4 b 3.8 b 6.6 42 153 13 6.9 8.4 4.9 1 7.9 9.0 5.2 2 2 5 7.4 1.9 9.0 5.2 2 2 1.0 1.2 1.7 9.9 9.0 5.2 2 2 3 4 1.0 1.0 4.2 1.2 1.0 1.2 1.7 4 4.9 1 1.0 6.9 7.4 4.9 1 1.0 6.9 7.4 4.9 1 1.0 6.9 6.9 4.9 1 1.0 6.9 5.9 4.9 1 1.0 6.9 5.9 5.9 6.4 2 1.0 1.0 6.9 5.9 5.9 6.4 2 1.0 6.4 2 1.0 6.9 7.4 1.3 8.9 5.9 6.4 | 6 b 4 2
4 b 4 3
3 b 4 4
9 4 6 | |---|--| | 2 1 O 69 b 3 8 b 6 6 3 70 85 95 90 7 A 5 2 2 4 8 A 6 9 b 3 8 b 8 4 42 101 21 7 9 8 A 5 2 2 5 7 A 7 A b 3 8 b 6 6 42 101 21 7 9 9 0 5 8 A 4 9 1 8 6 9 7 A b 3 8 b 6 6 4 2 153 13 6 9 8 A 4 9 1 7 7 A b 3 8 b 6 6 4 2 153 13 6 9 8 A 4 9 1 8 6 9 7 A b 3 8 5 9 4 2 8 8 1 4 6 9 6 9 4 9 1 8 6 9 3 4 b 3 8 5 5 1 37 8 8 1 4 7 9 5 9 6 A 2 10 6 9 7 A f 3 8 5 5 1 0 3 7 1 16 7 1 1 1 9 0 5 9 6 A 2 11 6 9 9 1 5 5 1 0 3 7 1 16 7 1 1 1 9 0 5 9 6 A 2 12 7 9 <td< td=""><td>6 b 4 2
4 b 4 3
3 b 4 4
9 4 6</td></td<> | 6 b 4 2
4 b 4 3
3 b 4 4
9 4 6 | | 4 8 A 6 9 b 3 8 b 8 4 42 101 21 7 9 9 0 5 2 2 8 6 9 7 A 17 7 f 42 43 153 13 6 9 8 A 4 9 1 8 6 9 7 A 17 7 f 42 43 94 14 6 9 7 A 49 1 8 6 9 7 A 9 0 b 38 38 7 4 88 14 6 9 7 A 49 1 8 7 A 9 0 b 38 50 137 88 14 7 9 59 6 A 2 10 6 9 7 A f 38 55 104 90 13 90 59 6 A 2 11 6 9 91 55 103 vii.6 71 11 90 59 6 A 2 12 7 4 563 65 47 116 71 11 | 3 b 4 A
9 4 £
6 4 £ | | 8 6 9 7 A 1 7 7 f 4 2 4 3 9 4 1 4 6 9 6 9 4 9 1 7 7 5 9 8 A 8 3 3 9 4 2 8 8 1 4 6 9 6 9 4 9 1 8 6 9 3 4 b 3 8 3 8 7 4 8 8 1 5 6 9 5 9 5 6 1 10 6 9 7 4 f 3 8 5 5 1 1 3 8 8 1 4 7 9 5 9 5 6 4 2 11 6 9 7 4 f 3 8 5 5 1 0 3 7 1 1 6 7 1 1 1 9 0 5 9 6 4 2 12 7 4 5 6 3 6 5 9 1 1 1 6 7 1 1 1 9 0 5 9 6 4 2 13 7 9 8 9 6 6 5 4 7 1 1 6 4 3 6 9 1 3 6 9 6 4 2 14 9 0 5 0 2 6 5 < | 6 4.6 | | 8 6.9 3.4 b 3.8 3.8 7.4 8.8 1.5 6.9 5.9 5.6 1 10 6.9 7.4 f 3.8 5.5 1.04 9.0 13 9.0 5.9 6.4 2 11 6.9 9.1 5.5 1.03 vii.6 7.1 11 9.0 5.9 6.4 2 12 7.4 5.63 6.5 9.1 1.16 7.1 11 9.0 5.9 6.4 2 13 7.9 8.96 6.5 4.7 1.16 5.9 1.3 1.0 6.4 6.4 2 14 9.0 5.02 6.5 4.7 1.16 1.2 6.4 1.5 6.9 5.9 b.2 15 1.1 1.13 6.2 4.3 1.16 1.2 7.4 1.4 6.9 5.9 5.6 b.2 17 1.4 b.62 3.7 4.7 1.16< | | | 10 69 7A f 28 55 104 90 13 90 59 6A 2 11 69 91 55 103 vii6 71 11 90 59 6A 2 12 7A 563 65 91 116 59 13 10 6A 6A 2 13 79 896 65 47 116 43 69 13 69 6A 2 14 90 502 65 45 116 12 6A 15 69 59 b 2 15 11 113 62 43 116 12 7A 14 69 59 56 b 2 16 66 b80 38 43 116 12 7A 11 69 52 b 2 17 14 b62 37 47 116 12 | 9 42 | | 12 7 4 563 65 91 116 59 13 10 6A 6A 2 14 9 0 502 65 47 116 43 69 13 69 6A 2 15 11 113 62 43 116 12 7A 14 69 5A b 2 16 66 b80 38 43 116 12 79 13 69 52 b 2 17 14 b62 37 47 116 12 7A 11 69 59 b 2 18 6A b42 37 75 116 12 7A 11 69 6A b 2 13 7A b52 37 73 116 12 7A 10 69 6A b 2 20 7A 596 37 45 116 17 79 10 69 6A b 2 21 79 88 57 43 116 48 8.4 10 6A 5.6 2 | 3 4.6 | | 15 11 115 62 43 116 12 74 14 69 56 b 2
18 66 b 80 38 43 116 12 79 13 69 52 b 2
17 14 b 62 37 47 116 12 74 11 69 59 b 2
18 64 b 48 37 75 116 12 74 10 69 64 b 2
18 74 552 37 73 116 12 74 10 69 64 b 2
20 74 596 37 45 116 17 79 10 69 64 b 2
20 74 596 37 45 116 17 79 10 69 59 2
21 79 88 57 43 116 48 84 10 64 56 2 | 6 42
6 46
6 49 | | 17 1 4 6 2 3 7 4 7 116 12 7 4 11 6 9 5 9 6 4 5 9 6 4 6 9 6 8 6 9 6 9 6 4 6 9 6 9 6 4 6 9 | 5 52 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 3 7 A
2 5 9
1 5 2 | | | 1 52
1 52 | | 23 10 522 41 40 116 11 95 95 59 6A 2
24 11 185 88 40 116 11 95 9.0 6A 5.6 2 | 1 5 2
4 5 9
9 5 9 | | 25 11 b140 872 74 V116 11 10 8.4 6.4 5.2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 5.6 | | 28 12 5 5 6 203 103 85 94 9.0 7.4 5.6 5 4.4 3 3 9.5 9.5 5 5 5 5 4.6 3 9.0 5 6.9 4.9 5 4.0 5 3 9 8.4 6.4 4.9 5 4.0 5 3 9 8.4 6.4 4.9 5 4.0 5 3 9 8.4 6.4 9 5 4.9 5 4.0 5 3 | | | 31 10 90 40 90 69 39 b 4 | 0 | | 4149 37940 26670 323A 1995 80
4434.7 17710 14930 2953 1699 | 149.6 | | 13.4 148 122 57.1 95.2 48.2 10.8 9.52 6.65 5.48 2.60 | 4.99 | 13.4 148 122 57.1 95.2 48.2 10.8 9.52 6.65 5.48 2.60 4.99 | Chicago Chica DEC. 27 #### STATION F34B-R LOS ANGELES RIVER at Firestone Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 33°57'03". LONG. 118°10'22". ON THE DOWN-STREAM SIDE OF FIRESTONE BOULEYARD BRIDGE, ABOUT 3 MILES WEST OF DOWNEY. ELEVATION OF ZERO GAGE HEIGHT, 95.16 FEET. DRAINAGE AREA: 614 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND SILT, ABOUT 340 FEET WIDE WITH 3:1 RIPRAPPED SLOPES. CONTROL - CONCRETE SILL ACROSS CHANNEL BOTTOM ABOUT 150 FEET BELOW STATION. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF BRIDGE. RECORDER: INSTALLED APRIL 11, 1938, OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW IS SUBJECT TO SAME REGULATION AS STATION F57C-R. IN ADDITION, THE FLOW IS PARTIALLY REGULATED BY DEVIL'S GATE DAM. DIVERSIONS: FLOW IS SUBJECT TO SAME DIVERSIONS AS STATION F57C-R. SEVERAL IRRIGATION DIVERSIONS IN THE MOUNTAIN TRIBUTARIES; SOME FLOW IS DIVERTED AT SEVERAL WATER SUPPLY RESERVOIRS AND THE LOS ANGELES WATER DEFARTMENT DI RECORDS AVAILABLE: AT STATION F34-R - MARCH 1, 1928 TO APRIL 11, 1938. (FOR PREVIOUS RECORDS SEE STATE OF CALIFORNIA DIVISION OF WATER RIGHTS BULLETIN NO. 5.) AT STATION F34B-R - APRIL 11, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 12.500 SECOND-FEET, DECEMBER 22. MINIMUM 8.4' SECOND-FEET, MARCH 17. 1946-1947 MINIMUM 8.4 SECOND-FEET, MARCH 17. 1946-1947 MAXIMUM 14,870 SECOND-FEET, DECEMBER 25, MINIMUM 12 SECOND-FEET, SEPTEMBER 1 1928-1946 (STATIONS F94-R AND F948-R) MAXIMUM 79,000 SECOND-FEET, ESTIMATED MARCH 2, 1938. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: GOOD. OPERATION: LOCATED AND CONSTRUCTED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT AND OPERATED BYTHE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT WITH COOPERATION OF CORPS OF ENGINEERS, U.S. ARMY, AND THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH, | | DIRANDRID | C MEASURE | MENTS OF | LOS AN | SELES | RIVER | | | | | | | | - | | SERIN | | WIDTH | AREA OF | MEAN | SAUGE | DISCHARGE | HAT- MET | MEAN. | E. BT. | HETER | |-------|-----------|---------------|--------------------------|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|--------|---------|---------------------------|--------------|----------|------|----------------------|--------------------------|---------------|--------------------|-------------|----------------|-----------|----------|----------------------|---------------------------|----------| | | AT | ė | -4 B 1 | | | | | | | | | \.a | | ND. | DATE | 845A | MADE BY | PEET | BEGTION
BQ. FT. | FT.PER SEG. | HEIBRT
FEET | eko. FT. | ING OD | MEAB,
BED.
ND. | E. HT.
DHANDE
TOTAL | NO. | | | | PITE: | stone Boulevard | | | | ING THE Y | EAR ENDING | I UEPT | TEMBER | R 30, 1 | 940 | | 797 | 5/23 | 900A | BONAD I MAN | .50.0 | ,31.7 | 1.42 | 3.42 | 45.1 | | 6 ,10 | Q | FC19 | | MD. | DATE | BEBIN | HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT-
ING | HETH- | MEAS. 1 | E. HT.
CHANGE
TOTAL | METER
NO. | 798 | 5/29 | 924A
858A | | 44.0 | 30.0 | 1.47 | 3.42 | 44.0 | | 6 9 | 0 | FC19 | | | 10/4 | 953A | | | <u> </u> | | i | | П | | | | | 799 | 6/6 | 91,6A
954A | ,, | 42.0 | 29.3. | 1,43 | 3.43 | 42.3 | | 6 8 | 0 | ** | | 751 | 10/4 | 1012A
936A | BONADIMAN | TWO CHA | MNELS | | 3.53 | 30.4 | | .6 | 14 | | FC19 | 800 | 6/13 | 1006A
912A | ** | 42.0 | 28.0 | 1.38 | 3,44 | 38.7 | | 6 9 | 0 | | | 752 | 10/11 | 1000A
944A | | ., ., | | | 3.57 | 32.5 | | -6 | 13 | | | 801 | 6/21 | 925A | | 41.0 | 25.8 | 1.45 | 3.43 | 37.3 | | 6 9 | U | | | 753 | 10/18 | 1000A
900A | | | | | 3.56 | 28.3 | | 6 | 13 | | | 802 | 6/27 | 943A
955A | •• | 41.0 | 23.6 | 1.42 | 3.46 | 33.6 | | 5 10 | 0 | | | 754 | 10/25 | 920A
918A | | | | | 3.58 | | | | | 0 | . | 803 | 7/3 | 923A
940A
923A | 41 | 41.0 | 24.5 | 1.49 | 3.45 | 36.7 | | 10 | 0_ | | | .755 | 11/1 | 930A
910A | | | | | 3.60 | 39.9 | | .6 | 9 | | | 804 | 7/11 | 934A | | 43.0 | 24.3 | 1.41 | 3.44 | 34.4 | <u> </u> | 5 9 | 0 | | |
756 | 11/8 | 925A
922A | | 74.0 | _39.7_ | 0.91 | 3.59 | 36.0
35.5 | | .6 | 11 | 0 | | 805 | 7/18 | 940A
952A | ** | 45.0 | 24.4 | 1.40 | 3.47 | 34.1 | | 9 | 0 | | | .757 | 11/15 | 938A
932A | | | | | | | | | 10 | 0 | | 806 | 7/25 | 907A
920A | | 45.0 | 25.8 | 1 - 25 | 3.45 | 32.3 | | 9 | 0 | <u> </u> | | .758 | 11/21 | 944A
952A | ** | 75.0 | 39.2 | 1,04 | 3,60 | 40.8 | | .6 | -1 | | | 807 | 8/2 | 902A
915A | | 45.0 | 29.7 | 1.37 | 3.48 | 40.7 | | 9 | 0 | | | 759 | 11/29 | 1012A
928A | •• | TWO CHA | NELS | | 3.62 | 38.9 | | .6 | 15 | 0 | . | 808 | 8/9 | 1027A
1040A | | 45.0 | 25.9 | 1,39 | 3.47 | 36.0 | 1. | 5 11 | 0 | | | 760 | 12/6 | 942A
920A | ** | | | | 3.63 | | | | 10 | - | | 809 | 8/16 | 932A
952A | ** | 45.0 | 23.2 | 1.26 | 3,48 | 29.3 | | 10 | 0 | • | | 761 | 12/13 | 940A
902A | •• | 85.0 | 65.6 | 1.50 | 3.84 | 98.7 | | .6 | 10 | 0 | | 810 | 8/23 | 920A
_934A | | 45,0 | 24.8 | 1.22 | 3.46 | 30.2 | | 5 10 | 0 | | | 762 | 12/20 | 920A
342P | ** | 80.0 | 69.0 | 1.33 | 3.85 | | | _ | | + -01 | | 811 | 8/29 | 952 A
1005 A | BONAD IMAN
WADD I COR | 45.0 | 22.3 | 1,28 | 3,49 | 28.6 | | 5 11 | 0 | | | 763 | 12/21 | 352P
912P | BONAD IMAN
BONAD IMAN | 200.0 | 287. | 2.03 | 4.52 | 583. | | .6 | -+ | | <u></u> . | 812 | 9/5 | 930A
940A | WADD I COR | 25.8 | 13.6 | 1.42 | 3.46 | 19.3 | | 5 9 | -,01 | FC37 | | 764 | 12/21 | 940P
846A | KASIMOFF
BONADIMAN | 350.0 | 653. | 5.25 | 5.25 | 3430. | | .6 | 11 | ·.23 | | 813 | 9/19 | 934A
945A | | 23.0 | 13.8 | 1.36 | 3.48 | 18.8 | | 8 6 | 0 | | | 765 | 12/23 | 915A
945A | KASIMOFF | 210.0 | 586. | 4.98 | 5,02 | 2910- | | | | | | 814 | 9/26 | 925A
937A | " | 43.0 | 21.0 | 1.11 | 3.50 | 23.3 | | 10 | oʻ | | | 766 | 12/24 | 953A
800A | BONADIMAN | 187.0 | 325. | 1.75 | 3.85 | 569. | | .6 | 11 | 0 | | 782 | 3/20 | 855 A
920 A | | TWO CHA | NELS | | 3.43 | 132. | | 10 | 0 | | | 767 | 12/27 | 828A
823A | н | 178.0 | 184. | 1.05 | 3.48 | 193. | | .6 | 10 | 0 | | 783 | 3/20 | 1242P
115P | KASIMOFF
BONADIMAN | 310.0 | 544. | 2.35 | 4.35 | 1280. | | 17 | +.03 | | | 768 | 1/3 | 836A
900A | | 175.0 | 180. | 1.53 | 3.54 | 276. | | .6 | 10 | ٥ | | 784 | 3/21 | 930A
1010A | KASIMOFF
BONADIMAN | TWO CHA | NELS | | 3.38 | 108. | | 18 | 0 | | | 769 | 1/10 | 923A
830A | •• | TWO CHA | MÉLS | | 3.52 | 126. | | .6 | 18 | 0 | " | 785 | 3/28 | 902 A
925 A | BONAD IMAN | 304.0 | 646. | 3.34 | 4.78 | 2160. | | 17 | 14 | ** | | 770 | 1/17 | 900A | | | | | 3.59 | 122. | _ | .6 | 17 | 0 | " | 786 | 3/29 | 102P
120P | BONAD IMAN | 179.0 | 132. | 1.30 | 3.48 | 172 . | | 5 11 | 05 | ., | | _771 | 1/24 | 900A
925A | | | | | 3.60 | 123. | | .6 | 17 | 0 | | 787 | 3/30 | 631A
652A | ., | 333.0 | 779. | 5,40 | 5.08 | 4210. | ١. | 14 | 04 | ., | | 772 | 1/31_ | 9 13A
932A | " | | | | 3.56 | 82.0 | | .6 | 16 | 0 | | 788 | 3/31 | 922A
950A | KASIMOFF
BONADIMAN | 183.0 | 208. | 1.28 | 3.59 | 266. | Ţ., | | 0 | | | 773 | 2/4 | 322P
334P | | 175.0 | 161. | 0.77 | 3.42 | 124. | | .6 | 7 | 0 | | 789 | 4/2 | 910A
926A | BONAD IMAN | 186.0 | 293. | 1,91 | 4.12 | 561. | | 12 | 06 | | | 274 | . 2/3 | 141P
200P | BONAD IMAN | 325.0 | 908. | 7.17 | 5.80 | 6520. | | .6 | 10 | . 0 | FC19 | 790 | 4/4 | 847A
904A | | 183,0 | 153. | 1.13 | 3,45 | 173. | | 5 11 | 0 | | | 775 | 2/7 | 914A
936A | PI | TWO CHA | INELS | | 3.32 | 85.0 | | .6 | 17 | 0 | ·- | 1 | | 937A
956A | | TWO CHA | | | 3.38 | 75.6 | | 16 | 0 | | | 776 | 2/14 | 830A
850A | | | | | 3.31 | 70.0 | | .6 | 16 | 0 | ,, | 791 | 4/11 | 905A | | | | | 3.28 | 37.4 | | 5 13 | 0 | | | 777 | 2/21 | 930A
950A | | | | | 3,32 | 76.0 | | .6 | 14 | 0 | | 792 | 4/18 | 921 A
840 A | | | | | 3,62 | 162. | | 5 16 | 0 | | | 778 | 2/28 | 842A
900A | . 44 | | | | 3.32 | 69.6 | | .6 | 14 | 0 | | 793 | 4/25 | 903A
830 A | | | | | 3.41 | 47.7 | Τ. | 1 . | 0 | | | 779 | 3/7 | 910A
930A | | | | | 3.34 | 64.6 | | 6 | 13 | 0 | | 794 | 5/2 | 852A
820A | | , | | | 3.37 | 41.8 | - | 5 12 | 0 | ļ | | 780 | 3/14 | 905A
925A | | | | | 3.30 | 43.5 | | .6 | 13 | 0 | | 795 | 5/9 | 838A
840A | - | | | <u> </u> | † | 42.0 | | 6 11 | 0 | | | 76) | 3/19 | 750A
820A | | 320.0 | 751. | 3,65 | 4.87 | 2740. | П | .6 | 15 | +:05 | | 796 | 5/16 | 9008 | ļ. " | ļ | l | I | 3.40 | 42.0 | | 0 11 | <u> </u> | + | | _(11) | 1.3/13 | EZUA. | | 350.0 | 11211 | 1 0.00 | 1 | | | | + | | | 4 | | | | | | | | | | | | | | | DISCHARGE | MEAGUREM | ENTS OF LOS AND | SELES R | 1VER | | | | | | | | нр. | DATE | BESIN | HADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAH
VELODITY
PT,PER BEG. | BAUGE
HEIBHY
FEET | DISCHARSE
SED. FT. | RAT- ME | HEAS
SEC. | DHAMEE
YOTAL | HETER
HG. | |------------|-----------|-----------------------|------------------|---------|-------------------------------|---------------------------------|-------------------------|------------|------------|-------|--------|-------------|------------|--------------|----------------------|------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|--------------|-----------------|--------------| | | NEAD | Fire | stone Boulevard | | | DUR | NO THE Y | EAR ENDING | BEPTEMB | R 30, | . 1047 | | 848 | 2-9 | 815P
830P
902A | BONADIMAN - LANG | 185.0 | 343. | 3.85 | 4.66 | 1320. | | 6 7 | 04 | | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELOCITY
FT.HER SEC. | GAUDE
HEIGHT
FEET | DIECHARDE | RAT- METH- | HEAS. | E. KT. | HETER | 849 | 2-10 | 912A
824A | - ** ** | Two (| HANNEL S | | 3.51 | 186. | 1 | 6 11 | 0 | * | | | | 1000A | | PEET | EQ. FT. | FT.HER SEC. | PEET | BEC. FT. | ING OD | KO. | TOTAL | ND. | 850 | 2-13 | 838A
800A | BONADIMAN | 183.0 | 169. | 1.22 | 3.53 | 206. | 4 | 6 11 | 0 | -14 | | 815 | 10-3 | 1010A
912A | BONADIMAN | 42.0 | 23.4 | 1.41 | 3.45 | 33.0 | -6 | 9 | 0 | FC19 | 851 | 2-20 | 820A
830A | •• | 184.0 | 159. | 1.19 | 3.58 | 189. | 1 | 6 11 | 0 | | | 816 | 10-10 | 923A
912A | | 42.0 | 21.4 | 1.22 | 3.47 | 26.1 | 1.6 | 9 | 0 | ** | 852 | 2-27 | 846A | | 183. | 97.2 | 1.08 | 3.55 | 105. | 1 | 6 12 | 0 | | | 817 | 10-16 | 926A | | 202.0 | 229. | 1.97 | 4.21 | 452. | .6 | 12 | 06 | * | 853 | 3-5 | 850A
914A | **** | 188. | 251. | 2.00 | 4.11 | 502. | Ш | 6 12 | +.12 | | | 818 | 10-17 | 958A
907A | | 48.0 | 35.6 | 1.37 | 3.55 | 49.1 | 6 | .11 | Q | | 854 | 3-6 | 800A
828A | | TWO | HANNEL | | 3.55 | 124. | | 6 13 | 0 | ** | | 819 | 10-24 | 920A
840A | | 48.0 | 26.4 | 1.18 | 3.48 | 31,2 | 6. | 9 | 0 | <u> </u> | 855 | 3-13 | 832A
855A | -41 | | - | | 3.47 | 56.1 | Ш | 6 17 | 0 | - | | 820 | 10-31 | 858A
916A | .** | 46.0 | 26.2 | 1.28 | _3.55 | 33.7 | .6 | 9 | | | 856 | 3-20 | 836A
848A | | 26.5 | 23.0 | 1.23 | 3.36 | 28.2 | | 6 7 | 0 | | | _821 | 11-7 | 928A
547A | | 47.0 | 23.3 | 1,21 | 3.50 | 28.3 | -6- | - 5 | - | | 857 | 3-27 | 844A
856A | ** | 54.0 | 35.6 | 0.94 | 3.40 | 33.4 | | 6 1 | 0 | - | | 822 | 11-12 | 600A
502P | BDNAD IMAN | 188.0 | 341, | 3,78 | 4.78 | 1290. | -6 | 10 | +.03 | -" | 858 | 4-3 | 820A
836A | - | 53.0 | 38.4 | 0.71 | 3.37 | 27.3 | | .6 10 | 0 | • | | 823 | 11-12 | 520P | LANG | 218.0 | 657. | 8.05 | 6.02 | 5290. | .6 | | +.55 | | 859 | 4-10 | 830A
846A | | 53.0 | 31.8 | 0.94 | 3.40 | 30.0 | | 6 10 | 0 | *** | | 824 | 11-13 | 1030A
900A | | 358.0 | 1280. | 6,44 | 6.85 | 8240. | .6 | 10 | +.30 | | 860 | 4-17 | 840A
.856A | | 53.0 | 27.4 | 1.00 | 3.38 | 27.5 | | .6 10 | 0 | | | 825 | 11-14 | 915A
944A | 49 | 200.0 | 456 - | 3.75 | 4.72 | 1710. | .6 | - | 7 0 | | 861 | 4-23 | 844A
900A | | 52.0 | | | 3,39 | 26.6 | Π. | 5 10 | | | | 826 | 11-15 | 958A
842A | BONAD I MAN | 175.0 | 200. | 1.00 | 3.54 | 201. | .6 | 10 | 0 | | 862 | 5-1 | 820A
834A
844A | - | 52.0 | | 1 | 1 | 27.3 | | s 10 | | -11 | | 827 | 11-20 | 907A
856A | ** | 340.0 | 857. | 5,30 | 5.56 | 4540. | | 12 | +.32 | * | 863 | 5-8 | 844A
856A | | 53,0 | | 1 | 1 | 25.7 | | 6 9 | 0 | - | | 828 | 11-21 | 909A
720A | BONADIMAN | 178.0 | 232. | 1.09 | 3.56 | 254. | .6 | 1 | 1 0 | | 864 | 5-15 | 824A
838A | | 33.0 | 23.2 | | | 31.9 | | 6 9 | | | | 829 | 11-23 | 730A | LANG | 300.0 | 522. | 3.78 | 4.80 | 1980. | .6 | 10 | .05 | | 865 | 5-22 | 844A | | 34.0 | | | ì | 28.6 | Π. | 6 9 | 0 | | | 830 | 11-23 | 1016A
1042A | | 340.0 | 832. | 5.44 | 5.45 | 4530. | .6 | 11 | +.10 | | 866 | 5-29 | 856A
808A
820A | ••• | 33.0 | T | ļ | | 26.0 | | 6 9 | | | | 831 | 11-24 | 906A
923A | BONADIMAN | 180.0 | 257. | 1.61 | 3.74 | 414. | .6 | 11 | ı 0 | ٠,, | 867 | 6-5 | 848A
900A | | 33.0 | | | | 23.6 | | 6 7 | 1 | T. | | 832 | 11 - 27 | 850A
908A | -11 | 183.0 | 162. | 1.07 | 3.43 | 174. | .6 | 11 | ۰ | * | 868 | 6-12 | 900A
828A
841A | *** | 34,0 | | 1 | 1 | 21.3 | | 6 8 | 0 | | | 833 | 12-6 | 950A
1000A
931A | * | 168.0 | 187. | 1.34 | 3.69 | 250. | .6 | | 9 0 | - | 869 | 6-19 | 845A
900A | - | 34.0 | | | | 21.1 | | 6 9 | | | | 834 | 12-7 | 945Å | * | 183.0 | 158. | 0.82 | 3.42 | 130. | .6 | 12 | 2 0 | | 870 | 6-26 | 842A
850A | | 34.0 | | | | 25.7 | | 6 9 | | | | 835 | 12-12 | 840A
856A | 71 | 55.0 | 68.3 | 1,44 | 3,45 | 98.5 | .6 | 12 | 2 0 | | 871 | 7-3 | 826A
840A | | 32.0 | | | 3.48 | 21.3 | 1 1 | 6 9 | 0 | - | | 836 | 12-19 | 830A
845A | | 53.0 | 48.0 | 1.16 | 3.37 | 55.9 | .6 | 12 | 2 0 | | | | 844A | | | | | | T | | | 1 | T | | 837 | 12-25 | 840A
904A | BONADIMAN | 198.0 | 454. | 3,57 | 4.62 | 1620. | | 12 | + .09 | FC19 | 872
873 | 7-10
7-17 | 856A
830A
840A | | 33.0 | | 1 | 1 | 21.2 | 1 1 | 6 9
6 7 | 0 | | | 838 | 12-26 | 801A
814A | • • • | 295.0 | 657. | 3.23 | 4.84 | 2120. | | يا | | ** | 874 | 7-24 | 848A
900A | | 33.0 | † | | | 19.5 | 1 | 6 8 | | . | | 839 | 12-27 | 846A
905A | BONADIMAN
- LANG | 300.0 | 687. | 2,65 | 4.58 | 1820. | | 12 | 206 | | 875 | 7-31 | 830A | - | | 1 | | | | | | | _ | | 840 | 12-28 | 920A
936A | BONADIMAN | 195.0 | 404. | 2,53 | 4.15 | 1020. | | 12 | - | | 876 | 8-7 | 846A
842A
856A | | 33.0 | T | | 3.46 | 16.9 | \Box | 6 8 | | - | | 841 | 1-2 | 845A
918A | | TWO | CHANNEL | s | 3.40 | 104. | | 17 | , 0 | | 877 | 8-14 | 834 A
846A | | | | | | | | | 1 | - | | 842 | 1-9 | 840A
910A | | | | | 3.35 | 64.6 | 1 1 - | T | 7 0 | | | | 846A | | 33.0 | | 1 | | 17.3 | | 6 8 | | - | | 843 | 1-16 | 840A
908A | | | ., | | 3.38 | 58.4 | .6 | | | | 878 | 8-21 | 903A
844A | | 35.0 | | | | 19.6 | | 6 9 | | + | | 844 | 1-23 | 836A
900A | | | | | 3.40 | 53.5 | | | | | 879 | 8-28 | 856A
825A | 100 | 34.0 | | 1 | 3,50 | 17.2 | | 6 7 | 0 | | | 845 | 1-28 | 412P
425P | | 190.0 | 307. | 2,10 | | 644. | | ì | | | 880 | 9-3 | 835A
835A | | 25.0 | | 1 | | 20.6 | 'i i | 6 8 | 0 | FC37 | | | | 835A
858A | .,, | | CHANNEL | | 3.38 | 95.4 | 1 1 | | | | 881 | 9-10 | 845A
845A | | 19.0 | <u> </u> | | 3.50 | 21.3 | | 6 6 | | | | 846
847 | 2-6 | 810A
840A | | 7 | | T | 3.34 | 52.4 | | | | | 882 | 9-17 | 855A
850A | | 24.0 | 1 | T-'' | T | 21,9 | П | 6 7 | 1 | | | 84/ | 1 4.0 | 1 04UM | | | + | + | 1 3.54 | JE.4 | 1-1-5 | 1 10 | | | 883 | 9-24 | 900A | | 31.0 | 21.7 | 1.14 | 3,53 | 24.7 | ١. | 6 7 | _ 0 | | | F. C. Dist. Form 52 4-48 | | | | : | los angel
LOOD CONTI
LOOD COULIC | ROL DISTRIC | т | | | Sta | No. F348 | |--------------------------|-----------------|----------|---|-----------|--|-------------|---------|--------|------------|-----------------|-------------------| | Daily discharge, in | second-feet of_ | LOS ANG | ELES RIVE | R at Fire | estone Bou | levard | | | for the ye | ear ending Sept | amber 30, 19_ | | Day Oct. | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | May | June | July | Aug. | Bept. | | 1 22 | 30 | 38 | 174 | 73 | 65 | 123 | 89 | 41 | 26 | 34 | 12 | | 2 26 | 26 | 30 | 174 | 73 | 61 | 303 | 38 | 4.5 | 30 | 38 | ۔ وَ ا | | 3 22 | 30 | 30 | 219 | 1220 | 57 | 181 | 26 | 4.5 | 38 | 3.4 | 12 | | 4 30 | 26 | 38 | 188 | 129 | 57 | 174 | 41 | 4.5 | 30 | 30 | 22 | | 5 34 | 3.0 | 53 | 167 | 94 | 61 | 128 | 57 | 49 | 30 | 30 | 22 | | 8 41 | 4.6 | 38 | 138 | 85 | 65 | 114 | 30 | 4.5 | 38 | 30 | 20 | | | 4 5 | 4.5 | 145 | 8.5 | 6.5 | 188 | 30 | 4.5 | 38 | 38 | 20 | | 8 34 | 3 4 | 77 | 138 | 81 | 61 | 152 | 34 | 41 | 34 | 41 | 16 | | | 26 | 81 | 128 | 73 | 61 | 188 | 41 | 4 1 | 34 | 41 | 16 | | 10 34 | 3 4 | 81 | 128 | 73 | 65 | 118 | 4 9 | 4 1 | 34 | 38 | 16 | | | 30 | 99 | 123 | 69 | 61 | 81 | 41 | 41 | 34 | 34 | 11 | | | 26 | 7.7 | 114 | 69 | 65 | 4.5 | 38 | 38 | 34 | 30 | 11 | | | 30 | 81 | 104 | 6.5 | 8.5 | 38 | 41 | 38 | 26 | 30 | 12 | | | 3 4 | 94 | 109 | 77 | 4.5 | 61 | 4.5 | 34 | 26 | 3 4 | 20 | | | 34 | 94 | 114 | 8.5 | 16 | 3.4 | 41 | 30 | 22 | 30 | 20 | | | 3 4 | 89 | 118 | 94 | 11 | 3.6 | 4.5 | 22 | 30 | 30 | 20 | | | 41 | 8 9 | 128 | 65 | 8 4 | 4 38 | 4.5 | 30 | 38 | 30 | 20 | | | 41 | 8.9 | 128 | 69 | 9.4 | | 4.5 | 34 | 34 | 34 | 20 | | | 41 | 94 | 128 | 69 | 725 | 38 | 4.5 | 38 | 3 4 | 3.0 | 22 | | | 4.5 | 94 | 123 | 77 | 465 | 34 | 4.5 | 38 | 34 | 38 | 22 | | | 4 5 | 1110 | 118 | 81 | 123 | 26 | 4.5 | 38 | 30 | 38 | 26 | | | 38 | 4000 | 109 | 81 | 81 | 2.2 | 4.5 | 30 | 30 | 34 | 22 | | .: 30 | 3 4 | 1650 | 109 | 77 | 53 | 4.5 | 4.5 | 30 | 34 | 34 | 20 | | | 3,8 | 629 | 118 | 65 | 49 | 109 | 4.9 | 30 | 34 | 38 | 20 | | | 41 | 498 | 128 | 6.9 | 4.9 | 167 | 4.5 | 26 | 34 | 38 | 20 | | | 38 | 351 | 133 | 69 | 5 3 | 174 | 41 | 26 | 34 | 41 | 22 | | | 4.1 | 196 | 114 | 69 | 53 | 145 | 4.5 | 30 | 38 | 38 | 22 | | | 41 | 181 | 109 | 73 | 563 | 138 | 4.5 | 30 | 30 | 38 | 20 | | | 61 | 188 | 99 | | 290 | 152 | 4.5 | 3.4 | 34 | 3.0 | 20 | | 31 147 | 41 | 181 | 73 | | 2800 | 152 | 41 | 26 | 34 | 26 | 20 | | 0.1 | 1 | 188 | 73 | l | 324 | | 38 | | 38 | 16 | | | 1152 | 1101 | 10583 | 3971 | 3309 | 6547 | 3244 | 1350 | 1081 | 1014 | 1045 | 555. | | 37.2 | 36.7 | 341. | 128. | 118. | 211. | 108. | 43.5 | 36.0 | 32.7 | 33.7 | 18.5 | | 2,280. | 2,180. | 20,990. | 7.880. | 6,560. | 12.990. | 1 | 2,680. | | | | | | | F1200. | 1-0,330. | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.000. | 11E 990 | 6.430. | 12,000, | 2,140. | 2,010. | 2,070 | 1,100. | | Remarks: | | | | | | | | | CR MEA | uv. 95 | .8 | F. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 348-R | Apr. May June July Aug. Sept. | Apr. | 7 | | | | | | | |---|-------|-------|-------|-------|--------|------------|------------|----------| | 28 | | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | Day | | 30 | 26 | 98 | 87 | 122 | 87 | 30 | 233 | ì | | 4 6 24 25 19 20 22 24 24 28 25 16 20 29 20 22 28 26 22 19 20 19 25 25 26 28 24 24 25 15 20 25 26 28 28 28 28 28 28 28 28 28 28 28 28 28 | | 91 | 98 | 105 | 87 | 30 | 5 5 | 2 | | 28 28 25 16 22 24 24 28 25 18 20 22 26 28 22 19 20 22 28 26 22 19 25 20 28 28 22 19 25 20 28 24 22 14 25 25 30 22 22 16 24 24 31 22 22 16 24 24 33 22 22 18 19 26 31 19 24 16 29 26 33 20 25 16 32 28 30 20 25 16 32 28 30 20 25 18 26 28 24 24 24 19 24 26 28 24 24 24 < | 30 | 109 | 77 | 98 | 84 | 28 | 35 | 3 | | 24 28 25 18 20 22 26 28 26 22 19 25 20 28 26 22 19 25 20 28 28 44 24 22 14 25 25 30 22 22 16 24 24 31 22 19 16 24 24 31 22 19 16 24 24 31 22 19 16 24 24 31 22 19 16 24 24 31 22 19 16 24 24 31 22 19 16 24 24 32 22 18 19 26 31 20 25 15 30 28 31 24 25 15 30 28 32 24 25 15 30 28 28 24 24 19 24 28 26 22 18 19 24 28 26 22 18 19 24 28 26 22 18 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 22 25 22 18 26 | | 102 | 60 | 105 | 77 | 30 | 35 | 4 | | 26 28 22 19 20 19 28 26 22 19 25 20 28 28 22 20 19 25 28 44 24 22 14 25 25 30 22 22 16 24 24 31 22 19 16 24 24 31 22 22 18 19 26 31 19 24 16 19 26 33 20 25 16 22 28 30 20 25 16 22 28 30 20 25 18 26 28 30 20 25 18 26 28 24 24 25 15 30 28 28 24 24 25 18 26 28 26 22 18 19 25 28 26 22 18 19 25 28 26 22 18 19 20 25 25 22 19 25 28 24 <td< td=""><td></td><td>256</td><td>58</td><td>98</td><td>74</td><td>3 1
3 1</td><td>31</td><td>5</td></td<> | | 256 | 58 | 98 | 74 | 3 1
3 1 | 31 | 5 | | 28 26 22 19 25 20 28 44 24 22 14 25 25 30 22 32 16 25 24 31 22 19 16 24 24 31 22 19 16 24 24 33 22 22 18 19 26 33 20 25 16 22 28 31 24 25 15 30 28 30 20 25 18 26 28 28 24 24 19 24 28 28 24 25 15 30 28 28 24 24 19 24 28 28 24 24 19 24 28 28 24 24 19 24 28 28 24 24 19 25 28 28 24 24 20 25 28 28 24 24 20 25 28 28 24 25 19 25 28 28 <td< td=""><td></td><td>129</td><td>55</td><td>84</td><td>316</td><td>31</td><td>31</td><td>В</td></td<> | | 129 | 55 | 84 | 316 | 31 | 31 | В | | 28 28 22 20 19 25 28 44 24 22 14 25 25 30 22 22 16 25 24 30 22 22 16 24 24 31 22 22 18 19 26 31 19 24 16 19 26 33 20 25 16 22 28 30 20 25 18 26 28 30 20 25 18 26 28 24 24 25 15 30 28 28 24 24 25 18 26 28 24 24 24 20 25 28 28 24 24 20 25 28 28 24 24 20 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 28 <td< td=""><td></td><td>102</td><td>55</td><td>72</td><td>148</td><td>30</td><td>31</td><td>7</td></td<> | | 102 | 55 | 72 | 148 | 30 | 31 | 7 | | 28 44 24 22 14 25
25 30 22 22 16 25
24 30 22 22 16 24
24 31 22 19 16 24
24 33 22 22 18 19
26 31 19 24 16 19
26 31 20 25 15 30
28 31 24 25 15 30
28 31 24 25 15 30
28 31 24 25 15 30
28 28 24 25 19 24
28 28 24 24 19 24
28 26 22 18 19 25
28 28 24 24 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 28 24 25 19 25
28 28 28 24 25 19 25
28 28 28 24 25 19 25
28 28 28 24 25 19 25
28 28 28 24 25 19 25
28 28 22 25 22 18 26 | | 98 | 7 4 | 66 | 98 | 48 | 30 | 8 | | 24 30 22 22 16 24
24 331 22 19 16 24
24 333 22 22 18 19
26 351 19 24 16 19
26 353 20 25 16 22
28 31 24 25 15 30
28 28 24 24 19 24
26 28 28 24 24 19 24
28 28 26 22 18 19 25
28 28 24 25 22 25 22 18 26
28 22 25 22 18 26 | 28 | 91 | 414 | 66 | 87 | 39 | 26 | 8 | | 24 30 22 22 16 24
24 33 22 22 18 19
26 35 19 24 16 19
26 55 20 25 16 22
28 30 20 25 16 22
28 30 20 25 16 22
28 28 24 25 15 30
28 28 24 24 19 24
26 28 24 24 19 24
27 28 28 24 24 19 24
28 28 26 22 18 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 24 25 19 25
28 28 22 25 22 18 26
28 22 25 22 18 26 | 28 | 91 | 203 | 74 | 80 | 3.0 | 25 | 10 | | 24 31 22 19 16 24 24 33 22 32 18 19 26 31 19 24 16 19 26 33 20 25 16 22 28 31 24 25 15 30 28 28 24 24 19 24 26 28 24 24 20 25 28 24 24
20 25 28 24 24 20 25 28 28 24 25 19 25 28 28 24 25 19 25 28 28 24 25 19 25 26 25 25 22 18 26 28 24 25 19 25 28 28 24 25 19 25 26 25 22 18 26 | 25 | 8 4 | 201 | 94 | 87 | 136 | 24 | 11 | | 24 33 22 22 18 19 26 35 20 25 16 19 26 35 20 25 16 32 28 31 24 25 15 30 28 20 25 18 26 28 24 24 19 24 26 28 24 24 20 25 28 26 22 18 19 20 28 26 22 18 19 20 28 28 24 25 19 25 28 28 24 25 19 25 26 25 22 18 26 28 24 25 22 19 25 26 25 22 18 26 | 24 | 66 | 808 | 94 | 94 | 2360 | 24 | 12 | | 26 31 19 24 16 19 26 33 20 25 16 22 28 31 24 25 15 30 28 20 25 18 26 22 28 24 24 24 20 25 28 24 24 20 25 26 28 24 24 20 25 28 26 22 18 19 20 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 24 24 25 19 25 26 22 18 26 22 18 26 22 19 25 22 18 26 22 18 26 22 18 26 26 25 22 18 26 26 25 | | 55 | 208 | 77 | 94 | 1790 | 24 | 13 | | 26 33 20 25 16 22
28 30 20 a 25 15 26
28 30 20 a 25 18 26
28 28 24 a 24 19 24
26 28 24 24 20 25
35 28 19 22 20 22
28 26 25 25 22 19 25
28 26 25 22 18 29 25
28 26 27 19 25
28 26 27 28 24 25 19 25
28 28 24 25 19 25
28 22 25 22 18 26
28 22 25 22 18 26 | 24 | 31 | 208 | 63 | 91 | 1060 | 25 | 14 | | 28 31 24 25 15 30 28 30 20 a 25 18 26 28 28 24 a 24 19 24 26 28 24 a 24 20 25 35 28 19 22 20 22 28 28 24 25 19 25 28 24 25 19 25 28 22 25 22 18 26 28 22 25 22 18 26 28 22 25 22 18 26 26 26 25 20 19 25 | 26 | 28 | 201 | 60 | 91 | 201 | 28 | 15 | | 28 30 20 25 18 26 28 24 24 19 24 26 28 24 24 20 25 28 26 22 18 19 20 35 28 19 22 20 22 28 24 25 19 25 26 25 25 22 19 25 28 24 25 22 19 25 28 22 25 22 18 26 26 26 25 20 19 25 | | 26 | 194 | 58 | 80 | 154 | 146 | 16 | | 28 28 24 24 19 24 26 28 24 24 20 25 28 26 22 18 19 20 35 28 19 22 20 22 28 28 24 25 19 25 26 25 25 22 19 25 28 22 25 22 18 26 25 25 22 18 26 26 25 20 19 25 | | 26 | 215 | 5.8 | 6.3 | 112 | 50 | 17 | | 26 28 24 24 20 25 28 26 22 18 19 25 35 28 19 22 20 22 28 28 24 25 19 25 26 25 25 22 19 25 28 22 25 22 18 26 26 25 20 18 26 25 20 19 25 | | 28 | 201 | 72 | 58 | 80 | 33 | 18 | | 28 26 22 18 19 20 35 28 19 22 20 22 28 28 24 25 19 25 26 25 25 22 19 25 28 22 25 22 18 26 26 25 20 19 25 | 28 | 26 | 187 | 80 | 5 5 | 80 | 30 | 19 | | 35 28 19 22 20 22
28 28 24 25 19 25
26 25 25 22 19 25
28 22 25 22 18 26
26 26 25 20 19 25 | 26 | 39 | 194 | 6.3 | 5.5 | 1390 | 28 | 20 | | 28 28 24 25 19 25
26 25 25 22 19 25
28 22 25 22 18 26
26 26 25 20 19 25 | 28 | 66 | 194 | 5.8 | 66 | 236 | 33 | 21 | | 26 25 25 22 19 25
28 22 25 22 18 26
26 26 25 20 19 25 | | 39 | 180 | 55 | 77 | 331 | 33 | 22
23 | | 28 22 25 22 18 26
26 26 25 20 19 25 | | 31 | 167 | 5 5 | 60 | 1480 | 33 | 24 | | 26 26 25 20 19 25 | 26 | 28 | 180 | 52 | 148 | 484 | 30 | 25 | | | | . 26 | 180 | 6.6 | 2850 | 350 | 30 | 25
26 | | 24 25 25 16 18 24 | | 30 | 142 | 77 | 2610 | 194 | 30 | 26 | | | | 33 | 105 | 69 | 1220 | 180 | 66 | 28 | | 26 31 25 20 16 20 | | 124 | 105 | 290 | 761 | 142 | 48 | 29 | | 28 26 24 22 16 22 | | 55 | | 102 | 304 | 109 | 37 | 30 | | 30 28 22 22 16 22 | 30 | 28 | | 8 4 | 222 | 102 | 33 | 31 | | 26 20 15 | | 26 | l | 77 | 1 180 | 1 | 31 | ٠. ا | | 830 700 564 | 830 | | 4451 | | 10404 | | 1348 | | | 886 660 675 | | 2062 | | 2594 | | 11298 | | | | 27.7 28.6 23.3 21.3 18.2 22.5 | 27.7 | 66.5 | 159 | 83.7 | 333 | 377 | 43.5 | AN | | 1,650 1,760 1,390 1,310 1,120 1,340 | 1,650 | 4,090 | 8,830 | 5,150 | 20,458 | 22,410 | 2,670 | RE- | #### STATION FIBO-R LOS ANGELES RIVER at Pacific Coast Highway - TION: WATER-STAGE RECORDER, LAT. 33°47'25", LONG. 118°12'17". ON THE DOWN-STREAM SIDE OF PACIFIC COAST HIGHWAY BRIDGE ABOUT 1,3 MILES UPSTREAM FROM THE PACIFIC OCEAN. ELEVATION OF ZERO GAGE HEIGHT, 0,90 FEET. - CHANNEL AND CONTROL: CHANNEL FINE SAND AND SILT, 570 FEET WIDE WITH RIPRAPPED LEVEES. NO ARTIFICIAL CONTROL. - DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF PACIFIC COAST HIGHWAY BRIDGE. - RECORDER: INSTALLED OCTOBER 31, 1931, OVER AN 18 INCH DIAMETER CORRUGATED IRON STILLING WELL. A STEVENS CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1 1945 TO SEPTEMBER 30, 1947. AN AUXILIARY STILLING WELL AND RECORDER ARE MAINTAINED ON THE WEST SIDE OF THE CHANNEL. - REGULATION: FLOW IS SUBJECT TO THE SAME REGULATION AS STATION F34B-R AND STATION F45-R. - DIVERSIONS: SEVERAL WATER SUPPLY RESERVOIRS IN THE LOS ANGELES RIVER AREA DIVERT FLOW. THE CITY OF PASADENA DIVERTS WATER FROM THE ARROYO SECO FROM EATON CREEK, VARIOUS CITIES, PARTIES AND AGENCIES HAVE MISCELLANEOUS DOMESTIC AND IRRIGATION DIVERSIONS. SEVERAL AGENCIES DIVERT FLOW AT VARIOUS LOCATIONS FOR SPREADING. - RECORDS AVAILABLE: OCTOBER 31, 1931 TO SEPTEMBER 30, 1947. FOR EARLIER RECORDS, SEE STATION F36-R. LOS ANGELES RIVER AT WILLOW STREET. ### EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 12,800 SECOND-FEET. DECEMBER 22. MINIMUM 30 SECOND-FEET AT VARIOUS TIMES. M31/10/04 1946-1947 MAXIMUM 18,810 SECOND-FEET, DECEMBER 26, M31/10/04 17,8 SECOND FEET, SEPTEMBER 3, 1931-1947 MAXIMUM 99,000 SECOND-FEET ESTIMATED MARCH 2, 1938MINIMUM NO FLOW AT VARIOUS TIMES IN 1934. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOM CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH AND CORPS OF ENGINEERS, U.S., ARMY, | | | | | | | | | | | | | | | n | | | | | | | | | | | | | |--------------|-----------------|-------------------------|-----------------------------------|-------------------|-------------------------------|--|-------------------------|-----------------------|----------|----------|----------|---------------------------|--|------------|--------------|-------------------------|--------------------------|---------------|--------------------------------|---------------------------------|-------------------------|-----------------------|-----------|------------------------------|------------------------|--------------| | | DISCHARG | E MEABURE | MENTE DF LOS A | IGELES F | RIVER | | | | | | | | | NO. | DATE | BEEIN
END | HADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELDEITY
FT.PER SEC. | GAUGE
HEISHT
PEEY | DISCHARGE
SEC. FT. | HAT- METH | HEAS. D | HT.
CHANGE
TOTAL | HEYER
NO. | | | AT | | Pacific Coast H | ghway | | DUR | ING THE | YEAR ENDIN | Q BEP1 | TEMBER | a ab, | 16 | 3 | 808 | 8/2 | 1136A
1150A | 44 | 27.0 | 23.2 | 1.60 | 5.12 | 37.2 | 6 | 8 | 0 | | | , MD. | DAYE | всен | MADE BY | WIOTH
FEET | AREA OF
BEGTION
BQ. FT. | MEAN
VELOCITY
FT.PER BEC. | GAUBE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH- | MEAS. | B, NY.
EHANGE
TOTAL | METER
NO. | 809 | 8/9- | 1252P
104P
140P | 10 | 24.0 | 24.8 | 1,52 | 5,11 | 37.8 | .6 | 1 | 0 " | | | | | END | | ļ ——— | STAFF | 1 | FEET | 200.71. | 1.2.5 | | NO. | TOTAL | ND. | 810 | 8/16 | 152P
1130A | | 33.0 | 27.8 | 1.20 | 4.88 | 33.4 | .6 | | 0 . | , | | 753 | 10/4 | 130P | BONAD IMAN | 53.0 | 35.4 | 1.12 | | 39.5 | | .6 | 11 | 0 | FC19 | 811
812 | 8/23 | 1150A
100P
110P | BONAD IMAN
WADD I COR | 24.0 | 29.8 | 1,28 | 4.82 | 38.1 | .6 | | 0 " | | | 754 | 10/10 | 1120A
1140A | | TWO CHA | | | | 41.0 | | | 15 | ٥. | | 813 | 9/5 | 1122A
1135A | WADD I COR | 24.0 | 31.5 | 1.05 | 4.96 | 33,2 | .6 | 5 9 | | C37 | | _755 | 10/18 | 100P
122P
1139A | " BONAD IMAN | 37.0 | 36.0 | 1.09 | | 39.3 | | -6 | 8. | _0 | •• | 814 | 9/13 | 1122A
1132A
1140A | <u> </u> | 22.5 | 27.2 | 1.15 | 4.96 | 31.2 | .6 | 1 1 | 0 " | | | | 10/25 | 1155A
100P | LINDSAY | THREE C | | | | 41.3 | - | .6 | | | | 815 | 9/19 | 1150A
1205P | | 23.0 | 27.4 | 1.10 | 5.52 | 30.4 | | 6 8
6 8 | 0 " | | | 757 | 11/1 | 120P
NOON
1226P | BONADIMAN | 56.0
TWO CHAI | 50.0 | 1.31 | | 49.3 | Н | .6 | - 1 | 0 | ., | 816 | 9/26 | .1217P | | 23.0 | 27.7 | 1.10 | 1 3.02 | 1 20.4. | 1 22 | ,1 1 | | | | 758 | ļ | NOON
1226P | | | | | | 46.7 | | .6 | - 1 | 0 | " | | | | | | | | | | | | | | | 760 | 11/21 | 1222P
110P | | | | | | 48.2 | | .6 | 14 | 0 | | | | | | | | | | | | | | | | 761 | 11/29 | 130P | | | | | | 105. | | .6 | | 0 ′ | | | | | | | | | | | | | | | | 762 | 12/6 | 132P
110P | | | | | | 48.3 | H | .6 | | 00 | | | DIRCHARGE | MFARURE | KENTE OF LOS AN | GELES R | IVER | | | | | | | | | 763 | 12/13 | 150P
1206P
1240P | | THREE C | HANNELS | | 5.98 | 106. | H | .6 | | 6 | | | _AT_ | | ic Coast Highwa | | | DUR | NO THE YE | EAR ENDING | BEPTEMUI | ER 30. 11 | . 47. | | | 764
765 | 12/22 | 1202A
1235A | BONADIMAN
KASIMOFF | 454.0 | 948. | | 8.72 | 3820 | | .6 | 11 | +-05 | •• | | | | | | | | | | | | | | | 766 | 12/22 | 1057A
1135A | BONADIMAN
KASIMOFF
RASIMOFF | 456.0 | 1450. | 6.66 | 9.53 | 9660. | | .6 | 11 | +.66 | 44 | ND. | DATE | END | HADE BY | WIDTH | AREA OF
EXCITION
EQ. FT. | MEAN
VELOCITY
FT.PER BEG. | DAUDE
HEIGHT
FEET | BED. FT. | ND OD | MEAS. D.
STC. CI
HO, T | | NO. | | 767 | 12/22 | 1205P
1220P
251P | BONAD IMAN
KAS IMOFF | 456.0 | 1920- | 6.67 | 10.20 | 12800 | Н | FLOAT | 10 | .0 | | ļ | | 132P | | ! | EAST ST | FF GAGE | | | | | | | | _768 | 12/23 | 340P
350P | BONADIMAN | THREE CH | ! | <u> </u> | 7.32 | 1850. | \vdash | 6 | ł | | FC19 | lŧ | 10-3 | 142P | BONADIMAN | 43.0 | 32.1 | 1.68 | 3.79 | 53.8
36.8 | .6 | 1 1 | 0 FC | C19 | | 769
770 | 12/24
12/27 | 420P
252P
310P | BONAD IMAN | 107.0 | 126. | 1.82 | 6.10
5.72 | 229. | | | 12.
8 | _0_
0 | | 818
819 | 10-117 | 1224P
1237P
1250P | | 52.0
60.0 | 57.1 | 1.16 | 3.54 | 87.2 | .6 | 1 | 0 . | • | | 771 | 1/3 | 1105A
1120A | | 106.0 | 124. | | 5.73_ | 167. | | - 1 | 7 | 0 | •• | 820 | | 1106A
1119A | | 36.0 | 29.0 | 1,39 | 3.39 | 40.4 | .6 | 7 | 0 . | | | 772 | 1/10 | 1117A
1130A | | TWO CHAN | NELS | | 5.92 | 200. | | .6 | 9 | <u>o</u> _ | <u>. </u> | 821 | 10-31 | 1102A
1122A | | 53.0 | 36.1 | 1.12 | 3.36 | 40.4 | .6 | 12 | 0 " | • | | 773 | 1/17 |
1132A
1151A
1142A | ** | | | | 6.10 | 203. | | | 11_ | 0 | | 822 | 11-7 | 1152A
1204P
1102A | | 30.0 | 21.7 | 2.08 | 3.80 | 45.2 | .6 | T | 0 " | | | 774 | 1/24 | 1208P
1204P | | 88.0 | 87.1 | 1.61 | 5.87 | 140. | | .6 1 | | . 0 | | 823 | 11-12 | 1120A
910P | BONADIMAN - LANG | 451.0 | 1840. | 5.70 | 5.40
7.13 | 1900. | .6 | 1 | 25 | • | | 775 | .2/3 | 420P
455P | BONAD IMAN | 88.0
456.0 | 1416. | 5.07 | 5.71
9.30 | 97.0 | | .6 | | 0 | FC19 | 824
825 | 11-12 | 950P
310P
340P | | 478.0 | 1270. | 6.72 | | 8570. | .6 | | .45 " | | | .777 | 2/4 | 200P
215P | 4 | 53.0 | 84.9 | ! | 5.66 | 275. | | 6 | 6 | 0 | | 826 | 11-14 | 305P -
340P | n 0 | 436.0 | 735. | 4.02 | 1 | 2950. | .6 | 19 - | .10 " | | | 778 | 2/7 | 1152A
1210P | | 53.0 | 50.8 | 1.73 | 5.46 | 88.0 | | .6 | 6. | _0 | | | | 500P | | | EST ST | FF GAGE | · : | | - | ļi. | | | | _779 | 2/14 | 11, 204 | ** | 82.0 | 53.0 | 1.32 | 5.46 | 70.2 | \vdash | .6 | - 1 | 0 | ļ <u></u> | 827 | 11-15 | 510P
1040A | BONADIMAN | 130.0 | 165. | 1.41 | 4.44 | 232. | .6 | | <u> </u> | | | 780 | 2/21 | 1226P
1122A | | 90.0 | 59.6
60.1 | 1.19 | 5.48 | 73.0 | H | .6 | i | 0 | | 828 | 11-16 | 1052A
1230P
120P | <u> </u> | 451.0 | 138. | 6.37 | 4.35 | 7330. | .6 | | . 10 | | | _781
_782 | 2/28
3/7 | 1144A
1132A
1155A | | 89.0 | 59.4 | | 5.53 | 83.8 | | .6 | | 0 | | 830_ | 11-21 | 121P
131P | , | 125.0 | 150. | 2.50 | 4.50 | 375. | .6 | 1 1 | ٥ | | | 783 | 3/14 | 1140A
1158A | " | 90.0 | 64.2 | 1.10 | 5.56 | 70.8 | | .6 | 12 | 0 | | 831 | 11-23 | 135P
155P
134P | BONADIMAN - LANG | 423.0 | 1120. | 6.68 | 6.45 | 7500. | -6_ | 11 - | .10 " | · | | -784 | 3/19 | 1142A
1230P
542P |
KASIMOFF | 451.0 | 894. | 3.10 | 7.76 | 2720. | | SURF | Ī | 06 | | 832 | 11-24 | 200P
1210P | BONADIMAN | 211.0 | 274. | 2.09 | 4.68 | 574. | - 6_ | | o " | · | | 785 | 3/20 | 631P
112P | BONADIMAN
KASIMOFF | TWO CHAI | | | 7.34 | 1360. | ╂╼┪ | .6 | | +. 17
0 | | 833 | 11-27 | 1226P
115P
130P | ,, | 193.0 | 200. | 0.76 | 4.26 | 170. | .6 | 1 | 0 " | | | 786 | 3/21 | 145P
107P
136P | BONADIMAN
BONADIMAN | 108,0
TWB CHAI | 122.6 | 2.10 | 7.35 | 258.
1480. | | .6 | | +.14 | | 835 | 12-6 | 127P
146P | | TWO CH | 1 | 0.70 | 4.26 | 189. | .6 | | 0 " | | | 787
788 | 3/28 | 1118A
1140A | | 130.0 | 224. | 2.34 | 6.12 | 525. | | .6 | | 0 | " | 836 | 12-12 | 120P
150P | | | | | 4.36 | 234. | .6 | 13 | o - | • | | 789 | 3/30 | 902A
935A | BONAD IMAN
KASIMOFF | 454.0 | 972. | 5.34 | 8.68 | 5200. | | .6 | 22 | + 07 | | 837 | 12-19 | 1237P
1258P
1202P | | THREE | CHANNEL | \$ | 4.14 | 99.5 | - 6 | 13 | 0 | · | | 790 | 3/31 | 1203P
100P | BONADIMAN
KASIMOFF | FOUR CH | ANNELS | | 5.88 | 423. | \vdash | .6 | | 0 | | 838 | 12 • 25 | 1238P | " | 322.0 | 791. | 1.50 | 5.42 | 1190. | .6 | 1 1 | 915 | •• | | 791 | 4/4 | 1132A | BONAD IMAN | TWO CHAI | | | 5.65 | 196. | \vdash | .6 | | 0 | | 839 | 12-26 | 1254P
205P | BONADIMAN - LANG | 436.0 | 976. | 3.20 | 5.40 | 3120. | - 6 | 1 1 | - | | | . 792
793 | 4/11 | 1158A
102P
126P | | 38.0
51.0 | 59.1
48.2 | 1.71_ | 5.35 | 101. | | .6 | | 0 | | 841 | 12-27 | 245P
1142A
1206P | BONADIMAN - LANG | 242.0 | 334. | 2.89 | 5.30
4.87 | 2140.
966. | .6 | 1 1 | - | •• | | _794 | 4/25 | 1230P
100P | | 76.0 | 93.2 | 1.74 | 5.76 | 162. | | .6 | | 0 | | 842 | 1-2 | 150P
210P
140P | | 105.5 | 115. | 1.77 | 4.00 | 204. | .6 | 9 | 0 . | | | | ļ | 114P | | EA | ST STAI | F GAGE | | | \dashv | \dashv | _ | | | 843 | 1-9 | 200P | * | 50.0 | 50.0 | 1 | | 95.8 | .6 | | | | | .795 | 5/2 | 130P | ** | TWO CHA | INELS . | | 7.32 | 62.2 | | 6 | #1 | 0_ | | 844 | 1-16 | 145P
240P | ** | 51.0 | 48.0 | Ĭ | - | 109. | .6 | 6 | | "
" | | 796
797 | .5/9
.5/16 | 1212P
1147A
NOON | | 48.0 | 38.8 | 1.49 | 7.38 | 57.8
47.1 | \vdash | - 1 | 10 | 0 | | 845 | 1-23 | 250P
515P
526P | | 50.0 | 59.0 | 3.13 | 3.21 | 279. | .6 | 1 1. | |
 | | 798 | 5/23 | 1124A
1140A | BONADIMAN | 43.0 | 33.6 | | 7.08 | 49.8 | | 6 | 9 | - P, | FC19 | 846 | 1-28 | 1150A
1202P | | 106.0 | 90.6 | 1 | 3.04 | 177. | .6 | 1 | | ** | | 799 | 5/29_ | 1144A
NOON | ** | 45.0 | .33.7 | 1,46 | 7.02 | 49.4 | П | .6 | 10 | 0_ | | 848 | 1-30 | 202P
214P
132P | H | 106.0 | 82.4 | | 2.91 | 138. | .6 | 1 | | • | | 800 | 6/6 | 1204P
1222P
1202P | | 46.0 | 32.6 | 1.72 | 6.78 | 56.0 | \vdash | .6 | 9 | 0 | <u></u> | 849 | 2-6 | 144P | * | 106.0 | 84.5 | | 2.90 | 106. | .6 | -ii | | | | 801 | _6/13 | 1220P | | 51.0 | 34.6 | 1,56 | 6.57 | 54.2 | \vdash | | 10 | 0 | | 850 | 2-9 | 1135P | BONADIMAN - LANG | 158.0 | 359. | 7,10 | 3.71 | 2550. | .6 | | | ••
•• | | 802 | 6/21 | 1156A
NOON | <u></u> | 40.0 | 26.4 | 1.57 | 5,97 | 41.3 | H | .6 | 9 | 0 | | 851
852 | 2-10 | 1122A
142P
154P | BONADIMAN | 106.0 | 149. | 1.92 | 3.40 | 351.
242. | .6 | | | ··· | | 803 | - 6/27
- 7/3 | 1220P
120P
136P | | 41.0 | 30.0 | 1,53 | 5.79 | 45.9 | | .6 | | 0 | | 853 | 2-20 | 107P
121P | | 106.0 | 114. | 0.92 | 3.12 | 105. | 6 | | | | | 805 | 7/11 | 1140A
NOON | | 35.0 | 28.3 | 1.69 | 5.74 | 47.8 | П | .6 | 7 | 0 | | 854 | 2-27 | 207P
220P
102P | | 106. | 91.1 | 1.37 | 3.06 | 125. | -6 | 1 1 | .v | · | | 806 | 7/18 | 1210P
1224P
1202P | | 52.0 | 28.8 | 1.58 | 5.36 | 45.4 | - | .6 | | 0 | | 855 | 3-5 | 120p
104P | | 120. | 289. | 3.25 | 3.70 | 940. | .6 | 1 | | •• | | 80,7 | 7/25 | 1216P | | 30.0 | 21.9 | 1.52 | 5.11 | 33.2 | 1 | .6 | 7 | 0 | | 856 | 3-6 | 116P | | 106. | 151, | 1,10 | 3.18 | 166. | .6 | 8 | 0 | · | | | DIRCHARG | SE HEABURE | HENTS OF LOS AN | (GELES RI) | /ER | | | | | | | | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN | GAUSE
HEIGHT
FEET | DISCHARSE
SEC. FT. | RAT- NE | CTH - HE | AS. d. HT.
G. CHANGE | HETER HO. | |-------|----------|---------------|-----------------|---------------|---------|-------------------------|----------------|------------|----------|-------|-------|--------|--------------|------------|-------|----------------------|----------|-------|-------------------------------|------|-------------------------|-----------------------|---------|----------|-------------------------|--------------| | | | Pacif | ic Coast Highy | vay | | DUR | HO THE Y | EAR ENDING | •EPT: | EMBES | R 30, | 19.47 | | 871 | 6-19 | 103P
118P | | 71.0 | 36.6 | 0.65 | 2.64 | 23.8 | - 6 | 12 | 0 | | | | 1 | 1 | | | AREA OF | MEAN | SAUBE | DIEGHARDE | RAT- | | MEAN. | а, нт. | METER | <u>872</u> | 6-26 | 100P
1'25P | | 78.0 | 41.4 | 0.79 | 2.70 | 33.6 | - 6 | 13 | 0 | | | NO. | DATE | END . | MADE BY | WIDTH
FEET | BYCTION | VELOCITY
FT-FER BED. | HEIGHT
FEET | SEG. FT. | | пь | ND. | TOTAL | HD. | 873 | 7-3 | 1200N
1216P | | 81.0 | 34.1 | 0.72 | 2.60 | 24.3 | 6 | 10 | 0 | | | 857 | B-13 | 132P
150P | | T₩0 CH | NNELS | | 2.86 | 95.0 | | 6 | 9 | 0 | ** | 874 | 7-10 | 1240P
1258P | | 78.0 | 35.1 | 0.75 | 2.68 | 26.4 | .6 | 12 | 0 | | | 858 | 8-20 | 146P
158P | | | | | 2.70 | 55.4 | | 6 | 8 | 0 | - | 875 | 7-17. | 1035A | | 83.0 | 37.0 | 0.92 | 2.78 | 33.9 | 6 | 11 | 0 | | | 859 | 8-27 | 152P
204P | | | | | 2.70 | 46.0 | <u> </u> | .6 | 8 | 0 | | 876 | 7-24 | 104P | | 89.0 | | 0.86 | | 32.6 | .6 | T | 0 | | | 860 | 4-3 | 132P
144P | | | | | 2.70 | 49.5 | 1 | .6 | 8 | ۱. | ' | 877 | 7-31 | 112P
128P
132P | •• | 100.0 | | 0.81 | 2.74 | 30.2 | | 12 | | ** | | 861 | 4-10 | 1240P
105P | | 112. | 51.3 | 0.74 | 2.68 | 37.8 | | .6 | 19 | 0 | | 878 | 8-7 | 132P
146P | | 97.0 | | 0.78 | 2.72 | 29.5 | | 11 | | | | 862 | 4-17 | 122P
148P | | 117. | 48.6 | 0.83 | 2.68 | 40.4 | | .6 | 24 | 0 | | 879 | 8-14 | 148P
206P | | 97.0 | | 0.77 | 2.72 | 26.3 | | 12 | | . | | 863 | 4-23 | 134P
156P | | 106. | | 0.97 | 2.74 | 51.3 | | | 17 | 0 | | | 8-21 | 108P
126P | | 96.0 | | 0.65 | 2.73 | 26.5 | - 6 | _ | | | | 864 | 5-1 | 1240P | | 113. | 53.2 | | 2.70 | 42.6 | | | 20 | 0 | | 881 | 8-28 | 126P
142P | | 97.0 | 52.6 | 1 | 2.73 | 35.8 | | 111 | | - | | 865 | 5-8 | 112P
124P | 11 | 73.0 | 40.0 | | 2,66 | 31.0 | | | 9 | 0 | | | P-3 | 1045A | WADDICOR | 37.0 | | 1 | | | | 1 | | FC37 | | | | 130P
144P | † | 76.0 | | 0.85 | 2.68 | 35.3 | | | 11 | 0 | | | 9-10 | 1'105A
1120A | #ADDICOR | | | 0.84 | | _17.8_ | 6 | 1 | | FC37 | | 866 | 5-15 | 137P | | 1 | | | 2.73 | 39.1 | | | 10 | 0 | . | | 9-17 | 1040A
1050A | , | 62.0 | 32.1 | | | 25.4 | | 1 6 | | † <u> </u> | | 867 | 5-22 | 150P | - | 73.0 | | 0.80 | 2.69 | 32.4 | | | 10 | 0 | - | 1 | | 1050A
1050A | | 50.0 | | 1.25 | 2,75 | 33.9 | | 3 - 7 | 0 | " | | 868 _ | 5-29 | 118P | | | T | | | | 1-1 | | 13 | † | - | 005 | 9-24 | 1.1 100A | | 61.0 | 37,6 | 0.92 | 2.75 | 34.7 | | 5 8 | 10 | | | 869 | 6-5 | 136P | * | 74.0 | | 0.91 | 2.70 | 40.7 | | | | 0 | i . | # | | | | | | | | | | | | | | 870 | 6-12 | 1200N | - | 76.0 | 40.0 | 0.71 | 2.63 | 28.3 | 1 | .6 | 12 | 0 | ⊥ <u>"</u> _ | 11 | | | | | | | | | | | | | | 7. C. Dia | st. Form 52 4-44 | | | | | LOS ANGELE
COD CONTRO
LYDRAULIC | OL DISTRICT | r | | | Sta. | No. F180-R | |--|--|---|---|---
---|--|--|---|---|---|--|--| | Daily o | discharge, in s | econd-feet of | LOS A | MGELES RI | VER at Pa | cific Com | st Highwa | у | | , for the ye | ar ending Septe | mber 30, 19 <u>46</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | b 40
40
40
40
41
41
41
41
41
40
40
40
40
40
40
40
40
40
40
40
40
40 | b 66
64
59
556
54
51
49
48
48
48
47
47
47
47
47
48
48
48
48
48
48
48
48
48
48
48
48
48 | b 89
872
64
56
81
92
70
81
92
107
107
107
107
107
104
102
104
104
6440
6304
631 | 174
174
174
174
180
214
222
222
220
206
214
206
187
164
164
155
157 | 92
85
1380
1394
120
87
75
70
72
70
70
70
70
70
70
70
70
70
70
70
70
70 | 72
73
70
64
70
75
81
75
70
62
59
62
75
4.1
40
38
633
633
633
187
139 | 404
9777
398
1194
174
1554
233
183
206
187
107
988
83
799
799
61
b 54
b 49
48
46
48
46
48
154 | D1062
661
661
660
599
555
553
550
4.7
d 47
4 48
4 49
5500 | d 523
555
556
5555
554
554
554
554
554
554
441
441
44 | d 44
456
466
47
47
47
48
48
48
47
466
45
45
45
43
460
45
45
460
47
47
47
47
48
48
48
48
48
48
48
48
48
48
48
48
48 | d 36
 37
 37
 38
 38
 38
 38
 37
 36
 35
 36
 35
 34
 33
 33
 33
 33
 33
 33
 33 | d 36
 354
 344
 343
 333
 322
 321
 311
 311
 311
 311
 310
 300
 | | 28
27
28
29
30
31 | 45
48
55
59
562 | 48
48
48
105
b 97 | 564
256
214
210
206
190 | 127
124
127
136
110
98 | 70
70
72 | 87
79
622
528
2760
639 | 157
142
136
136
151 | 49
49
49
50
d 51 | 40
40
41
42
d 43 | 34
34
35
35
36
36 | 35
36
37
38
37
4 36 | 30
30
30
30
30
30 | | · | 1325 | 1
1618 | 4825 | 5311 | 3827 | 7952 | 4945 | 1686 | 1449 | 1313 | 1100 | 940 | | МВАЙ | 42.7 | 53.9 | 478.2 | 171.3 | 136.7 | 256.5 | 164.8 | 54.4 | 48.3 | 42.4 | 35.5 | 31.3 | | FEET | 2,630. | 3,210. | 29,400. | 10,530. | 7,590. | 15,770. | 9,810. | 3.340. | 2,870. | 2,600. | 2,180. | 1,860. | | | Remarks: | | | | | | | | | YEAR ME. | AN120 | 5.9 | F. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 180-R | | | | | | н | Y DRAULIC | DIAIRIOM | | | | | | |----------------------------|-----------------------------------|--|---|---|---|---|--|--|---|--|--|------------------------------------| | Daily d | ischarge, in 1 | second-feet of | LOS ANGI | ELES RIVE | R at Paci | fic Coast | Highway | | | , for the yes | r ending Septer | nber 30, 19 47 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 3
4
5
6
7 | 130
53
50
46
42
41 | b 40
41
41
42
44
43
45 | b 110
 100
 98
 95
 b 153
 427
 b 341 | 275
204
b 160
 140
 135
 130
 125 | b 106
 113
 102
 90
 b 80
 106
 119 | 115
132
132
136
523
246
128 | 48
52
48
71
56
46
35 | 43
34
32
30
28
30
29 | 3 4
3 0
3 5
3 5
4 1
3 9
3 7 | 27
29
29
28
22
21
21 | D 27
26
26
26
26
27
30 | b 24
21
18
19
20
21 | | 8
9
10 | 39
39
36
33
32 | 51
42
35
5 45
2610 | 189
130
150
210
234 | 110
96
98
102
100 | 124
290
739
184
216 | 128
128
124
132
119 | 41
41
39
39
39 | 29
29
29
48
b 32 | 30
27
30
32
30 | 22
23
32
41
41 | 29
29
28
20
23 | 23
24
25
26
28 | | 13
14
15 | 32
33
35 | 4530
2050
232
197 | 215
196
180
155 | 92
80
84
109 | 232
194
172
162 | 102
85
52
48 | 39
32
41
41 | b 32
35
35
34 | 32
29
27
b 24 | 37
37
37
35 | 23
26
24
23 | 29
30
31
33 | | 17
18
19
20
21 | 87
55
42
37 | b 160
b 100
b 350
1850 | 135
114
100
90 | 100
95
90
94 | 162
150
124
106 | 44
52
58
62
162 | 4 1
4 4
4 6
4 8
4 6 | 3 4
3 2
b 3 1
b 3 0
b 3 0 | 26
25
25
26
b 26 | 3 4
3 4
3 5
3 5
3 5 | 22
21
23
24 | 3 4
3 4
3 4
3 4
3 5 | | 22
23
24
25 | 42
42
41
40
40 | b 481
b 375
2080
658
482 | 8 8 8 8 8 0 15 0 1770 | 100
113
123
115
100 | 106
128
132
145
167 | 119
60
50
50 | 66
52
44
48 | b 36
37
34
29 | 23
20
24
27 | 3 4
b 3 3
 3 3 | 27
29
30
32 | 35
35
35
34 | | 26
27
28
29
30 | 40
76
61
48
42 | 442
170
b 158
b 150
b 125 |
5750
2150
1050
623
442
347 | 93
91
279
177
138
b 119 | 156
128
115 | 46
50
124
172
68
44 | 4 4
4 3
3 9
4 4
4 1 | 28
39
52
37
34 | 32
32
26
27
24 | 32
32
28
27
27
27 | 355
356
330
330
27 | 34
33
33
32
532 | | | 1834 | 17669 | 15958 | 3867 | 4648 | 3491 | 1354 | 1044 | 875 | 961 | 841 | 868 | | MEAN | 59.2 | 589 | 515 | 125 | 166 | 113 | 45.1 | 33.7 | 29.2 | 31.0 | 27.1 | 28.9 | | ACRE- | 3,640 | 35,050 | 31,650 | 7,670 | 9,220 | 6,920 | 2,690 | 2,070 | 1,740 | 1,910 | 1.670 | 1.720 | | <u> </u> | Remarks: | <u> </u> | | | | | | | | OR | N_ 146
FEET_ 106 | ,000 | #### STATION FIRE-R MALIBU CREEK at Crater Camp LOCATION: WATER-STAGE RECORDER LAT. 34°04'38", LONG. 118°42'05", AT UPPER END OF MALIBU GORGE, ABOUT 0.2 MILE DOWNSTREAM FROM CRATER CAMP IN THE SANTA MORICA MOUNTAINS, AND 6 MILES SOUTHWEST OF CALABASAS. ELEVATION OF ZERO GAGE HEIGHT, 430,51 FRET. DRAINAGE AREA: 103 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - COARSE SAND AND GRAVEL LINED WITH BRUSH AND TREES. COMMUNICATION THROUGH 31 FEET OF 8 INCH DIAMETER IRON PIPE DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 10 FEET BELOW GAGE. RECORDER: INSTALLED JANUARY 17, 1931 OVER AN 18 INCH DIAMETER, CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947 REGULATIONS AND/OR DIVERSIONS: LAKE SHERWOOD DAM, LAKE ELEMMOR DAM, MALIBU LAKE MOUNTAIN CLUB DAM, AND CRASS DAM. OTHER LOW DAMS BUILT FOR RECREA-TIONAL PURPOSES AFFECT THE LOW SUMMER FLOWS. RECORDS AVAILABLE: JANUARY 17, 1931 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: MES OF DISCOND. 1945-1946 MAXIMUM 506 SECOND-FEET, MARCH 30. MINIMUM 0.1 SECOND-FOOT VARIOUS TIMES. MAXIMUM 980 SECOND-FEET, NOVEMBER 13. MINIMUM 0:1 SECOND-FDDT, VARIOUS TIMES. MINIMUM 12,240 SECOND-FEET, JANUARY 22, 1943. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | DISCHARGE | HEASURE | MENT# OF | MALI | BU CRE | EK | | | | | | | | DISCHARG | E MEASURER | MALIBU | CREEK | | | | | | | | |------|-----------|------------------|-------------------|---------|-------------------------------|----------------------------------|-------------------------|-----------------------|-------------|---------|--------------------|----------------|------------|----------|----------------------|---------------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------------------------|------------------------------|--------------| | - | AT. | Crat | er Camp | | | DURIN | D THE YE | AR ENDING | BEPTE | MBER : | 30, 19. | 46_ | | HEAR. | Crater | Сатр | | | DUR | ING THE Y | EAR ENDING | 3 ВЕРТЕМВЕЯ З | , _{19.} 47 | | | NO. | DATE | BEEIN
ENO | MADE BY | WIOTH | ARCA OF
SCOTION
SQ. FT. | MEAN
VELODITY
FT. PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC: FT. | RAT-
ING | METH- H | EAR. G.
EC. CHA | HT. ME | ER ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
BO. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METH- MEA
ING OD NO | S. S. HT.
CHANGE
YOTAL | METER
NO. | | 382 | 10/18 | 258P
303P | SOLL INGER | 2.1. | 0.50 | 0.80 | 4.10 | 0.40 | | 6 | 3 | O EC | 423 | 10-3 | 202P
207P | BOLL INGER | 2.3 | 0.55 | 0.29 | 4.16 | 0.16 | .5 3 | 0 | FC6 | | 383 | 11/1 | 415P
431P | | 5.5 | 1.43 | 0.43 | 3.97 | 0.61 | | .6 | 6 | | 424 | 10-10 | 327P
332P | | 2.0 | 0.53 | 0.47 | 4.16 | 0.25 | FLOATS 4 | 0_ | | | 384 | 11/8 | 418P
425P | HAIG | 4.3 | 1.31 | 0.40 | 4.03 | 0.52 | | .6 | 6 | 0 FC | 425 | 10-16 | 1245P
1249P | BOLLINGER-WADDICO | R 1.3 | 0.14 | 1.36 | 4.17 | 0.19 | ₃ | o | } | | 385 | 11/15 | 145P
150P | | 3.0 | 0.75 | 0,40 | 4,12 | 0.30 | | .6 | <u>.</u> | ٠. ا | 426 | 10-23 | 943Ā
948A | BOLL INGER | 1.7 | 0.48 | 0.65 | 4.18 | 0.31 | _" ₃ | 0 | | | 386 | 11/23 | 430P
436P | •• | 4.0 | 1.03 | 0.56 | 4.12 | 0.58 | | .5 | 5 | | 427 | 10-31 | 353P
357P | ., | 2.2 | 0.46 | 1.06 | 4.19 | 0.49 | ₃ | 0 | | | 387 | 12/6 | 1105A
1113A | | 4.0 | 1.68 | 0.44 | 4.17 | 0.74 | | 5 1 | 5 | 0 | 428 | 11-7 | 412P
417P | | 3.0 | 0,56 | 0.55 | 4.21 | 0.31 | .5 3 | 0 | FC6 | | 388 | 12/20 | 1005A
1012A | | 4.0 | 1.15 | C.67 | 4 18 | 0.77 | | 5 | | | 429 | 11-12 | 200P
205P | WADDICOR-OCAMPO | 2.5 | 0.52 | 0.31 | 4.22 | 0.16 | .6 3 | | FC37 | | 389 | 12/23 | 134P
200P | | 62.6 | 77.5 | 3.47 | 5.80 | 269. | | 6 10 | | 08 | 430 | 11-15 | 357P
408P | BOLL INGER | 14.9 | 15.2 | 0.81 | 4.35 | 12.3 | .6 9 | 0 | FC 6 | | 390 | 12/27 | 1005 A
1024 A | | 28.5 | 14.5 | 0.70 | 4.42 | 10.1 | | .6 | | | 431 | 11-20 | 1155A
1210P | WADD1COR-OCAMPO | 40.0 | 86.1 | 2.28 | 6.10 | 196. | .6 7 | 0 | FC37 | | 391 | 1/3 | 1006A | | TWO CH | 1 | 0.70 | 4.30 | 4 9 | | 5 1/ | | | | 11-21 | 438P | BOLLINGER | 24.5 | 37.6 | 0.73 | 4.63 | 27.4 | .6 13 | 1 | FC36 | | | 1/10 | 1014A
1015A | | | | | | 3.0 | _ | -5 11 | | <u> </u> | 432 | | 1027A | | 35.0 | 41,4 | 1.63 | 4.97 | 67.4 | .6 8 | | | | _392 | | 1020A
1010A | | 10.0 | 3.EL | 0.84 | 4.26 | | | -6-6 | + | 17 | 433 | 11-24 | 438P | | 1 | ANNELS | 1.00 | 4.38 | 15.9 | .6 17 | 1 | | | 393 | 1/17 | 1020A
1014A | HAIG | 6.5 | 2.85 | | 4.24 | 2.6 | | -6.1 | 3-1-4 | " | 434
435 | 11-27 | 456P
350P
408P | | | | | 4.15 | 5.0 | .6 13 | 1 | | | 394 | 1/23 | 930A | BOLL INGER | 5.4 | 2.75 | 0.87 | 4.24 | 2.4 | \dashv | -5 - | 7 | | 436 | 12-6 | 1055A | WADDICOR-QCAMPO | 21.0 | 22.4 | 0.45 | 4,33 | 10.1 | .6 6 | 1 | FC37 | | 395 | 1/31 | 945A
347P | HAIG | 4.3 | 2.62 | 0.92 | 4.23 | 2.4 | - | -6 5 | 1 | | | T | 440P | | i | 1 | i | 4, 12 | 6.0 | .6 9 | 1 | FC6 | | 396 | 2/3 | 356P
1210P | | 24.0 | 16.8 | 1.89 | 4.70 | 31.8 | | -6 10 | · - | | .437 | 12-12 | 449P
423P | BOLLINGER | 15.0 | 8.57 | 0.70 | | | | | 1 | | _397 | 2/7 | 1222P
1110A | | 5.6 | 2.85 | 2.03 | 4.35 | 5.8 | - | .6 8 | 3 0 | o '' | -438 | 12-19 | 436P | | 15.0 | 6.72 | 0.91 | 4.14 | 6.1 | -6 10 | | | | 398 | 2/14 | 1130A
937A | | -5-0 | 2.86 | 1.51 | 4.28 | 4.3 | - | .6 | 4 | - | .439 | 12-27 | 1030A
1134A | WADDICOR-OCAMPO | | ANNELS. | l | 4.84 | 44.8 | 6 15 | | FC37 | | 399 | 2/21 | 945A
208P | | 4.2 | 2.05 | 2.14 | 4.28 | 4.4 | | .6 | 4 | - | .440 | 12-29 | 1150A
930A | BOLL INGER | 23.5 | 22.8 | 1.36 | .4.58 | 30.9 | 6 14 | | FC6 | | 400 | 2/27 | 220P
1145A | | 14.5 | 5.49 | 0.68 | 4.28 | 3.8 | \dashv | 6 9 | - | | 441 | 1-2 | 944A
915A | | 25.5 | 21.1 | 0.86 | 4.40 | 18.1 | .6 13 | | 1 | | 401 | 3/14 | 1155A
1113A | BOLL INGER | 8.1 | 2.98 | 0.94 | 4.29 | 2.8 | | .6 9 | 1 | | 442 | 1-9 | 930A
950A | | 23.0 | 16.2 | 0.66 | 4.27 | 10,7 | .6 13 | 1 | 1 | | 402 | 3/19 | 1123A
135P | ECKERT | 16.3 | 8.04 | 0.60 | 4.39 | 4.8 | - | .6 11 | 4 | D FCF | 443 | 1-16 | 1002A
932A | | 17.0 | 9.30 | 0.89 | 4.22 | 8.3 | .6 10 | | 1 | | 403 | 3/21 | 146P | BOLLINGER | 10.0 | 7.42 | 1.13 | 4.48 | 8.4 | | .6. 5 | | <u> </u> | .444_ | 1-23 | 945A
1000A | " | 23.0 | 14.4 | 0.49 | 4.18 | 7.1 | .6 12 | | ļ- <u>"</u> | | 404 | 3/28 | 112P
930A | BOLL INGER | 10.5 | 6.20 | 1.03 | 4.40 | 6.4 | \dashv | -6-9 | + | F.C | 445 | 1-30 | 1015A
1100A | | 22.5 | 14.7 | 0.48 | 4.20 | 7.1 | .6 13 | | 1 | | 405 | 3/30 | 955A
415P | HAIG
BOLLINGER | 63.0 | 117- | 3.88 | 6.48 | 456. | | .6 7 | | 04 FC | 445 | 2-6 | 1115A
930A | " | 14.0 | 9.83 | 0.57 | 4.17 | 5.6 | .6 1 | | <u> </u> | | 406 | 3/31 | 429P
117P | ECKERT | 45.0 | 53.8 | 2.58 | 5.45 | 139. | | -6 0 | 1 |) FC | 447. | 2-13 | 942A
953A | " | 14.0 | 9.75 | 0.58 | 4.23 | 5.7 | 1 1 | 9 0 | +: | | 407 | 4/4 | 132P | BOLLINGER | 35.2 | 32.8 | 0.72 | 4.59 | 23.8 | _ | -6 h7 | | '' | 448 | 2-20 | 1004A
1000A | | 17.0 | 8.25 | 0.39 | 4.12 | 3,2 | 1-1-1- | 1 0 | † <u>"</u> | | 408 | 4/11 | 112P
128P | | 29.0 | 23.0 | 0.43 | 4.41 | 9.9 | _ | .6.12 | , _ (| | 449 | 2-27 | 1008A
915A | | 12.5 | 3.31 | 0.94 | 4.18 | 3.1 | 1-1-1- | 3 0 | ļ | | 409 | 4/18 | 127P
135P | | 16.0 | 16.2 | 0.43 | 4.35 | 7.0 | | . F 9 | 4 | <u> </u> | 450 | 3-6 | 927A
940A | | 17.3 | 9.54 | 0.35 | 4.19 | 3.3 | -6 10 | İ | | | 410 | 4/25 | 306P
327P | | TWO CHA | NNELS | | 4.32 | 4.7 | _ | 5 14 | عــلــ | <u>. </u> | 451 | 3-13 | 950A
309P | " | 15.0 | 8.15 | 0.29 | 4.16 | 2.4 | -6 1 | | | | 411 | 5/2 | 256P
306P | ** | 7.9 | 3.79 | 1.29 | | 4.9 | _ | .6 9 | 4 | <u> </u> | 452 | 3-20 | 316P
345P | | 13.0 | 8.81 | 0.43 | 4.15 | 3.8 | | 7 0 | | | 412 | 5/6 | 1120A
1127A | | 7.2 | 2.69 | 1.45 | 4.30 | 3.9 | _ | .57 | 1 | | 453 | 3-27 | 355P
328P | | 12.5 | 7.84 | 0.33 | 4.11 | 2.5 | -6 1 | | | | 413 | 5/16 | 320P
328P | " | 7.3 | 2.84 | 1.27 | 4.28 | 3.5 | | 5 7 | | | 454 | 4-3 | 335P | | 6.2 | 3.67 | 1.06 | 4.08 | 3.9 | -6 | 6 0 | | | 414 | 5/23 | 338P
346P | | 7.3 | 3.42 | 0.99 | 4.27 | 3.4 | | .6 7 | | 1 | 455 | 4-10 | 446P | | 12.0 | 3.95 | 0.68 | 4.03 | 2.7 | .5 | 7 0 | | | 415 | 5/31 | 404P
413P | | . 6.0 | 2.95 | 0.88 | 4.24 | 2.6 | | .5 8 | ، ا | , l <u>.</u> . | 456 | 4-18 | 356P
333P | * | 12.0 | 3.01 | 0.63 | 3.95 | 1.9 | -6 | во | ļ. <u></u> | | 416 | 6/13 | 405P
410P | | 4.6 | 2 52 | 0.79 | 4.21 | 2.0 | | .5 6 | | , | 457 | 4-24 | 340P | | 8.5 | 2.40 | 0.83 | 4.29 | 2.0 | -5 | 5 0 | ļ | | 417 | 6/27 | 330P
337P | | 3.8 | 1.83 | 0.60 | 4.18 | 1.1 | | .5 7 | | , . | 458 | 5-1 | 415P
422P | <u> </u> | 7.5 | 2,00 | 0.70 | 4.25 | 1.4 | 6 | 7 0_ | | | 418 | 7/10 | 357P
401P | HAIG | 2 2 | 0.71 | 0.85 | 4.16 | 0.60 | \exists | 5 4 | | FC | 459 | 5-15 | 400P
406P | | 7.5 | 2.27 | 0.40 | 4,19 | 0.90 | .5 | 7 0 | | |
 | 300P | | 3.2 | | | | | 7 | T | | FC | 460 | 5-29 | 458P
506P | ** | 3.0 | 0,57 | 0.89 | 4.15 | 0.51 | 5 | 5 0 | | | 419 | 7/25 | 309P | SCLL INGER | | 0.63 | 0.46 | 4.14 | 0.29 | 7 | 5 4 | 1- | 1. | 461 | 6-19 | 405P
411P | | 3.8 | 0.75 | 0.45 | 4.08 | 0.29 | 5 6 | 0 | | | 420 | 8/8 | 313P
250P | | 2.5 | 0.32 | .0.50 | 4.14 | 0.16 | 1 | .5 3 | 1-9 | <u> </u> | 462 | 7-2 | 945A
953A | | 1.5 | 0.18 | 0.83 | 4.08 | 0.15 | 5 | 2 0 | ., | | .421 | 8/21 | 256P
315P | | 2.1 | 0.31 | 0.45 | 4.10 | 0.14 | - | .5. 3 | | | 463 | 7-24 | 1045A
1050A | BOLLINGER
VAN DEB GOOT | 5.0 | 0.30 | 0.80 | 4.11 | 0.22 | 1 | ι | | | 422 | 9/19 | 321P | | 2.2 | 0.41 | 0.32 | 4.15 | 0.13 | | .5 3 | 10 | | 464 | 8-13 | 400P
402P | MOON | 1.0 | 0.14 | 0.50 | 4.07 | 0.07 | 1 1 1 | 2 0 | FC22 | | | | | | | | | | | | | | | 465 | 9-4 | 345P
350P | BOLLINGER | 2.3 | | 0.37 | 4.06 | 1 | 1 | | | | | | | | | | | | | | | | | II AND | | . بناهالبعد . ي | , | | ×**** | + = = = = | | , <u>-1.</u> - | 4 | - : | | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Bta. No. F130-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oet. | Эау | |--|---|---|---------------------------------|---|--|---------------------------------------|---------------------------------|---------------------------------|---|---------------------------------|-----------------------------------|----------------------------| | 0 1
0 1
0 1
0 1 | 03
03
03
03 | 1.0
1.0
0.9
0.8 | 3.0
3.0
3.7
2.7
2.4 | d 5.0
 4.5
 4.5
 4.2
 3.9 | 70
45
34
25
22 | 3 3
3 0
2 7
2 7
3 3 | 2 A
2 7
2 1
1 8
1 0 | 6 .6 .5 .0 .5 .5 .5 .4 .5 | 0.7
0.7
0.8
0.7 | 0.6
0.6
0.6
0.5 | 0.3
0.3
0.3
0.3 | 1
2
3
4
5 | | 0 1
0 1
0 2
0 3 | 00000 | 0.8
0.7
0.7
0.6
0.6 | 2 A
2 A
2 A
2 A
2 A | d 3.6
3.0
3.0
3.0
3.0
3.0 | 18
17
14
11 | 3 .0
3 .0
3 .0
2 .7
2 .7 | 6.7
5.6
4.5
4.2
4.5 | 4 9 6 9 6 9 9 3 3 3 3 3 3 3 | 0.7
0.8
0.8
0.8 | 00055555 | 0 3
0 3
0 3
0 3 | 6
7
8
9 | | 20
20
20
20
20
20
20 | 01 | 0 &
0 5
0 5
0 4
0 3 | 2 1
1 8
2 1
2 1
1 5 | 3.0
3.9
3.6
3.6
3.6 | 10
9.4
9.4
8.4 | 3.0
2.7
2.7
2.7
2.7 | 4 4 9 9 9 R | 2.4
2.1
2.4
2.4
3.0 | 8, O, 8
0, 0
8, O
8, O
8, O | 0 5
0 5
0 5
0 5 | 03
03
03
03 | 11
12
13
14 | | 0 3
0 2
0 2
0 1 | 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 | 0 2 2 2 3 3 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1.5
1.5
1.4
1.5 | 3.6
3.6
3.3
3.6
3.3 | 9.4
7.8
7.2
7.2
6.2 | 3.0
2.7
2.7
5.0
7.8 | 4 5 5 Q Q
5 5 Q Q | 3.0
2.7
2.7
2.7
2.7 | 8.0
9.0
9.0
8.0
8.0 | 8 0 5
0 5
0 5
0 5 | 0.3
0.4
a 0.4
0.4 | 16
17
18
19
20 | | 0 1
0 3
0 3
0 3
0 8 | 01
02
03
03 | 03
03
03
03 | 1.4
1.4
1.3
1.3 | 3 3
3 3
3 3
3 3
3 3 | 55555
5555 | 7.8
6.2
3.6
3.3 | 4 5
4 5
3 9
4 2
4 2 | 2.7
2.4
2.4
2.4
2.4 | 71 a
133 a
166 a
44
21 b | 0.5
a 0.6
0.6
0.7 | 0.4
0.5
0.5
0.5 | 3 4 5 | | 0 2
0 2
0 1
0 1 | 00000
0000
000
000 | 99999999999999999999999999999999999999 | 1 2
1 1
1 0
1 0 | 33
33
27
27
24 | 5 Q
5 Q
5 Q
5 G
6 G
6 S | 3.0
2.7
5.0
10
267
157 | 3.9
3.9
3.9 | 21144
2224
224 | 15 b
11
8 9
8 4
7 2
7 2 | 0 7
0 7
0 7
0 7
0 7 | 0.5
0.5
0.5
0.6
a 0.6 | 26
27
28
29
30 | | 5.4 | 5. 3 | 14.6 | 54.7 | 1092 | 4012 | 5342 | 1562 | 95.9 | 5082 | 17.1 | 121 | | | 1.80 | 0.17 | 0.47 | 1.82 | 3.5a | 13.4 | 17.2 | 5.57 | 3.09 | 16.4 | 0.57 | 0 - 39 | AN | | 11. | 11. | 29. | 108. | 217. | 796. | 1,060 | 310. | 190. | 1,010. | 34. | 24. | ET. | P. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. F 130-R HYDRAULIC DIVISION MALIBU CREEK at Crater Camp for the year ending September 30, 19 17 Apr. May June July Sept. Aug. 86654308665554460749 111118665554445709972 95555455888445 651897448086784084 3333333 208 a18 117 115 114 113 a111 10 110 12 10 76.8 8.0 67.2 76.8 77.2 68.1 118.8 76.8 333345334443222233333444433226654 s. 8 4391 165.4 3.1 7579 315.6 115.8 27.8 .265 25.3 14.2 16 1,500 871 10.2 5.91 3.74 €.54 0.90 0.27 0.20 0.10 0.11 55 YEAR MEAN 5.28 OR DERIOD ACRE-FEET 3,820 #### STATION F83-R MISSION CREEK at San Gabriel Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°01'47", LONG. 118°04'07". ON THE UP-STREAM END OF THE RIGHT (WEST) ABUTWANT OF SAN GABRIEL BOULEVARD BRIDGE, JUST EAST OF THE RIO HONDO. ABOUT 2 MILES NORTHEAST OF MONTEBELLO, ELEVATION OF GAGE ABOUT 193 FEET. DRAINAGE AREA: ABOUT 6 SQUARE MILES. FLOW ORIGINATES ALMOST ENTIRELY FROM RISING WATER. CHANNEL AND CONTROL: CHANNEL - SAND COVERED WITH WEEDS AND BRUSH; SOME CROSS FENCES WHICH CATCH DEBRIS. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING APPROXIMATELY 400 FEET BELOW STATION. HIGH FLOWS MEASURED FROM HIGHWAY BRIDGE. RECORDER: INSTALLED JUNE 14, 193C, OVER AN 18 INCH DIAMETER, CORRUGATEDIRON PIPE STILLING WELL. HORIZONTAL RATIONAL 7 DAY RECORDER IN SERVICE OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: SOME WATER PUMPED JUST DOWNSTREAM FROM BRIDGE. DIVERSIONS: NONE. RECORDS AVAILABLE: RECORDER RECORDS JUNE 14, 1930 TO SEPTEMBER 30, 1947. SOME WEEKLY STREAM MEASUREMENTS WERE TAKEN PRIOR TO INSTALLATION OF RECORDER. EXTREMES OF DISCHARGE: EMES OF DISCHARGE: 1945-1946 MAXIMUM 67 SECOND-FEET, DECEMBER 23, MINIMUM 17 SECOND-FEET, AUGUST 23, 1946-1947 MAXIMUM 90 SECOND-FEET, DECEMBER 25, MINIMUM 15 SECOND-FEET, VARIOUS TIMES, 1930-1947 MAXIMUM DISCHARGE NOT DETERMINED, MARCH 2, 1938, MAXIMUM DISCHARGE NOT DETERMINED, MARCH 2, 1938, MAXIMUM DISCHARGE OF RECORD, 336 SECOND-FEET, FEBRUARY 22, 1944, MINIMUM 4.8 SECOND-FEET, OCTOBER 4, 1934. ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | DIECHARGE | MEASURER | SENTE OF MISSION | CREEK | ···· | | | . at | | | | | ND. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELODITY
SY,PER BED. | GAUGE
HEIGHT
FEET | CISCHARGE
SEC. FT. | RAT- | NETH- ME | AS. G.
G. GH | MT.
ANGE
STAL | METER
NO. | |------------|-------------|------------------------------|--|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|----------------------|---------------------------|--------------|--------------|-------------|----------------------|---|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|----------|-----------------|---------------------|--------------| | | nêtr Sa | n Gabr | iel Boulevard | | | DUR | ING THE Y | EAR ENDING | ВЕРТЕМВ | IER 30, | ,,46 | | 507 | 3/28 | 735A
750A
850A | 17 | 18.0 | 20.0 | 1.25 | 6.23. | 25.1 | \vdash | 6 | 9 + | .02 | •- | | ND. | DATE | BERD | HADE BY | WIDTH
FEET | AREA DE
SECTION
SD. FT. | MEAN
VELOUITY
FT.PER BEG. | GAUGE
HEIGHT
FEET | DISCHARGE
BEC. FT. | RAT- METH | MEAS.
SFC.
NO. | G. HT.
GHANGE
TOTAL | METER
NO. | - 508
509 | 4/44/11 | 905A
842A
902A | | 15.0 | 16.6
17.8 |
1.65 | 6.28 | 27.4
_25.2 | | | д
9 | 0 | | | 482 | 10/4 | 835A
855A | BREWSTER | 16.0 | 15.2 | 1.28 | 6.00 | 19.4 | | 6 8 | | FC12 | 510 | 4/18 | 845A
.901A | 11 | 18.0 | | 1.44 | | 24.1 | | | 8 | 0 | | | 483 | 10/11 | 900A
915A
855A | ., | 15.0 | 15.6_ | 1.36 | 6.03 | 21.2 | | 6 8 | . 0 | | 511 | 4/25 | 905A
840A | | 17.0 | 16.1 | 1.39 | 6.09 | 22.4 | | 6_ | 8 | ۰ | | | 484 | .10/18 | 910A
845A | | 16.0 | 16.2 | 1.30 | 6.05 | 21.1 | - | 6 8 | 0 | | 512 | 5/2 | 858A
835A | ., | 16.0 | 15.6 | | | 21,9 | | | 8 | 0 | -" | | 485 | 10/25 | 901 A
845 A
900 A | BREWSTER
DILLEY | 15.0
17.0 | 17.1 | 1.40 | 6.02 | 21.4 | | 6 8 | | | 513 | 5/9
5/16 | 851A
839A
855A | | 17.0 | 16.3 | 1.52 | 6.12 | 22.6 | | | 8 | 0 | | | _487_ | 11/8 | 841 A
857 A
844 A | BREWSTER | 17.0 | 17.1 | 1.21 | 6.08 | 20.7 | <u> </u> | 6 8 | _0 | | 515 | 5/23 | 846A
904A
844A | | 18.0 | 16.8 | 1.28 | 6.09 | 21.5 | | .6 | 8 | 0 | | | 488 | .11/15 | 902A
840A | | 15.0 | 16.5 | | 6.08 | 20,8 | | 6 8 | 0 | | 516 | 5/31 | 900A_
831A | | 17.0 | 16.1 | 1.30 | 6.09 | 20.9 | | | 8 | 0 | | | 489 | 11/23 | 856A
842A
858A | | 15.0 | 17.4 | 1.16 | | 20.2 | | 6 8 | | | 517
518 | 6/7 | 846A
835A
851A | *************************************** | 17.0 | 15.9 | | | 19.1 | | | в | 0 | | | 491 | 12/6 | 843A
859A
846A | | 15.0 | 16.9 | 1.24 | 6.07 | 21.0 | - | 6_8 | 0 | | 519 | 6/20 | 840A
856A
850A | | 17.0 | 16.0 | 1.18 | 6.05 | 18.8 | | .6 | 8 | 0 | | | 492 | _12/13 | 902A
844A | 0 | .15.0 | 17.2 | | 6.04 | 21.0 | - | 6 8 | | | 520 | 6/27 | 906A
837A | | 16.0 | 15.4 | | 6.04 | 18.5 | | | 8 | 0 | | | 493 | 12/20 | 902A
909A
925A | 11 | 15.0
15.0 | 16.6 | 1,29 | 6.26 | | | 6 8
6 8 | 0 | •• | 521
522 | 7/5 | 851A
840A
856A | 14 | 15.0 | 15.7 | 1 | 5.98 | 19.3 | | | В | 0 | | | 495 | 1/3 | 834A
850A
822A | | 15.0 | 15.3 | 1,57 | 6.20 | 24.0 | | 6 8 | _ 0 | | 523 | 7/18 | 836A
852A
843A | ** | 17.0 | 16.3 | 1.15 | 5.95 | 18-8 | | 6_ | .8 | 0 | | | 496 | 1/16 | 840A
847A | The result of the second th | 16.0 | 16.1 | 1.45 | 6.15 | 23.3 | | 6 B | 0 | | 524
525 | 7/25
8/1 | 859A
815A
827A | BREWSTER
BONADIMAN | 15.0 | 15.9 | 1 | 5.95 | 19.0 | H | | 8 | 0 | | | 497
498 | 1/17 | 905A
850A
910A
901A | | 18.0 | 15.1 | 1.40 | 6.12 | 23.6 | | 6 9 | 0 | ., | 526 | 8/8 | 850A
900A | BONADIMAN | 16.0 | 16.4 | 1.16 | | 19.0 | | | 9 | | FC19 | | 498 | 1/31 | 901 A
918A
910 A | 14 | 16.0 | 14.6 | 1.58 | 6.04 | 23.0 | <u>.</u> | 6 8 | 0 | | 527 | 8/15 | 815A
825A
755A | BONAD I MAN | 16.0 | 16.6 | 1.09 | 5.95 | 18.2 | | | 8 | • | FC19 | | 500 | 2/7
2/14 | 928A
905A
925A | ** | 17.0 | 16.8 | 1.40 | 6.13 | 23.6 | | 6 9 | 0 | | -528- | 8/22 | 806A
849A | | 15.0 | 14.7 | | | 17.6 | | | 8 | -U. | FC12 | | 501 | 2/14 | 840A
858A | | 17.0 | 15.7 | | 6.09 | 24.3 | 177 | 6 9 | | | 5.29 | 8/29
9/5 | 905A
840A
855A | BREWSTER | 16.0 | | 1.14 | | 18.2 | | | 8 | 0 | | | 503 | 2/28 | 900A
858A | | 18.0 | 16.8 | 1.40 | 6.09 | 23.5 | ├ | 6 9 | 0 | | 531 | 9/12 | 845A
900A
826A | 11 | 15.0 | 15.7 | 1.18 | 5.90 | 18.5 | - | .6 | 8 | 0 | | | 504 | 3/7 | 916A
828A | | 18.0 | 18.0 | 1.24 | | 22.3 | ++: | 6 9 | | | 532 | 9/19 | 842A
825A | | 15.0 | 15.8 | | 1 | 19.7 | + | .6 | 8 | 0 | | | 505
506 | 3/14 | 858A | BREWSTER | 15.0 | 17.0 | 1.56 | 6.28 | 23.1 | | 6 B | 0 | FC12 | 5.33 | 9/26 | 840A | <u> </u> | 17.0 | 16.0 | 1.19 | 13.94 | 1 13.1 | +! | | | | | | | DISCHARGE | MEABURE | MENTE OF MISSION (| CREEK |-------|-----------|----------------------|--------------------|-------|--------------------|------------------|----------------|------------|----------|-------|--------|--------|----------|-----|-------|----------------------|---|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|----------------------|---------------------------|--------------| | | .at. s | an Gat | oriel Boulevard | | | DUR | KNO THE Y | YEAR ENDIN | 3 BCP | TEMBE | .A 30, | 19.47 | · | NO. | DATE | ENG | MADE BY | WIDTH
FEET | AREA OF
BECTION
EQ. FT. | MEAN
VELOCITY
FT.PER BEG. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METI | MEAS.
SEG.
NO. | G. HT.
CHANGE
TOTAL | METER
NO. | | | | BESIN | | WITH | AREA DF
SECTION | MEAN
VELODITY | DAUGE | DIRCHARDE | | METH- | MEAT. | G. HT. | метея | 560 | 3-20 | 900A
912A
909A | WADDICOR | 15,0 | 16.3 | 1.31 | 6.04 | 21.4 | .6 | 10 | 0 | •• | | NO. | DATE | 845A | HADE BY | FEET | SECTION
SD. FT. | PT.PER BEG. | HEIGHT
FEET | egu. FT. | ING | 00 | ND, | TOTAL | NO. | 561 | 3-27 | 919A
85.5A | VAN DER GOOT | 16.1 | 16.2 | 1.28 | 6.02 | 20.7 | . 6 | 9 | 0 | | | 534 | 10-3 | 900A
855A | BREWSTER | 15.0 | 15.8 | 1.22 | 5.94 | 19.3 | _ | .6 | 8 | 0 | FC12 | 562 | 4-2 | 905A | WADDICOR | 14.3 | 14.2 | 1.42 | 6.06 | 20.2 | .6 | 8 | 0 | | | _535 | 10-10 | 911A
838A | | 16.0 | 15.8 | 1,20 | 5.92 | 19.0 | _ | -6 | 8 | 0 | | 563 | 4-10 | 902A
912A
905A | | 15.0 | 14.6 | 1.30 | 5.98 | 19,0 | .6 | 8 | 0 | | | 536 | 10-17 | 854A
835A | • | 15.0 | 16.0 | 1.21 | 5.94 | 19.4 | | .6 | 8 | 0 | <u> </u> | 564 | 4-17 | 915A | ,, | 13.3 | 12.4 | 1.25 | 5.94 | 15.5 | .6 | 8 | 0 | ** | | 537 | 10-24 | 849A
842A | | 15.0 | 15.8 | 1,32 | 5.92 | 20.8 | L | .6 | 8 | 0 | ļ., | 565 | 4-24 | 85 0A
900A | | 14.1 | 13.7 | 1.26 | 5.96 | 17.2 | .6 | 8 | 0 | | | 538 | 10-31 | 856A | | 16.0 | 16.4 | 1,23 | 5.93 | 20.1 | | .6 | 8 | 0 | •• | 566 | 5-1 | 903A
911A
855A | WADDICOR-MELLEN | 16.0 | 15.2 | 1,28 | 5.95 | 19.5 | .6 | 10 | 0 | | | 539 | 11-7 | 842A
858A
155P | | 16.0 | 16.4 | 1.21 | 5.92 | 19.9 | | .6 | 8 | 0 | " | 567 | 5+8 | 905A
855A | WADDICOR | 14.8 | 14.3 | 1.26 | 5.92 | 18.0 | .6 | 9 | 0 | | | 540 | 11-14 | 205P
850A | BREWSTER - VINES | 18.0 | 25,8 | 1.30 | 6.65 | 33,6 | | .6 | 5 | 0 | " | 568 | 5-15 | 905A
857A | ,, | 14.0 | 14.0 | 1.31 | 5,94 | 18.4 | .6 | 9 | 0 | | | 541 | 11-15 | 905A
805 A | BREWSTER | 15.0 | 18.8 | 1.24 | 6.32 | 23.4 | | .6 | 8 | 01 | | 569 | 5-22 | 908A
847A | ** | 13.8 | 13.4 | 1,22 | 5.93 | 16.4 | .6 | 8 | 0 | | | 542 | 11-22 | 820A
809A | | 15.0 | 18.2 | 1,22 | 6.27 | 22.2 | | .6 | 8 | .0 | | 570 | 5-29 | 859A | | 15.0 | 14.6 | 1.27 | 5,93 | 18,6 | .6 | 8 | 0 | | | 543 | 11-29 | 825A
815A | | 15.0 | 17.8 | 1.24 | 6.18 | 22.1 | _ | .6 | 8 | 0 | - | 571 | 6-5 | 858A
908A | | 15.0 | 14.8 | 1.25 | 5.93 | 18.5 | .6 | 9 | 0 | | | 544 | 12-5 | 830A
815A | ,, | 15.0 | 18.4 | 1.22 | 6.16 | 22.4 | _ | .6 | 8 | 0 | ••• | 572 | 5-12 | 855A
905A
850A | | 15.5 | 15.4 | 1,23 | 5,97 | 19.0 | .6 | 8 | 0 | | | 545 | 12-12 | 825A
850A | | 16.0 | 18.2 | 1.25 | 6.12 | 22.7 | ļ., | .6 | 5 | 0_ | | 573 | 6-19_ | 900A
855A | ļ . | 15.2 | 14.3 | 1,29 | 5.92 | 18.4 | .6 | 9 | 0 | | | 546 | 12-19 | 905A
128P | ,, | .15.0 | 17,0 | 1.34 | 6.10 | 22.8 | <u> </u> | .6 | 8 | 0 | | 574 | 6-26 | 905 A
850A | | 15.0 | 14.6 | 1.28 | 5.91 | 18.7 | .6 | 9 | 0 | | | 547 | 12-26 | 140P
830A | BREWSTER - VINES | 18.0 | 28,5 | 1,59 | 6.80 | 45.3 | _ | .6 | 6 | 0 | | 575 | 7-3 | 900A
900A | | 15.2 | 14.0 | 1,23 | 5.85 | 17.2 | .6 | 9 | 0 | *** | | 548 | 12-27 | 840A
913A | | 18.0 | 19.6 | 1,32 | 6.48 | 26.8 | L | .6 | 5 | 0 | | 576 | 7-10 | 91 0A
B57A | | 16.0 | 15.8 | 1.04 | 5.85 | 16.5 | .6 | 9 | 0 | | | 549 | 1-3 | 925A
910A | BREWSTER | 15.0 | 16.4 | 1.45 | 6.16 | 23.7 | _ | .6 | 6 | 0_ | | 577 | 7-17 | 907A | · · · · · · · · · · · · · · · · · · · | 16.0 | 16.5 | 0.98 | 5.87 | 16.1 | .6 | 9 | 0 | | | 550 | 1-9 | 925A
858A | | 16.0 | 16.8 | 1.42 | 6.13 | 23.9 | | -6 | 8 | 0_ | | 578 | 7-24 | 900A
850A | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 15.8 | 15.5 | 1.06 | 5.87 | 16.4 | . 6 | 9 | 0 | | | 551 | 1-16 | 914A
854A | | 18.0 | 18.6 | 1.27 | 6.10 | 23.7 | ļ | .6 | 9 | 0 | - | 579 | 7-31 | 900A
835A | | 15.5 | 14.8 | 1.08 | 5.85 | 16.0 | .6 | 9 | 0 | | | 5 5 2 | 1-23 | 912A
901A | | 18.0 | 17.8 | 1.31 | 6.08 | 23.4 | | .6 | 9 | 0 | <u></u> | 580 | 8-7 | 853A
830A | BREWSTER | 17.0 | 15.2 | 1.03 | 5.84 | 15.7 | .6 | 8 | 0 | FC12 | | 553 | 1-30 | 917A
847A | ** | 17.0 | 16.8 | 1.38 | 6.13 | 23.1 | _ | •6 | 8 | 0 | " | 581 | 8-14 | 848A
832A | * | 14.0 | 14.5 | 1.14 | 5.83 | 16.6 | .6 | 7 | 0 | | | 554 | 2+6 | 903A
850A | | 17.0 | 16.7 | 1.35 | 6.08 | 22.5 | _ | ,6 | 8 | 0 | | 582 | 8-21 | 848A
902A | | 15.0 | 14.4 | 1.24 | 5,84 | 17.9 | .6 | 8 | 0 | | | 555 | 2-13 | 905A | * | 15.0 | 16.3 | 1.40 | 6.11 | 22.9 | <u> </u> | .6 | 8 | 0 | <u> </u> | 583 | 8-28 | 912A
825A | WADDLCOR | 16.2 | 15.8 | 1.09 | 5.85 | 17,3 | .6 | 9 | 0 | FC37 | | 556 | _2-20 | 847A
857A | BREWSTER-WADDICOR | 16.0 | 15.8 | 1.47 | 6.07 | 23.2 | - | .6 | 8 | 0. | | 584 | 9-4 | 835A
840A | , | 15.5 | 15.5 | 1,05 | 5.79 | 16.2 | .6 | 8 | 0 | | | 557 | 2-27 | 847A
859A | WADDICOR | 15.3 | 15.5 | 1.33 | 6.06 | 20.6 | 1 | .6 | 9 | 0 | FC37 | 585 | 9-11 | 850A
848A | | 15.5 | 15.1 | 1.03 | 5.82 | 15.5 | .6 | 8 | 0 | | | 558 | 3-6 | 930A
940A | ** | 13.5 | 15.5 | 1.34 | 6,11 | 20.8 | _ | .6 | 7 | 0 | | 586 | 9-18 | 858A
915A | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 16.0 | 16.5 | 1.07 | 5.88 | 17.6 | . 6 | 9 | 0 | | | 559 | 3-13 | 848A
858A | 19 | 15.0 | 15.6 | 1.34 | 6.06 | 21.0 | L. | .6 | 8 | 0 | ,, | 587 | 9-25 | 925A | <u> </u> | 14.8 | 16.1 | 1.01 | 5.85 | 16.3 | .6 | 9 | 0 | | | | lat. Form \$2 4-44 | | MISSION | CREEK at | : | LOOD CONT
HYDRAULIC | | CT | | | | a. No. F83-R | |----------|--------------------|----------------|---------|----------|----------|------------------------|--------|--------|--------|--------------|----------------|------------------| | _ | | second-feet of | | CREEN AL
| CAN GADI | 1 00010 | YATU | | | , for the ye | ear ending Sep | tember 30, 19 46 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 20 | 21 | 21 | 23 | 23 | 23 | 30 | 2.2 | 20 | 19 | 18 | 18 | | 2 | 20 | 21 | 21 | 23 | 23 | 23 | 30 | 2.2 | 21 | 19 | 18 | 1.8 | | 3 | 20 | 21 | 21 | 24 | 27 | 23 | 28 | 22 | 20 | 19 | 18 | 18 | | 4 | 19 | 21 | 21 | 23 | 26 | 23 | 27 | 22 | 20 | 19 | 18 | 18 | | 5 | 20 | 21 | 21 | 24 | 24 | 22 | 27 | 2.2 | 20 | 18 | 18 | 1.8 | | В | 20 | 21 | 21 | 24 | 24 | 2.5 | 26 | 5.5 | 20 | 18 | 18 | 1,8 | | 7 | 20 | 21 | 21 | 23 | 23 | 22 | 26 | 22 | 50 | 19 | 19 | 18 | | 8 9 | 21 | 21 | 21 | 23 | 23 | 22 | 2.6 | 22 | 20 | 19 | 19 | 18 | | 10 | 21 | 21 | 21 | 23 | 24 | 22 | 26 | 23 | 20 | 19 | 18 | 18 | | 11 | | 21 | 21 | 23 | 24 | 23 | 26 | 23 | 19 | 19 | 19 | 1.8 | | 12 | 21 | 21 | 21 | 24 | 24 | 23 | 25 | 23 | 19 | 19 | 18 | 18 | | 13 | 21 | 21 | 21 | 24 | 24 | 22 | 24 | 23 | 19 | 19 | 18 | 19 | | 14 | 21 | 21 | 21 | 24 | 24 | 23 | 24 | 23 | 19 | 19 | 18 | 19 | | 15 | 21 | 21 | 21 | 24 | 25 | 23 | 24 | 23 | 19 | 19 | 18 | 19 | | 18 | 21 | 21 | 21 | 24 | 25 | 23 | 24 | 23 | 19 | 19 | 18 | 19 | | 17 | 21 | 21 | 21 | 24 | 25 | 23 | 24 | 22 | 19 | 19 | 18 | 19 | | 18 | žī | 21 | 21 | 23 | 25 | 23 | 24 | 22 | 19 | 19 | 18 | 50 | | 19 | 21 | 21 | 21 | 23 | 25 | 26 | 24 | 22 | 19 | 19 | 18 | 19 | | 20 | 21 | 2 Ö | 21 | 23 | 2.5 | 3.0 | 24 | 22 | 19 | 19 | 18 | 1 1 9 | | 21 | 22 | 20 | 24 | 23 | 24 | 28 | 23 | žž | 19 | 1 1 9 | 18 | 19 | | 22 | 21 | 20 | 52 | 23 | 24 | 27 | 23 | 2.2 | 19 | 19 | 17 | 19 | | 23 | 22 | 20 | 48 | 23 | 24 | 27 | 23 | 22 | 19 | 19 | 17 | 19 | | 24 | 21 | 20 | 28 | 23 | 24 | 26 | 22 | 22 | 19 | 19 | 17 | 19 | | 25 | 21 | SO | 26 | 23 | 24 | 26 | 22 | 22 | 18 | 19 | 18 | 19 | | 26 | 21 | 20 | 25 | 23 | 24 | 26 | 22 | 22 | 19 | 18 | 18 | 19 | | 27 | 21 | 21 | 24 | 23 | 24 | 26 | 22 | 5.5 | 18 | 18 | 18 | 18 | | 28
29 | 21 | 21 | 23 | 23 | 23 | 25 | 22 | 22 | 18 | 18 | 18 | 18 | | 30 | 21 | 21 | 23 | 23 | Ĺ | 2.5 | 2.5 | 22 | 19 | 18 | 18 | 18 | | 31 | 21 | 21 | 23 | 23 | | 42 | 22 | 21 | 19 | 18 | 18 | 19 | | لت | 21 | | 23 | 23 | | 3.5 | | 21 | | 18 | 18 | | | | 645 | | 739 | | 678 | | 736 | | 577 | | 558 | | | | | 623 | | 723 | | 777 | | 657 | J11 | 5 0 1 | 998 | 558 | | MEAN | 20.8 | 20.8 | 23.8 | 23.3 | 24.2 | 25.1 | 24.5 | 22.2 | 19.2 | 18.7 | 18.0 | 18.6 | | FEET | 1,280. | 1,240, | 1.470. | 1,430. | 1,340. | 1,540. | 1,460. | 1,360. | 1,140. | 1,150. | 1,110. | 1,110. | | | Remarks: | | | | | | | | | YEAR MEA | | 1.6 | | | | | | | | | | | | OR ACE | E EEEE | 16 630 | | | let. Form 58 4-64 | | MIRRIA | 1 0055V | FLO
H | LOS ANGELE
COD CONTRO
TYDRAULIC | OL DISTRIC | r | | | | No. F 83-R | |----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------------|----------------------|----------------------|----------------------|----------------|----------------------|-------------------------| | Dally | discharge, in s | econd-feet of | MISSIU | N CREEK a | t san ead | riei Bout | evaro | | | , for the ye | ar ending Septe | mber 30, 19 <u>12</u> 7 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3 | 19
19
19 | 20
20 | 22 | 23
23
24 | 23
23
23 | 20
20
20 | 20
20
20 | 19
19
18 | 18
18
18 | 17
17
17 | 15
16
16 | 16
16
16 | | 4
5
8 | 19
19
19 | 20 | 22 | 24 | 22 | 21
22
21 | \$0
\$0 | 18
18
18 | 18
18 | 17
17 | 16
16 | 16
16 | | 7
8
8 | 19
19
19 | 20
20 | 23 | 24
24
24 | 22
22
24 | 21
21
21 | 20
20 | 18
18
18 | 18
18
18 | 17
17
16 | 15
16
16 | 16
16
16 | | 10
11
12
13 | 19
19
18
19 | 21
21
26
40 | 22 22 22 | 23
24
24
23 | 24
23
23
23 | 21
21
21
21 | 19
18
17
17 | 18
18
18 | 19
19
19
18 | 16
16
16 | 16
16
16 | 15
15
15
16 | | 14
15
18 | 19
19 | 31
23
21 | 23 | 23
24
24 | 23
22
23 | 20
20
21 | 17
16
15 | 18
18
18 | 19
19 | 16
16
16 | 16
16
17 | 16
16
16 | | 17
18
19
20 | 19
19
20
20 | 20
20
19
28 | 23 | 223 | 23
23
23
23 | 21
20
21
21 | 15
15
16
16 | 18
17
17 | 18
18
18 | 16
16
16 | 17
17
17 | 16
17
17
17 | | 21
22
23
24 | 20
20
21 | 25
22
36 | 22 | 24
23
23 | 22 | 2 2
2 2
2 2 | 16
17
17 | 16
16
16 | 19
19
18 | 16
16
16 | 17
17
17 | 17
17
16 | | 25
26
27 | 20
20
20 | 30
24
23
22 | 23
41
45
26 | 24 | 21
21
21
20 | 21
20
20
21 | 17
17
17
18 | 17
17
17
18 | 18
18
18
18 | 16
16
16 | 17
17
17
17 | 16
16
16 | | 28
29
30 | 20
20
21 | 22 | 23 | 25 | 20 | 21
21
21 | 18
18
18 | 18
18
18 | 18
18
18 | 16
16
16 | 17
17
17 | 16
16
16 | | 31 | žō | | 23 | 23 | | 21 | | 18 | | 16 | 17 | | | | 603 | 698 | 742 | 733 | 625 | 647 | 534 | 548 | 548 | 504 | 510 | 482 | | MEAN | 19.5 | 23.3 | 23.9 | 23.6 | 22.3 | 20.9 | 17.8 | 17.7 | 18.3 | 16.3 | 1.65 | 16.1 | | ACRE- | | 1.380 | 1.470 | 1.450 | 1,240 | 1,280 | 1.060 | 1,090 | 1,090 | 1,000 | 1,010 | 956 | | | Remarks: | | · | | | | | 3 - 7 - | | YEAR ME | | 1 | #### STATION FRE-R MONROVIA CREEK above Sawoit Creek ``` LOCATION: WATER-STAGE RECORDER, LAT. 34°10'28", LONG. 117°59'22", ON THE RIGHT (WEST) BANK OF MONROVIA CREEK 200 FEET UPSTREAM FROM SAMPIT CREEK AND ABOUT 2.5 MILES NORTH OF MONROVIA. ELEVATION OF ZERO GAGE HEIGHT, 1152.66 FEET. ``` DRAINAGE AREA: 1,9 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - ROCK AND GRAVEL. CONTROL - NATURAL CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBRIDGE AT STATION. RECORDER: INSTALLED NOVEMBER 10, 1927 IN A CONCRETE RUBBLE HOUSE OVER A 4 FT. X 3 FT. CONCRETE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: MONROVIA PIPE LINE CIVERTS WATER ABOVE GAGE. RECORDS AVAILABLE: NOVEMBER 10, 1927 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: DMES OF DISCHMENS. 1945-1946 MAXIMUM 55 SECOND-FEET, DECEMBER 23, MINIMUM-01 SECOND-FOOT, PART OF YEAR. 1946-1947 MAXIMUM 40 SECOND FEET, NOVEMBER 20, MINIMUM 0,02 SECOND-FOOT, PART OF YEAR. MINIMUM 01.02 SECOND-FOOT, PART OF TEAR. 1927-1947 MAXIMUM DISCHARGE NOT DETERMINED, MARCH 2, 1938. MAXIMUM DISCHARGE OF RECORD, 109 SECOND-FEET, APRIL 8, 1935. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABURES | HENTS OF | MONRO | VIA,CR | EEK | | | | | | | | DISCHARGE | | MONRO | | | | | | | | | | |-----|-----------|--------------------|---------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--|----------------------|---------------------------|--------------|-----|-----------|-----------------------|---------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------------|---------------------|-----------------|--------------| | | HVARA | bove S | awpit Creek | | | DUR | ING THE YE | EAR ENDING | BEPTEM | EER 30, | , <u>, 1</u> 6 | | | -NEAR | al | ove Sawpit Cree | <u>k</u> | | DUR | ING THE Y | EAR ENDIN | 3 BEPTEA | BER 3D | . 1947 | <u>'</u> | | HO. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. PT. | MEAN
VELOCITY
FT.PER BEC. | RAUDE
HEIGHT
FXET | DISCHARGE
BED. FT. | RAT- MET | MEAB.
BEC.
NG. | G. HT.
CHANGE
TOTAL | METER
No. | HQ. | DATE | BEGIN
END | HADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | MEAN
VELOGITY
FT.PER BEG. | BAUGE
HEIGHT
FEET | DISCHARGE
BED. FT. | RAT- ME | HEAR
SEO.
NO. | GHANGE
TOTAL | METER
NO. | | 552 | 10/11 | 1000A
1003A | STUNDEN | Q.7 | 0.06 | 0.33 | 3.56 | 0,02 | | 5 1 | 0 | FC36 | 582 | 10-3 | 1012A
1014A | MOON | 1.5 | 0.10 | 0.50 | 3.52 | 0.05 | | 5 2 | 0 | FÇ22 | | 553 | 10/25 | 1002 A
1004 A | MOON | 0.8 | 0.08 | 0,50 | 3,42 | 0.04 | Ш. | 5 1 | 0 | FC22 | 583 | 10-23 | 1232P
1234P | •• | 1.3 | 0,10 | 0.40 | 3.52 | 0.04 | ╽ . | 5 1 | | | | 554 | 11/8 | 1030A
1032A | | 0.9 | 0.09 | 0.44 | 3.43 | 0.04 | <u> </u> | 6 2 | 0 | | 584 | 11-6 | 110P
112P | " | 1.5 | 0.12 | 0.33 | 3.57 | 0.04 | <u> </u> | 5 2 | | | | 555 | 11/21 | 10 12 A
10 14 A | | 0.8 | 0.08 | 0.50 | 3.43 | 0.04 | <u> </u> | 5 1 | 0 | •• | 585 | 11-13 | | MOON
ROCKENMEYER | 6.0 | 3.50 | 46 | 3.94 | 5.1 | <u> </u> | 6 4 | 0 | | | 556 | 12/6 | 950 A
_952 A | 61 | 0.9 | 0.09 | 0.44 | 3.44 | 0.04 | <u> </u> | 5 1 | 0 | | 586 | 11-15 | 901A | MOON | 2.0 | 0.22 | 1.09 | 3,64 | 0.24 | <u> </u> | 5 4 | 0 | | | 557 | 12/20 | 1027A
1029A | | 0.9 | 0.09 | 0.44 | 3.45 | 0.04 | <u> </u> | 6 1 | 0 | | 587 | 11-22 | | MOON
ROCKENMEYER | 2.0 | 0.36 | 1.61 | 3,65 | 0.58 | <u>L</u> . | 5 3 | 0 | | | 558 | 12/24 | 303P
310P | | 4.5 | 1.51 | 1,52 | 3,74 | 2.30 | | .6 5 | 0 | | 588 | 11-29 | | STUNDEN | 1.5 | 0.24 | 0.42 | 3.57 | 0.10 | <u> </u> | 5 3 | 0 | FC36 | | 59 | 12/27 | 1132A
1135A | | 3.0 | 0.43 | 0.70 | 3.61 | 0.30 | <u>L.</u> | 5 2 | 0 | 14 | 589 | 12-5 | 1051A
1053A | MOON | 1.4 | 0.11 | 0.73 | 3.56 | 0.08 | Ц. | 5 2 | 0 | FC22 | | 60 | 1/10. | 1104A
1106A | | 1.5 | 0.14 | 0.57 | 3.57 | 0.08 | ļ., | 5 2 | ٥ | " | 590 | 12-12 | 849A
851A | " | 1.2 | 0.10 | 0.80 | 3,56 | 0.08 | Щ. | 5 2 | 0 | " | | 61 |
1/24_ | 855A
857A | | 1.0 | 0.16 | 0.62 | 3.59 | 0.10 | <u> </u> | 6 2 | 0 | | 591 | 12-18 | 952A
954A
752P | MOON | 1.2 | 0.10 | 0.80 | 3.55 | 0.08 | <u> </u> | 6 2 | 0 | | | 62 | 2/7 | 952A
954A | | 1.8 | 0.12 | 0.58 | 3.58 | 0.07 | 1 1 | 5 2 | 0 | | 592 | 12-25 | | STEVENS | 8.0 | 3.10 | 1.71 | 3.92 | 5,3 | 1. | 6 5 | 0 | <u> </u> | | 63 | 2/20 | 127P
129P | | 1.5 | 0.08 | 0.62 | 3.57 | 0.05 | ļ | 5 2 | 0 | | 593 | 12-27 | 251P | | 6.0 | 2,25 | 1,38 | 3.85 | 3,1 | <u> </u> | 6 4 | +.01 | | | 64 | 2/28 | 912A
914A | | 1.5 | 0,08 | 0.75 | 3.57 | 0.06 | <u> </u> | 5 2 | 0 | | 594 | 1-8 | 122P
124P | MOON | 1.0 | 0.08 | 0.75 | 3.54 | 0.06 | Ц. | 6 2 | ۰ | <u> </u> | | 65 | 3/13 | 1020A
1022A | | 1.5 | 0.09 | 0.67 | 3,57 | 0.06 | <u> </u> | 6 2 | 0 | | 595 | 1-15 | 1150A
1152A | | 1.0 | 0.10 | 0.90 | 3.53 | 0.09 | | 5 2 | _0_ | | | 166 | 3/21 | 1010A
-1012A | | 1.5 | 0.09 | 0.56 | 3.58 | 0.05 | <u> </u> | .5 2 | 0 | | 596 | 1-22 | 1112A
1114A | ., | 1.0 | 0.10 | 0.80 | 3.59 | 0.08 | 1 | 5 2 | ٥ | | | 67_ | 3/30 | 632A
636A | MOON
ROCKENMEYER | 5.0 | 1.30 | 2.46 | 3.85 | 3.2 | | 6 4 | 0 | | 597 | 1-30 | 942A
944A | 11 | 1.2 | 0.12 | 0.67 | 3,56 | 0.08 | <u> </u> | 5 2 | 0 | | | 68 | 3/30 | 134P
139P | MOON
ROCKENMEYER | 8.0 | 2.95 | 4.10 | 3,94 | 12.1 | <u> </u> | 6 5 | 0 | <u>"</u> | 598 | 2-5 | 1132A
1134A | ** | 1.4 | 0.14 | 0.57 | 3,55 | 0.08 | Ц, | 5 2 | 0 | | | 569 | 4/5 | 1112A
1114A | MOON | 2,0 | 0.15 | 1.00 | 3.60 | 0.15 | <u> </u> | 5 2 | 0 | | 599 | 2-14 | 1012A
1014A | ,, | 1.0 | 0.07 | 0.57 | 3,54 | 0.04 | <u> </u> | 5 2 | 0 | <u> </u> | | 570 | 4/18 | 950 A
952 A | | 1.8 | 0.12 | 0.67 | 3.57 | 80.0 | | . 5 2 | 0 | | 600 | 2-20 | 904A
906A | | 1.0 | 0.07 | 0.57 | 3,53 | 0,04 | LĮ, | 5 2 | 0 | | | 571 | 5/3 | 1155A
1157A | | 1.8 | 0.12 | 0.50 | 3.57 | 0.06 | | .5 2 | 0 | " | 601 | 2-27 | 212P
214P | - 1 | 1.2 | 0.07 | 0.57 | 3.53 | 0.04 | ╽, | 5 2 | | ", | | 572 | 5/16 | 312P
314P | | 1.8 | 0.10 | 0.40 | 3.56 | 0.04 | | .5 2 | 0 | " | 602 | 3-6 | 312P
314P
1015A | | 1.2 | 0.07 | 0.57 | 3.52 | 0.04 | <u> </u> | 5 2 | ٥ | - 11 | | 573 | 5/30 | 1009A | | 1.5 | 0.10 | 0.40 | 3.57 | 0.04 | 1 | .5 2 | 0 | | 603 | 3-13 | 1017A | | 1.2 | 0.07 | 0.57 | 3.52 | 0.04 | 1. | 5 2 | С | " | | 574 | 6/13 | 1056A
1058A | 11 | 1.0 | 0.07 | 0.57 | 3.59 | 0.04 | | .5 2 | 0 | | 604 | 3-20 | 852A
854A | | 1.2 | 0.07 | 0.57 | 3.51 | 0.04 | 11. | 5 2 | 0 | ., | | 575 | 6/27 | 954A
956A | моон | 1.0 | 0.07 | 0.43 | 3.57 | 0,03 | <u> </u> | 5 2 | 0 | FC22 | 605 | 3-26 | 128P
130P | | 1,2 | 0.06 | 0.50 | 3,51 | 0.03 | <u> </u> | 5 2 | 0 | | | 576 | 7/11 | 1015 A
1017 A | MOON | 1.0 | 0.07 | 0.43 | 3.54 | 0.03 | <u>ll.</u> | 5 2 | 0 | | 606 | 4-10 | 1027A
1029A | 11 | 1.2 | 0.06 | 0.67 | 3.53 | 0.04 | <u> </u> | 5 2 | 0 | ,, | | 577 | 7/25 | 930 A
932 A | | 1.0 | 0,04 | 0.75 | 3.54 | 0.03 | Ш, | 5 2 | 0 | | 607 | 4-17 | 920A
922A | ,, | 1.2 | 0.06 | 0.50 | 3.49 | 0.03 | 1. | 5 2 | 0 | | | 578 | 8/22 | 952A
954A | | 1.0 | 0.03 | 0.67 | 3,53 | 0.02 | | 5 2 | 0 | ., | 608 | 5-1 | 248P
250P | 11 | 1.0 | 0.07 | 0.43 | 3,51 | 0.03 | <u> </u> | 5 2 | 0 | | | 579 | 9/5 | 1000A
1003A | STUNDEN | 1.0 | 0.04 | 0.50 | | 0.02 | su | RF 2 | ļ _ | FC36 | 609 | 5-8 | 342P | -11 | 1.0 | 0,07 | 0.43 | 3.53 | 0.03 | ╽. | 5 2 | ٥ | ,, | | 580 | 9/19 | 930 A
933 A | | 1.0 | 0.05 | 0.20 | | 0.01 | | . 1 | ļ | | 610 | 5-14 | 412F | | 1.0 | 0.06 | 0.50 | | 0.03 | 1 1 | 5 2 | | | | 581 | 1 | 1255 A
1257 A | ** | 0.5 | 0.03 | 0.67 | | 0.02 | | · 1 | | 49 | 611 | 5-22 | 430P
432P | | 1.0 | 0.07 | 0.57 | 3,53 | 0,04 | 1 [| 5 2 | 0 | | | | , | , | ' | | | | | • | | | | • | 612 | 5-28 | 504P
506P | н | 1.0 | 0.08 | 0.62 | 3.53 | 0.05 | <u> </u> | 5 2 | | | | | | | | | | | | | | | | | 613 | 6-5 | 1102A
1104A | 11 | 1,0 | 0.09 | 0.67 | 3,54 | 0.06 | <u> </u> | 5 2 | . 0 | | | | | | | | | | | | | | | | 614 | 6-11 | 250P
252P | | 1.0 | 0.06 | 0.67 | 3.53 | 0.04 | ╽. | 5 2 | L. | | | | | | | | | | | | | | | | 615 | 6-19 | 1123A
1125A | •• | 1.0 | 0.06 | 0,50 | 3.51 | 0.03 | | 5 2 | 0 | | | | | | | | | | | | | | | | 616 | 6-25 | 227P
229P | | . 1.0 | 0.06 | 0.67 | 3.50 | 0.04 | <u> </u> | 5 2 | 0 | | | | | | | | | | | | | | | | 617 | 7-2 | 422P
424P | a · | 0.90 | 0.04 | 0.75 | 3,48 | 0.03 | | 5 2 | | | | | | | | | | | | | | | | | 618 | 7-9 | 1247P
1249P | | 0.90 | 0.04 | 0.50 | 3.48 | 0.02 | $+$ Γ | 5 2 | 0 | ** | | | | | | | | | | | | | | | 619 | 7-17 | 1055A
1057A | MOON - PAYNE | 1.00 | 0.05 | | 3.48 | 0.03 | 1 1 | 5 2 | 1 | - 11 | | | | | | | | | | | | | | | | 7-23 | 1 | MOON | | | | 3.48 | 0.03 | W. | NOTCH
ELB | | | | | | | | | | | | | | | | | 621 | 7-30 | 1210P | i . | | | | 3.47 | | 1 1 | ., | 0 | | | | | | | | | | | | | | | | 622 | 8-14 | 1107A | , | | | | 3,47 | 1 | 1 | ,, | 0 | | | | | | | | | | | | | | | | 623 | 9+4 | 835A
837A | STUNDEN | 0.80 | 0.05 | 0.40 | 3,44 | ļ | 1 1 | URF 1 | ٥ | FC36 | | | | | | | | | | | | | | | 624 | 9-11 | 155P
158P | п | 0.70 | 0.35 | 1 | 3.45 | 0.02 | 1 1 | 1 | | 11 | | | | | | | | | | | | | | | 625 | 9-17 | 250P
252P | | 0.80 | 0.05 | ! | 3.46 | 0.03 | 1.1 | 1 | | | | | | | | | | | | | | | | | 626 | 9-25 | 158P
200P | | 0.80 | 0.04 | 1 | 3,45 | l . | | . 1 | 0 | | F. O. Dist. Form 52 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F22-R | Dally di | scharge, in sec | ond-feet of | ONRCVIA | CREEK abo | ve Sawpit | Creek | and the second consequence () | | | , for the year | ending Septer | nber 30, 19 46 | |--|--|---|---|--|---|--|--------------------------------|--------|---------------------------------------|----------------
---|--------------------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 1D 11 12 13 14 15 16 17 20 20 21 22 23 24 25 28 29 30 30 | 0.033
0.033
0.033
0.033
0.033
0.032
0.032
0.032
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034 | 0 0 4
0 0 0 4
0 0 0 4
0 0 0 4
0 0 0 4
0 0 0 4
0 0 0 0 | 0.044
0.044
0.044
0.044
0.044
0.044
0.044
0.044
0.044
0.044
0.044
17.8
13.27.73
0.04 | 00000000000000000000000000000000000000 | 0.099
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 4 | ▼ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | V | ▼ 0.000 0.0 | 000000000000000000000000000000000000 | | 81 | 0 .0 4 | 0.04 | οź | 0.09 | | 4.6 | | ♥ 0.04 | | ▼ 0.03 | ¥ 0.02 | - 0.02 | | | 1.05 | 120 | 29.0 | 3.11 | 2.57 | 13.09 | 5 .4 8 | 1.41 | 1.09 | 093 | 0.70 | 0.51 | | MEAN | 0.03 | 0.04 | 0.94 | 0.10 | 0.09 | 0,42 | 0.18 | 0.05 | 0.04 | 0.03 | 0.02 | 0.02 | | PEET | 2.1 | 2.4 | 58. | 6.2 | 5.1 | 26. | 11 | 2.8 | 2,2 | 1.8 | 1.4 | 1.0 | | | Remarks: | | _ | | | | | | 1 | DAR MEAN | | 0.16 | | | | | | | | | | | PE | RIOD ACRE | FEET | 120. | F. C. Dist. Form 62 4-46 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sts. No. F 22-R | Daily discharge, in second-feet of MONROVIA CREEK above Sawpit Creek for the year ending Sept. Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. 1 0.05 0.04 0.1 0.3 0.08 0.04 0.03 0.05 0.05 0.05 0.02 0.02 0.05 0.04 0.09 0.0 0.00 0.04 0.03 0.05 0.06 0.03 0.02 0.00 0.05 0.04 0.09 0.00 0.04 0.04 0.03 0.05 0.06 0.03 0.02 0.00 0.05 0.05 0.04 0.08 0.08 0.04 0.04 0.03 0.06 0.03 0.02 0.00 0.05 0.05 0.04 0.08 0.08 0.08 0.04 0.04 0.03 0.06 0.03 0.02 0.00 0.05 0.05 0.04 0.08 0.09 0.00 0.04 0.04 0.03 0.06 0.03 0.02 0.00 0.05 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.06 0.03 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.06 0.03 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.06 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.05 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.05 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.06 0.07 0.08 0.04 0.04 0.03 0.05 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.06 0.07 0.04 0.04 0.03 0.05 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.06 0.07 0.04 0.04 0.03 0.05 0.02 0.02 0.02 0.05 0.05 0.05 0.02 0.02 | Sept. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 |
---|--| | 1 0.05 0.04 0.1 0.3 0.08 0.04 0.03 0.05 0.05 0.02 2 0.05 0.05 0.05 0.05 0. | 0.0000000000000000000000000000000000000 | | 2 0.05 0.04 0.09 0.2 0.08 0.04 0.03 0.05 0.05 0.02 0.02 0.05 0.04 0.08 0.09 0.08 0.04 0.04 0.03 0.06 0.03 0.02 0.02 0.05 0.04 0.08 0.08 0.08 0.04 0.04 0.03 0.06 0.03 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.06 0.03 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.06 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.05 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.07 0.08 0.04 0.04 0.03 0.05 0.02 0.02 0.02 0.05 0.05 0.04 0.08 0.06 0.07 0.08 0.04 0.04 0.03 0.05 0.02 0.02 0.02 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | | 0 | | | 136 14,55 1.52 1.01 1.22 0.62
20.8 2.76 1.16 1.12 0.79 | 0.66 | | | 0.02 | | 0.044 0.693 0.467 0.069 0.054 0.057 0.054 0.055 | 1.3 | | 2.7 41 29 5.5 3.0 2.3 2.0 2.2 2.4 1.6 1.2 RAMBERS: YEAR MEAN G.1 | | | OR PERIOD ACRE-FEST. 94 | | #### STATION F195-R MONROVIA STORM DRAIN at Peck Road LOCATION: WATER-STAGE RECORDER, LAT. 34°07'27". LONG. 118°00'13". ON THE LEFT (EAST) WINS WALL OF APPROACH TO CONCRETE GUTLET CHANNEL OF MONROVIA STORM DRAIN INTO PECK ROAD AND ABOUT 1 MILE SOUTH OF MONROVIA. ELEVATION OF GAGE ABOUT 387 FEET. DRAINAGE AREA: 4,5 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL, UPSTREAM FROM STILLING WELL: CONCRETE CHANNEL STARTS AT WELL. CONTROL - CONCRETE SILL AT BEGINNING OF CONCRETE-LINED CHANNEL - 22.5 FEET WIDE X 3.2 FEET DEEP. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED BY FLOATS NEAR STATION. RECORDER: INSTALLED APRIL 25, 1932, OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. A STEVENS TYPE L RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: APRIL 25, 1932 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 374 SECOND-FEET, DECEMBER 22 MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 288 SECOND-FEET, DECEMBER 26. MINIMUM NO FLOW MOST OF YEAR. 1932-1947 MAXIMUM 1,200 SECOND-FEET, ESTIMATED MARCH 2, 1938. MINIMUM NO FLOW MOST OF EACH YEAR. OPERATION: LOCATED, CONSTRUCTED, AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DIRCHARGE | HEASURES | (ENT'S OF | | MONROV | IA STO | DRM_DRA | VIN | | | | | | - | | DISCHARGE | E MEABURE | MENTS OF . | MONROVI | A STOR | M DRAI | N | | | | | | |-----|------------|--------------|-----------|------|--------|-------------------------------|----------------------------------|-------------------------|-----------------------|--------------|-------|----------------------|---------------------------|--------------|-----|-----------|--------------|------------|---------|---------------|--------------------|---------------------------------|-------------------------|-----------------------|------------|--------------------------------|----------| | | AT
HEAR | | Peck Ros | d | | | DURIN | G THE YE | AR ENDING | S EPT | EMBER | 30, | , <u>,46</u> | - | | - P | eck Ro | ad | | | | . DUR | ING THE Y | EAR ENDIN | G BEPTEMBI | KR 20, 19 | 47 | | NO. | DATE | BEBIH | HADI | E BY | WIDTH | AREA DF
SECTION
SQ. FT. | HEAN
VELOCITY
FT. PER SEC. | GAUGE
HEIGHT
PEET | TISCHARGE
SEC. FT, | RAT-
ING | HETH- | MEAS,
SEG.
NG. | S. HT.
CHANGE
TOTAL | METER
NO- | NO. | DATE | BEGIN | | MADE BY | WIDTH
FEET | SECTION
SO, FT. | MEAN
VELOCITY
ST.PER SEC. | GAUGE
HEIGHT
PEET | DISCHARGE
SEC. FT. | RAT- METH- | MEAS. G.
SEC. CH.
NO. TO | ANGE | | 16 | 3/19 | 405P
413P | MOON | | 21.0 | 6.49 | 4.28 | 1.08 | 27.8 | | .6 | 8 | 06 | FC22 | 17 | 10-1 | 902A
908A | MOON | | TWO | CHANNEL | \$ | 1.10. | 28.9 | .5 | 5 - | .01 FC22 | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sts. No. F195-R | ay | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept | |----|------|----------|-------|--------------|------|-------|-------|--------------|------|------|------|------| | 1 | 0 | 0 | + | 0 | | 0 | 0 | 0 | 0 | | ō | | | 2 | ŏ . | ŏ | 6 | ŏ | ŏ | l ŏ l | 1.5 | ŏ | 1 6 | 8 | ŏ | ĕ | | 3 | ŏ | ŏ | l ŏ l | ŏ | 18 | l ŏ l | ō | ŏ | ŏ | 0 | ŏ | l ŏ | | 4 | ŏ | ŏ | ŏ | ŏ | Ťő | l ŏ l | ŏ | ō | Ĭŏ | ŏ | ă | ŏ | | 5 | ŏ | ă | ŏ | ŏ | ŏ | l ŏ l | ŏl | ŏ | l ŏ | ŏ | iŏ | ŏ | | 6 | ŏ | ō | 1 0 1 | ō | 0 | | 0 | 0 | 0 | , o | 0 | ō | | 7 | o l | Ó | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ó | | 8 | 0.5 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | .6 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12 | 0 | 0 | 0 | o | 0 | 0 | o | o | O O | 0 | 0 | 0 | | 3 | 0 | 0 | 0 1 | o | 0 | 0.6 | o | o | 0 | 0 | 0 | 0 | | 4 | 0 | 0 | 0 | Ō | Q | 0 | 0 | o | 0 | 0 | O O | o | | 5 | 0 | . 0 | 0 | 0 | 0 | 0 | Q | 0 | 0 | 0 | 0 | 0 | | 6 | 0 | 0 | 0 | 0 | ō | 0 | ō | 0 | 0 | 0 | ō | 0 | | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o o | 0 | | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | | 19 | 0 | 0 | 0 | 0 | 0 | 6.8 | 0 | 0 | 0 | 0 | 0 | 0 | | 20 | 0 | 0 | 1 2 1 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 | 0 | 0 | 29 | | 0 | 0.5 | 0 | 0 | 0 | | 0 | Ō | | 23 | 0 | 0 | 55 | 0 | | 0 | 0 | Ö | 0 | 0 | 0 | 0 | | 24 | o l | 0 | 25 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | Ŏ | 0 | | 25 | o | o | 1 9 | ŏ | ŏ | ŏ | 0 | ő | 8 | ŏ | 0 | 0 | | 6 | 0 | <u>0</u> | Ö | - | 8 | 0 | - 6 + | ŏ | 1 8 | | ŏ | ŏ | | 7 | ŏ | ŏ | 6 | ŏ | Ö | l ŏ l | ŏ | ŏ | 6 | ŏ | ŏ | ŏ | | 8 | ŏ | ă | 6 | ŏ | ŏ | 2.8 | ŏ | ŏ | 6 | ŏ | 8 | ŏ | | 9 | 0.4 | ŏ | 1 8 1 | ŏ | | 03 | ŏ | ŏ | lŏ | ŏ | ŏ | ă | | 0 | 03 | ŏ | ŏ | ŏ | | 21 | ŏ | ŏ | ă | l ŏ. | ŏ | ŏ | | 1 | ŏ | | ⊣ ŏ l | ŏ_ | | ~ Ô A | | ŏ | | ŏ | ŏ | | | | 1.2 | | 1091 | | 18 | | 1.5 | | 0 | | 0 | | | | | 0 | | 0 | | 33.7 | | 0 | | 0 | | 0 | | N | 0.04 | 0 | 3.52 | Q | 0.64 | 1.09 | 0.05 | 0 | 0 | 0 | 0 | 0 | | T. | 2.4 | 0 | 216. | 0 | 36 | 67. | 3.0 | 0 | 0 | 0 | 0 | 0 | | C. Dist. Form 51 4-48 | | | | FLO | OS ANGELES
OD CONTRO
DRAULIC E | L DISTRICT | | | | Sta. ? | ro. F 195 | |--|------------------------|----------------------|-----------|--------------------|--------------------------------------|------------------|---------|-------|----------------|-----------------|---------------| | ully discharge, in se | cond-feet of | MONROVIA | STORM DRA | IN at Pec | k Road | | | | , for the year | r ending Septen | iber 30, 19_4 | | Oay Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2.8
2 0
3 0
4 0
5 0 | 0000 | 0 0 0 | 0 0 0 0 | 0 0 0 | 0
0
0
0
1 3 | 0 0 0 0 | 0 | 0000 | 00000 | 00000 | 0000 | | 6 O
7 O
8 O
9 O
10 O | 0
0
3 A
0 | 0
0
0 | 00000 | 0
0
0
8 S | 0000 | 0000 | 00000 | 00000 | 00000 | 0000 | 0000 | | 11 0
12 0
13 0
14 0
15 0 | 3.0
25
14
5.1 | 0000 | *0000 | 0000 | 0000 | 00000 | 0000 | 00000 | 00000 | 00000 | 00000 | | 16 0 4
17 0
18 0
19 0
20 0 | 0
0
0
0 | 00000 | 99000 | 0000 | 0000 | 00000 | 0 0 0 | 0000 | 00000 | 00000 | 00000 | | 21 O
22 O
23 O
24 O
25 O | 0
0
14
0 | 0
0
0 4
3 2 | 0000 | 0 0 | 0000 | 0 3 | 0000 | 0000 | 00000 | 00000 | 00000 | | 26 O
27 O 3
28 O
29 O
30 O
31 O | 0 0 0 | 0
0
0
0 | 0 0 0 | Ŏ
0
0 | 0 0 0 | 0
0
0
0 | 0 0 0 0 | 0 0 0 | 00000 | 000000 | 0 0 0 | | 3.5 | 87.5 | 63.6 | 3 1 | 8.5 | 13 | 0.3 | 0 | 0 | 0 | 0 | 0 | | 0.113 | 2.92 | 2.05 | 0.100 | 0.100 | 0.042 | 0.01 | 0 | 0 | 0 | 0 . | 0 | | EET 6.9 | 174 | 126 | 6.1 | 5,6 | 2.6 | 0.6 | 0 | 0. | 0 | 0 | 0 | #### STATION FIRITR MONTEBELLO STORM DRAIN above Rio HONDO LOCATION: WATER-STAGE RECORDER, LAT. 33°59'59", LONG. 118°06'17", ON THE RIGHT (SOUTH), WING WALL OF THE STORM DRAIN CUTLET, 200 FEET EAST OF THE EAST END OF MINES AVENUE AND 220 FEET WEST OF WEST BANK OF THE RIO HONDO NEAR MONTEBELLO. ELEVATION OF ZERO GAGE HEIGHT, 161.87 FEET. DRAINAGE AREA: 9.6 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - CONCRETE APRON WITH WIND WALLS BELOW A 14 FT. X 10 FT. CONCRETE-COVERED DRAIN. A DROP OFF EXISTS JUST BELOW THE STATION. ON APRIL 11, 1935 A DIVERSION WALL & INCHES HIGH WAS BUILT ACROSS THE DRAIN 20 FEET ABOVE THE STATION. THE STAGE - DISCHARGE RELATION MAY BE AFFECTED BY BACKWATER FROM THE RIO HONDO DURING FLOWS. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING AT OUTLET. HIGH FLOWS MEASURED FROM HEAD WALL AT END OF COVERED SECTION. RECORDER: INSTALLED JANUARY 21, 1932 OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947- REGULATION: NONE. DIVERSIONS: NONE PRIOR TO APRIL 11, 1935. SUBSEQUENT TO APRIL 11, 1935. A GATEO TRELLY ENCH PIPE DIVERTS
THE SUMMER FLOW FROM A POINT 20 FEET ABOVE THE STATION TO THE RID HONDO. NO DIVERSIONS DURING THE HITER MONTHS. RECORDS AVAILABLE: JANUARY 12, 1932 TO SEPTEMBER 30, 1945. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 384 SECOND-FEET, DECEMBER 22, MINIMUM NO FLOW AT VARIOUS TIMES. 1946+1947 MAXIMUM 1,240 SECOND FEET. NOVEMBER 13. MINIMUM NO FLOW AT VARIOUS TIMES. 1931-1947 MAXIMUM 1.400 SECOND-FEET, ESTIMATED MARCH 2, 1938MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. LOW FLOWSUSUALLY ESTIMATED DUE TO COMMUNICATION BEING OBSTRUCTED BY SAND. OPERATION: LOCATED. CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARG | E MEASURE | HENTE DF MONTE | BELLO : | STORM I | DRAIN. | | | | | | | | | DISCHARG | Е МЕАВИЯЕ | 1ENTS OF | 10NT EB | ELLO S | TORM D | RAIN | | | | | | | |------|------------|----------------|------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------|-------|----------------------|---------------------------|--------------|-----|----------|--------------|-------------|---------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|------------------------|-----------------------|--------------| | | AT
NEAR | above | Rio Hondo | | | | NING THE Y | YEAR ENDING | BEPT | ГЕМВЕ | R 30, | 1946 | - | | NEAR | above | Rio Hondo | | | | DU R | ING THE Y | EAR ENDING | ВЕРТ | EMBER : | ia, 19 | 7 | | NO. | DATE | - NEGIN
END | MADE BY | WIDTH
FEST | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUBE
HEIGHT
FEET | DISTHARGE
BEG. FT. | RAT- | METH- | MEAS.
MEC.
ND. | B. HT.
DHANDE
TOTAL | HETER
NO. | No. | DATE | END | HADE BY | | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT, | | етн- нтз
зе
и со | SE G. HT
C. CHANGE | METER
ND. | | 153X | 10/11 | 815A | BONAD IMAN | | | L | 0.12 | 0.10 | | | | | L | 158 | 11-12 | 925A
935A | BONADIMAN - | LANG | 14.0 | 7.10 | 5.61 | 0.67 | 39.8 | | .6 | 02 | FC19 | | 154 | 2/3 | 200P
212P | | 14.0 | 19.7 | 7.82 | 1.55 | 154 | | . 6 | 7 | | FC19 | 159 | 11-12 | 355P
400P | | | | 37.5 | 10.9 | 2,58 | 407. | SU | | +.04 | 1 | | 155 | 3/20 | 205P
211P | BONAD I MAN-KAS I MOFF | 14.0 | 8.53 | 5.98 | 0.75 | 51.0 | | . 6 | 4 | ٥ | | 160 | 11-12 | 406P
416P | • | - | 14.0 | 33.8 | 10.1 | 2,42 | 342, | | . , | 15 | | | | 3/28 | 815A
825A | | 14.0 | 9.92 | | 0.82 | 64.4 | | .6 | 6 | 0 | | 161 | 11-23 | 845A
855A | ., | | 14.0 | 25.7 | 8.95 | 1.90 | 230. | | . , | +.22 | ,, | | 157 | 3/30 | 601A | | | 15.0 | 7,40 | | 111. | | .6 | 6 | ~ . 1.0 | | 162 | 11-23 | 900A
910A | ., | | 14.0 | 25.1 | 9.97 | 2.00 | 250. | | | +.08 | - | | | | + 3115 | - | | | 1.1.20 | | | - | | | | 1 | | 12-25 | 730A
745A | BONADIMAN | | 14.0 | 8.95 | 5.54 | 0.73 | 49.6 | | .6 | +.02 | | | | | | | | | | | | | | | | | 1 | 3-5 | 800A
815A | | | | 8.18 | | 0.54 | | | .6 | +.06 | FC37 | P. C. Dist. Form 52 4-45 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. FIBI-R | Daily d | ischarge, in sc | cond-feet of M | ONTEBELLO | STORM DR | AIN above | Rio Hon | do | | | , for the year | r ending Septem | iber 30, 19_46 | |---|---|--|---|---|--|---|--|---|------|-------------------------------|-----------------|----------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 22 22 23 24 25 26 27 28 29 30 31 | 115777555755555575557555755575557555755 | 0.7
b 0.3
0.3
b 0.3
b 0.3
b 0.3
b 0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 0 3 3 0 7 1 0 3 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 | 6 011
0017
0017
0017
0017
0017
0017
0017 | b 0 3
b 0 3
2 4 9
b 0 5
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1 | 0 1 0 1
1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 | 8933
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033
0033 | b 0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | | | | | | | 21.6 | <u> </u> | 1811 | | 28.5 | 4.6 | 18.6 | · | 0 | | 0 | | | | ~1.0 | 13.5 | | 8.9 | | 161.6 | | 1.6 | | 0 | | _ 0 | | MEAN | 0.70 | 0.45 | 5.84 | 0.29 | 1.02 | 5.21 | 0.62 | 0.05 | 0 | 0 | | 0 | | CRE-
FEET | 43. | 27. | 359. | 18. | 57. | 321. | 37. | 3.2 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | : | YEAR MEA
OR
PERIOD ACRE | N1.1 | | F. C. Dist. Form 52 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 181-R | | | | | | H | DRAULIC I | DIVISION | | | | | | |---|--|---|--|--|---|---|--|--|---|--|---|---| | Daily d | ischarge, in s | econd-feet of | MONTEBEL | LO STORM | DRAIN abo | ve Rio Ho | ondo | | | for the year | r ending Septer | mber 30, 19_47 | | Day | Ock | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4 25 26 27 29 30 31 1 | 7.1
11.1
1.1
1.1
0.9
1.1
1.1
0.9
3.7
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1 | 0.5
0.5
0.5
0.5
0.5
1.1
1.1
7.9
9.3
1.44
0.7
0.3
0.1
0.1
0.7
5.7
0.7
5.7
0.7
0.7 | 01
01
01
01
03
03
01
01
01
01
01
01
01
01
01
01
01
01
01 | 031
011
011
013
013
013
014
014
014
014
014
014
014
014
014
014 | 01
01
01
01
01
01
01
01
01
01
01
01
01
0 | 01
00.7
7.0
01
01
01
01
01
01
01
01
01
01
01
01
01 | 0.7
0.4
1.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1 | a 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 | 0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | a 01
011
011
011
05
05
05
05
05
05
05
05
05
05
05
05
05 | | | 42.6 | 377.7 | 163.7 | 15.4 | 26.4 | 181 | 5.3 | 10.9 | 3 .0 | 3.1 | 3.1 | 10.0 | | MEAN | 1.37 | 12.6 | 5.28 | 0.50 | 0.94 | 0,58 | 0.18 | 0,35 | 0.10 | 0.10 | 0.10 | 0.33 | | ACRE-
FEET | 84 | 749 | 325 | 31 | 52_ | 36 | 11 | 22 | 6.0 | 6.1 | 6.1 | 20 | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRE | | 350 | #### STATION FII8B-R PACOIMA CREEK below Pacoima Dam LOCATION: WATER-STAGE RECORDER, LAT. 34°20'07", LONG. 118°23'50", 4 MILES NORTH-EAST OF SAN FERNANDO, AND ABOUT 500 FEET DOWNSTREAM FROM PACOIMA DAM; FORMER STATION F118-R WAS APPROXIMATELY 450 FEET DOWNSTREAM. FORMER STATION U13-R WAS APPROXIMATELY 0.5 MILE DOWNSTREAM. ELEVATION OF GAGE, ABOUT 1,650 FEET. DRAINAGE AREA: 28.2 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - GRAVEL AND BOULDERS ABOVE AND BELOW FLUME. CONTROL - A 10 FOOT SAN DIMAS TYPE RUBBLE AND CONCRETE FLUME. A 90 V-NOTCH WEIR CAN BE DROPPED TO MEASURE LOW FLOWS. DISCHARGE MEASUREMENTS: FROM FOOTBRIDGE OVER FLUME. RECORDER: INSTALLED AT STATION F118-R ON MARCH 24, 1933: REMOVED FEBRUARY 1, 1935. INSTALLED AT STATION F1188-R ON FEBRUARY 9, 1935: REMOVED APRIL 28, 1937. REINSTALLED JUNE 25, 1937. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: REGULATED BY PACOIMA DAM. STATIONS F118-R AND F118B-R DO NOT IN-CLUDE SPILLWAY DISCHARGE, STATION U13-R WAS SO LOCATED THAT IT WOULD HAVE INCLUDED SPILLWAY DISCHARGE. DIVERSIONS: WATER PASSING OVER PACOIMA DAM SPILLWAY ENTERS PACOIMA CREEK BE-LOW STATION F1188-R. RECORDS AVAILABLE: AT STATION U13-R. PACOIMA CREEK NEAR SAN FERNANDO, CALIFORNIA AT OFFICE OF U.S. GEOLOGICAL SURVEY, WATER RESOURCES BRANCH, LOS ANGELES, FROM MARCH, 1916 TO SEPTEMBER, 1929. FROM OCTOBER 1, 1929 TO MARCH 23, 1933 RECORDS BASED ON DAW DUTFLOW RECORDS AND GAGE READINGS AT THE PARSHALL FLUME BELOW PACOIMA DAM. THESE RECORDS ARE AVAILABLE AT THE OFFICE OF THE LOS ANGELES COUNTY FLODO CONTROL DISTRICT. AT STATION F118-R - MARCH 24, 1933 TO FEBRUARY 1, 1935. AT STATION F118-R - FEBRUARY 9, 1935 TO APRIL 28, 1937. AND JUNE 25, 1937 TO JUNE 15, 1943. AND FROM SEPTEMBER 15, 1943 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 241 SECOND-FEET, FEBRUARY 5. MINIMUM NO FLOW AT VARIOUS TIMES. MINIMUM NO FLOW AT VARIOUS TIMES. 1946-1947 MAXIMUM 237 SECOND-FEET, JANUARY 7. MINIMUM NO FLOW AT VARIOUS TIMES. 1916-1929 (STATION U13-R) MAXIMUM 1,860 SECOND-FEET, FEBRUARY 16, 1927. MINIMUM NO FLOW AT VARIOUS TIMES. 1929-1946 (STATIONS FILER. FILBB-R. AND PARSHALL FLUME AND DAM RECORDS) MAXIMUM 685 SECOND FEET, MARCH 2, 1938. MAXIMUM 2,060 SECOND FEET, MARCH 3, 1938 INCLUDING SPILLWAY DISCHARGE. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR FOR HIGH FLOWS DUE TO POOR APPROACH CONDITIONS. GOOD FOR LOW FLOWS MEASURED BY V-NOTCH WEIR.
OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN CODPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | DIBCHARGE | MEABURER | SENTS OFPAC | OIMA C | REEK | | | | | <u>-</u> | | | | | DISCHARG | E MEABURE | MENTS OF PACOI | MA CREE | K FLU | 4E | | | | | | _ | |-----|-----------|-----------------------|---|--------|-------------------------------|----------------------------------|----------------|-----------------------|-------|----------|---------|--------------------------|--------------|-----|----------|-----------------------|------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|-------|-------------------------------------|-----------| | | NIAR | belo | w Pacoima Dam | - | | DURIN | O THE YE | AR ENDING | BEPTE | HBER | 30, 1 | <u>. 46</u> | | | 100 m | belo | w Pacolma Dam | | | DUR | ING THE Y | EAR ENDING | THE PT | EMBER | 30, 1 <u>9 4</u> | <u>_</u> | | NO. | PATE | BEGIN
END | HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELDCITY
FT. PER SEC. | HEIGHT
FEET | DISCHARGE
BEC- FT. | RAT- | OD | BEC. | D. HT.
HANGE
TOTAL | METER
NO. | HQ. | DATE | BEGIN
END | HADE BY | WIDTH
FEET | AREA OF
BECTION
BQ. FT. | MEAN
VELOCITY
FT,FER BED. | SAUGE
HEIGHT
FEET | DIRCHARGE
SEG. FT. | RAT- | ETH- | EAS. G. S
BEG. DHANG
ND, TOTA | ST. METER | | 219 | 10/18 | 205P
210P
905 A | TURNER | 1.5 | 0.17 | 1.70 | | 0,29 | | .5
V | 3 | | FC43 | 235 | 10-20 | 450P
505P
900P | .TURNER - MOORE | 9.9 | 7.36 | 7.61 | | 56. | | .6 | 7 | FC43 | | 220 | 10/25 | | | | ļ | | 0.52 | 0.5 | | EIR | _ | | | 236 | 10-20 | 915P | | 9,9 | 14.5 | 9.31 | ļ | 135. | | 6 | 6 | - | | 221 | 12/12 | 403P
408P
154P | DEVORE | 3.4 | 0.26 | 1.27 | | 0.33 | | LOAT | 6. | | FLOAT | 237 | 10-21 | 945A
1000A | TURNER - WHISLER | 9.9 | 14.1 | 9.08 | ļ | 128. | | .6 | 6 | - | | 222 | 1/30 | 200P | •• | 2.7 | 0.24 | 0.50 | | 0.12 | | LOAT : | 3 | | •• | 238 | 10-21 | 1245P
100P | | 9,9 | 16.1 | 9.50 | | 153. | <u>.</u> | .6 | 6 | - | | 223 | 2/5 | 107P
236P | DEVORE - WHISLER | 10.0 | 21.9 | 11.00 | 2.28 | 241. | | VEL | 10 -0 | 0.02 | FC42 | 239 | 10-22 | 827A
845A | TURNER | 9.9 | 16.2 | 9.07 | | 147. | <u> </u> | .6 | 6 | - | | 224 | 2/5 | 253P | • | 10.0 | 15.0 | 9.08 | 1.65 | 137. | | .6 1 | 10 | 0 | FC42 | 240 | 10-22 | 925A
940A | TURNER - MOORE | 9.9 | 16.4 | 9.03 | | 148. | <u> </u> | 6 | 10 | - | | 225 | 3/20 | 10144 | DEVORE | 1.4 | 0.27 | 0.67 | | 0.18 | | LOAT | 5 | | FLOATS | 241 | 10-24 | 930A
950A | ., ,, | 9,9 | 17.6 | 9.32 | | 164. | <u> </u> | 6 | 10 | - | | 226 | 4/24 | 907A | WADDICOR | | ļ | | 0.40 | 0.26 | ŀ | EIR | _ | | | 242 | 12-18 | 935A
900A
935A | TURNER | 9.9 | 20.9 | 9.86 | | 206. | <u>.</u> | .6 | 10 | | | 227 | 5/1 | 1050A | | | | | 0.43 | 0.31 | | | _ | | | 243 | 12-18 | 935A
945A
355P | TURNER - MOORE | 9.9 | 16.3 | 9.20 | | 150. | <u> </u> | .6 | 10 | | | 228 | 5/8 | 1035A | | | | | 1.76 | 10.2 | | •• | | | | 244 | 1-7 | 405P | BLAKELY - MOORE | 9.9 | 22.3 | 10.2 | | 228. | <u> </u> | .6 | 2 | FC35 | | 229 | 5/15 | 1015A | | | | | 1.72 | 9.62 | | . | ᆚ. | | | 245 | 1-8 | 935A
945A
1115A | TURNER - LUCE | 9.9 | 21.4 | 9.91 | | 212. | <u> </u> | .6 | 10 | FC43 | | 230 | 7/25 | 825A | LUCE | | | | 1,58 | 7.8 | | | | | | 246 | 1-8 | 1129A | TURNER - LUCE | 9.9 | 22.7 | 10.0 | <u></u> | 227. | <u></u> . | .6 | 0 | | | 231 | 8/5 | 1055A | TURNER | | | | 1.62 | 8.3 | | | | | | 247 | 1 - '8 | 213P | ** | 9.9 | 22.6 | 10,3 | | 232. | <u> </u> | .6 | 10 | | | 232 | 9/12 | 900A | LUCE | | | | 1.58 | 7.8 | | | \perp | | | 248 | 1-9 | 510P | TURNER - MOORE | 9.9 | 18.8 | 10.0 | | 188. | | 6 | 0 | | | 233 | 9/19 | 915A | • • | | | | 1.24 | 4.3 | | . | | | | 249 | 3-13 | 1215P | STUNDEN | | | | | 6.9 | | / No | TCH WEIF | * | | 234 | 9/26 | 350P
410P | TURNER | 9.9 | 7.04 | 0.61 | 1.23 | 4.3. | A. | OATS. | 10 | 0 | FC43 | 250 | 6-5 | 1155A | TURNER | 4.5 | 0.93 | 0.86 | | 0.80 | St | 3RF | 5 | FC43 | | | | | | ' | , | ' | | ' | ' | 1 | ١. | ' | | 251 | 6-12 | 230P
235P | STUNDEN | 3.5 | 0.63 | 1.35 | | 0.85 | ļ. | .5 | 4 | FC36 | | | | | | | | | | | | | | | į | 252 | 6-19 | 205 P
210 P | STUNDEN | 2.5 | 0.47 | 1.00 | | 0.47 | <u> </u> | 5 | 5 | | | | | | | | | | | | | | | | | 253 | 6-25 | 335P
340P | | 2.0 | 0.64 | 1.34 | | 0.86 | <u> </u> | .5 | 4 | - | | | | | | | | | | | | | | | | 254 | 7-17 | 600P
605P | TURNER | 1.5 | 0.33 | 1.12 | | 0.37 | <u> </u> | .5 | 3 | PC43 | | | | | | | | | | | | | | | | 255 | 8-28 | 535P
540P | ., | 2,5 | 0.28 | 1,50 | | 0.42 | <u> </u> | .5 | 4 | - | | | | | | | | | | | | | | | | 256 | 9-11 | 1130A
1135A | | 2.4 | 0.36 | 1.11 | | 0.40 | ╽. | .5 | 5 | - | | | | | | | | | | | | | | | | 257 | 9-23 | 245P
250P | 39 | 2.2 | 0.29 | 0.86 | | 0.25 | ∐. | 5 | 4 | | F. C. Dist. Form 52 4-48 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. FII8B-R | Эау | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |----------------------------|--|------------------------------|-------------------------------|---------------------------------|---|---------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------| | 1
2
3
4
5 | 0
0
0
1
0
1
0
2
0
2
0
2
0
1
0
2
0
2
0
1
0
0
0
0 | 555555 | b
 +
 +
 +
 + | 0 1
0 1
0 1
0 1
0 1 | b 0 1
b 0 1
b 0 1
b 0 1
137 | b + + + + + + + O 1 | 0 1
0 1
0 1
0 1
0 1 | 03
03
03
02
02
72 | 11.4
10.9
10.6
10.5
10.5 | 4.6
4.6
4.6
4.6
4.5 | 8 2
8 7
8 4
8 3
8 3 | 7 S
7 E
7 E
7 E
7 E | | 7
8
9
10 | 0 3
0 4
0 4
0 4 | 0.4
0.4
0.4
0.4 | *
+
+
+
+ | 01
01
01 | 41
b +
 + | 01
01
01 | 0 1
0 1
0 1 | 10.3
9.6
8.6
8.8 | 105
105
105
105 | 4.5
4.5
4.5
4.5 | 8 3
8 0
5 5
6 8 | 7 J
7 J
7 J | | 11
12
13
14 | 0.4
0.5
0.5
0.5 | 0.5
0.4
f 0.4
f 0.4 | +
+
+
+
+ | 01
01
01
01 | + | 01
01
01 | 00000
00000
00000 | 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 6
2 2
4 9
4 9
4 9 | 4.5
4.4
4.4
4.4 | 7 9
7 9
7 9
7 9 | 7 .
7 .
7 .
7 .
7 . | | 20 | 0,000,000
f | 0 2 + + + + + | + + + + | 0 1
8 1
0 1 | + | 01
01
01 | 0 &
0 &
0 &
0 &
0 &
0 & | 9.5
9.5
9.5
9.4 | 4 .8
4 .8
4 .8
4 .8 | 4 .4
4 .4
4 .4
4 .4
4 .4 | 7 9
7 9
7 9
7 9
7 9 | 7 1
5 1
4 -
4 - | | 1
12
13
14 | 0.5
0.5
0.5
0.5
0.5 | †
†
b +
 +
 + | +
b +
12.5
29.5 | 01 | +
+
+
+
+ | 0 1
0 1
0 1 | b 02
03
03 | 9.4
10.3
10.3
10.3
10.5 | 4.8
4.7
4.7
4.7
4.7 | 4.4
4.4
7.4
8.6
9.8 | 8 .0
8 .2
8 .0
8 .0
7 .9 | 4 .
4 .
4 .
4 . | | 16
17
18
19
10 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | +
+
+
+
D + | 151
b +
+
+
b + | 000000 | +
+
+
b + | 000000 | 03
03
03
03
03 | 10.5
10.3
9.9
9.6
10.7
11.2 | 4 1
4 6
4 6
4 6
4 6 | 9 2
11 2
11 2
9 8
10 4 | 79
79
78
79
79 | 4 -
4 -
4 -
4 - | | | 12.8 | 7 ۵ | 571 | 3 1 | 308.4 | 2.5 | 5 .8 | 253.5 | 198.0 | 1643 | 2451 | 186.6 | | | 0.41 | 0.23 | 1.84 | 0.10 | 11.0 | 0.08 | 0.19 | d.18 | 6.60 | 5.96 | 7.90 | 6,2 | | ET. | 25. | 14. | 113. | 6.1 | 612. | 5.2 | 11.5 | 503. | 393. | 366. | 486. | 370. | F. C. Dist. Form 52 4-45 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sts. No. F | 18 B-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct | ц | |-------|--------------------|------|------------|------------|-------------|------------|-----------------|-----------|-------|------|-------|---| | 0.4 | 0.4 | 8.0 | ő | 6.8 | 5.9 | 4.5 | 0 | 0 | 0 | Ŏ | 4 .6 | I | | 0.4 | 0.4 | 0.7 | 0.6 | 6.8 | 5.9 | 4.6 | o | 0 | 0 | 0 | 4.3 | | | 0.4 | 0.4 | 0.7 | 3.0
0.8 | 6.8 | 5.9 | 4.5 | o | 0 | 0 | o | 4.3 | ı | | 0.4 | 0.4 | 0.7 | | 6.8 | 6.0 | 4 .5 | 0 | 0 | 0 | 0 | 4.3 | | | 0.4 | 0.4 | 0.7 | 0.8 | 6.8 | 6.0 | 4.5 | . 0 | 0 | 0 | 0 | 4.3 | | | 0.4 | 0 .4 | 0.7 | 8.0 | 6.8 | 6.0 | 4.4 | 0 | 60 | 0 | 0 | 4 .3 | Ī | | 0.4 | 0.4 | 0.6 | 0.8 | 6.8 | 6.0 | 4 .5 | 1 .4 | 226 | 0 | 0 | 4.3 | | | 0.4 | 0.4 | 0.6 | 0.8 | 6.8 | 6.0 | 4.5
3.0 | 4.7 | 230 | 0 | 0 | 4.3 | | | 0.4 | 0.4 | 0.6 | 0.8 | 6.4 | 6.0
6.0 | 3.0
2.4 | 5 <i>3</i>
0 | 211 | 0 | 0 | 4 3 | , | | 0.2 | 0.4 | 0.5 | 0.8 | 6.3
5.9 | 6.1 | 3.0 | 3.1 | 176
45 | 0 | 0 | 4.3 | - | | 0.2 | 0.4 | 0.5 | 0.8 | 5.8 | 6.2 | 4.8 | 6.0 | 28 | ŏ | ŏ | 4 3 | | | 0.4 | 0.4 | 0.5 | 8.0 | 5.7 | 6.4 | 7.0 | 5.9 | 15 | 0 | ŏ | 43 | | | 0.4 | ŏ .4 | 0.5 | 0.8 | 6.6 | 6.4 | 6.9 | 5.9 | 1 8 | 0 | ŏ | 43 | i | | 0.4 | 0.4 | 0.4 | 0.8 | 63 | 6.4 | 7.0 | 6.0 | ŏ | 0 | ŏ | 4.3 | , | | 0 ,4 | 0.4 | 0.4 | 0.8 | 6.1 | 3.8 | 7 1 | 6.0 | o | 4.0 | ō | 43 | ï | | 0.3 | 0.4 | 0.4 | 0.8 | 5.4 | 6.6 | 71 | 6.0 | ŏ | 48 | ō | 4.3 | | | 0.4 | 0.4 | 0.4 | 0.8 | 5.5 | 6.6 | 7.2 | 3.6 | ō | 172 | Ŏ | 4.3 | t | | 0.2 | 0,4 | 0.4 | 0.8 | 5.8 |
6.8 | 7.2 | 4.9 | 0 | 154 | 0 | 4.3 | 1 | | 0.2 | 0.4 | 0.4 | 0.8 | 5.7 | 6.8 | 7.1 | . 6.4 | 0 | 132 | 0 | 3.2 | 1 | | 0.2 | 0.4 | 0.4 | 9.0 | 5 .5 | 6.8 | 7.1 | 63 | 0 | 0 | 0 | 138 | Ī | | 0.3 | 0 .4 | 0.4 | 0.8 | 4.9 | 6.8 | 7.1 | 6.1 | 0 | 0 | 0 | 149 | | | 0.4 | 0.4 | 0.4 | a.o. | 3.6 | 6.8 | 7.1 | 6.1 | 0 | 0.0 | 0 | 155 | | | 0.3 | 0 A
0 A | 0.4 | 9.0
9.0 | 8. 0 | 6.9 | 6.4 | 5.4 | 0 | 0 | 0 | 163 | 1 | | 8 3 | 0 <u>4</u>
0 .4 | 0.4 | 0 9 | 0.8 | 6.8 | 5.7
5.9 | 4 .6
4 .6 | 0 | 0 | 0 | 125 | | | 0.3 | 0.4 | 0.4 | 0.9 | 1.8 | 6.8 | 5.9 | 4.6 | ŏ | 0 | ő | 0.4 | | | 0.4 | 0.4 | 0.4 | 0.8 | 1.6 | 6.8 | 6.0 | 4.6 | 1.4 | ŏ | ő | 0.4 | | | 0,4 | 0.4 | 0,4 | 0.8 | ž.s | 6.8 | 6.0 | 7.0 | 2.8 | ŏ | ŏ | 0.4 | ı | | 0,4 | 0.4 | 0.4 | o .a | 1.3 | 6.6 | 6.0 | | õ | l ŏ l | ŏ | 0.3 | ۱ | | | 0.4 | 0.4 | | ō | | 6.0 | | ŏ | ŏ | | 0 - | | | 10.9 | 12 4 | 15.5 | 25.5 | 150.5 | 189.7 | 1751 | 1075 | 995.2 | 510.0 | 0 | 846.0 | | | 0.3 | 0.40 | 0.50 | 0.85 | 4.72 | 6.32 | 5.64 | 38.4 | 32.1 | 16.5 | 0 | 27.3 | s | | 22 | 25 | 31 | 51 | 299 | 376 | 347 | 213 | 1,970 | 1,010 | 0.0 | 1.680 | Ē | #### STATION FIG-R PACOIMA WASH at Parthenia Street LOCATION: WATER-STAGE RECORDER, LAT. 34°13'42", LONG. 118°27'32", ON THE DOWN-STREAM SIDE OF PARTHENIA STREET BRIDGE APPROXIMATELY 3 MILES NORTHWEST OF VAN NUYS. ELEVATION OF ZERO GAGE HEIGHT, 812.94 FEET. DRAINAGE AREA: 50.6 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - COMPOSED OF SAND AND GRAVEL. WEEDS AND BRUSH ALONG BANKS. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF HIGHWAY BRIDGE. RECORDER: INSTALLED DECEMBER 26, 1928, OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY PACOIMA DAM AND PACOIMA SPREADING GROUNDS. DIVERSIONS: TWO SMALL DIVERSIONS FOR IRRIGATION NEAR MOUTH OF CANYON. WATER DIVERTED TO THE PACOIMA SPREADING GROUNDS DURING SPREADING OPERATIONS. RECORDS AVAILABLE: DECEMBER 26. 1928 TO SEPTEMBER 30. 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 171 SECOND-FEET, DECEMBER 21, MINIMUM NO FLOW MOST OF YEAR. MINIMUM NO FLOW MOSI OF YEAR. 1946-1947 MAXIMUM 157 SECOND-FEET, NOVEMBER 23, MINIMUM NO FLOW MOST OF YEAR. 1929-1947 MAXIMUM 2,400 SECOND FEET, ESTIMATED MARCH 3, 1936. MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. DIRECHARDE MEASUREMENTS OF PACOINA WASH Parthenia Street DURING THE YEAR ENGING BEPTEMBER SD, 19 46 | HQ. | PATE | REGIN | MADE BY | WIOTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH- | MEAS.
SEC.
NO. | G, HT.
CHANGE
TOTAL | HETER
HD. | |-----|-------|----------------|-----------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|------|-------|----------------------|---------------------------|--------------| | 220 | 12/23 | 735A
745A | TURNER - PALMER | 33.0 | 16.6 | 3.22 | 4.50 | 53.3 | | .6 | 11 | -01 | FC43 | | 221 | 12/25 | 1050A
1101A | DEVORE | 25.5 | 8.27 | 3.22 | 4.32 | 26.6 | | .6 | 7 | .0. | FC42 | | 222 | 12/25 | 326P
336P | | 21.5 | 4.87 | | 4.18 | 11.9 | | .5 | 7 | | | | 223 | 3/20 | 213P
227P | •• | 20.1 | 5.55 | 2.52 | 4, 28 | 14.0 | | 6 | 11 | +04 | | | 224 | 3/30 | 600A
612A | WADDICOR | 30.0 | 13.5 | 2.84 | 4,56 | 38.4 | | . 6 | 9 | - 05 | FC22 | DISCHARGE MEASUREMENTS OF _____PACOIMA_WASH | | ND. | DATE | BEGIN | HAE | oe BY | WIDTH | AREA OF
BECTION
BO. FT. | MEAN
VELOCITY
FT.PER BEC. | BAUDE
HEIGHT
FEET | DISCHARGE
BEG. FT. | RAT- | METH- | MEAS.
SEC.
NO. | G, HT.
CHANGE
TOTAL | METER
NO. | |---|-----|-------|----------------|--------|---------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|------|-------|----------------------|---------------------------|--------------| | - | | | 1000A | | | | | | | | 1 | 1- | | | | | | 225 | 11-12 | . 1012A | TURNER | | TWO | HANNEL: | \$ | 4.17 | 10.1 | | .6 | 10 | +.06 | FC13 | | | 226 | 11-13 | 945
957A | TURNER | - RILEY | 33.0 | 22.3 | 4.57 | 4.73 | 102. | | .6 | 9 | 05 | FC43 | | | 227 | 11-14 | 945A
955A | | | 8.5 | 2.59 | 1.70 | 3.80 | 4,4 | | .5 | 9 | 0 | | | | 228 | 11-20 | 1105A
1113A | | | 24.0 | 8.94 | 3.06 | 4.28 | 27.5 | | .6 | 8 | 0 | ,, | | | 229 | 11-23 | 1100A
1112A | | | 46.0 | 22.6 | 3.66 | 4.62 | | | .6 | 12 | 22 | | | Ì | 230 | 12-26 | 1025A
1030A | | | 6.0 | 0.57 | .0.95 | 3.57 | 0.5 | | .5 | | 0 | | | | 231 | 1-9 | 955A | | | 28.0 | 11.4 | 3 32 | 4 25 | 37.0 | l | _ | 10 | | | P. C. Dist. Porm 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F16-R | ау | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | mber 30, 19
Sept. | |------------------|-----------------|-------|-----------------------------|-------------|----------------------|----------------------------|------------------|-------------|-------|-----------------------------------|-------------|----------------------| | 1
2
3
4 | 0 0 | 0 0 | 0 0 | 0 0 | 0
0
5.5 | 0 0 | o
+
0
0 | 0 0 | 0 0 | 0 0 | 0
0
0 | 0 0 0 | | 5
7
B | 0 0 | 0 0 | 0 0 | 0 | 1 8
0
2.7
0 | 0 | 0
0 | 0000 | 0 0 | 8 0 | Ö
Ö | 0 0 | | 9
0
1
2 | 0
0
0 | 0 0 | 0 0 | 0 | 0 | 0 | 0
0
0 | 000 | 0 | 0 0 | 0 | 0 0 | | 3
4
5 | 0
0 | 0 0 | 0 0 | 0
0
0 | 000 | 0 | 000 | 0 | 0 | 0 0 | 0 | 0 | | 9 | 0 0 0 0 | 0 0 0 | 00000 | 0
0
0 | 000 | 0
0
2 3
3 5 | 0 0 0 | 0
0
0 | 0 0 0 | 0
0
0 | 0 0 0 | 00000 | | 2 | 0 0 0 | 00000 | 18
22
17
0.5
20 | 0000 | 0000 | 0 0 0 | 0000 | 0 0 0 | 00000 | 0000 | 0 0 0 | 0000 | | 3 | 00000 | 0000 | 12
+
00
00
00 | 00000 | 0 0 | 0
0
2.7
1.3
14 | 0
0
0
0 | 00000 | 0000 | 00000 | 0000000 | 00000 | | | 0 | 0 | 89.5 | 0 | 10.0 | 23.8 | + | 0 | 0 | 0 | 0 | 0 | | N | 0 | 0 | 2.89 | 0 | 0.36 | 0.77 | + | 0 | 0 | 0 | 0 | 0 | | 7 | O
Remarks: + | 0.05 | 178.
c.f.s. or | O
less. | 20. | 47. | + | 0 | | O
TEAR MEA
OR
ERIOD ACRE | | 0
4 | F. C. Dist. Form 52 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 16-R | Daily | discharge, in s | econd-feet of | PACOIM | A WASH at | Partheni: | a Street | | | | , for the ye | ar ending Septe | mber 30, 19_47 | |---|---|---|-------------------------------|--|---|--|---|---|---|---|---|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 000000000000000000000000000000000000000 | 0
0
0
0
0
0
0
0
0
0
0
0
7
11
26
10 | 7.8 | 0
0
0
0
0
7
1
1
27
18
4.7
4.4
11 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 9 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0 | 0 | 0 | 000000000000000000000000000000000000000 | 0 | 000000000000000000000000000000000000000 | | 15
18
17
18
19
20
21
22
23
24
25 | 0
0
0
0
0
0
0
0
1
0
1
0
1
5
1
6
8 | 0
0
0
0
8.0
0
25 | 0 5 4 5 5 4 6 5 0 0 0 1 5 1 9 | 0000000000 | 000000000000000000000000000000000000000 | 0 | 0000000000 | 0 | 000000000000000000000000000000000000000 | 0 | 0 | 000000000 | | 28
27
28
29
30
31 | 0 1
0
0
0
0 | 0 0 0 | 18
2.6
0
0
0 | 0
0
4 8
2 3
8 6
1 0 | ō
0
0 | 0000 | 0 0 0 | 0 0 0 0 0 | 0 0 0 | 0 0 0 | 00000 | 0 0 0 | | | 5.5 | 80.7 | 66.5 | 85.0 | 3.9 | 4.9 | 0 | 0 | 0 | 0 | 0 | 0 | | MEAN | 0.18 | 2.69 | 2.15 | 2.74 | 0.14 | 0,16 | 0 | 0 | 0 | 0 | 0 | 0 | | ACRE-
FEET | 11 | 160 | 1,32 | 169 | 7.7 | 9.7 | 0 | 0 | 0 | 0 | 0 | 0 | | | Remarks: | + = 0.05 | c.f.s. o | r less. | | | | | | OB | N 0.67
FEET 48 | 9.4 | #### STATION FHO-R PUDDINGSTORE CREEK below Puddingstone Dam LOCATION: WATER-STAGE RECORDER, LAT. 34°05'35", LONG. 117°48'38", ON THE RIGHT (EAST) BANK ABOUT 1000 FEET BELOW PUDDINGSTONE DAM NEXR SAN DIMAS. ELEVATION OF ZERO GAGE HEIGHT, 1624,45 FEET. DRAINAGE AREA: 92.2 SQUARE MILES, INCLUDING AREAS CONTROLLED BY SEVERAL DAMS IN THE MOUNTAIN TRIBUTARIES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND PUDDINGSTONE. CONTROL - RE-INFORCED CONCRETE CIPOLLETTI WEIR WITH A 25-FOOT CREST AND 3-FOOT DEPTH, AND A CIPOLLETTI WEIR NOTIC! HIN CENTER WITH A 24-INCH CREST AND 18-INCH DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. NO FACILITIES FOR MEASUR-ING HIGH FLOWS. RECORDER: INSTALLED DECEMBER 28, 1927 IN A CONCRETE HOUSE OVER A 3 FT. X 4 FT. CONCRETE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE
FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY PUDDINGSTONE DAM. DIVERSIONS AND/OR REGULATIONS: SAN DIMAS CREEK, WHICH IS REGULATED BY SAN DIMAS DAM AND PUDDINGSTONE DIVERSION DAM, CAN BE DIVERTED PUDDINGSTONE RESERVIOR AT PUDDINGSTONE DIVERSION DAM METROPOLITAN WATER DISTRICT AQUEDUCT OCCASIONALLY SPILLS FLOW INTO PUDDINGSTONE DIVERSION CHANNEL. SAN DIMAS WATER COMPANY DIVERTS COTTELOW FROM DAM ABOVE THE STATION. INFLOW PARTIALLY REGULATED BY LIVE OAK DAM. RECORDS AVAILABLE: DECEMBER 28, 1927 TO SEPTEMBER 30, 1947- ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | | HT0 DF | | STONE | DREEK. | | | | | | | жa. | DATE | PERIN | MADE BY | FEET | BECTION | HEAN
VELODITY
FT.PER SEG. | HEIGHT . | GEO, FT. | HAT- M | ETH- MEA
DD HD | DHANGE
TOTAL | HETER
NO. | |------|---|----------------------|--|--|------------------|------------------|-----------------------|------|-------|--------------------|----------------|------|------|---------------|-----------|------|--|---------------------------------|--|---------------
--|-------------------|-----------------|----------------| | belo | w Pud | dingstone Dam | | | 0VRI | ING THE Y | EAR EHDING | BEPT | EMBER | ao, 19 <u>.4</u> (| 8_ | 463 | 6/26 | 824A
830 A | ,, | 1.0 | 0.31 | 0.87 | 0.13 | 0.27 | | .6 2 | 0 | | | | | HADE SY | WIDTH | AREA OF | MEAN
VELGETTY | SBUAR
THE JAH | DIROHARBE
BEO. FT. | | METH- | EAS. S. H | T. HETER | 464 | 7/10 | 1040A | | 0.5 | 0.14 | 1.07 | 0.09 | 0.15 | $\vdash \vdash$ | .6 1 | 0 | | | | | AREWSTER | 0.5 | | | | | | | | | 465 | 7/23 | 300P
845 A | | 8.0 | 1 | | | 15.2 | | | 0_ | | | 8 | 40A | " | 2.5 | | | | 1.8 | | 1 | | , FC12 | 400 | | BOCA | | | 1 | | | | 1 | | - | FC12 | | 1 8 | 30A | <u></u> | 4.0 | 3.95 | 0_86 | 0.60 | 3.4 | | .6 | 4 0 | | 468 | 1 | 319P
335P | | 6.0 | | | | , | | | 1 | | | 49 | ADD | ** | 0.5 | 0.14 | 0.79 | 0.06 | 0.11 | _ | -6 | 1 0 | " | 469 | 8/7 | 245P | BONADIMAN | 12.0 | T | | | 11.3 | | .6 10 | ٥ | FC19 | | 3: | 22P | | 0.5 | | | | 0.06 | | .6 | 1 0 | | 470 | 8/14 | 852A | " | 13.0 | 15.8 | 1.44 | 1.65 | 22.9 | | .6 9 | +.01 | •• | | 9: | 26A | " | | | | | | - | | | | 471 | 8/19 | 903A
912A | | 11-0 | 12.0 | 1.55 | -1.61 | 18.6 | - | -6 10 | -0- | 11 | | 9 | 24 A | 11 | 1.0 | | | | 0.49 | | | - | " | 472 | | 922A
142P | | 10.0 | 1 | | | | ++ | | | | | 3 2 | 20A | 11 | 1.0 | 0.28 | 1.14 | 0.16 | 0.32 | | .6 | 2 0 | " | I | | 220P | | | 1 | | | | \Box | | - | | | . 9: | 30 A | ** | 1.0 | 0.34 | 1.03 | 0.17 | 0,35 | 4 | .6 | 2 0 | | 475 | 8/26 | 910A
921A | | 10.0 | 13.2 | | | | | .6 10 | ٥ | | | 0 8 | 5A | | 1.0 | | | | . 0.29 | | | | | 476 | 8/26 | 954A | | 12.0 | 13.8 | 1.62 | 1.69 | 22.4 | \sqcup | .6 12 | 0_ | | | 8 | 30A | ., | | | | | | 1 | _ | _ | | 477 | 8/26 | | | 12.0 | 14.3 | 1.58 | 1.69 | 22.6 | \vdash | .6 13 | 0 | _ | | 3: | 34P | ,, | 1.5 | | | | | | | - | | 478 | 8/27 | 840A | BREWSTER | 8.0 | | | I | | + | - | | FC12 | | 7 9 | 55A | и | 2.0 | | | 0.15 | 0.34 | | .6 | 4 0 | | | | 330P | | | | | | | H | | -0- | ·· | | 9 | 2QA | ti . | 2.0 | 0.60 | 1.43 | 0.30 | 0.86 | _ | .6 | 4 0 | <u> </u> | 481 | 9/10 | 409P
425P | | 10.0 | | | 1 | | | - | 0 | | | 5 85 | 55A | | 1.5 | 0.46 | 0.61 | 0.15 | 0.28 | - | .6 | 3 0 | " | 482 | 9/18 | 903A
912A | | 5.0 | 2.40 | 0.75 | 0.47 | 1.8 | 1 | .6 5 | _0_ | | | 81 | IOA | | C.5 | | | | 0.12 | + | .6. | 1 0 | " | 483 | 9/25 | 326P
330P | | 0.5 | سوا | 0.45 | 0.03 | 0.05 | | .6 1 | 0 | | | | 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | PESIN ESTO PESIN | PESIN MADE BY PESIN PE | PESIN MADE BY PESIN PE | | | | | | | | Tend | | | | | STATE CALCULATING DATE CALCULATION SETTING CALCULATION CALCULA | | MADE NY ANGLE ST MADE NY ANGLE ST MATERIAL PROPRIES NO. 19. PROPR | Second Mode | Second S | | | | | | DISCHARGE | MEABUREN | ENTS OF | PUDDI | NGSTO | NE CREE | K | | | | | _ | NG. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | MEAN
VELGGITY
FT.PER HEG. | BAUDE
HEIGHT
FREY | DIEGHARDE
BEG. FT. | RAT- MET | HEAR. | O. HT.
DHANDE
TOTAL | HETER
NO. | |-----|-----------|----------------------|------------------|-------|---------|------------------|-------------------------|------------|----------|----------|----------|----------|-----|-------|------------------|----------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|-------|---------------------------|--------------| | | #E. | belo | w Puddingstone (| Danı | | | ING THE Y | EAR ENDING | SEPTI | EMBER : | 30, 1947 | _ | 509 | 3/26 | 930A
935A | | 0.5 | 0.14 | 0.57 | 0.04 | 0.08 | | | _ | | | ND. | DAYE | BEGIN | HADE BY | WIDTH | AREA OF | MEAN
VELOCITY | GAUGE
HEIGHT
FEET | DIBCHARGE | RAT- M | ETH. ME. | AQ. G. I | T. HETER | 510 | 4/2 | 920A
925A | ., | 0.5 | 0.14 | 0.71 | 0.06 | 0.10 | | 5 1 | 0 | - | | | | 327P | | PEST | aq. Ft. | FT.PER SEC. | FEET | SEC. FT. | ING | DD NO | D. TOTA | ND, | 511 | 4/9 | 845A
850A | | 0.5 | 0.13 | 0.92 | 0.07 | 0.12 | | 5 1 | 0 | 25 | | 484 | 10/2 | 330P.
925A | BREWSTER | 0.5 | 0.12 | 0.58 | 0.04 | 0,07 | | .6 | | FC12 | 512 | 4/16 | 339P
345P | | 2,0 | 0.22 | 0,45 | 0.06 | 0.10 | | 3 2 | 0 | '1 | | 485 | 10/9 | 930A
845A | | 1.0 | 0.14 | 0.43 | 0.04 | 0,06 | - | -6 | 2 (| - | 513 | 4/24 | 215P
220P | | 0.5 | 0.18 | 0.89 | 0.10 | 0.16 | | 5 1 | 0 | •; | | 486 | 10/16 | 850A
850A | | 1.0 | 0.16 | 0.50 | 0.05 | 0.08 | | .6 | 2 | | 514 | 4/30 | 1055A
1100A | • | 0.5 | 0.11 | 0.91 | 0.06 | 0.10 | 1 | 5 1 | 0 | | | 487 | 10/23 | 858A
854A | | 4.0 | 0.74 | 1.30 | 0.32 | 0.96 | | .6 | 4 0 | | 515 | 5/7 | 1040A
1045A | | 0.5 | 0.12 | 0.92 | 0.07 | 0.11 | | 6 1 | 0 | " | | 488 | _10/30 | 900A
845A | | 1.5 | 0.38 | 0.66 | 0.13 | 0.25 | | .6 | 3 0 | | 516 | 5/14 | 910A
915A | • | 0.5 | 0.14 | 1.00 | 0.08 | 0.14 | <u> </u> | 5 1 | 0 | | | 489 | 11/6 | 854A
1020A | | 0.5 | 0.14 | 0.71 | 0.06 | 0.10 | | .6 | 1 0 | | 517 | 5/21 | 942A
948A | | 1.0 | 0.27 | 0.93 | 0.11 | 0.25 | | 3 2 | 0 | | | 490 | 11/14 | 1030A
1236P | | 2.0 | 0.95 | 0.97 | 0.28 | 0.92 | | -6 | 4 | <u> </u> | 518 | 5/28 | 900A
905A | 14 | 0.5 | 0.12 | 0.92 | 0.09 | 0.11 | 1. | 1 | 0 | | | 491 | 11/21 | 1240P
856A | | 1.0 | 0.24 | 0.92 | 0.10 | 0,22 | \vdash | .6 | 2 0 | | 519 | 6/4 | 835A
840A | 11 | 0.5 | 0.14 | 0.93 | 0.07 | 0.13 | . | 1 | 0 | ** | | 492 | 11/27 | 900A
825A | | 0.5 | 0.12 | 1.00 | 0.07 | 0.12 | | .6 | 1 0 | | 520 | 6/11 | 900A
905A | WADDICOR | 0.5 | 0.15 | 0.20 | 0.10 | 0.03 | | 3 2 | 0 | FC37 | | 493 | 12/4 | 83QA
812A | | 0.5 | 0.12 | 0.92 | 0.06 | -0.11 | | -6 | 1-0 | <u></u> | 521 | 6/18 | 845A
850A | | 0.5 | 0.10 | 0.50 | 0.06 | 0.05 | | 5 2 | 0 | " | | 494 | 12/11 | 817A
810A | | 0.5 | 0.16 | 0.75 | 0.07 | 0.12 | | .6 | 1 | | 522 | 6/24 | 220P
227P | | 1,4 | 0.38 | 0.82 | 0.20 | 0.31 | Ll. | 6 3 | 0 | | | 495 | 12/18 | 815A | | 0.5 | 0.12 | 0.92 | 0.07 | 0.11 | | .6 | 1 0 | | 523 | 7/2 | 934A
940A | BREWSTER | 1.0 | 0.36 | 1.06 | 0.15 | 0.38 | <u>l I.</u> | 6 2 | 0 | FC12 | | 496 | 12/27 | 232P
240P
825A | | 4.0_ | .2.45 | 0.65 | 0.42 | 1.6 | | .6. | 4 | <u> </u> | 524 | 7/10 | 804A
810A | •, | 1.0 | 0,24 | 1.00 | 0.10 | 0.24 | | 6 2 | 0 | •• | | 497 | 1/2 | 830A | | _0.5 | 0.12 | 0.67 | 0.05 | 0.08 | | .6 | 1 0 | <u> </u> | 525 | 7/18 | 918A
922A | | 0.5 | 0.11 | 0.73 | 0.05 | 0.08 | ΙΙ. | 6 1 | 0 | | | 498 | 1/8 | 800A
805A | | 0.5 | 0.12 | 0.75 | 0.05 | 0.09 | <u> </u> | .6 | 1 | | 526 | 7/24 | 914A
920A | ٦ | 1.0 | 0.24 | 0.83 | 0.11 | 0.20 | Π. | 6 2 | 0 | | | 499 | 1/15 | 804A
808A | | 0.5 | 0.17 | 0.53 | 0.05 | 0.09 | | .6 | 1 0 | | 527 | 7/31 | 1029 A
1035 A | •• | 0.8 | 0.18 | 0.78 | 0.08 | 0.14 | Π. | 6 2 | 0 | ,, | | 500 | 1/22 | 813A
818A | | 1.0 | 0.18 | 0.44 | 0.05 | 0.08 | | .6 | 2 0 | <u></u> | 528 | 8/6 | 310P
315P | м . | 0.5 | 0.12 | 1.00 | 0.06 | 0.12 | ΙΤ. | 6 1 | 0 | | | 501 | 1/29 | 815A
820A | | 0.5 | 0.16 | 0.69 | 0.06 | 0.11 | Ш | .6 | 1 0 | | 529 | 8/13 | 755A | | 0.8 | 0.17 | 0.47 | 0.05 | 0.08 | | 6 2 | 0 | | | 502 | 2/5 | 400P
406P | | 0.5 | 0.06 | 1.00 | 0.04 | 0.06 | | .6 | 1 0 | <u>.</u> | 530 | 8/20 | 340P | | 0.5 | 0.11 | 0.55 | 0.04 | 0.06 | T 1 | 6 1 | 0 | | | 503 | 2/12 | 1141A
1145A | | 0.5 | 0.14 | 0.64 | 0.05 | 0.09 | | .6 | 1 0 | | 531 | 8/27 | BQ2A
BYQA | | 0.8 | 0.20 | | 0.08 | T | 1 | .6 2 | 0 | | | 504 | 2/.9 | 436P
440P | | 0.5 | 0.17 | 0.59 | 0.06 | 0.10 | | .6 | 1 0 | | 532 | 9/3 | 820A
825A | | 0.5 | 0.14 | | 0.10 | T | 1 | .6 | 0 | - | | 505 | 2/26 | 826A
830A | ч | 0.5 | 0.12 | 0.75 | 0.05 | 0.09 | | .6 | 1 0 | | 533 | 9/10 | AE08 | | 1.0 | 0.26 | | 0.115 | | | .6 2 | 0 | ", | | 506 | 3/6 | 820A
825A | ** | 0.5 | 0.14 | 0.86 | 0.07 | 0.12 | Ш | .6 | 1 0 | | | 9/17 | 825A | | 0.5 | 0.14 | 1 | 0.09 | † | $\top \top$ | .6 1 | 0 | ٠, | | 507 | 3/12
 AE08
A808 | | 0.5 | 0.14 | 0.79 | 0.06 | 0.11 | | .6 | 1 | , | 534 | 9/1/ | 801A | " | 0.5 | 0.16 | | | | $\top \top$ | .6 1 | 0 | •• | | 508 | 3/19 | 825A | 14 | 0.5 | 0.16 | 0.81 | 0.07 | 0.13 | | .6 | | | 235 | +9/24 | 806A | + | 1 0.3 | + 0.16 | 4 | 0.03 | 7 | | | + 0 | + | | F. C. Die | t. Porm 52 4-46 | | | | FLO | YDRAULIC 1 | OL DISTRICT
DIVISION | | | | | vo. <u>F¥0-R</u> | |----------------------------------|-----------------------------------|--|---------------------------------|---------------------------------|--------------------------|---------------------------------------|----------------------------|---------------------------------|---|-----------------------------------|--------------------------------------|---------------------------------| | Daily 6 | lischarge, in se | cond-feet of | PUDDIN | GSTONE CF | EEK below | Puddings | tone Dam | | | , for the yea | r ending Septer | nber 30, 19 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 01 | 1 2
1 1
2 4
1 2 | 0 2
0 1
0 7
1 3 | 0.5
0.5
0.5
0.5
0.5 | 0.4
0.4
0.4
0.4 | 0 3
0 3
0 3 | 0 A
0 A
0 A
0 A | 2.5
3.6
5.7
5.1
3.9 | 2 9
5 3
8 3
4 2
1 7 | 2 3
0 5
3 4
2 0
2 1 | 11.3
10.0
10.8
10.9
12.5 | 30
25
25
24
24 | | 6
7
8
9 | 0 2
0 1
1 0
2 6
4 5 | 1.6
2.7
5.3
2.4
2.9
2.3 | 1 A
0 9
1 3
1 3
2 5 | 255555 | 0 4
0 3
0 3
0 3 | 03
03
03
03
02 | 0 A
0 A
0 A | 2 9
2 2
2 2
0 7 | 13
13
09
13 | 2 A
2 A
1 A
1 A
2 O | 12.0
11.9
11.3
18.6
23 | 25 24 23 24 | | 11
12
13
14
15 | 5 5 8 2 2 5 2 5 2 5 2 | 2.3
3.1
2.1
0.5 | 1 A
1 A
2 3
3 2
2 A | 55555 | 03 | 00000
%%%%% | 03
03
03
03 | 1 0
0 5
0 5
0 6 | 0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q | 1.5
1.0
0.7
0.4 | 22
22
21
21
21 | 23
21
192
155 | | 16
17
18
19
20 | 2.7
2.7
4.1
1.6
1.2 | 13
08
21
01 | 1 A
0 B
1 3
4 Q
5 2 | 0 A
0 A
0 A
0 A | 03
03
03
03 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9935
0000 | 0 3
1 3
3 9
3 2
2 2 | 0007.0 | 1 1
0 6
1 0
1 2
0 8 | 192
185
185
185
175 | 7 9
3 6
1 9
0 7
0 5 | | 21
22
23
24
25 | 13
09
16
34
19 | 01
01
01 | 6.4
6.7
0.6
0.6 | 0 A
0 A
0 A
0 A | 03
03
03
03 | 0 A
0 A
0 3
0 3 | 03
05
03
03 | 2.6
2.5
4.1
3.5 | 1.5
1.5
1.7
3.2 | 13
2.5
10.7
16.0
17.0 | 185
22
24
24
23 | 0.5
0.4
0.2
0.1 | | 26
27
28
29
30
31 | 0 A
1 .0
2 A
2 .0
3 9 | 01
01
01
01
02 | 55555
0000 | 0.4
0.4
0.4
0.4 | 03
03
03 | 03
03
04
04
17 | 03
04
04
04
19 | 1.0
2.1
2.4
0.5
1.1 | 1.0
0.8
1.2
0.7
1.2 | 131
112
111
108
114 | 25
25
25
25
25
25 | 01
01
01
01 | | | 3 A
65.5 | 372 | 0 A
5 4 .5 | 0.4 | 9.0 | 10.4 | 121 | 69.7 | 502 | 148.7 | 595.0 | 364.4 | | MEAN | 2,11 | 1.24 | 1.76 | 0.45 | 0.32 | 0.34 | 0.40 | 2,25 | 1.67 | 4.80 | 19.2 | 1.21 | | ACRE- | 130. | 74. | 108. | 28. | 18. | 21 | 24. | 138. | 100. | 295. | 1,180. | 723. | | | Remarks: | | | | | | | | 7 | TEAR MEA | N3.92 | | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 40-R | Dally | iischarge, in se | cond-feet of | PUDDI | NGSTONE | CREEK belo | w Puddin | stone Dar | 1 | | , for the yea | r ending Septem | ber 30, 19 <u>1</u> | |----------------------------------|---------------------------------|---------------------------------|-----------------------------------|----------------------------|--------------------------|----------------------------|---------------------------------|---------------------------------------|-------------------------------------|--|--|--| | Day | Oct, | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 1
0 1
0 1
0 2
0 4 | 0 1
0 1
0 2
0 1 | 011
011
011
011 | 01
01
01
01
01 | 0 1
0 1
0 1
0 1 | 01 | 01
01
01 | 0 4
0 0 4
0 0 1
0 0 2 | 0 2
0 1
0 1
0 1
0 1 | 0.3
0.3
0.3
0.3
0.3
0.3 | 0 1
0 1
0 2
0 2
0 2 | 0.0
1 0
2 0
2 0
2 0
2 0 | | 7
8
9
10 | 0 1
0 1
0 0 4 | 000 | 01
01
01 | 01
01
01
01 | 01
01
01 | 01 | 01
01
01
01 | 0.4
0.6
0.1
0.2 | 0 1
0 0 4
0 0 4
0 0 3 | 00000
0000 | 01
02
01
01 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 12
13
14
15 | 0 0 4
0 0 3
0 .7
1 1 | 3.6
1.2
0.6
0.1 | 01
01
01 | 0 1
0 1
0 1 | 01
01
01 | 01 | 0 1
0 1
0 1 | 01
01
02
03 | 0.03
0.03
0.2
0.2 | 0 2
0 2
0 2
0 2 | 01
01
01
01 | 0 1
0 2
0 2
0 2
0 1 | | 17
18
19
20 | 01
01
01 | 01
01
01
01 | 0 1
0 1
0 1
0 03
0 03 | 0 1
0 1
0 1 | 0 1
0 1
0 1 | 0 1
0 1
0 1 | 0 1
0 2
0 2
0 2 | 0 2
0 2
0 2
0 2 | 0.3
0.1
0.03
0.03 | 0 1
0 1
0 2
0 1 | 01
01
01 | 0 2
0 2
0 1 | | 21
22
23
24
25 | 05
129
043 | 0 2
0 2
0 3
0 3
0 8 | 0.03
0.03
0.03
0.03 | 90000 | 0 1
0 1
0 1
0 1 | 0 1
0 1
0 1
0 1 | 0 2
0 3
0 3
0 2
0 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 &
0 .4
0 .4
0 .3
0 .3 | 0000
0000
1 | 01
01
01
01 | 0 2
0 1
0 1
0 1 | | 28
27
28
29
30
31 | 0 4
0 4
0 4
0 2
0 2 | 01
01
01 | 0 9
0 4
0 2
0 1
0 1 | 00000 | 01 | 01
01
01
01
01 | 0 &
0 3
0 3
0 3
0 & | 0 2
0 1
0 1
0 1
0 1 | 0.4
0.3
0.2
0.2
0.2 | 01
01
01
01 | 0 1
0 1
0 1
0 1
0 0 4
0 0 3 | 0 1
0 2
0 2
0 1 | | | 9.61 | 12.9 | 418 | 3.1 | 2 .8 | 3.1 | 4 .8 | 6 .0 | 4 .8 6 | 5 .8 | 3 .4 7 | 4 .8 | | EAN | 0.31 | 0.43 | 0.13 | 0.10 | 0.10 | 0.10 | 0.16 | 0.19 | 0.16 | 0.19 | 0.11 | 0.16 | | CHE- | 19 | 26 | 8.3 | 6.1 | 5.6 | 6.1 | 9.5 | 12 | 9.6 | 12 | 6.9 | 9.6 | | | Remarks: | | | | | | | | Y | EAR MEA
OR
ERIOD ACRE | N 0.18 | | ### STATION F280-R RIO HONDO DIVERSION below Santa Fe Dam LOCATION: WATER-STAGE RECORDER, LAT. 34°06'46", LONG. 117"56'18". ON THE LEFT BANK OF THE DIVERSION CANAL, 400 FEET DOWNSTREAM FROM THE STILLING BASIN OUTLET AT SANTA FE DAW AND 1,5 MILES NORTH OF BALDWIN PARK. ELEVATION OF GAGE ABOUT 403 FEET. DRAINAGE AREA: 231 SQUARE MILES. 202 SQUARE MILES ARE CONTROLLED BY 5AN GABRIEL DAMS #1 AND #2. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL. CONTROL - CONCRETE APRON 3 FEET WIDE 10 FEET BELOW STATION. DISCHARGE MEASUREMENTS: MADE BY FOOTBRIDGE AT CONTROL. RECORDER: INSTALLED MAY 12, 1944 OVER A 16 INCH DIAMETER IRON PIPE STILLING WELL. A STEVENS TYPE L RECORDER WAS IN SERVICE FROM OCTOBER [, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY 5 GATED OPENINGS FROM THE STILLING BASIN OUT-LET OF SANTA FE DAM TO THE RIO HONOO DIVERSION CANAL. RECORDS AVAILABLE: OCTOBER 1, 1942 TO MAY 12, 1944. FLOW DETERMINED BY GATE OPENINGS AND MEASUREMENTS. RECORDER RECORDS FROM MAY 12, 1944 TO SEPTEMBER 30 1947 EXTREMES OF DISCHARGE: MES OF DISCHARGE. 1945-1946 MAXIMUM 484 SECOND-FEET, SEPTEMBER 13. MINIMUM NO FLOW MOST OF YEAR, SEPTEMBER 13, 1946 AND NOVEMBER 27, 1946 MINIMUM NO FLOW MOST OF YEAR, SEPTEMBER 13, 1946 AND 1946-1947 MAXIMUM 494 SECOND-FEET, NOVEMBER 27. MINIMUM NO FLOW MOST OF YEAR. 1943-1947 MAXIMUM 484 SECOND-FEET, MAY 18 TO 23 AND 29, 1944. MINIMUM NO FLOW MOST OF YEAR. ACCURACY: GOOD. CPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE CORPS OF ENGINEERS. U.S. ABMY, AND THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES DEBUND. REMARKS: NO FLOW DURING THIS PERIOD. | ı | DIBDHARDE | MEABUREN | ENTS OF | RIQ HO | 10 <u>0</u> 011 | ÆRS I OI | N | | | | | _ | 1 | DIBCHARGE | C MEABURE | HENTE OF RIO HOND | DIVER | SION | | | | | | | | |-----|--|----------------------|------------------------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------|--------------------|--------------|-----|-----------|-----------------------|--------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------|---------------------------|---------------------------|---| | - | ************************************** | В | elow Santa Fe Da | A | | DURIN | S THE YE | AR EMDING | BEPTE | MEER 31 | o, 1 9.14 (| <u>_</u> | | be | low Sa | inta Fe Dam | | | DUR | ING THE Y | EAR ENDINE | a mEPT | EMBER SO, | 19_47 | - | | NO. | DATE | SEEIN
END | MADE BY | WIDTH | AREA DF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SED. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC- FT. | RAT- | DD HEE | D. CHANG | HETER
NO. | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELOGITY
FT.PER BEG. | BAUGE
HEIGHT
FEET | DISCHARGE
BEG. FT. | RAT M | ETH- MEAS.
BEC.
NO. | G. HT.
CHANGE
TOTAL | | | 72 | 17/3 | 800A
842A
420P | MOON - BEAM | 335. | 438. | 0.93 | 4.85 | 407. | | .6 35 | 0 | FC22 | 43 | 11-27 | 220P
245P
1055A | MOON - ROCKENMEYER | 335. | 536. | 1,01 | 5,35 | 508. | | .6 23 | 0 | F | | 23 | 1/3 | 450P
 U.S.E.D. | 337. | 443. | 0.92 | 4.85 | 406. | | .6 20 | 0 | 35616 | 44 | 11-29 | 1122A | | 336. | 430. | 0.92 | 4.84 | 396. | | .6 27 | 0_ | | | 24 | 1/4 | 900A
945A | MOON - BEAM | 336. | 447. | 0.92 | 4 90 | 412. | | . 6 27 | , , | FC22 | 45 | 12-4 | 1025A
1043A | 34 11 | 33.0 | | 3.41 | 4,24 | 287. | | 6 16 | | Г | | | | 1205P. | | | | | | | 11 | | | | 45 | | 227P | | | 84.1 | | | | 一十 | .6 16 | -0- | t | | 25 | 1/7 | 1230P
1210P | | 33.5 | 84.9 | 3.58 | 4.32 | 304. | + | .6 14 | 0 | | 46 | 12-6 | 1149A | MOON | 25.5 | 43.5 | 1,91 | 2.82 | 83.0 | | .6 13 | 0 | ╀ | | 26 | 1/9 | 1230P | | 31.5 | 72.4 | 3,33 | 3.98 | 241. | | .6 16 | 0 | | 47 | 12-11 | 1210P | MOON - WADDICOR | 32.0 | 76.2 | 3.32 | 4.05 | 253. | | .6 16 | +,01 | | | 27 | 1/14 | 220P
245P | U.S.E.D. | 332. | 318. | 0.75 | 4 02 | 238. | | . 6 20 | , , | 35616 | f | | | • | , | | | , | | , | , | | , | | -6/ | | 1220P | | | | | | | 1-1 | | | | 1 | | | | | | | | | | | | | | 28 | 1/16 | 1245P
1035A | MOON | 32.0 | 75.2 | 3.38 | 4.03 | 254. | \vdash | . 6 16 | 0 | FC22 | - | | | | | | | | | | | | | | 29 | 1/18 | 1100A | ** | 30.0 | 63.0 | 3.11 | 3.66 | 196. | | .6 14 | 0 | | ı | | | | | | | | | | | | | | | | 212P | | | | | | | Γ | .6 14 | | | 1 | | | | | | | | | | | | | | 30 | 1/22 | 229P
301P | | 25.5 | 41.2 | 1.94 | 2./5 | 79.8 | + | -6 14 | 10 | | 1 | | | | | | | | | | | | | | 31 | 1/22 | 317P | | 25.0 | 37.4 | 1.70 | 2.57 | 63.5 | 1 | . 6 12 | 06 | 4 | 4 | | | | | | | | | | | | | | 32 | 1/22 | 427P
.444P | | 23.5 | 30.7 | 1.36 | 2 32 | 41.6 | ΙÍ | 6 11 | 03 | . | ì | | | | | | | | | | | | | | | | 110P | | | | | | | \Box | | 1.5 | | 1 | | | | | | | | | | | | | | 33 | 9/11 | 155P
150P | U.S.E.D. | 334. | 381. | 0.77 | 4.48 | 295 | \vdash | .6 37 | 7 0 | 35616 | - | | | | | | | | | | | | | | 34 | 9/11 | 200P | STUNDEN | 34.0 | 92.4 | 3.77 | 4.48 | 348. | | LOATS | 0 | | _ | | | | | | | | | | | | | | | _ ,,_ | 1120A | | | | | | | | | | FC36 | 1 | | | | | | | | | | | | | | 35 | 9/12 | 1150A
400P | STUNDEN - VAN DER GOOT | 34.0 | 92.4 | 3.69 | 4.55 | 341. | ╁╌┤ | .6 12 | 0 | FC36 | ╣ | | | | | | | | | | | | | | 36 | 9/14 | 415P | STUNDEN | .34.0 | 118. | 3.84 | 5.28 | 452. | \sqcup | LOATS | 0 | | 4 | | | | | | | | | | | | | | 37 | 9/16 | 200P
230P | U.S.E.D. | 338. | 509. | 0.92 | 5 34 | 468. | 1 1 | .6 22 | | 35616 | ll | | | | | | | | | | | | | | | | 100P | | | 3021 | | | | | | | 33010 | 1 | | | | | | | | | | | | | | 38 | 9/17 | 115P | BOLL INGER-WADDICOR | 40.0 | 122. | 4.31 | 5.31 | 527. | ٠, | LOAT\$ | 0 | | 4 | | | | | | | | | | | | | | 39 | 9/18 | 1155A
1252P | STUNDEN-BOLL INGER | 34.5 | 108. | 4.05 | 4.95 | 437. | 1 1 | | 0 | | 1 | | | | | | | | | | | | | | | | 125P | | | | | | T | | | | | 7 | | | | | | | | | | | | | | 40 | 9/18 | 200P | U.S.E.D. | .337. | 446. | 0.91 | 4.93 | 403. | + | .6 22 | 2 0 | 35616 | 4 | | | | | | | | | | | | | | _41 | 9/23 | 1245P | STUNDEN-BOLL INGER | 34.5 | 91.5 | 3.92 | 4.52 | 359. | | .6 18 | 3 0 | FC36 | 1 | | | | | | | | | | | | | | 42 | 9/23 | 1410P
1245P | U.S.E.D. | .337. | 389. | 0.82 | 4.52 | 321. | | .6 22 | 2 0 | 35616 | | | | | | | | | | | | | | | ' | , | • | • | • | ' | | • | | . ' | | , | 1 | tt | | | | | | | | | | | | | METER ND. •• ... 0 FC22 .6 16 +.01 " LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION F. C. Dist. Form 52 4-48 Sta. No. F280-R Daily discharge, in second-feet of RIO HONDE DIVERSION below Santa Fe Dam Day Oct. Feb. Mar. Мау July Sept. Aug. 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 00000000000000000000 000000000000000000000000000000000 000000000 12 3448 4777 3378 476 476 476 476 3333333 29 67 0000000000 000000000 0000000 0000000 000000 0 0 0 0 o o 0 o 0 0 6039.7 Q 0 0 0 173. 0 0 0 0 0 0 201. 10,630. 0 0 11,980. 0. YEAR MEAN 31.2 OR PERIOD ACRE-FEET 22,610. F. C. Dist. Form 52 4-44 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 280-R | ally d | lischarge, in | second-feet of | RIO HOND | O DIVERS | ON below | Santa Fe | Dam | | | . , for the yea | r ending Septer | nber 30, 19 <u>4</u> | |--|-----------------|-------------------------------|--------------------------|-------------|------------------|-------------|------------------|-------------|-------------|------------------------------|-----------------------|----------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3 | 0 0 | 0 0 | 387
389
341 | 000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0
0 | | 5 | 0 | 0 | 286 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | o
o | 0 | | 6
7
8
9 | 0 0 0 | 0
0
0 | 193
350
259
259 | 0
0
0 | 000 | 0 0 | 0 0 | 0
0
0 | 0
0
0 | 0 0 0 | 0 0 0 | 0
0
0 | | 10
11
12
13 | 0
0
0 | 0 0 | 259
259
259
259 | 0
0
0 | 0 0 | 0
0
0 | 0 0 | 0
0
0 | 000 | 0
0
0 | 0
0
0 | 0 0 0 | | 14
15 | 0 | 0 | 259
259 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 16
17
18
19 | 0 0 0 | 0 0 0 | 258
44
03
0 | 0000 | 0 0 0 | 0000 | 00000 | 00000 | 0
0
0 | 0000 | 0 0 | 0 0 0 | | 21
22
23
24 | 0 0 | 0
0
0 | 0
0
0 | 000 | 0000 | 0000 | 0000 | 0 0 0 | 0 0 | 0 0 | 0 0 | 0 0 0 | | 25
28
27
28
29
30
31 | 0 0 0 0 0 0 0 0 | 0
354
446
408
384 | 0
0
0
0
0 | 0 0 0 0 0 | 0
0
0
0 | 0 0 0 0 0 | 0
0
0
0 | 0000 | 00000 | 0 0 0 0 0 0 | 0
0
0
0
0 | 0
0
0
0 | | | Ö | 1592.0 | 45583 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | RAN | 0 | 53.1 | 147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CRE | 0 | 3,160 | 9,040 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | Y
P | EAR MEAN
OR
ERIOD ACRE | | 200_ | #### STATION FIRZ-R RIO HONDO at Lower Azusa Road LOCATION: WATER-STAGE RECORDER, LAT. 34°05'33", LONG. 118°01'52". ON THE DOWN-STREAM SIDE OF THE LOWER AZUSA ROAD BRIDGE, ABOUT 1,5 MILES NORTH OF EL MONTE. ELEVATION OF ZERO GAGE HEIGHT, 287.37 FEET. DRAINAGE AREA: 40.9 SQUARE MILES. (EXCLUDES DRAINAGE ABOVE SANTA FE DAM). CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL. NO ARTIFICIAL CONTROL. DUSCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR BELOW THE STATION. RECORDER: INSTALLED MARCH 29, 1932 OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY SIERRA MADRE DAM, BIG SANTA ANITA DAM, SAWPIT DAM, ALSO SPILLWAY AND DIVERSION AT SANTA FE DAM. DIVERSIONS: THE CITY OF MONROVIA DIVERTS WATER FROM MONROVIA CREEK AND SAWPIT CREEK. THE CITY OF SIERRA MADRE DIVERTS WATER FROM LITTLE SANTA ANITA CANYON. FLOW FROM SAN GABRIEL RIVER BELOW SANTA FE DAM IS OCCASIONALLY DIVERTED TO RIO HONDO. THERE ARE ALSO SEVERAL DIVERSIONS FOR IRRIGATION AND SPREADING GROUNDS. RECORDS AVAILABLE: FEBRUARY 22, 1932 TO MARCH 29, 1932 - STREAM MEASUREMENTS ONLY. RECORDER RECORDS FROM MARCH 29, 1932 TO SEPTEMBER 3D, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMIM 483 SECOND-FEET, DECEMBER 23, MINIMAN NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 283 SECOND-FEET, NOVEMBER 28. MINIMUM NO FLOW MOST OF YEAR. 1932-1946 MAXIMUM 31,DOG SECOND-FEET. ESTIMATED MARCH 2, 1938MINIMUM NO FLOW MOST OF YEAR FOR SEVERAL YEARS. ACCURACY: FAIR, BOTTOM SHIFT UNDETERMINED AT EXTREMELY HIGH FLOWS, OPERATION: LOCATED, CONSTRUCTED AND OPERATED BYTHE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. F. C. Dist. Form 52 4-46 | | DISCHARGE | S MEABURE | KENTS OF | R) | O HOND | O | | | | | | | | Ng. | DATE | BEQIN
END | HADE BY | WIDTH | AREA DF
SECTION
SG. FT. | HEAN
VELOCITY
FT.PEX PEG. | GAUDE
HEIGHT
FEET | DISTONANCE
SEC. FT. | RAT- H | THE HEAD | . G. HT.
CHANDE
YDYAL | METER
HG. | |------|-------------|------------------|---------------------|-------|--------------------|-------------------------|-----------|------------|--------|------|---------|------|-------|-----|------------|----------------|----------------------|---------------|-------------------------------|---------------------------------|-------------------------|------------------------|----------|----------|-----------------------------|---| | | #T-
HEAR | Lower | Azusa Road | | | | IND THE Y | EAR ENDING | SEPTE | MBER | 3D, 19. | 46 | | 617 | 5/16 | 230P
235P | | 2.0 | 0.15 | 1.07 | 2.10 | 0.16 | | .5 4 | 0 | | | NO. | . DATE | BESIN | MADE BY | WIDTH | AREA DF | MEAN | GAUSE | DIECHARDE | RAT- M | | AB. Q. | HT. | METER | 618 | 5/23 | 205P
207P | | 2,0 | 0.12 | 1.00 | 2,11 | 0.12 | | .5 2 | 0 | | | | | 305P | PAUL IT | FEET | BECTION
BQ. FT. | VELODITY
FY.PER SED. | HEIGHT | BEC. FT. | ING | 00 % | EG. DH | DTAL | NO. | 619 | 5/30 | 247P
249P | | 2,0 | 0.11 | 0.64 | 2.03 | 0.07 | | .5 2 | 0 | | | 589 | 10/4 | 310P | STUNDEN | 2,0 | 0.21 | 0.81 | 0.66 | 0.17 | | .5 | 4 | 0 1 | FC36 | 620 | 6/13 | 315P
317P | | 2.0 | 0.14 | 0.71 | 2.06 | 0.10 | | .5 2 | 0 | | | 590_ | 10/11 | 245P
250P | | _ 1.6 | 0.21 | 0.81 | 0.65 | 0.17 | | .5 | 3 | 0 | | | | 245P | STUNDEN | | | | | | | - | 0 | FC36 | | | | 320P
322P | MOON | | | | | 0.18 | | | | 0 1 | FC22 | 621 | 9/11 | 300P
300P | BOLLINGER
STUNDEN | 62.0 | 111. | 1.01 | 4.37 | 112. | | .6 13 | | 7030 | | 591_ | 10/18 | 240P | MOUN | 2.5 | 0.24 | | 0.66 | | | | | | | 622 | 9/23 | 320P | BOLL INGER | 63.0 | 86.2 | 1.89 | 4.44 | 163 | \vdash | .6 13 | 0 | '' | | 592 | 10/25 | 243P
1212P | MOON | 2.0 | 0.15 | 0.87 | 0.64 | 0.13 | - | .5 | 3 | 0 | | 623 | 9/27 | 1105A | STUNDEN | 2,0 | 0.36 | 0.81 | 2,52 | 0.29 | | .5 4 | 0 | | | 593 | 11/1 | 1214P | ROCKENMEYER | 2.0 | 0.16 | 0.75 | 0.59 | 0.12 | | . 5 | 2 | 0 | | | | | | | | | | | | | | | | _594 | 11/15 | 125P
127P | MOON | 2.0 | 0,14 | 0.86 | 0.58 | 0.12 | | .5 | 2 | 0 | . | | | | | | | | | | | | |
| | 595 | 12/24 | 1110A | MOON
HOLMES | 3.0 | 0.30 | 0.93 | 0.91 | 0.28 | | .5 | 3 | 0 | | | | | | | | | | | | | | | | 596 | 1/3 | 200P
215P | MOON
BEAM | TWO C | HANNELS | | 3.10 | 205. | | .6 1 | 0 | 0 | | | DISCHARGE | MEABURE | HENTS OF RIO HON | DO | | | | | | | | | | 597_ | 1/4 | 1025A
1040A | MOON
BEAM | | <u> </u> | | 3.27 | 252. | Ĺ | .6 1 | ٥ | 0 | | | AT
HEAR | Lower | Azusa Road | | | - DURI | NS THE Y | EAR ENDING | BEPTE | MBER BE | ,,,47 | - | | 598 | 1/7 | 225P
245P | MOON | | L | | 2.90 | 186. | | ـ ا | 1 | 0 | | | | BEGIN | I | | AREA OF | uesu | GAUGE | DISCHARGE | | | T | метел | | 599 | 1/9 | 300P
315P | | 33.0 | 45.3 | 3.27 | 2.83 | 148. | | .6 1 | 2 | 0 | | NO. | DATE | END | MADE BY | WIDTH
FEET | BECTION
BQ. FY. | MEAN
VELOGITY
FT,PER BEG. | HEIGHT
FEET | REC. FT. | ING | D HEAR | B. HT.
CHANGE
TOTAL | NG. | | 600 | 1/16 | 250P
310P | | 36.0 | 49.4 | 3.26 | 3.16 | 161. | | .6 1 | 1 | 0 | | 624 | 10-1 | 930A
936A | MOON | 11.0 | 6.85 | 1.75 | 2.88 | 12.0 | ∐. | 6 6 | 0 | FC22 | | 601 | 1/18 | 120P
135P | | _31.5 | 40.1 | 2.72 | 2.95 | 109. | | .6 1 | 2 | 0 | | 625 | 11-12 | 910A
916A | | 11.0 | 7.55 | 1.27 | 2.77 | 9.6 | <u>.</u> | 6 6 | 0 | * | | 602 | 1/23 | 9 15 A
9 20 A | 11 | 4.0 | 0.82 | 0.79 | 2.09 | 0.65 | | .6 | 4 | 0 | | 626 | 11-13 | 126P
150P | MOON - ROCKENMEYER | Two C | IANNELS | | 3.38 | 42.5 | ╽ . | 6 13 | 17 | | | 603 | 1/31 | 345P
348P | | 2.0 | 0,23 | 0.74 | 1.94 | 0.17 | | .5 | 3 | 0 | •• | 627 | 11-14 | 315P
319P | . " | 4.0 | 1.00 | 1.40 | 2.41 | 1.4 | <u> </u> | 6 4 | 02 | | | 604 | 2/3 | 432P
44.2P | | 21.0 | 10.2 | 2,25 | 2,38 | 23.0 | | . 6 | 7 - | .08 | | 628 | 1121 | 924A
944A | | THREE | CHANNE | .s | 3.80 | 81.5 | Ц. | 6 17 | 0. | | | 605 | 2/14 | 410P
415P | ** | 2.5 | 0.19 | 0.90 | 1.90 | 0.17 | | . 6 | 4 | 0 | •• | 629 | 11-29 | 108P
118P | | 50.0 | 55.0 | 4.36 | 4.72 | 240. | <u> </u> | 6 12 | 0 | | | 606 | 3/7 | 410P
412P | | 2.0 | 0.26 | 0.58 | 1.97 | 0.15 | | .5 | 2 | 0 | •• | 630 | 12-4 | 208P
223P | ., ., | 56.0 | 55.6 | 3.06 | 4.34 | 170. | <u></u> | 6 13 | 0 | | | 607 | 3/13 | 202P
209P | •• | 9.0 | 3.00 | 1.57 | 2.06 | 4.7 | | .6 | 5 - | .01 | | 631 | 12-6 | 222P
228P | MOON | 17.0 | 9.55 | 2,62 | 3.20 | 25.0 | <u> </u> | 6 6 | 04 | <u> • </u> | | 608_ | 3/19 | 843A
852A | | 28.0 | 13.2 | 1,83 | 2.35 | 24.2 | | .6 | в - | .04 | | 632 | 12-11 | 202P
214P | MOON - WADDICOR | 45.0 | 39.6 | 3.68 | | 146. | ∐. | 6 11 | | FC20 | | 609 | 3/20 | 145P
203P | WADDICOR
HOLMES | 26.0 | 8.43 | 1.43 | 2,19 | 12.1 | | . 6 | 9 - | .03 | FC37 | 633 | 12-12 | 315P
325P | MOON | 54.0 | 51.5 | 3.00 | 4.61 | 155. | <u> </u> | 6 13 | 0 | FC22 | | _610 | 3/20 | 329P
334P | MOON
ROCKENMEYER | 11.0 | 3.20 | 1,53 | 2.08 | 4.9 | | .6 | 6 | 0 | FC22 | 634 | 12-17 | 842A
847A | • | 8.0 | 4.80 | 1.82 | 3.92 | 8.7 | <u> </u> | 6 4 | 02 | | | 611 | ,3/28 | 944A
953A | моом | 26.0 | 13.4 | 1.86 | 2.38 | 24.9 | | ,6 | 9 | .06 | FC22 | 635 | 12-25 | 329P
334P | ** | 18.0 | 17.0 | 0.94 | 4.05 | 15.9 | <u> </u> | 6 5 | 01 | <u> </u> | | 612 | 3/30 | 830 A
837 A | MOON
ROCKENMEYER | 31.0 | 20.2 | 1.98 | 2.56 | 39.9 | | .6 | 8 - | .01 | | 636 | 12-27 | 1141A
1152A | MOON . STEVENS | 41.0 | 34.2 | 4.80 | 4.19 | 164. | <u> </u> | 6 10 | 01 | ** | | 613 | 4/5 | 937A
941A | MOON | 4.0 | 1.10 | 1.27 | 2,11 | 1.4 | Ш | . 6 | 3 | .0 | •• | 637 | 1-3 | 455P
505P | MOON | Two C | IANNELS | | 2.95 | 5.8 | Ц. | 6 9 | | | | 614 | 4/11 | 920A
925A | | 4.0 | 0.85 | 1.01 | 2.10 | 0.86 | | .6 | 4 | 0 | | 638 | 1-8 | 235P
240P | - | | • | | 2.90 | 2.1 | Լ. | 6 5 | 0 | - | | 615 | 5/3 | 450P
455P | | 3.5 | 0.73 | 0.68 | 2.14 | 0.50 | | .6 | 4 | 0 | •• | 639 | 1-16 | 1214P
1219P | 11 | 6.0 | 1.25 | 1.12 | 2.83 | 1.4 | ↓ | 6 4 | 0 | - | | 616 | 5/9 | 230P
232P | | 2.0 | 0.30 | 0.33 | 2.12 | 0.10 | | .5 | 2 | 0 | | 640 | 3-5 | 1027A
1035A | WADD1COR | 4.0 | 1.20 | 0.60 | 2.95 | 0.72 | <u> </u> | 6 4 | 0 | FC37 | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. F192-R HYDRAULIC DIVISION RIO HONDO at Lower Azusa Road 001 143 253 264 1189 1533 1566 1666 1666 hhhhhhhhhhhhhhhhnqqqqqqq 5, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 33 231 157 0 9 0 1 0 1 0 1 0 1 25000 335 2 1 0 5.5 4232 233 3252.4 939 5.8 0 27252 21 0.18 0.07 13.7 105. 1.20 3.03 0.78 0.19 0.07 0 ٥ 91.0 ACRE-FEET 0 0 5,410 YEAR MEAN 18.0 OR PERIOD ACRE-FREET 13.030. 839. 6,450. 5,410. 10.9 4.2 66.4 186. 46,2 11.5 F. O. Dist. Form 52 4-4 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. F 192-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | ıy | |-------|----------|------|------|--------|------|------|------|------|------------|--------|----------|-----| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 5.8 | 243 | 0 | 4.7 | 1 | | 0 | 0 | 0 | 0 | 0 | Ó | o i | 0.1 | 5.8 | 245 | ŏ | ŏ | 1 | | 0 | 0 | 0 | 0 | 0 | Ó | ō | 0.1 | 5.8 | 216 | Ō | ŏ | i | | 0 | 0 | 0 | 0 | 0 | ō | ŏ | 0.1 | 5.0 | 169 | l ŏ | ŏ | il | | 0 | 0 | 9 | 0 | 0 | Ó | 0.7 | 0.1 | 4.5 | 142 | ŏ | ŏ | 5 | | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.1 | 4.0 | 58 | Ŏ | ŏ | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.1 | 3.0 | 229 | o | ŏ | 1 | | 0 | 0 | 0 | 0 | 0 | O | 0.1 | 0.1 | žã | 116 | 0.3 | ŏ | 3 | | 0 | 0 | 0 | 0 | 0 | ò | 0.1 | 0.3 | 2.0 | 146 | 0 | ŏ | 3 | | 0 | 0 | 0 | 0 | 0 | o | 0.1 | 0.2 | 2.0 | 146 | ŏ | ŏ |) | | 0 | 0 | 0 | 0 | 0 | Ø | 0.1 | 0.2 | 2.0 | 146 | 2.2 | ō | iΤ | | o | 0 | 0 | 0 | a | Q i | 0.1 | 0.1 | 2.0 | 155 | 31 | ò | 2 | | Q | 0 | 0 | 0 | 0 | Ö | 0.1 | 0.1 | 1.5 | 155 | 4.5 | ŏ | 3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 1.5 | 155 | 38 | ō | ۱. | | 0 | <u> </u> | Q | 0 | 0 | 0 | 0.1 | 0 | 1.5 | 155 | 0 | 0 | 5 | | 0 | 0 | 0 | 0 | Õ | 0 | 0 | 0 | 1.4 | 155 | 0 | 0.8 | 8 | | 0 | 0 | o | 0 | ø | Þ | 0 | 0 | 0.7 | 31 | 0 | 0 | 7 | | 0 | 0 | 0 | 0 | 0 | O. | 0 | 0 | 0.7 | 0 | 0 | 0 | 8 | | o | 0 | o l | 0 | o | o | o | 0 | 0.5 | o l | 0 | o | 9 | | 8 | - 8 | 0 | Ö | o
Q | 0 | 0 | 0 | 0.4 | 0 | 58 | 0 | 20 | | ŏ | ö | ő | 0 | ŏ | Ŏ | O O | Ó | 000 | 0 | 4 4 | Ō | 11 | | ŏ | ŏ | ŏ | ŏ | o o | Ó | 0 | ŏ | o zi | o l | 36 | o . | 2 | | ŏ | ŏ | ŏ | ŏ | Ö | 0 | 0 | 0 | غ٥ | 0 | 21 | o | 13 | | ŏ | ŏ | ŏ | ŏ | ď | ŏ | 0 | 0 | 0.2 | 0 | 0.3 | 0 | 5 | | ö | ő | | 8 | - ö | 0 | 0 | 0 | 0.2 | 16 | 0 | <u> </u> | | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 0.1 | 121 | 0 | 0 | 8 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 109 | 129 | 0 | 7 8 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 01 | 78 | 279 | 0 | 9 | | ă | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 24 | 73 | 258 | o | 100 | | | ŏ | ŏ | | ő | | ŏ | | 01 | 5.8
5.8 | 236 | 0 | ñ | | | 1 | | | | | | | 04 1 | | | U | _ | | 0 | 0 | 0 | 0 | 0 | 0 | 1.7 | 1 .7 | 542 | 3070.6 | 1177.8 | 5.5 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0.06 | 0.06 | 1.75 | 99.1 | 39.3 | 0.18 | AN | | 0 | 0 | 0 | 0 | 0 | • | 3.4 | 3.4 | 108 | 6,090 | 2,340 | 11 | ET | #### STATION F64-R RIO HONDO above Mission Bridge LOCATION: WATER-STAGE RECORDER, LAT. 34°04'57", LONG. 118°04'18". ON THE RIGHT (WEST) BANK APPROXIMATELY 1,000 FEET ABOVE MISSION BRIDGE (SAN GABRIEL BOULEVARD) AND 2 MILES NORTHEAST OF MONTEBELLO. THIS SUPPLEMENTS THE STATE INTO OPERATED FROM 1923 TO 1928 BY THE STATE DIVISION OF WATER RIGHTS AT MISSION BRIDGE. ELEVATION OF ZERO GAGE MEIGHT, 194,63 FEET. DRAINAGE AREA: 115 SQUARE MILES. .(EXCLUDES DRAINAGE ABOVE SANTA FE DAM). CHANNEL AND CONTROL: CHANNEL - SAND AND SILT. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 60 FEET BELOW STATION. RECORDER: INSTALLED IN JULY, 1928. REMOVED ABOUT 10 P.M. MARCH 2, 1938. REINSTALLED ON MARCH 6, AT A TEMPORARY STATION F64B-R ON MISSION BRIDGE. REMOVED ON MARCH 26, 1938. REINSTALLED AT STATION F64-R IN A 48 INCH DIAMETER, CORRUGATED IRON PIPE WHICH SERVES BOTH AS A STILLING WELL AND SHELTER HOUSE. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM CTOBER 1 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY SIERRA MADRE DAM, BIG SANTA ANITA DAM, SAMPLT DAM, EATON DAM, LAS FLORES AND RUBIO DEBRIS BASINS, AND SANTA FE DAM. DIVERSIONS: THE CITY OF PASADENA DIVERTS WATER FROM EATON CREEK. THE CITY OF MONROVIA DIVERTS WATER FROM MONROVIA CREEK AND SAMPIT CREEK. THE CITY OF SIERRA MADRE DIVERTS WATER FROM LITTLE SANTA ANITA CANTON. FLOW FROM SAN GABRIEL RIVER BELOW SANTA FE DAW IS OCCASIONALLY DIVERTED TO RIO HONDO. THERE ARE ALSO SEVERAL DIVERSIONS FOR IRRIGATION AND SPREADING GROUNDS. RECORDS AVAILABLE: JULY, 1928 TO SEPTEMBER 30, 1947 (FOR RECORDS PRIOR TO JULY, 1928 SEE STATE DIVISION OF WATER RIGHTS BULLETINS). (RECORDS FROM MARCH 6, 1938 TO MARCH 25, 1938 ARE FROM STATION F648-R). EXTREMES OF DISCHARGE: MES OF DISCRETE. 1945-1946 MAXIMUM 4,240 SECOND-FEET, NOVEMBER 11. MINIMUM 18 SECOND-FEET, AUGUST 23. MININUM: 19 3-2-1 1946-1947 MAXIMUM 11,600 SECOND-FEET, NOVEMBER 13, MINIMUM 10 SECOND-FEET, AUGUST 11. MINIMUM 10 SECOND-FEET, AGGGT 11. 1928-1947 MAXIMUM 28,000 SECOND FEET, ESTIMATED, MARCH 2, 1938MINIMUM 5 SECOND-FEET OCTOBER 15, 1931. ACCURACY: GOOD. OPERATION: OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN CO-OPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | DISCHARGE | MEASUREN | ENTS OF | RIO | HONDO | | | | | | | | | ND. | DATE | Brain | MADE BY | WIDTH | AREA OF
SECTION | MEAN
VELOCITY
PT.PER REC. | GAUGE
HEIGHT
FERY | DISCHARGE
SEC. FT. | HAT- H | ETH. MEAR. | B. HT.
CHANGE
TOTAL | METER
NO. | |--------------|-----------|------------------------|----------------------------|---------------|-------------------------------|---------------------------------|-------------------------|----------------------|----------|-------|----------------------|---------------------------|----------------|------|-------------|-------------------------|-------------------------|--------------|--------------------|---------------------------------|-------------------------
-----------------------|---------------------|--------------|---------------------------|--------------| | | | Abo | ve Mission Bridg | e | r | вия | NG THE Y | EAR ENDING | BEPTS | EMBER | 30, | . 46 | | 1014 | 3/21 | 831 A
847A | BREWSTER | 27.0 | 18.2 | 1.84 | 3.67 | 33.5 | | .6 6 | O | FC12 | | NO. | DATE | SEGIN . | HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELDEITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARDS
SEC. F. | RAT- | ETH- | IEAR.
IEG.
NO. | G. HT.
DHANGE
TOTAL | HETER : | 1015 | 3/28 | 810A
826A | MOON | 90.0 | 171. | 4.00 | 5.57 | 685. | | .6 10 | 25 | FC22 | | 977 | 10/4 | 805A
820A | BREWSTER | 25.0 | 14.1 | 1.52 | 3.46 | 21.5 | | | 7 | O | FC1 2 | 1016 | 3/28 | 902A
917A
535A | WADDI COR
COLE | 84.0 | 120. | 3.08 | 4.92 | 369. | $\vdash \downarrow$ | .6 9 | 24 | | | 978 | 10/4 | 830A
850A | | 24.0 | 14.1 | 1.51 | 3.47 | 21.3 | | .6 | 1 | 0 | | 1017 | 3/30 | 505A
100P | HOLMES
COLE | 87.0 | 189. | 4.96 | 5.89 | 938. | | .6 9 | 92 | FC20 | | 979 | 10/18 | 830A
845A | | 26.0 | 15.7 | 1.43 | 3.47 | 22.4 | | .6 | i | 0 | | 1018 | 3/30 | 115P
825 A | HOLMES | 86.Q | 195. | 5.18 | 5.70 | 1010. | | .6 8 | 16 | | | 980 | 10/24 | 820A
832A | MOON
BONAD I MAN | 20.0 | 16.7 | 1.43 | 3.47 | 23.9 | _ | .6 | 8 | 0 | FC22 | 1020 | 4/11 | 840A
813A
831A | BREWSTER | 53.0
48.0 | 20.8 | 1.48 | 3.65 | 30.8 | | .6 7
.6 9 | 0 | FC12 | | 981 | 10/25 | 822A
836A
820A | BREWSTER'
BREWSTER | 22.0_ | 16.2 | 1,33 | 3,47 | 21.6 | _ | .6 | 6 | 0 | FC12 | 1020 | 4/18 | 815A
835A | | 52.0 | 19.1 | 1.38 | 3.54 | 26.3 | 1 | .6 9 | 0 | | | 982 | 11/1_ | 830A
807A | DILLEY | 28.0 | 13.7 | 1,60 | 3,49 | 22.0 | | .6 | 6 | 0 | FC22 | 1022 | 4/25 | 822 A
840 A | | 46.0 | 16.3 | 1.48 | 3.49 | 24.2 | | .6 8 | 0 | | | 983 | 11/8 | 825A
814A | BREWSTER | 33.0 | 14.8 | 1.55 | 3.49 | 23.0 | - | .6 | 9 | 0 | FC12 | 1023 | 5/2 | 813 A
830 A
809 A | BREWSTER | 42.0 | 16.6 | 1.36. | 3.45 | 22.6 | | .6 8 | | FC12 | | 984 | 11/15 | 832A
810A | | 36.0 | 15.8 | 1.47_ | 3.49 | 23.2 | + | .6 | 9 | 0 | -"- | 1024 | 5/9 | 825A
832A |
MOON | 42.0 | 15.8 | 1.37 | 3.45 | 21.6 | $\sqcup \downarrow$ | .6 7 | 0 | | | _985 | 11/23 | 828A
815A
831A | | 28.0 | 14.4 | 1.62 | 3,49 | 22.8 | | .6 | 7 | 0 | | 1025 | 5/14 | 842A
815A | BONAD IMAN | 40.0 | 16.0 | 1.45 | 3.43 | 23.4 | | .6 9 | | F@22 | | _986
_987 | 12/6 | 818A
834A | | 28.0 | 17.8 | 1.43 | 3.49 | 25.5 | | .6 | 7 | 0 | | 1026 | _5/16 | 830A
817A | BREWSTER | 46.0 | 16.6 | 1.32_ | 3.41_ | 21.9 | + | .6 8 | 0_ | FC12 | | 988 | 12/13 | 815A
831A | 11 | 25.0 | 16,2 | 1.59 | 3.50 | 25.7 | | .6 | 7 | 0_ | ** | 1027 | 5/23 | 835A
820A | ** | 43.0 | 16.5 | 1.28 | 3.39 | 21.2_ | \vdash | -6 9_ | 0 | | | 988 | 12/20 | 820A
836A | | 30.0 | 15.1 | 1.53 | 3.50 | 23.1 | | .6 | 8 | 0 | | 1028 | 5/31
6/7 | 836A
804A
820A | | 40.0 | -15.6- | 1.33 | 3.37_ | - 20.7 | | 8- | -0- | | | _990 | 12/22 | 422P
510P
115A | COLE ROCKENMEYER COLE | 86.0 | 144. | 3,01 | 5,26 | 434. | | .6 | 1 | -0.16 | FC20 | 1030 | 3/13 | 811A
827A | | 38.0 | 16.4 | 1.37 | 3.35 | 21.4 | T | .6 8
.6 7 | 0 | | | 991 | 12/23 | 155A
835A | ROCKENMEYER | 85.0 | 103. | 3.28 | 4.82 | 338. | | .6 | | -0-13 | •• | 1031 | 6/20 | 812A
828A | | 44.0 | 14.7 | 1.29 | 3,35 | 19.0 | | 6 8 | 0 | | | 992 | 12/27 | 850A
756A | BREWSTER | 34.0 | 17.6 | 1.59 | 3.73 | 27.9 | \dashv | | 7 | 02 | FC12 | 1032 | 6/25 | 838A
850A | MOON
BONADIMAN | 38.0 | 13.0 | 1.51 | 3.32 | 19.6 | 1 1 | .6 10 | 0 | FC22 | | 993 | 1/3 | 81 QA
305 P | MOON | 42.0 | 25.2 | 1.44 | 3.52 | 36.4
272. | | .6 | 7 | 0 | FC22 | 1033 | . 6/27 | 824A
84QA | BREWSTER | 38.0 | 14.8 | 1.36 | 3.30 | 20.1 | \sqcup | 6 7 | 0 | FC12 | | 994 | 1/3 | 320P
1125A
1140A | BEAM
MOON
BEAM ~ | 75.0
_86.0 | 108. | 2,92 | 4.45 | 315. | | .6 | | 0 | | 1034 | 7/5 | 813A
827A
812A | | 42.0 | 14.6 | 1.29 | 3.32 | 18.8 | \vdash | .6 8 | 0_ | • | | 996 | 1/7 | 330P
335P | MOON | 65.0 | 81.3 | 2.95 | 4.43 | 240. | | .6 | | 0 | | 1035 | 7/11 | 830A
810A | | 35.0 | 13.0 | 1.52 | 3.31 | 19.8 | TT | .6 8 | 0 | | | 997 | 1/9 | 345P
400P | | 62.0 | 61.3 | 3.03 | 4.34 | 186. | | .6 | 13 | 0 | | 1036 | 7/18 | 826A
816A | | 36.0 | 14.0 | 1.32 | 3,27 | 18.5 | | 6 8 | 0 | | | 998 | 1/16_ | 410P
430P | | 70.0 | 73.6 | 2.68 | 4.49 | 197. | | .6 | 5 | 0 | | 1037 | 8/1 | 756A
806A | BREWSTER
BONAD IMAN | 37.0
38.0 | 14.0 | 1.27 | 3.23 | 17.8 | TT | 6 8 | 0 | | | 999 | 1/18 | 330P
350P
813A | | 73.0 | 64.4 | 2.48 | 4.32 | 160. | | .6 | 6 | 0 | | 1039 | 8/8 | 810A
830A | BONADIMAN | 35.0 | 16.0 | 1.33 | 3.17 | 21.3 | 1 | 6 9 | 0 | FC19 | | 1000 | .1/24 | 835A
215P | BREWSTER | | ANNELS | | 3.62 | 27.0 | | .6 | 1,1 | 0 | FC12 | 1040 | 8/15 | 751A
804A | | 36.0 | 14.0 | 1.16 | 3,16 | 16.3 | ГТ | 6 9 | 0 | | | 1001 | 1/24 | 830A | MOON | | - | | 3.74 | 37.9 | | .6 | | 0 | FC22 | 1041 | 8/22 | 726A
740A | <u></u> | 35.0 | 14.5 | 1.37 | 3.17 | 18.7 | | 6 9 | 0 | | | 1002 | 1/31 | 850A
844A | BREWSTER | 70.0 | 21.6 | 1.18 | 3.62 | 25.4 | | .6 | 9 | 0_ | FC12 | 1042 | 8/29 | 823A
838A
815A | BREWSTER | 36.0 | 15.1 | 1.25 | 3.18 | 18.9 | 1 | 6 7_ | 0_ | FC12 | | 1003 | 2/14 | 835A
855A | ** | 46.0 | 19.8 | 1.38 | 3.72 | 27.3 | | .6 | 9 | 0 | | 1043 | 9/5 | 830A
342P | ** STUNDEN | 36.0 | 14.7 | 1.22 | 3.17 | 17.9 | - | 6 7 | О | | | 1004 | 2/21 | 812A
830A | | 48.0 | 18.4 | 1.41 | 3.60 | 26.0 | | .6 | 8 | 0 | | 1044 | 9/11 | 400P
405P | BREWSTER
STUNDEN | 39.0 | 20.3 | 1.61 | 3.31 | 34.2 | - + | 6 9 | .01 | FC36 | | 1006 | 2/28 | 816A
834A | | 48.0 | 20.0 | 1,30 | 3.59 | 25.9 | | .6 | 8 | 0 | | 1045 | 9/12 | 420P
545P | VAN DER GOOT
STUNDEN | 70.0 | 92.2 | 1.82 | 4.33 | 168. | - | 6 11 | 0 | •• | | 1007 | 3/7 | 830A
846A | | 47.0 | 19,9 | 1.32 | 3.57 | 26.2 | | .6 | 8 | 0 | | 1046 | 9/13 | 310P | COLF
WADDICOR | 70.0 | 107. | 2.57 | 4.90 | 275 | \vdash | 6 12 | ۰ | FC36 | | 1008 | 3/7 | 1225P
1238P
335P | WADDICOR | 49.0 | 30.7 | 1.48 | 3.73 | 45.6 | | .6 | 11_ | 0 | FC22 | 1047 | 9/17 | 330P
225P
236P | WADDICOR
BOLLINGER | 66.0
78.0 | 110. | 2.62 | 4.94 | 288.
_331. | \Box | .6 12 | 0 | FC37 | | 1009 | 3/13 | 348P
803A | MOON | 49.0 | 41.4 | 2.58 | 4.03 | 107. | | .6 | | +-04 | - " | 1049 | 9/18 | 317P
340P | WADDICOR | 74.0 | 103. | 2.73 | 4.71 | 287. | | .6 11 | 0 | FC37 | | 1010 | 3/14 | 819A
1008A | BREWSTER | 47.0 | 17.6 | 1.48 | 3.56 | 26.0 | \vdash | .6 | _7_ | 0 | FC12 | 1050 | 9/19 | 205P
240P | STUNDEN | 72.0 | 96.2 | 2.46 | 4.58 | 237. | | .6 13 | 03 | FC36 | | -1011 | 3/19 | 1020A
845A | MOON | 80.0 | 91.5 | 2.23 | 4.51 | 204. | H | .6 | | 10 | FC22 | 1051 | 9/21 | 303P
319P | WADDICOR | 75.0 | 87.9 | 2.45 | 4.42 | 215. | \sqcup | .6 13 | 0 | FC37 | | 1012 | 3/20 | 855A
1120A
1140A | MOON
WADDICOR
HOLMES | 36.0
80.0 | 23.0 | 3.67 | 4.95 | 32.8
426. | | .6 | 8 8 | _0
10 | | 1052 | 9/23 | 230P
300P
250P | BREWSTER | 82.0 | 92.2 | 2.42 | 4.50 | 223. | - | .6 12 | 01 | FC12 | | 1013 | 1 3/20 | 11144 | | 1 00.0 | 1: | + | 1 | + | | | | 17 | | 1053 | 9/24 | 305P
120P | WADDICOR | 75.0 | 89.8 | 2.51 | 4.50 | 225. | ++ | .6 13 | .0 | FC37 | | | | | | | | | | | | | | | | 1054 | 9/27 | 150P | STUNDEN | 50.0 | 26.5 | 1.66 | 3,55 | 44.2 | \sqcup | .6 10 | 01 | FC36 | | | DINGHARD | | MENTA OF RIGHO | NDO | | | | | | | | | 11, | | | | | | | | | | | | | |------|-------------|----------------------|---|--------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------------------|----------------------|---------------------------|--------------|--------|-------|----------------------|-------------------|--------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|----------|---------------------------|--------------| | | DIMORAKU! | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | - | NO. | DATE | BERIN | MADE BY | WIDTH | AREA OF
SEGTION
SQ. FT. | MEAN
VELOCITY
FT,PER SEC. | SAURE
HEISHT
FEET | DISCHARGE
BEO. FT. | RAT- ME | H- HEAB. | B. HY.
CHANGE
TOTAL | METER
NO. | | | +=- | A DO | ve Mission Bridg | | | DUR | ING THE 1 | FEAR ENDING | BEPTEMB | EM 30, | 19_4 | L | 1099 | 4-17 | 840A
852A | | 41.0 | 13.5 | 1.43 | 3,19 | 19.3 | | | 0 | | | NO. | DATE | BEDIN
END | MADE BY | WIOTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.FER BEG. | BAUBE
HEIGHT
FEET | DINCHARGE
BEC. FT. | RAT- METH
ING DO | HEAS.
SEC.
HO. | G. HT.
CHANGE
TOTAL | MEYER
NO. | 1100 | 4-24 | 833A
843A | | 40.0 | 16.5 | 1,33 | 3,20 | 21.9 | | | 0 | | | 1055 | 10+1 | 1107A
1120A | Moon | 56.0 | 74.5 | 2.50 | 4.21 | 186. | .6 | 8 | ¬02 | FC22 | 1101 | 5-1 | | WADDICOR - MELLEN | 43.0 | 14.6 | 1.46 | 3.16 | 21.3 | .6 | | 0 | | | 1056 | 10+3 | 820A
834A | BREWSTER | 28.0 | 14.9 | 1.48 | 3,34 | 22.0 | .6 | 6 | 0 | FC12 | 1102 | 5-8 | 830A
840A | WADDICOR | 39.0 | 13.0 | 1.38 | 3,14 | 17.9 | | 10 | 0 | | | 1057 | 10-10 | 830A
845A | | 26.0 | 13.7 | 1.39 | 3.27 | 19.1 | .6 | 8 | 0 | | 11:103 | 5-15 | 830A
840A | * | 39.0 | 15.2 | 1.41 | 3.18 | 21.4 | .6 | 9 | 0 | | | 1058 | 10-17 | 813A
827A | | 27.0 | 14.9 | 1,52 | 3.29 | 22.6 | .6 | 6 | 0 | ,, | 1104 | 5-22 | 830A
840A
832A | - | 28.0 | 13.7 | 1,46 | 3.15 | 20.0 | .6 | 7 | 0 | | | 1059 | 10-24 | 813A
825A | 11 | 32.0 | 15,5 | 1.42 | 3,28 | 22.0 | .6 | 6 | 0 | | 1105 | 5-29 | 842A
833A | | 37.0 | 14.3 | 1,48 | 3.16 | 21.2 | .6 | 9 | 0 | | | 1060 | 10-31 | 816A
831A | | 36.0 | 14.6 | 1.49 | 3,28 | 21.7 | .6 | 7 | 0 | | 1106 | 6-5 | 843A
827A | | 39.0 | 15.2 | 1.30 | 3.10 |
19.7 | .6 | 10 | 0 | | | 1061 | 11-7 | 817A
831A |
MOON | 32.0 | 13.2 | 1.54 | 3.29 | 20.4 | .6 | 6 | 0 | | 1107 | 6-12 | 840A
827A | * | 40.0 | 14,5 | 1,41 | 3.05 | 20,5 | .6 | 9 | 0 | * | | 1062 | 11-12 | 345P
400P | ROCKENMEYER | 85.0 | 260. | 3.70 | 6,40 | 961. | .6 | 9 | +, 51 | FC22 | 1108 | 6-19 | 837A
332P | " | 39.7 | 13.9 | 1.31 | 3.01 | 18.3 | .6 | 9 | 0 | | | 1063 | 11-13 | 230A
255A
620A | BLAKELY-KÁSIMOFF | 90.0 | 139. | 3.52 | 5.07 | 490. | .6 | 14 | 03 | FC35 | 1109 | .6-25 | 345P
827A | " | 42.0 | 22.7 | 1.62 | 3.16 | 36.7 | . 6 | 10 | 0 | * | | 1064 | 11-13 | 640A
406P | MOON | 90.0 | 126. | 3.70 | 5,02 | 467 | -6 | 12 | +.51 | | 1110_ | 6-26 | 837A
825A | | 36.6 | 15.8 | 1.47 | 3.03 | 23.3 | .6 | | 0 | <u>"</u> | | 1065 | 11-14 | 418P
824A | ROCKENMEYER | 51.0 | 52.3 | 2.10 | 3.94 | 110. | -6 | 12 | -,02 | FC22 | 1111 | 7-3 | 835A
827A | · · | 36.2 | 14.2 | 1.26 | 2.98 | 17.9 | - 6 | + | 0 | | | 1066 | 11-15 | 840A
825A | EREWSTER
MOON | 33.0 | 24.0 | 1.55 | 3.53 | 37.2 | -6 | 7 | 0 | FC12 | 1112 | Z-10 | 840A
814A | ODEWSTER | 34.3 | 13.4 | 1.37 | 2,95 | 18.4 | .6 | 1 | 0 | | | 1067 | 11-20 | 845A
1114A | ROCKENMEYER | 88.0 | 288. | 7.12 | 6.86 | 2050 | 6_ | 7 - | 0.18 | FC22 | 1113 | | 830A
825A | | 36.0 | 15.7 | 1.12 | 2.95 | 17.6 | 6 | | | FC12 | | 1068 | 11-21 | 1125A
730P | | 48.0 | 53.3 | 2.70 | 4.09 | 144. | 6 | 11 | 0 | | 1114 | | 835A
325P
337P | WADD I COR | 35.0 | 21.4 | 1.25 | 2,95 | 17.5 | .6 | 10 | 0
1 | FC37 | | 1069 | 11-23 | 755P
934A | KASIMOFF-THOMPSON | 48.0 | 69.2 | 2.78 | 4.00 | 192. | | 10 | 02 | FC47 | 1116 | 7-24 | 825A
837A | ,, | 43.0
38.0 | | 1.59 | 3.16 | 34.1 | | 1 1 | 0 | | | 1070 | 11-29 | 952A
255P | STUNDEN-PARD I ECK | 55.0 | 109. | 3.42 | 4.60 | 373. | - 6 | 13 | 0 | FC36 | 1 1 | 7-31 | 821A
831A | | 36.0 | 13.6 | 1.23 | 2.98 | 16.8 | .6 | 1 | - | | | 1071 | 11-29 | 314P | MOON - ROCKENMEYER | 57.0 | 112. | 3.02 | 4,54 | 338. | - 6 | 8 | 1 | FC22 | 1118 | | 810A | BREWSTER | 33.0 | 13.5 | 1.31 | 2.96 | 17.7 | .6 | 1 | | FC12 | | 1072 | 12-4 | 250P
312P | BLAKELY | 50.0 | 77.7 | 2,81 | 4.29 | 218. | | 12 | 01 | | 1119 | | 1058A
1120A | ,, | 42.0 | 21.0 | | 3,12 | 32.9 | .6 | T | 0 | * | | 1074 | 12-6 | 254P
309P | MOON - WADDICOR | 55,0 | 107. | 2.95 | | | | | 1 | FC35 | 1120 | 8-14 | 806A
822A | н | 34.0 | 13.4 | | 2.92 | 16.2 | .6 | T | , | •• | | 1075 | 12-17 | 957A | Moon | 47.0
48.0 | 68.7 | 3.00 | 4,24 | 206. | | 11 | | FC20 | 1121 | 8-21 | 806A
822A | | 28.0 | 12.6 | 1.39 | 2.95 | 17.5 | .6 | 6 | 0 | | | 1076 | 12-19 | 825A
840A | BREWSTER | 45.0 | 33.6
19.2 | 2.46
1.46 | 3.65 | 82.7
28.1 | .6 | - | 0 | FC22 | 1122 | 8-28 | 840A
850A
800A | WADDICOR | 37.0 | 12.6 | 1.28 | 2.95 | 16.1 | .6 | 1 1 | | FC37 | | | | 1152A | KASIMOFF - HAIG | | 149. | | 5.18 | 516. | | 13 - | | FC12
FC47 | 1123 | 9-4 | B10A | | 37.0 | 13,3 | 1.39 | 2.96 | 18.5 | .6 | 8 | 0 | | | 1077 | 12-27 | 943A
965A | ĺ | 66.0
47.0 | 30.2 | 1.89 | 3,56 | 57.3 | .6 | | | FC22 | 1124 | 9-11 | 820A
830A
828A | ,, | 33.0 | 13.9 | 1.25 | 2.95 | 17.4 | .6 | 8 | 0 | | | 1079 | 1-3 | 840A | BREWSTER | 49.0 | 25.0 | 1.38 | 3.48 | 34.5 | .6 | | | FC12 | 1125 | 9-18 | 838A
840A | | 28.5 | 14.1 | 1.41 | 2.99 | 19.9 | .6 | 8 | 0 | | | 1080 | 1-9 | 845A
900A | + | 44.0 | 20.16 | 1.50 | 3.35 | 31.0 | .6 | 8 | 0 | •• | 1126 | 9-25 | 850A | | 31.0 | 11.8 | 1.47 | 2.97 | 17.3 | .6 | 9 | D | * | | 1081 | 1-16 | 830A
846A | " | 57.0 | 23.4 | 1.32 | 3.32 | 31.0 | .6 | 7 | 0 | | | | | | | | | | | | | | | | 1082 | 1-16 | 132P
148P | MOON | 47.0 | 30.7 | 1.96 | 3.51 | 60.1 | .6 | 12 | 0 | FC22 | | | | | | | | | | | | | | | 1083 | 1-23 | | BREWSTER | 40.0 | 20.2 | 1.48 | 3.30 | 29.9 | .6 | 6 | 0 | FC12 | | | | | | | | | | | | | | | 1084 | 1-29 | 350P
405P
835A | MOON | 31.0 | 27.2 | 1.96 | 3.43 | 53.2 | | 12 | 0 | FC22 | | | | | | | | | | | | | | | 1085 | 1-30 | | BREWSTER | 36.0 | 18.0 | 1.61 | 3,27 | 29.0 | .6 | 7 | 0 | FC12 | | | | | | | | | | | | | | | 1086 | 2-6 | 839A
825A | - | 37.0 | 17.9 | 1,56 | 3.25 | 27.9 | .6 | 8 | 0 | | | | | | | | | | | | | | | | 1087 | 2-13 | 840A
825A | * | 42.0 | 18.9 | 1.52 | 3,25 | 28.7 | .6 | 8 | 0 | ! | | | | | | | | | | | | | | | 1086 | 2-20 | 836A
820A | | 51.0 | 19.6 | 1.52 | 3.26 | 29.7 | .6 | 10 | 0 | - | | | | | | | | | | | | | | | 1089 | 2-27 | 826A | WADDICOR | 33.0 | 19.6 | 1.45 | 3.24 | 28.5 | -6 | 9 | 0 | FC37 | | | | | | | | | | | | | | | 1090 | 3-3 | 845A | MOON - BONADIMAN | 44.0 | 18.3 | 1,45 | 3.21 | 26.6 | | | 0 | FC22 | | | | | | | | | | | | | | | 1091 | 3-5 | 907A | WADDICOR | 55.0 | 33.6 | 1.98 | 3,44 | 56.6 | .6 | ! | | FC37 | | | | | | | | | | | | | | | 1092 | | 918A
825A | | 55.0 | | 1.35 | | | | | 0 | - | | | | | | | | | | | | | | | 1093 | 3-13 | 837A
825A | # | 54.0 | 18.2 | 1.12 | 3.22 | 20.5 | 6 | 8_ | 0 | - | | | | | | | | | | | | | | | 1094 | 3-20 | 837A
838A | WADDICOR | 46.0 | 22.0 | | 3.20 | 30.9 | -6- | | 0 | ,, | | | | | | | | | | | | | | | 1095 | 3-27
4-2 | 838A | WADDIOOR | 46.0 | 17.7 | 1.52 | 3.19 | 26.9 | -6 | 9 | 0 | † <u>-</u> | | | | | | | | | | | | | | | 1096 | 4-10 | 840A | WADD I COR | 41.0 | 15.7 | 1.36 | 3.19 | 21.4 | .6 | 8 | 0 | | | | | | | | | | | | | | | | 1098 | 4-14 | 814A | | 45.0 | 14.9 | 1.39 | 3.19 | 20.7 | | 10 . | | | | | | | | | | | | | | | | | | | | | 1 | | | | -4,, | 1. | 1 | · | 1 | | | | | | | | | | | | | | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta No. F64-R | ау | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |------|------|------|-------------|------|------|------|------|-----------|------|------|------|-------| | 1 | 24 | 28 | 29 | 3 2 | 34 | 37 | 55 | 37 | 32 | 33 | 28 | 27 | | 2 | 23 | 28 | 28 | 38 | 3 4 | 38 | 108 | 34 | 30 | 33 | 28 | 28 | | 3 | 24 | 29 | 29 | 176 | 315 | 34 | 40 | 33 | 33 | 31 | 31 | 28 | | 4 | 25 | 27 | 29 | 305 | 57 | 35 | 40 | 35 | 33 | 31 | 30 | 28 | | 5 | 24 | 29 | 30 | 322 | 47 | 37 | 38 | 32 | 34 | 32 | 32 | 28 | | 6 | 27 | 41 | 30 | 314 | 4 4 | 38 | 4 3 | 31 | 32 | 32 | 33 | 28 | | 7 | 25 | 31 | 30 | 230 | 40 | 37 | 41 | 31 | 31 | 31 | 34 | 28 | | В | 27 | 29 | 30 | 237 | 40 | 37 | 40 | 31 | 33 | 3 3 | 3 2 | 28 | | 9 | 26 | 29 | 29 | 186 | 37 | 38 | 4 3 | 30 | 31 | 33 | 35 | 28 | | 0 | 26 | 30 | 30 | 180 | 3 4 | 37 | 41 | 32 | 32 | 32 | 33 | 28 | | 1 | 26 | 28 | 36 | 183 | 40 | 37 | 38 | 33 | 32 | 32 | 32 | 62 | | 2 | 27 | 29 | 29 | 186 | 39 | 37 | 38 | 32 | 32 | 33 | 32 | 160 | | 3 | 27 | 28 | 29 | 183 | 40 | 61 | 39 | 33 | 31 | 32 | 30 | 255 | | 4 | 27 | 28 | 29 | 186 | 39 | 38 | 38 | 34 | 32 | 30 | 28 | 266 | | 5 | 27 | 28 | 28 | 180 | 4.9 | 39 | 41 | 34 | 32 | 30 | 27 | 159 | | 8 | 28 | 27 | 27 | 183 | 41 | 38 | 40 | 3 4 | 27 | 30 | 28 | 310 | | 7 | 30 | 29 | 26 | 145 | 38 | 37 | 38 | 33 | 30 | 31 | 27 | 322 | | 8 | 28 | 28 | 26 | 146 | 40 | 37 | 38 | 33 | 28 | 28 | 28 | 296 | | 9 | 26 | 27 | 25 | 132 | 38 | 211 | 37 | 31 | 27 | 30 | 28 | 244 | | 0 | 2.8 | 2.6 | 2.5 | 130 | 40 | 128 | 3.8 | 34 | 28 | 30 | 28 | 198 | | 1 | 26 | 26 | 370 | 143 | 38 | 47 | 3 4 | 3 4 | 30 | 28 | 28 | 201 | | 2 | 28 | 26 1 | 210 | 124 | 40 | 44 | 37 | 34 | 31 | 28 | 30 | 201 | | 3 | 27 | 26 | 572 | 4 7 | 37 | 4.3 | 37 | 33 | 30 | 27 | 30 | 208 | | 5 | 24 | 28 | a 29 | 3.5 | 38 | 3.5 | 35 | 3 4 | 32 | 28 | 31 | 217 | | 6 | 24 | | a 31 | 3.7 | 39 | 40 | 3.5 | 33 | 32 | 28 | 28 | 230 | | 7 | 26 | | a 27 | 41 | 39 | 37 | 35 | 31 | 3 4 | 27 | 31 | 237 | | | 25 | | 8 27 | 37 | 38 | 39 | 3.5 | 3 3 | 33 | 28 | 28 | 63 | | 8 | 47 | 27 | 28 | 3.8 | 38 | 123 | 3 3 | 32 | 35 | 28 | 2.7 | 31 | | 0 | 52 | 29 | 26 | 3 4 | | 122 | 3.5 | 32 | 34 | 30 | 28 | 24 | | ĭ | 30 | 28 | 26 | 35 | | 674 | 3 4 | 31 | 31 | 27 | 28 | 24 | | 1 | | | 30 | 32 | l | 159 | 1 | 32 | L | 27 | 28 | | | | 862 | | 950 | | 1393 | | 1224 | | 942 | | 921 | | | | / | 853 | | 4280 | | 2394 | | 1016 | | 933 | | 987 | | _ | | | | | | ~ | · | ı — — — — | | | | | | AN | 27.8 | 28.4 | 95.2 | 138. | 49.8 | 77,2 | 40.8 | 32.8 | 31.4 | 30.1 | 29.7 | 133. | | 5 P. | | | | | 1. | 1. | | | | | | | F. C. Dist. Form 52 4-48 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 64-R | | | | | | | | 1 | | | 1 | | | |-------|------|------------|------|------|------|------|------|------------|------|------|----------|----------| | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct | ay | | 31 | 3.6 | 37 | 36 | 4.4 | 47 | 52 | 4.5 | 53 | 286 | 41 | 138 | 1 | | 3 4 | 39 | 3 4 | 4 2 | 4 4 | 4.5 | 49 | 4 4 | 6.5 | 295 | 39 | 39 | 2 | | 33 | 36 | 3 4 | 37 | 42 | 6.3 | 51 | 4.5 | 49 | 288 | 3 4 | 37 | 3 | | 3 4 | 37 | 3 3 | 37 | 37 | 50 | 4 8 | 4 4 | 23 | 208 | 3 6 | 34 | 4 | | 36 | 36 | 36 | 39 | 41 | 5.3 | 79 | 49 | 22 | 199 | 37 | 36 | 5 | | 36 | 36 | 3 4 | 39 | 41 | 47 | 4 7 | 4 7 | 28 | 193 | 37 | 3 4 | 8 | | 34 | 3 4 | 39 | 41 | 42 | 4 9 | 4 7 | 50 | 33 | 266 | 39 | 39 | 7 | | 37 | 4 2 | 39 | 41 | 4 1 | 4 9 | 4 5 | 52 | 36 | 194 | 61 | 39 | 8 | | 37 | 3 4 | 39 | 42 | 4 1 | 4 4 | 4 4 | 115 | 4.5 | 185 | 4 2 | 4 1 | 9 | | 37 | 23 | 41 | 4.4 | 4.3 | 4 4 | 4.4 | 5.5 | 4.5 | 185 | 39 | 37 | 10 | | 37 | 25 | 4 1 | 4.5 | 3 4 | 39 | 4 2 | 5 7 | 4.5 | 193 | 87 | 3 6 | 11 | | 39 | 28 | 39 | 41 | 4 1 | 4 4 | 4 1 | 5.5 | 4 7 | 190 | 647 | 37 | 12
13 | | 3 7 | 33 | 3 7 | 41 | 3 4 | 37 | 3 9 | 5 3 | 4.9 | 190 | 866 | 3 4 | 14 | | 34 | 36 | 37 | 39 | 4.2 | 3 9 | 39 | 53 | 5 O
4 5 | 198 | 276 | 37
37 | 15 | | 37 | 37 | 33 | 36 | 41 | 37 | 4 4 | 50 | 50 | 208 | 53 | 80 | 16 | | 44 | 33 | 34 | 39 | 42 | 37 | 4 9 | 64 | 50 | 105 | 50 | 41 | 17 | | 41 | 37 | 34 | 37 | 41 | 37 | 50 | 50 | 50 | 47 | 50 | 41 | 18 | | 3 5 | 36 | 34 | 37 | 42 | 3 9 | 52 | 50 | 3 9 | 41 | 52 | 4 2 | 19 | | 39 | 36 | 25 | 3 9 | 42 | 41 | 5 7 | 50 | 44 | 42 | 657 | 42 | 20 | | 34 | 36 | 28 | 36 | 42 | 44 | 65 | 52 | 4.5 | 41 | 101 | 42 | 21 | | 39 | 41 | 25 | 29 | 4
2 | 4 4 | 60 | 53 | 47 | 39 | 85 | 42 | 22 | | 41 | 41 | 25 | 33 | 4 4 | 4 4 | 53 | 4.5 | 4 7 | 41 | 348 | 42 | 23 | | 41 | 3.4 | 3 4 | 34 | 4 4 | 4 2 | 53 | 4.9 | 4.5 | 60 | 133 | 41 | 24 | | 3 9 | 3 9 | | 28 | 3.6 | 4.5 | 52 | 52 | 4.5 | 811 | 91 | 3 9 | 25 | | 4 4 | 3 9 | 3 6
3 6 | 39 | 42 | 42 | 4 9 | 52 | 41 | 634 | 81 | 41 | 26 | | 39 | 39 | 36 | 42 | 65 | 41 | 47 | 53 | 4.5 | 426 | 170 | 57 | 27 | | 3 7 | 3.4 | 3 9 | 39 | 37 | 42 | 70 | 53 | 100 | 244 | 370 | 4 4 | 28 | | 41 | 3.4 | 39 | 3 4 | 41 | 4.4 | 47 | 1 | 53 | 156 | 348 | 42 | 29 | | 42 | 33 | 39 | 39 | 39 | 42 | 42 | | 50 | 76 | 301 | 41 | 30 | | | 29 | 37 | | 39 | | 4.5 | | 47 | 57 | | 41 | 31 | | | 1089 | | 1144 | | 1312 | | 1489 | | 6303 | | L373 | | | 132 | | 1088 | | 1288 | | 1544 | | 1433 | | 5225 | | | | NEELN | A4.3 | 174 | 203 | 46.2 | 53.2 | 49.8 | 43.7 | 41.5 | 38.1 | 35.1 | 35.1 | 37.7 | | OBST | 2,720 | 10,350 | 12,500 | 2,840 | 2,950 | 3,060 | 2,600 | 2,550 | 2,270 | 2,160 | 2,160 | 2,250 | | Remarks: | YEAN MEAN | 66.9 | | YEAR MEAN 66.9 OR PERIOD ACRE-FEET 48,420 #### STATION F45-R Rio HONDO at Stewart & Gray Road LOCATION: WATER-STAGE RECORDER, LAT. 33°56'40". LONG. 118°09'50". ON THE DOWN-STREAM SIDE OF HIGHWAY BRIDGE, 0.5 MILE UPSTREAM FROM JUNCTION OF RIO HONDO AND LOS ANGELES RIVER AND ABOUT 1.5 MILES WEST OF DOWNEY. THIS STATION IS NEAR THE LOCATION OF THE STATION OPERATED FROM 1923 TO 1928 BY THE STATE DIVISION OF WATER RIGHTS. ELEVATION OF ZERO GAGE HEIGHT. 89.91 FEET. DRAINAGÉ AREA: 140 SQUARE MILES. (EXCLUDES DRAINAGE ABOVE SANTA FE DAM.) CHANNEL AND CONTROL: CHANNEL - CLAY AND SAND BETWEEN GRANITE RIPRAP LEVEE ON LEFT (EAST) BANK AND EARTH LEVEE ON RIGHT BANK. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING NEAR GAGE: HIGH FLOWS MEASURED FROM CABLE CAR 250 FEET ABOVE STATION. RECORDER: INSTALLED MARCH 1, 1928. OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY SIERRA MADRE DAM, BIG SANTA ANITA DAM, SAWPIT DAM, EATON DAM, SANTA FE DAM, LAS FLORES AND RUBIC DEBRIS BASINS. DIVERSIONS: THE CITY OF MASADENA DIVERTS WATER FROM EATON CREEK. THE CITY OF MONROVIA DIVERTS WATER FROM MONROVIA CREEK AND SAMPHI CREEK. THE CITY OF SIERRA MADRE DIVERTS WATER FROM LITTLE SANTA ANITA CANYON. THERE ARE ALSO SEVERAL DIVERSIONS FOR IRRIGATION AND SPREADING. FLOW FROM SAN GABRIEL RIVER BELOW SANTA FE DAM IS OCCASIONALLY DIVERTED TO RIO HONDO. RECORDS AVAILABLE: MARCH, 1928 TO SEPTEMBER 30, 1947. (FOR RECORDS PRIOR TO MARCH, 1928 SEE STATE DIVISION OF WATER RIGHTS BULLETINS.) EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 427D SECOND-FEET, DECEMBER 22, MINIMUM NO FLOW AT VARIOUS TIMES. 1946-1947 MAXIMUM 8,950 SECOND-FEET NOVEMBER 13, MINIMUM NO FLOW AT VARIOUS TIMES. 1929-1947 MAXIMUM 24,400 SECOND-FEET, ESTIMATED, MARCH 2, 1938. MINIMUM NO FLOW AT VARIOUS TIMES. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY MATER RESOURCES BRANCH. | | DIECHARDI | MEABURE | MENTA OF | R10 | HÓNDO | | | | | | | NO. | DATE | BEQIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER BEG. | MAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- HE | TH. MEA | B. D. HT.
CHANGE
TOTAL | METER
ND. | |--------------|-----------|-----------------------|-------------------------|--------|-------------------------------|---------------------------------|-------------------------|------------|---------------|-----------------|--------------|-------------|--------------|-------------------------|----------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------------|---------|------------------------------|--------------| | | S -Tr | tewart | and Gray Road | | | DUR | UND THE Y | EAR ENDING | BCPTEMBER 3 | 2, 19 46 | - | 713 | 2/4 | 354P
408P
835A | | 36,0 | 19.5 | 0.95 | 5.14 | 18.6 | | . 6 6 | 0 | | | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | | RAT- HETH MEA | DHANDE
TOTAL | METER
NO. | 714 | 2/7_ | 845A
800A | | 37.0 | 11.2 | | 4.98 | 9.2 | - | . 6 6 | | <u>"</u> | | 687 | 10/4 | 855A
901A | BONAD IMAN | 10.0 | 5.60 | 1.14 | 4.82 | 6.4 | .6 5 | 0 | FC19 | 715 | 2/14 | 812A
836A
843A | ., | 16.0
8.0 | 5.70
4.15 | | 4.83 | 2.7 | | .6 4 | | | | 688 | 10/11 | 903A
850A | | 12.0 | 3.40 | 1.12 | 4.78 | 3.8 | .6 4 | 0 | | 716 | 3/14 | 836A
843A | ** | 16.0 | 5.60 | 0.75 | | 4.2 | | .6 4 | - | | | 689 | 10/18 | 858A
200P | MOON | 18.0 | 6.45 | | | 8.9 | .6 5 | | | 718 | 3/19 | 942A
1005A | | 108.0 | 106- | 4.99 | 5.74 | 529. | | .6 10 | + .09 | | | 690 | 10/24 | 832P
840P | BONAD IMAN | 9.0 | 3.49 | 1.04 | | 3.6
5.5 | .6 5 | | FC22 | 719 | 3/20_ | 1042A
1100A
850A | KAS IMOFF | 34.0 | 18.0 | 1.37 | 5.15 | 24.7 | | .6 9 | 0 | | | 6 91 | 11/1 | 830A
838A | " | 7.0 | 4.25 | | | 4.7 | .6 5 | | | 7 20 | 3/21 | 901A
946A | BONAD IMAN | 16.0 | 10.8 | | 5.07 | 15.6 | | 6 7 | | | | 693 | 11/15 | 843A
853A | ** | 7.0 | 3.35 | 1,22 | 4.73 | 4.1 | .6 5 | 0 | | 721
722 | 3/28 | 952A
1137A
1153A | BONADIMAN | 105.0 | 93.0 | 0.85
3.28 | | 305 | | .6 8 | | | | 694 | 11/21 | 848A
858A
907A | | 6.5 | 3,70 | 1.49 | 4.80 | 5,5 | .6 4 | 0 | | 723 | 3/29 | 146P
200P | 11 | | 31.4 | 1.61 | | 50.4 | | .6 B | 0 | | | 695 | 11/29 | 915A
840A | | 8.0 | 3.40 | | | 3.4
7.4 | .6 5 | | | 724 | 3/30 | 720 A
740 A
832 A | KASIMOFF
KASIMOFF | 120.0 | 228- | 7.28 | 6.73 | 1760. | 1 | .6 | + .01
11 | <u> </u> | | 696 | 12/6 | 852A
837A
847A | ,, | 13.0 | 6.40 | 0.89 | 1 | 5.5 | .6 5 | 1 | | 7.25 | 3/31 | 858A
922A | BONAD IMAN | 115.0 | 74.5 | 1.84 | 5.62 | 137. | \vdash | .6 10 | | ļ | | 698 | 12/22 | 450A
520A | BONAD IMAN
KAS IMOFF | 130.0 | | 7.40 | | 2400. | .6 8 | 08 | | 726 | 4/4 | 932A
852A | BONAD I MAN | 33.0 | 14.3 | 0.85 | | 12.1
3.5 | ++ | .6 8 | 1 | | | 699 | 12/23 | 942A
1015A | KASIMOFF
BONAD IMAN | 115.0 | 259. | 7.16 | 6.67 | 1860. | .6 9 | + | ·· | 727 | 4/25 | 900A
820A | | 16.0 | 5.60 | 0.62 | 4.76 | 0 | | -6 . 4 | 0 | | | 700 | 12/24 | 1030A
902A | BON AD IMAN | 30.0 | 25.1 | 2,52 | | 63.2 | .6 6 | | | 729 | 5/2 | 927A
933A | | 11.0 | 6.35 | 0.65 | 4.97 | 4.1 | Ц | .6 4 | . 0 | | | _701
702 | 1/8 | 915A
305P
330P | BEAM | 52.0 | 31.2 | 1.41 | | 43.8 | .6 5 | | FC46 | 730 | 5/9 | 906A
922A | | 14.0 | 7.65 | 1.17 | 4.98 | 9.0 | \vdash | .6 5 | | | | _702 | 1/10 | 820 A
838 A | BONADIMAN | TWO CH | | ,,,, | 5.28 | 64.3 | .6 12 | 0 | FC19 | .731 | 5/16 | 932A
836A | | 14.0 | 7.60 | 1.23 | | 9.4 | - | .6 6 | | | | 704 | 1/13 | 210P
226P
1240P | | 45.0 | 36.8 | 1.38 | 5.33 | 50.6 | .6 10 | | ļ | 732
733 | 5/29
6/13 | 850A
856A | BONAD IMAN | 13.0 | 5.20 | 0.88 | | 5.2
4.8 | T | .6 5 | 7 | FC19 | | 705 | 1/15 | 1256P
300P | ** | 56.0 | 42.4 | 1.88 | 5.43 | 79.8 | .6 11 | | " | 734 | 6/21 | 814A
826A | | 23.0 | 7.95 | 1,12 | | 8.9 | T | .6 7 | | | | 706 | 1/17 | 316P
245P | Косн | 43.0 | 24.3 | 1.62 | 5.31 | 39.3 | .6 12 | + | FC34 | 735 | 7/3 | 847A
857A
834A | •• | 11.0 | 3.80 | 0.97 | 4.98 | 3.7 | $\sqcup \bot$ | .6 5 | 0 | ļ | | _707
_708 | 1/18 | 254P | BON AD IMAN | _ 47.0 | 27.0 | | 5.31 | 35.0 | .6 | | FC19 | 736 | 7/18 | 843A
802A | | 10.0 | 3.50 | | 4,87 | 3.5 | T | .6 4 | | <u></u> | | 709 | 1/21 | 200P
220P | 14 | тео сн | | | 5.34 | 35.0 | .6 14 | 0 | " | 737 | 8/2
9/5 | 815A
850A
900A | WADDICOR | 9.9 | 4,02 | 1.00 | | 7.8 | \vdash | .6 5 | | FC37 | | 710 | 1/24 | 820A
826A
832A | BONAD IMAN | 4.0 | 0.60 | 0.67 | 4,94 | 9.4 | .6 2 | | FC19 | 739 | 9/13 | 830A
840A | •• | 11.0 | 4.35 | 1,03 | | 4.5 | | .6 7 | | | | .711 | 1/31 | 842A
242P | •• | 14.0 | 4.80 | 1.02 | 5.04 | 4.9 | .6 5 | 1 | | 740 | 9/19 | 910A
920A
855A | | 10.0 | 3,18 | 0.56 | 5.00 | 1.8 | | .6 6 | 02 | | | 712 | 2/3 | 303P | ** | 120.0 | 238. | 6.65 | 6.67 | 1580. | .6 8 | 0 | ļ | 741 | 9/26 | 907A | | 10.0 | 5.63 | 0.91 | 5.15 | 5.1 | | .6 6 | 0 | ļ ·· | | | DISCHARGE | MEABURER | SENTE OF RIO HO | NDO . | | | | | | | | | NO. | DATE | 9EGIN
ENO | HADE BY | WIDTH | AREA DF
BECTION
SO, FT. | MEAN
VELDOITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | | AT- HET | HEAR
BEC.
NO. | G. HT.
CHANGE
TOTAL | HETER | |------|-----------|----------------|---|----------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|--------|--------------------------|----------------|------|------|----------------------|------------------|-------|-------------------------------|---------------------------------|-------------------------|---------|---------|---------------------|---------------------------|------------| | | HÊVA | Stews | rt and Gray Roa | <u>d</u> | | DUR | ING THE Y | EAR ENDING | BEPTEMB | ER 30, | , 19. JJ | ? . | 768 | 2-6 | 906A
914A | , | 18.0 | 5.90 | <u> </u> | 4.65 | 4.4 | .6 | 1 | 0 | ,, | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
BO. FT. | MEAN
VELODITY
FT.PER SEC. | BAUDE
HEIGHT
FEET | DISCHARGE
BEC. FT. | RAT- METH | MEAS. | G. HT
CHANGE
TOTAL | METER
NO. | 769 | 2-9 | 925P
940P
932A | BONADIMAN - LANG | 100.0 | 107. | 4.49 | 5,50 | 4 80. | .6 | 8 | 01 | | | 740 | 40.0 | 904A | Don't a trans | | | | | | | | 1 | | 270 | 2-10 | 942A
902A | h 11 | 35.0 | 13.5 | 1.10 | 4.80 | 14.9 | . 6 | 7 | 0 | | | 742 | 10-3 | 908A
912A | BON AD IMAN | 4.0 | 0.80 | | 4.98 | 0.46 | | 2 | 1 | FC19 | 771 | 2-13 | | BONADIMAN | 17.0 | 5.23 | 0.67 | 4.63 | 3.5 | .6 | 5 | 0 | | | 743 | 10-17 |
919A
832A | | 6.0 | 2.71 | | 5.20 | 1.6 | .6 | 1 | 0 | 1 | 772 | 2-20 | 900A | | 12.0 | 3,32 | 0.84 | 4.62 | 2.8 | .6 | 5 | 0 | | | 744 | 10-24 | 838A
840A | | 7.0 | 3.75 | 0.75 | 5.26 | 2.8 | .6 | 4 | 0 | ļ . : | 773 | 3-5 | 940A
950A | | TWO C | HANNELS | | 4.96 | 67.9 | .6 | 7 | 0 | ., | | 745 | 11-7 | 846A
255P | | 8.0 | 4.00 | 0,59 | 5.28 | 2.4 | .6 | 4. | 0 | | 774 | 3-6 | 908A
920A | ., | 32.0 | 10.3 | 0.85 | 4.74 | 8.8 | .6 | 9 | 0 | | | 746 | 11-12 | 305P
640P | BONADIMAN - LANG | 115. | 177. | 1.77 | 6.73 | 313. | .6 | 10 | +. 10 | | 775 | 3-13 | 922A
932A | • | 21.0 | 5.21 | 0.69 | 4.61 | 3.6 | .6 | 6 | 0 | | | 747 | 11-12 | 708P | | 150. | 412. | 3.57 | 7.75 | 1470. | -6 | | +.5 | · | 776 | | 922A
930A | ,, | 9,0 | 2.35 | | 4.57 | 1.7 | .6 | 1 | 0 | | | 7.48 | 11-13 | 1140A
1200N | | 165. | 807. | 6.28 | 10.20 | 5070 | FLOAT | | 4 | | 1 | | 932A | | 1 | | | | | ĺ | 1 | | | | 749 | 11-14 | 945A
1000A | н э | 105. | 141. | 4,13 | 6.11 | 583. | .6 | 9 | 0 | 6 | _777 | 3-27 | 942A
912A | la | 20.0 | | 0.84 | 4.69 | 6.3 | 1.6 | | 0 | | | 750 | 11-15 | 1052A
1100A | BONAD IMAN | 15.0 | 12.2 | 2.06 | 4.58 | 25.1 | .6 | 5 | 0 | | 778 | 4-3 | 918A
917A | | 9.0 | | 0.60 | 4.70 | 1.9 | - 6 | 1 | 0 | | | 751 | | 1012A
1032A | ,, | 145. | 329. | 7.45 | 7.28 | 2450 | .6 | 10 | +.1 | 2 | 779 | 4-10 | 925A
932A | | 17.0 | 4.45 | 0.54 | 4.66 | 2.4 | -6 | 5 | 0 | ** | | - 1 | 11-21 | 1000A
1012A | ., | 27.0 | 28.3 | 3,57 | 5.30 | 101. | .6 | 1 | 0 | | 780 | 4-17 | 938A
932A | | 17.0 | 5.35 | 0.56 | 4.62 | 3.0 | .6 | 4 | 0 | | | i | 1 | 1124A | BONADIMAN - LANG | 110. | 2.0 | | | 1740. | .6 | | 1 | J | .781 | 4-23 | 938A
920A | ** | 9.0 | 3.85 | 0.88 | 4.64 | 3.4 | .6 | 4 | 0 | | | | 11-23 | 1135A
954A | | | 244. | 7.13 | 6.79 | | 11 | 1 | + .1 | | 782 | 5-1 | 930A
927A | | 29.0 | 8.20 | 0.85 | 4.67 | 7.0 | .6 | 7 | 0 | | | 754 | 11-24 | 1008A
927A | BONAD IMAN | 24.0_ | 22.8 | 2.84 | 5.27 | 64.9 | .6 | I | 0 | | 783 | 5-8 | 933A | ., | 6.0 | 2.08 | 0.58 | 4.57 | 1.2 | .6 | 4 | 0 | | | 755 | 11-27 | 933A
912A | | 10.0 | 4.30 | 0.75 | 4.72 | 3.2 | .6 | 4 | 0 | | 784 | 5-15 | 907A
916A | | 16.0 | 5.05 | 0.83 | 4.62 | 4.2 | .6 | 5 | 0 | | | 756 | 12-6 | 928A
425P | | TWO C | HANNELS | | 5.07 | 37.1 | .6 | 12 | 0 | | 785 | 5-22 | 930A
940A | 4+ | 20.0 | 5.58 | 0.63 | 4.64 | 3.5 | .6 | 6 | 0 | | | 757_ | 12-6 | 440P | | 110. | 92.5 | 3,94 | 5.77 | 365. | .6 | 8 | 0 | | 786 | 6-5 | 922A
934A | 11 | 22.0 | 5.27 | 0.78 | 4.68 | 4.1 | .6 | 8 | 0 | • | | 758 | 12=7 | 952A
1006A | | 45.0 | 20.5 | 1.94 | 4.97 | 39.7 | .6 | 7 | 0 | | 787 | 6-12 | 910A
920A | | 21.0 | 6 12 | 0.78 | 4.69 | 4.8 | 6 | 7 | 0 | , , | | 759 | 12-12 | 930A
942A | | 55.0 | 39,6 | 2.16 | 5.27 | 85,7 | .6 | 9 | 0 | | 788 | 6-19 | 915A | ** | | J 37.12 | -5170 | 4.54 | EST .10 | 1. | | <u> </u> | | | 760 | 12-19 | 926A
936A | | 26.0 | 13.4 | 1.27 | 4.94 | 17.0 | .6 | 6 | _ 0 | | i | | 912A | | | | | | | - | + | | | | 761 | 12-26 | 847A
900A | | 110. | 134. | 4.83 | 5.71 | 647. | .6 | 7 | 0 | 2 | 789 | 7-3 | 922A
922A | | 24.0 | 7.23 | 0.78 | 4.76 | 5,6 | .6 | 7 | 0 | •• | | | 12-27 | 917A
930A | BONADIMAN - LANG | 110. | 113. | 4.96 | 5.38 | 561. | .6 | T- | _, 13 | | 790 | 7-24 | 927A
930A | | 6.0 | 3,25 | 0.89 | 4.74 | 2.9 | 1.6 | 3 | 0 | | | - | 1-2 | 942A
952A | BONADIMAN | | | | | | - | 1 | | 1 | 791, | 8-7 | 936A
932A | | 5.0 | 3.14 | 0.61 | 4.76 | 1.9 | .6 | 4 | _0 | | | | | 950A | BUNADIMAN | 16.0 | 17.0 | 1.69 | 4.90 | 28.7 | -6 | | 0 | | 792 | 8-21 | 940A | | 15.0 | 4.00 | 0.68 | 4.96 | 2.7 | . 6 | 6 | 0 | | | i | i | 956A
932A | | 10.0 | 8.85 | | 4.79 | 11.8 | -6 | 1 | 1- | -: | 793 | 9-3 | 750A
800A | WADDICOR | 5.0 | 2.63 | 0.87 | 5.09 | 2.3 | .6 | 5 | 0 | FC37 | | 765 | 1-16 | 943A
930A | | 26.0 | 11.5 | 0.84 | 4.78 | 9.7 | .6 | j — | | + | 794 | 9-10 | 810A
820A | | 5.5 | 2.68 | 0.75 | 5.15 | 2.0 | .6 | 4 | 0 | | | | 1-23 | 946A | *** | Two C | HANNELS | | 4.71 | 7.3 | 1.6 | 1 | 10 | " | 795 | 9-17 | 815A
825A | | 5.0 | 2,22 | 0.63 | 5.10 | 1.4 | .6 | 5 | 0 | ., | | 767 | 1-29 | 935A | , | 30.0 | 14.6 | 0.87 | 4.78 | 12.7 | .6 | 8 | 0 | ⊥." | 79 6 | i | 825A
835A | ** | 4.0 | | 0.79 | | 1.7 | .6 | 1 | 0 | | | F. C. D | ist. Form 32 4-44 | | | | | LOS ANGELES
COD CONTRO
YDRAULIC 1 | OL DISTRICT | r | | | Sta. | No. F45-R | |--|---|--|---|---|--|---|---|--------------------------------|--|---------------------------------------|---|--------------------------------------| | Daily | discharge, in se | cond-feet of | RIO HOND | O at Stew | art and G | iray Road | | | | , for the yes | ar ending Septe | mber 30, 19 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мву | June | July | Aug. | Sept. | | 1 2 3 4 4 5 6 7 7 8 9 10 111 12 13 14 15 16 11 12 22 23 22 4 22 5 29 30 11 | 556040000000000000000000000000000000000 | 7 64 53 9 0.3 4 9 65 3 4 9 65 3 4 9 65 3 9 1 8 8 4 3 7 7 7 7 7 6 6 6 6 7 6 6 6 7 6 6 6 7 6 8 8 | 674
8783
8783
4714
6746
6746
5744
7744
838
577
11306
775
1236
838
1756
109 | 0 6 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 | 69
316
316
316
316
315
315
315
315
315
315
315
315
315
315 | 1 2 2 1 2 6 2 5 1 2 6 2 5 1 2 6 2 5 1 2 6 2 5 1 2 6 2 5 1 2 6 2 5 1 2 6 2 5 7 5 7 5 7 5 7 5 7 5 1 2 6 2 5 7 5 7 5 7 5 7 5 7 5 1 2 6 2 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 | 24
74
111
106663
2354
1100
00
100
00
00
+
+
+
113
50
663
114
110
00
00
00
00
00
00
00
00
00
00
00
00 | 673007734888078488390 66660293 | 49.7 43.9 49.6 20.2 20.9 20.9 20.9 20.9 20.9 20.9 20.9 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 6 0 6 0 6 6 5 6 7 7 4 1 6 9 9 9 4 6 9 9 2 4 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 2 8 6 8 2 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | 3144681445148826633662391 | | <u></u> - | 191.4 | 1581 | 21782 | 8632 | 3443 | 10621 | 1742 | 4.9 | 5.5 د 1 | 1303 | 137.5 | 114.0 | | MEAN | 6.17 | 5.27 | 70.3 | 27.8 | 12.3 | 34.3 | 5.81 | 6.47 | 4.42 | 4.20 | 4.43 | 3.80 | | ACRE- | 380.
Remarks: | 314.
+ = 0.05 | 4,320.
c.f.s. or | 1,710. | 683. | 2,110, | 346. | 398, | | 258.
YEAR MEA
OR
ERIOD ACRE | | 1 ₂₂₆ ,
5,6
11,281. | F. C. Dist. Form 52 4-4 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta No. F 45-R | Sept. | Aug. | July | June | Мву | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | Day | |---|-----------------------------------|--|---------------------------------|--|---------------------------------|-------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--|----------------------------| | + | 0.4
0.8
1.0
0.8 | 2 3
1 6
1 2
0 2
1 0 | 1 6
2 3
2 7
2 3 | 5 6
3 2
5 1
3
2
2 7 | 1.8
2.7
1.6
3.2
1.4 | 2 3
1 .8
2 .7
4 .2
4 .5 | 3.7
2.7
1.8
1.8 | 37
29
28
26
18 | a 20
a 23
a 27
a 30
a 33 | 2.4
2.2
2.0
1.9
2.2 | 5 A
3.7
0.7
1 3
2.6 | 1
2
3
4
5 | | ÷
+
+
0.6 | 0.8
1.6
3.7
4.6
3.7 | 1.0
0.8
0.8
1.0 | 2.7
3.7
3.2
2.7
1.6 | 1.0
2.3
2.3
2.7
3.2 | 1 A
1 A
2 3
2 7
1 8 | 5.5
2.3
2.7
1.5 | 2.7
2.7
3.2
51
23 | 16
18
16
812 | 149
33
77
56 | 29
20
19
17 | 2.6
4.0
3.7
3.2
3.7
4.8 | 8
9 | | 0 4
1 0
1 4
1 0
1 4 | 0 .4
0
1 .0
1 .6
1 .5 | 1.8
1.4
3.7
2.7
2.3 | 1.6
2.7
1.4
0.6
1.0 | 2 3
3 2
1 .8
2 .7
3 2 | 1.8
1.8
1.4
1.8 | 1 4
1 8
1 2
0 6
1 4 | 5 1
4 1
1 8
0 8
0 8 | 11
9.9
11
12
9.9 | 69
86
83
96 | 19
428
757
272
31 | 4.5
3.2
4.5
3.7
3.1 | 11
12
13
14 | | 1 &
1 &
5 1
2 3 | 3 2
1 6
1 6
1 6
2.7 | 2.7
1.4
1.2
0.8
2.3 | 1.0
1.8
1.2
2.3
2.7 | 5 1
2 7
5 6
4 6
5 1 | 3 2
2 3
2 7
2 7
4 2 | 0.4
0.2
0.4
0.8
2.7 | 748
500 | 9.9
9.9
8.2
11
6.5 | 92
83
28
15 | b 31
b 28
b 29
b 31
763 | 2.7
2.0
2.4
2.6
3.1 | 18
18
19 | | 1 2
0 8
0 8
0 4
0 4 | 33355
33555 | 0 &
0 &
2 3
1 0
1 & | 1.0
2.7
1.8
1.8
2.3 | 4.6
3.7
3.2
1.8
2.7 | 2.7
2.3
2.7
3.2
1.8 | 4 6
5 6
5 6
2 7 | 0.8
0.8
0.6
0.6 | 7 A
7 A
7 A
7 A
6 O | 13
99
82
12
726 | 98
31
561
62
91 | 3.7
2.7
4.2
3.2
3.1 | 12
13
14
15 | | 1.6
0.4
1.0
3.2
1.0 | 3 2
2 3
5 2
9 8
0 6 | 0 A
0 B
1 6
0 2
0 A
0 2 | 1.8
1.2
0.6
0.8
0.8 | 3 2
1 6
1 2
3 2
2 3
1 6 | 2.7
3.7
2.7
3.7
4.6 | 3 2
5 6
5 1
2 3
1 6 | 1.0
0.6
1.6 | 5.6
6.0
50
13
6.0
5.1 | 923
493
185
114
59
41 | 2 3
a 5 8
a 9 2
a 13
a 16 | 2.7 2 2 2 4 2 5 2 9 | 26
27
28
29
30 | | 26.8 | 67.6 | 413 | 57 1 | 967 | 741 | 127.6 | 1201 | 431.6 | 37421 | 3200.4 | 97.B | | | 0.89 | 2.18 | 1.33 | 1.90 | 3,12 | 2.47 | 4.12 | 4.29 | 13.9 | 121 | 107 | 3.15 | EAN | | 53 | 134
N 22.1 | 82 | 113 | 192 | 147 | 253 | 238 | 856 | 7,420 | 6,350 | 194 | RE- | #### STATION UIL-R ROCK CREEK above Mouth of Canvon ``` LOCATION: WATER-STAGE RECORDER, LAT. 34°25'10". LONG. 117°50'17". IN NE 1/4 SEC. 20, T. 4 N., R. 9 W., 1-3/4 MILES SOUTHEAST OF VALYERMO. ALTITUDE OF GAGE ABOUT 4,050 FEET. ``` DRAINAGE AREA: 23.0 SQUARE MILES. RECORDS AVAILABLE: JANUARY 1923 TO SEPTEMBER 1937, MAY 1938 TO SEPTEMBER 1947. AVERAGE DISCHARGE: 22 YEARS (1923-37, 1938-46. 16.9 SECOND-FEET. EMES: 1945-1946 MAXIMUM DISCHARGE 650 SECOND-FEET DECEMBER 21, (GAGE HEIGHT 4.17 FEET). MINIMUM 4.8 SECOND-FEET DECEMBER 2-6. 1946-1947 MAXIMUM DISCHARGE, 900 SECOND FEET DECEMBER 26 (GAGE HEIGHT, 4.58 FEET). MINIMUM 5.5 SECOND FEET OCTOBER 20-27. 1923-1947 MAXIMUM DISCHARGE, 8.300 SECOND-FEET MARCH 2, 1938. BY SLOPE-AREA METHOD. MINIMUM 1.2 SECOND-FEET AUGUST 22, 1925. REMARKS: RECORDS FAIR. NO DIVERSIONS ABOVE STATION. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY WITH THE EXCEPTION OF 38 DISCHARGE MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGI | | DIBCHARGE | HEABURE | 1ENTB DF | ROCI | K_CREE! | (| | | | | | | | DIBCHARGE | MEAGURE | KENTS OF ROCK CR | EEK | | | | | | | | | |------|-------------|----------------|-------------------|---------------|-------------------------------|---------------------------------|--------------------------|-----------------------|-------------|----------------------|---------------------------|--------------|------------|--------------|----------------|-------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------------|---------|-----------|--------------------------| | | AT A | bove M | outh of Canyon | | | DUR | ING THE Y | EAR ENDING | 3 BEPTEME | IER 30, | ,,46 | | | HEAR. | | Mouth of Canyo | | | DUR | IND THE Y | EAR ENDINI | 9 9 EPTI | MBER : | 30, 19 | 17 | | ю. | DATE | BESIN | MADE BY | WIDTH
FEET | AREA OF
RECTION
EQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAINGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METE | MEAS.
SEC.
NO. | B. HY.
CHANGE
TOTAL | METER
ND. | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BESTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- E | ETH- HE | AM. S. S. | HETER
OK HEL
L HEL | | 723 | 10/5 | | Ų,s.G.S. | 11.4 | 4.36 | 1.33 | 2.16 | 5.8 | <u> </u> | 12 | | | .761 | 10-7 | | U.S.G.S. | 10. | 4.66 | 1.44 | 2.08 | 6.7 | ∐, | 6 10 | 0 | | | 724 | 10/15 | 140P
150P | TURNER
HUGHES | 10.5 | 4.43 | 1.41 | 2.15 | 6.2 | <u> </u> | | | FC43 | 762 | 10-10 | 1110A
1120A | LUCE | 15. | 5.0 | 1.32 | 2.07 | 6.6 | Ш. | 6 7 | . 0 | FC39 | | 725 | 10/19 | | U.S.G.S. | 1.1.2 | 4.43 | 1.31 | 2.14 | 5.8 | 1 1 | 111_ | 0 | | 763 | 10-17 | | U.S.G.S. | 12. | _5.38 | 1.17 | 2.08 | 6.3 | ot | 6 12 | | | | 726 | 11/6 | | | _10 | 4.27 | 1.48 | 2.17 | 6.3 | | 10 | | | 764 | 10-30 | | | 12.0 | 5.4 | 1.20 | 2.09 | 6.51 | L. | 6 12 | 2 0 | | | 727 | 11/16 | 1225P
1233P | TURNER
LINDSAY | _10.8 | 4.73 | 1,42 | 2,20 | 6.7 | <u> </u> | 1 7 | | FC43 | 765 | 11-1 | 1120A
1130A | LUCE | 12.0 | 5,5 | 1.20 | 2.08 | 6.6 | | 6 7 | _ 0 | FC39 | | 728 | 11/20 | | U.S.G.S | 11.7 | 5.0 | 1.36 | 2,20 | 6.8 | | 12. | 0 | | 766 | 11-5 | | u.s.g.s. | 11.0 | 5.1 | 1.15 | 2.08 | 5.9 | | 6 1 | . 0 | | | -729 | 12/4 | | | 11.2 | 3.96 | 1.26 | 2.18 | -5.0 | | 12 | | | 767 | 11-21 | | u.s.g.s. | 26 | 17.6 | 3.12 | 2.63 | 55 | ∐. | 6 12 | 2 0 | | | 730 | 12/12 | 245P
255P | TURNER | 10.8 | 4.32 | 1.37 | 2.19 | 5.9 | | 7 | | FC43 | 76B | 11-25 | | | 20 | 15.1 | 3.49 | 2.67 | 52.B | | 6 17 | | | | 731 | 12/18 | | U.S.G.S. | 10.4 | 4.05 | 1.43 | 2.18 | 5.8 | 6 | 11 | 0 | | 769 | 12-12 | | ., | 22. | 10.2 | 1.90 | 2.40 | 19.2 | | 6 1 | | | | 732 | 12/24 | 130P
145P | TURNER
PALMER | 25.0 | 20.7 | 3.38 | 2,75 | 70.0 | 1. | 12 | | FC43 | 770 | 12-19 | 1145A
1155A | LUCE | 16.5 | 8.4 | 2.19 | 2,35 | 18.4 | | 6 | 7 0 | FC39 | | 733 | 12/25 | | U.S.G.S. | 20 | 13.6 | 3,12 | 2.60 | 42.4 | | 16 | 0 | | 771 | 12-26 | | U.S.G.S. | 35 | 45.8 | 7,95 | 3.48 | 364 | | 6 1 | . 0 | | | 734 | 1/3 | | | 12.5 | 7.4 | 2.47 | 2.31 | 18.3 | 1 1 | 13 | 0 | | 772 | 12-28 | 405P
420P | LUCE - WRIGHT | 44. | 29.5 | 4.68 | 2.84 | 138 | | .6 1 | 2 0 | FC39 | | 735 | 1/18: | | | 13. | 6.2 | 2.00 | 2.25 | 12.4 | <u> </u> . | 14 | 0 | | 773 | 1-3_ | 905A
920A | LUCE | 19. | 15.2 | 3.57 | 2.42 | 54.3 | | 6 1 | 0 | | | 736 | 1/30 | 145P
155P | TURNER | 13 | 6.6 | 2.06 | 2.24 | 13.6 | | 7 | 0_ | FC43 | 774 | 1-7 | | υ.s. <u>g.s</u> . | 21. | 11.7 | 2.87 | 2.40 | 33.6 | | 6 1 | | | | 737 | 2/5 | | U.S.G.S. | 12.5 | 6.2 | 1.82 | 2.26 | 11.3 |] | 13 | 0 | | 775 | 1-16 | 1235P
1250P | LUCE | 18.5 | 11.5 | 3,18 | 2.34 | 35.6 | | .6 | 9 0 | FC39 | | 738 | 2/20 | | | 12. | 5.9 | 1.95 | 2.25 | 11.5 | <u> </u> | 12 | 0 | | 776 | 1-22 | | U.S.G.S. | 17.5 | 10.2 | 2.88 | 2.33 | 29.4 | | 6 1 | 2 0 | | | 739 | 2/25 | 255P
305P | TURNER | 14.5 | 7.6 | 1,68 | 2,25 | 11.9 | <u>l</u> | 8 | 0 | FC43 | 777 | 1-31 | 110P
125P | LUCE | 18.0 | 11.2 | 2.90 | 2.27 | 32.5 | | .6 | 9 0 | FC39 | | 740 | 3/5 |] | U.S.G.S. | 11.7 | 6.2 | 2.06 | 2.25 | 12.8 | | 12 | 0 | | 778 | 2-6 | 1145A
1200N | | 16.0 | 9.9 | 2.79 | 2.27 | 27.6 | | .6 | 8 0 | | | 741 | 3/20 | 220P
230P | TURNER | 12. | 6.7 | 2.03 | 2.36 | 13.6 |]]. | 7 | 0 | FC43 | 779 | 2-6 | | บ.\$.G.S. | 15.0 | 9.6 | 2,64 | 2.26 | 25,3 | | 6 | 8 0 | | | 742 | 4/5 | | U.S.G.S. | 17. | 12.3 | 2,97 | 2.49 | 36.5 | . | 14 | 0 | | 780 | 2-11 | | | 16 | 9.3 | 2.48 | 2.28 | 23.1 | | 6 1 | 3 Q | | | 743 | 4/9 | 315P
330P | TURNER | 20.5 | 15.9 | 2.87 | 2.51 | 45.6 | | 5 11 | 0 | | 781 | 2-21 | 315P
325P | LUCE | 17.0 | 9.8 | 2.49 | 2.22 | 24.4 | | - 1 | 8 0 | FC39 | | 744 | 4/19 | Ţ | U.S.G.S. | 23. | 18.5 | 3,48 | 2.69 | 64.4 | | 19 | 0 | | 782 | 3-5 | | U.S.G.S. | 16. | 8.4 | 2,29 | 2,20 | 19.2 | | .6 1 | 1 | | | 745 | 5/3 | 1125A
1135A | TURNER | 18 | 15.3 | 2.75 | 2.46 | 42.0 | 1 | 5 10_ | _0_ | | 783 | 3-13 | 410P
420P | LUCE | 16.5 | 9.8 | 2,04 | 2.15 | 20.0 | | | | FC39_ | | 746 | .5/7 | | V.S.G.S. | 17.0 | 11.5 | 2.69 | 2.43 | 30.9 | 1 1 | 6 14 | 0 | | 784 | 3-18 | | U.S.G.S. | 13.5 | 6.3 | 2.52 | 2.15 | 15.9 | | .6 | 13 0 | | | 747 | 5/28 | | | 14.0 | 12.5 | 1.99 | 2.33 | 24.9 | | 6 14 | 0 | 18/81 | 785 | 3-20 | 1255P
105P | LUCE | 17. | 10.0 | 2.07 | 2.16 | 20.7 | | .6 | 8 0 | | | 748 | .6/5 | | | 14.0 | 11.9 | 1,98 | 2.32 | 23.6 | | 6 14 | 0 | | 786 | 4-4 | 1.00 | U.5.G.S. | 15. | 9,0 | 2,26 | 2.16 | 20.3 | | | 14 (| , | | 749 | 6/12 | 320P
330P | LUCE | 21.5 | 11.4 | 2.28 | 2.29 | 26.0 | 1 1 | 6 11 | _ 0 | FC39 | 787 | 4-4 | 300P
310P | LUCE | 16. | 9.6 | 2.20 | 2.15 | 1 | | .6 | 8 (| | | 750 | 6/20 | J.J.O. | U.S.G.S. | 14. | 8.8 | 2.26 | 2.28 | 19.9 | | 6 13 | 0 | | ll . | 1 | 330P
345P | | 16. | 9.6 | 2.11 | 2.15 | 20.3 | | .6 | 8 (| | | 751 | 7/5 | | | 14. | 10.1 | 1.52 | 2.23 | 15.4 | i I | 6 14 | 0 | | 788 | 4-16 | 345 | v.s.g.s. | 15. | 8.6 | 2.14 | 2.18 | 18.4 | 1 | | 13 (| | | 752 | 7/10 | 335P
345P | LUCE | 19. | 9.3 | 2.17 | 2.22 | 20.2 | | 6 9 | 0 | FC39 | 789 | | 1130A | LUCE | 16.5 | 9.5 | 2.12 | 2.16 | | | .6 | 8 | 1 | | 753 | 7/18 | 343 | U.S.G.S. | 14. | 8.8 | 1.90 | 2.22 | 16.7 | 1-1 | 6 14 | 0 | - 100 | 790 | 5-1 | 1145A | U.S.G.S. | 15.5 | 9.2 | 2.16 | 2.17 | 19.9 | \top | | 14 | | |
754 | 7/31 | | | 14. | 9.2 | 1.48 | 2.20 | 13.6 | 1 7 | 6 14 | 0 | | 791 | 5-6 | 940A
950A | LUCE | 16. | 9.1 | 1.79 | 1 | | 1 | 6
-6 | 8 (| | | 755 | 8/6 | T | | 12,4 | 6.6 | 1.67 | 2.16 | 11.0 | | 6 12 | 0 | | 792 | 5-15
5-20 | 9506 | U.S.G.S. | 14.5 | 8.6 | 1.93 | 2.12 | 16-6 | T | .5 | 13 | | | 756 | 8/9 | 210P
220P | LUCE | 14. | 7.8 | 1.51 | 2.13 | 11.8 | 1-1 | 6 8 | 0 | FC39 | 793 | | | | 13. | 8.0 | 1.86 | | | | 6 | 12 | | | | | 2201 | | 11.5 | 5.8 | 1.53 | 2.11 | 8.9 | | 6 12 | 0 | | 794
795 | 6-5 | 800A
810A | LUCE | 16. | 9.2 | 1.75 | 2.10 | 1 | - | .6 | 8 (| 1 | | .757 | 8/23
9/6 | 755A
805A | LUCE | 12.5 | 6.7 | 1.49 | 2.11 | 10.0 | 1 | 6 7 | 0 | FC39 | 796 | 6-18 | 1010 | U.S.G.S. | 14.5 | 8.2 | 1.74 | 2.08 | 14.3 | T | .6 | 14 | | | .758 | ì | 8027 | U.S.G.S. | 11.1 | 5.2 | 1.33 | 2.10 | 6.9 | 1 | 6 11 | 0 | | | 7-7 | | , | | 7.8 | 1.62 | 2.05 | T | 1 | .5 | | | | 759 | 9/6 | | | | | 1 | 1 | | Ti | 1. | | | 797 | 1 | 325P | LUCE | 15.5 | | T | | 12.6 | 1 | .6 | 16 | | | -760 | 9/25 | + | | 11.3 | -3.1 | 1,22 | 2,00 | 0.2 | ++- | 9112 | 0 | | 1 | 7-10 | 3401 | | | 8.2 | | | | +- | .5 | | | | | | | | | | | | | | | | | 799 | 1 | | U.S.G.S. | 14 | 6.40 | 1 | ! | 1 | +- | .5 | 14 | | | | | | | | | | | | | | | | 800 | 8-5 | 425P | Luct | 15.0 | 6.6 | Į. | | 1 | + | | 11 | | | | | | | | | | | | | | | | 801 | 8-14 | 1 440P | LUCE | 14. | 1 | 1.22 | | | + | .6 | 8 1 | | | | | | | | | | | | | | | | 802 | 8-19 | + | U.S.G.S. | 14 | 6.2 | 1,29 | i | 1 | + | 1 1 | 11 1 | 1 | | | | | | | | | | | | | | | 803 | 9-4 | 215P | 1 | 15 | | 1.60 | | 1 | + | ! 1 | 15 | | | | | | | | | | | | | | | | 804 | 9-11 | - | LUCE | 14.5 | | 1.07 | 1 | 1 | - | .6 | 8 | | | | | | | | | | | | | | | | 805 | 9-15 | | U.S.G.S. | 13. | 5.5 | 1.07 | 1.93 | 5.9 | - | -6 | 11 | 1 | P. C. Dist. Porm 52 4-48 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. UIN-R | aily | | T | T - | T | | T | T . | | | T | | T | |----------|------------|------------|------------|----------|----------|----------|----------|--------|----------|-------------------|------------|------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept | | 1 | 5.8 | 7.1 | 5.3 | 20 | 12 | 13 | 83 | 4.5 | 25 | 1.5 | 12 | 8.8 | | 2 | 5.8 | 71 | 4.8 | 19 | 12 | 13 | 65
51 | 4 3 | 25
25 | 15 | 12 | 9.5
9.5 | | 3 | 5.8
5.3 | 71 | 4.8 | 19 | 16
12 | 13
13 | 42 | 42 | 24 | 14 | 11 | 8.8 | | 5 | 5.8 | 71 | 4.8 | 17 | 11 | 13 | 40 | 37 | 24 | 15 | 12 | 8.8 | | 6 | 6.4 | 7.1 | 4.8 | 16 | 11 | 12 | 42 | 35 | 24 | 16 | 11 | 8.2 | | 7 | 6.4 | 7 1 | 5.3 | 15 | 11 | 12 | 4.5 | 32 | 26 | 17 | 11 | 8.2 | | 8 | 6.4 | 7.1 | 5.3 | 15 | 11 | 12 | 4.5 | 32 | 27 | 21 | 11 | 8.2 | | 9 | 6.4 | 7.1 | 5.8 | 14 | 11 | 11 | 4 7 | 32 | 27 | 22 | 12 | 8.2 | | 10 | 5.8 | 7.1 | 5.8
5.8 | 13 | 11 | 11 | 53
57 | 32 | 28 | 23 | 12
12 | 7.0 | | 11
12 | 5.8
5.8 | 6 A
7 1 | 5.8
5.8 | 13 | 11
11 | 11 | 61 | 30 | 28 | 21 | 11 | 7.0 | | 13 | 5.8 | 71 | 5.3 | 13 | 11 | 11 | 61 | 30 | 27 | 19 | īī | 7.0 | | 14 | 5 ã | 6.4 | 53 | 13 | 11 | 11 | 61 | 29 | 26 | 19 | 11 | 6.5 | | 15 | 5.8 | 6.4 | 5.8 | 12 | 11 | 11 | 6.3 | 29 | 26 | 18 | 10 | 6.5 | | 16 | 5.8 | 6.4 | 5.8 | 12 | 11 | 11 | 70 | 29 | 24 | 18 | 10 | 7.0 | | 17 | 5.8 | 6.4 | 5.8 | 12 | 11 | 11 | 79 | 29 | 23 | 17 | 10 | 7.0 | | 18
19 | 5.8 | 6.4 | 5.8
5.8 | 12 | 11 | 11
16 | 74 | 28 | 22 | 18 | 9.5
9.5 | 6.5
6.0 | | 20 | 5.8
5.8 | 7.1 | 5.8
5.3 | 12 | 11 | 14 | 61 | 28 | 19 | 17 | 9.5 | 6.0 | | 21 | 5.8 | 71 | 118 | 12 | 11 | 12 | 51 | 28 | 18 | 16 | 9.5 | 5.5 | | 22 | 5.8 | 7.1 | 385 | 13 | 11 | 12 | 47 | 26 | 18 | 14 | 9.5
9.5 | 5.5 | | 23 | 5.8 | 7.1 | 285 | 13 | 12 | 12 | 4.5 | 28 | 18 | 14 | 9.5 | 5.5 | | 24
25 | 5.8 | 6.4 | 86 | 13 | 12 | 12 | 4.5 | 26 | 17 | 15 | 9.5 | 5.5 | | 25
26 | 5.8 | 6.4 | 41 | 1.3 | 12 | 12 | 4.9 | 2.5 | 17 | 1.5 | 9.5 | 6.0 | | 27 | 5.8
5.8 | 6 A
6 A | 3 O
2 B | 13
14 | 12
12 | 12
12 | 53
51 | 28 | 16 | 14 | 8.8
8.8 | 6.0
6.0 | | 28 | 5.8
5.8 | 6.4
5.8 | 25 | 14 | 12 | 13 | 49 | 26 | 16 | 13 | 9.5 | 6.0 | | 29 | 6.4 | 5.8 | 24 | 13 | 1~ | 15 | 4 7 | 26 | 16 | 13 | 9.5 | 6.5 | | 30 | 8.4 | 5.3 | 22 | 13 | | 227 | 4.5 | 25 | 16 | 13 | 8.8 | 6.5 | | 31 | 6.4 | | 21 | 13 | | 126 | | 25 | | 13 | 8.8 | | | | 185.5 | 1 | 173.0 | | 322 | | 1652 | | 668 | | 3212 | | | | | 201.6 | | 433 | | 706 | | 953 | | 512 | | 2119 | | BAN | 5.98 | 6.72 | 37.8 | 14.0 | 1,1,5 | 22.8 | 55.1 | 3017 | 22.3 | 16.5 | 10.4 | 7.06 | | RE- | 368. | 400. | 2,330. | 859. | 639 | 1,400. | 3,280. | 1,890. | 1,320. | 1,020 | 637. | 420. | | _ | Remarks: | | | | | | | | | YEAR MEA | v 20. | 1 | | | | | | | | | | | | OR
ZERIOD ACRE | FERT 1 | 4.560. | F. C. Diet, Form 52 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U | 14-R | 8 | Aug. | July | June | May | Apr. | Mar. | Feb. | Jun. | Dec. | Nov. | Oct | Day | |----------|------------|------------------------------|------------|------------|----------|----------|----------|------------|------------|------------|------------|--------------| | - | 11 | 13 | 15 | 21 | 22 | 21 | 32 | 69 | 23 | 6.5 | 7.0 | 1 | | 1 | 11 | 12 | 15 | 21 | 21 | 20 | 30 | 60 | 20 | 6.5 | 7 .6 | 2 | | | 11 | 12 | 15 | 21 | 21 | 2.0 | 29 | 54 | 20 | 6.5 | 7.5 | 3 | | 1 | 11 | 12 | 15 | 19 | 21 | 19 | 26 | 4.8 | 22 | 6.0 | 7.0 | 4 | | | 10 | 12 | 1.5 | 1.9 | 21 | 1.8 | 27 | 4 1 | 34 | 6.0 | 6.5 | 8 | | | 10 | 12 | 15
15 | 19 | 20 | 18
18 | 26
26 | 36
33 | 35 | 6.0 | 6.5
6.5 | 7 | | | 10 | 12 | 15 | 19 | 20 | 18 | 26 | 33 | 29 | 7.0 | 6.5 | · á | | | 10 | 13 | 15 | 19 | 21 | 18 | 26 | 33 | 26 | 70 | 6.5 | ğ | | 1 | 9.7 | 13 | 14 | 19 | 21 | 19 | 26 | 33 | 23 | 7.0 | 6.5 | 10 | | | 9.7 | 13 | 14 | 18 | 21 | 19 | 23 | 33 | 20 | 7.6 | 6.0 | 11 | | i | 92 | 13 | 14 | 17 | 20 | 20 | 22 | 35 | 19 | 10 | 6.5 | 12 | | | 9.2 | 13 | 14 | 17 | 21 | 20 | 22 | 36 | 18 | 42 | 6.5 | 13 | | 1 | 9.2 | 13 | 14 | 16 | 21 | 19 | 22 | 36 | 18 | 14 | 6.0 | 14 | | 1 | 9.2 | 13
13 | 14 | 16 | 21 | 1.8 | 22 | 3 7 | 18 | 9.1 | 6.0 | 15 | | 7 | | 13 | 14 | 15 | 21 | 17 | 23 | 37 | 18 | 8.5 | 6.5 | 18 | | | 8.8 | 13 | 1 4
1 4 | 15
15 | 21 | 17
16 | 23 | 3 6
3 5 | 19 | 7.8
7.2 | 6.5
6.0 | 18 | | | 8.4 | 12 | 14 | 16 | 21
20 | 17 | 24 | 32 | 18 | 7 8 | 6.0 | 19 | | ' | 8.4
8.8 | 12
12 | 14 | 17 | 19 | 18 | 24 | 31 | 18 | 146 | 5.5 | 20 | | | 9.2 | 12 | 14 | 17 | 19 | 28 | 23 | 30 | 18 | 61 | 5.5 | 21 | | ; | 8.8 | 12 | 14 | 17 | 18 | 25 | 24 | 28 | 17 | 2.9 | 5.5 | 22 | | | 8.8 | 12 | 14 | 17 | 18 | 23 | 23 | 29 | 18 | 215 | 5.5 | 23 | | | 8.4 | 12 | 14 | 16 | 18 | 23 | 23 | 30 | 36 | 115 | 5.5 | 24 | | 1 . | 8.0 | 12 | 14 | 1.6
1.6 | 19 | 23 | 22 | 29 | 370 | 52 | 5.5 | 25 | | | 8.0 | 12 | 14 | 16 | 18 | 21 | 21 | 30 | 540 | 47 | 5.5 | 26 | | 1 : | 8.0 | 12 | 14 | 17 | 19 | 21 | 21 | 31 | 225 | 3 4 | 5.5 | 27 | | | 72 | 11 | 13 | 17 | 19 | 22 | 21 | 3 3 | 150 | 29 | 6.0 | 28 | | | 7.2 | 11 | 13 | 17 | 19 | 25 | _ | 3 3 | 105 | 27 | 6.5 | 30 | | <u> </u> | 7.2 | 11 | 13 | 17
16 | 20 | 23 | | 33 | 8 4
7 5 | 24 | 6.5
6.5 | 31 | | | 6.8 | 11 | | 10 | | 22 | | 33 | 75 | | 6.5 | | | | 281.0 | | 426.0 | | 601.0 | | 683.0 | | 2078.0 | | 93.7 | 1 | | 19: | | 378.0 | | 542.0 | | 626.0 | | 1127.0 | | 958.0 | | | | | 9.06 | 12.2 | 14,2 | 17.5 | 20.0 | 20.2 | 24.4 | 36.4 | 67.0 | 31.9 | 6.25 | CEAN | | 38 | 557 | 750 | 845 | 1080 | 1190 | 1240 | 1350 | 2240 | 4120 | 1900 | 384 | CRE-
FEET | | | N 22.2 | EAR MEAN
OR
ERIOD ACRE | | | | | | | | | Remarks; | | #### STATION U6-R ROGERS CREEK above Mouth of Canyon LOCATION: WATER-STAGE RECORDER, LAT. 34°09'55". LONG. 11°54'20", IN NW 1/4 NW 1/4 SEC. 23, T. IN., R. 10 W., O.5 MILE UPSTREAM FROM MOUTH AND 2.5 MILES NORTH OF AZUSA. ALTITUDE OF GARE ABOUT BOO FEET. DRAINAGE AREA: 6.4 SQUARE MILES. RECORDS AVAILABLE: MAY 1916 TO JUNE 1917. (DISCHARGE MEASUREMENTS ONLY). OCTOBER 1917 TO SEPTEMBER 1947. AVERAGE DISCHARGE: 29 YEARS, 3,42 SECOND-FEET, 30 " 3.41 " " EXTREMES: 1945-1946 MAX IMUM DISCHARGE 400 SECOND-FEET DECEMBER 23. (GAGE HEIGHT 6.04 FEET). NO FLOW SEVERAL PERIODS. 1946-1947 MAXIMUM DISCHARGE 271 SECOND FEET NOVEMBER 20 (GAGE HEIGHT 5.35 FEET). NO FLOW DURING SEVERAL PERIODS. 1917-1947 MAXIMUM DISCHARGE ABOUT 2.600 SECOND-FEET APRIL 7. 1926. NO FLOW DURING PART OF EACH YEAR. REMARKS: RECORDS GOOD. ONE SMALL DIVERSION ABOVE STATION FOR IRRIGATION. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY WITH THE EXCEPTION OF 14 DISCHARGE MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, | 1330 10-
1331 10-
1332 11-
1333 11-
1333 11-
1334 11-
1335 11-
1336 12-
1339 12-
1340 12-
1340 12-
1341 12- | 10-10
10-19
11
-7
-21
-27
-4
-14
-14
-22
-22
-22
-23
-27
17
31
8
-15
-21 | ECOIN
END | MADE BY U.S.G.S. | 3,0
3,0
3,1
3,0
1,0
3,0
2,5
2,0
25,
22,
22,
14,
4,0
5,0 | .67
.58
.54
.80
.35
.42
.33
.5.2
.40
32.7
24.0
25.6
5.4 | .24
.45
.41
.54
.37
.36
.36
.60
.58
4.89
3.78
4.69
3.18 | ### BAUSER #### #### #### #### #### #### #### # | DIREMANDE 116 | ************************************** | MEAB
BECO, NO. | 6 0
6 0
6 0
6 0
6 0
6 0
6 0
6 0 | METER
NG. | NO. | DATE | BKOIN END | MADE BY U.S.G.S. " " " " | 2.6
1.1
1.1
1.0
1.1
1.1 | | | 2,29
2,40
2,29
2,39 | | .6
.6
.6
.6
.6 | 5
5
6
115 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | T. HETER
C NO. |
---|--|--------------|---|--|---|---|--|---|--|-------------------|--|--------------|--|--|--------------------------|--------------------------|--|--|--|--|--------------------------------------|----------------------------|-------------------------|---------------------------------------|-------------------| | 1330 10- 1331 10- 1332 11- 1333 11- 1334 11- 1335 11- 1336 12- 1337 12- 1338 12- 1339 12- 1340 12- 1341 12- 1342 12- 1342 12- 1344 1-1 1345 1-3 1346 2-8 1347 2-1 1348 2-2 1349 3-7 1350 3-1 1351 3-1 1352 3-2 1353 3-2 1355 3-2 | 0-10
0-19
-1
-7
-21
-27
-14
-14
-14
-12-20
-22
-22
-23
-23
-23
-23
17
31
8 | END | U.S.G.S. | 3.0
3.0
3.1
3.0
1.0
3.0
2.5
2.0
25,
23,
22,
14,
4.0 | .67
.58
.54
.80
.35
.42
.33
.5.2
.40
32.7
24.0
25.6
21.6
5.4 | .24
.45
.41
.54
.37
.36
.36
.60
.58
4.89
3.78
4.69
3.18 | 1.95
1.97
1.91
1.95
1.89
1.92
1.90
1.96
1.95
4.60
3.85 | .16 ,26 ,22 ,43 ,13 ,15 ,12 ,23 ,160 ,90 ,8 | .6
.5
.6
.6
.6 | - E | 6 0
6 0
6 0
2 0
6 0
4 0
4 0 | METER
MG. | 1373
1374
1375
1376
1377
1378
1379 | 10-2
10-9
10-16
10-23
10-30
11-7
11-13 | | U.S.G.S. | 2.6
1.1
1.1
1.0
1.1 | 1.04
0.22
0.37
0.23
0.36
0.33 | 1.16
0.86
1.65
0.70
1.47
0.97 | 2,29
2,40
2,29
2,39
2,38
3,60 | 0.19
0.61
0.16
0.53
0.32 | .6
.6
.6
.6 | 11
5
5
6
15 | 0 0 0 0 0 0 0 0 0 | | | 1331 10-
 1332 11-
 1333 11-
 1334 11-
 12-
 1337 12-
 1339 12-
 1349 12-
 1341 12-
 1342 12-
 1343 12-
 1344 1-1
 1345 1-3
 1346 2-8
 1347 2-1
 1348 2-2
 1349 3-7
 1350 3-1
 1351 3-1
 1352 3-2
 1353 3-2
 1353 3-2
 1355 3-2
 1355 3-2
 1355 3-2 | 9-19 -1 -7 -21 -27 -4 -14 -12 -20 -22 -23 -23 -27 -17 -31 -8 -15 -21 | | "" "" "" "" "" "" "" "" "" "" "" "" "" | 3.0
3.1
3.0
1.0
3.0
2.5
2.0
25,
23,
22,
14,
4.0
5.0 | .58
.54
.80
.35
.42
.33
.5.2
.40
32.7
24.0
25.6
21.6
5.4 | .45
.41
.54
.37
.36
.36
.60
.58
4.89
3.78
4.69
3.18 | 1.97
1.91
1.95
1.89
1.90
1.96
1.95
4.60
3.85 | ,26
,22
,43
,13
,15
,12
,31
,23
,160, | .6
.6
.6
.6 | | 6 0
6 0
2 0
6 0
4 0
4 0 | | 1374
1375
1376
1377
1378
1379 | 10-9
10-16
10-23
10-30
11-7
11-13 | | 11
12
14 | 1.1
1.0
1.1
1.1
1.1 | 0,22
0,37
0,23
0,36
0,33 | 0.86
1.65
0.70
1.47
0.97
2.75 | 2.40
2.29
2.39
2.38
3.60 | 0.19
0.61
0.16
0.53
0.32 | .6
.6
.6 | 5 5 6 6 15 7 | 0 0 0 00 | | | 1332 11- 1332 11- 1333 11- 1334 11- 1335 11- 1335 12- 1337 12- 1338 12- 1340 12- 1341 12- 1342 12- 1343 12- 1344 1-1 1345 1-3 1346 2-8 1349 3-7 1350 3-1 1351 3-1 1352 3-2 1353 3-2 1355 3-2
1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 1355 3-2 | -1 -7 -21 -27 -4 -14 -14 -22 -22 -23 -27 -17 -31 -8 -15 -21 | | "" "" "" "" "" "" "" "" "" "" "" "" "" | 3.1
3.0
1.0
3.0
2.5
2.0
25,
23,
22,
14,
4.0 | .54
.80
.35
.42
.33
.5.2
.40
32.7
24.0
25.6
21.6
5.4 | .41
.54
.37
.36
.36
.60
.58
4.89
3.78
4.69 | 1.91
1.95
1.89
1.90
1.96
1.95
4.60
3.85 | .22
.43
.13
.15
.12
.31
.23
.160, | .5
.6
.6
.5 | 19 | 6 0
6 0
2 0
6 0
5 0
4 0
016 | | 1374
1375
1376
1377
1378
1379 | 10-16
10-23
10-30
11-7
11-13 | | n
H | 1.1 | 0.37
0.23
0.36
0.33 | 1.65
0,70
1.47
0.97
2.75 | 2.40
2.29
2.39
2.38
3.60 | 0,61
0,16
0,53
0,32 | .6
.6
.6 | 5 6 6 15 7 | 0 0 0 00 | | | 1333 11- 1334 11- 1335 11- 1336 12- 1337 12- 1339 12- 1340 12- 1341 12- 1342 12- 1343 12- 1344 1-1 1345 1-3 1346 2-8 1347 2-1 1349 3-7 1350 3-1 1351 3-1 1352 3-2 1353 3-2 1354 3-3 1355 3-5 1355 3-5 | -7 -21 -27 -4 -14 -14 -22 -22 -23 -27 -17 31 8 -15 -21 | | "" "" "" "" "" "" "" "" "" "" "" "" "" | 3,0
1,0
3,0
2,5
2,0
25,
23,
22,
14,
4,0 | .80
.35
.42
.33
.5.2
.40
32.7
24.0
25.6
21.6
5.4 | .54
.37
.36
.36
.60
.58
4.89
3.78
4.69
3.18 | 1.95
1.89
1.92
1.90
1.96
1.95
4.60
3.85 | .43
.13
.15
.12
.31
.23
160.
90.8 | .6
.6
.5
.6 | 19 | 6 0
2 0
6 0
5 0
4 0
4 0 | | 1376
1377
1378
1379 | 10-23
10-30
11-7
11-13 | | n
H | 1.0 | 0,23
0,36
0,33 | 0,70
1,47
0,97
2,75 | 2,29
2,39
2,38
3,60 | 0.16
0.53
0.32 | .6
.6 | 5
6
15 | 0 0 00 | | | 334 11- 235 11- 336 12- 337 12- 338 12- 339 12- 340 12- 341 12- 342 12- 344 1-1 345 1-3 346 2-8 346 2-8 347 2-1 348 2-2 349 3-7 350 3-1 351 3-1 352 3-2 355 3-5 355 3-5 355 3-5 | -21 -27 -4 -14 -20 -22 -23 -23 -27 17 31 8 115 21 | | "" "" "" "" "" "" "" "" "" "" "" "" "" | 1.0
3.0
2.5
2.0
25.
23.
22.
14.
4.0 | .35
.42
.33
.5.2
.40
32.7
24.0
25.6
21.6
5.4 | .37
.36
.36
.60
.58
4.89
3.78
4.69
3.18 | 1,89
1,92
1,96
1,95
4,60
3,85 | .13
.15
.12
.31
.23
160. | .6 | 19 | 2 0
6 0
5 0
4 0
4 0 | | 1377
1378
1379
1380 | 10-30
11-7
11-13
11-14 | | 11 | 1.1 | 0.36
0.33 | 1.47
0.97
2.75 | 2.39
2.38
3.60 | 0.53
0.32
49.0 | .6 | 6 15 7 | 00 | | | 11- 336 12- 337 12- 338 12- 339 12- 340 12- 341 12- 342 12- 343 12- 344 1-1 345 1-3 346 2-8 347 2-1 349 3-7 350 3-1 351 3-1 352 3-2 353 3-2 355 3-3 355 3-5 355 355 3-5 355 | -27
-4
-14
-20
-22
-22
-23
-23
-27
17
31
8
15
21 | | "" "" "" "" "" "" "" "" "" "" "" "" "" | 3.0
2.5
2.0
2.0
25.
23.
22.
22.
14.
4.0 | .42
.33
.5.2
.40
32.7
24.0
25.6
21.6
5.4 | .36
.36
.60
.58
4.89
3.78
4.69
3.18 | 1.92
1.90
1.96
1.95
4.60
3.85 | .15
.12
.31
.23
160. | .6 | 19 | 6 0
5 0
4 0
4 0 | | 1378
1379
1380 | 11-7
11-13 | | n
n | 1.1 | 0.33 | 0.97
2.75 | 2.38
3.60 | 0.32
49.0 | .6 | 15 | 0 | | | 336 12- 337 12- 338 12- 339 12- 340 12- 341 12- 342 12- 344 1-1 345 1-3 346 2-8 347 2-1 348 2-2 349 3-7 350 3-1 351 3-1 352 3-2 355 3-2 355 3-5 355 3-5 | :-4
:-14
:-20
:-22
:-23
:-23
:-23
:-23
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
:-25
: | | "" "" "" "" "" "" "" "" "" "" "" "" "" | 2.5
2.0
2.0
25.
23.
22.
24.
4.0
5.0 | .33
.5.2
.40
32.7
24.0
25.6
21.6
5.4 | .36
.60
.58
4.89
3.78
4.69
3.18 | 1.90
1.96
1.95
4.60
3.85 | .12
.31
.23
160. | .6 | 19 | 5 0
4 0
4 0
016 | | 1379
1380 | 11-13 | | " | 14.2 | 17.8 | 2.75 | 3.60 | 49.0 | .6 | 15 | 0 | | | 1337 12- 1338 12- 1339 12- 1340 12- 1341 12- 1342 12- 1343 12- 1344 1-1 1345 1-3 1346 2-8 1347 2-1 1348 2-2 1349 3-7 1350 3-1 1351 3-1 1352 3-2 1353 3-2 1354 3-3 1355 3-5 1355 3-5 | :-14
:-20
:-22
:-22
:-23
:-27
:17
31
8 | | | 2.0
2.0
25.
23.
22.
14.
4.0 | .5.2
.40
32.7
24.0
25.6
21.6
5.4 | .60
.58
4.89
3.78
4.69
3.18 | 1.96
1.95
4.60
3.85 | .31
.23
160.
90.8 | .6 | 19 | 4 0
4 0
016 | | 1380 | 11-14 | | | Ī | | | | | .6 | 7 | | | | 1338 12- 1339 12- 1340 12- 1341 12- 1342 12- 1343 12- 1344 1-1 345 1-3 346 2-8 1347 2-1 1348 2-2 1349 3-7 1350 3-1 1351 3-1 1352 3-2 1353 3-2 1354 3-3 1355 3-5 1355 3-5 1355 3-5 1355 3-5 1355 3-5 | -20
-22
-23
-23
-23
-27
17
31
8
15 | | | 2.0
25.
23.
22.
22.
14.
4.0 | .40
32.7
24.0
25.6
21.6
5.4 | 3.78
4.69
3.18 | 1.95
4.60
3.85
4.41 | .23
160.
90.8 | .6 | 12 | 4 0
016 | | | | 1 | | 12. | 8.4 | 1.33 | 2.90 | 1.2 | | T | .0 | - | | 1339 12-
 1340 12-
 1341 12-
 1342 12-
 1343 12-
 1344 1-1
 1345 2-8
 1347 2-1
 1348 2-2
 1349 3-7
 1350 3-1
 1351 3-1
 1352 3-2
 1353 3-2
 1354 3-3
 1355 3-3 | -22
-23
-23
-23
-27
17
31
8
15
21 | | " " " MOON | 25.
23.
22.
22.
14.
4.0 | 32.7
24.0
25.6
21.6
5.4 | 4.89
3.78
4.69
3.18
1.26 | 4.60
3.85
4.41 | 160. | | 12 | 16 | | 1381 | 11-20 | | | | J-2 | | - 1 | | 1 - | - 1 | | | | 340 12- 341 12- 342 12- 343 12- 344 1-1 345 1-3 346 2-8 347 2-1 348 2-2 349 3-7 350 3-1 351 3-1 352 3-2 353 3-2 355 3-3 | -22
-23
-23
-27
17
31
8
15 | | | 23.
22.
22.
14.
4.0 | 24.0
25.6
21.6
5.4 | 3.78
4.69
3.18 | 3,85
4,41 | 90.8 | .6 | 12 | | | | 11-20 | | ** | 28.0 | 24.9 | 3,12 | 3.91 | 77.8 | -6 | 1.8 | 06 | 3 | | 341 12- 1342 12- 1343 12- 1344 1-1 1-1 1345 1-1 1346 2-2 1349 3-7 1350 3-1 1352 3-2 1353 3-2 1354 3-3 1355 3-3 1355 3-5 1355 3-5 1355 3-5 1355 3-5 1355 3-5 1355 3-5 1355 3-5 1355 3-5 1355 3-5 1355
3-5 1355 3-5 | -23
23
1-27
17
31
8
15 | | " " MOON | 22.
22.
14.
4.0 | 25.6
21.6
5.4 | 4.69
3.18
1.26 | 4.41 | l l | .6 | Į | 203 | | 1382 | 11-21 | | н | 14.0 | 10.5 | 1.85 | 3,09 | 9.4 | -6 | 15 | 0 | - | | 1342 12-
1343 12-
1344 1-1
345 1-3
346 2-8
1347 2-1
1348 2-2
1349 3-7
1350 3-1
1351 3-1
1352 3-2
1353 3-2
1354 3-3
1355 3-3
1355 3-3 | -23
-27
17
31
8
15 | | MOON | 22.
14.
4.0
5.0 | 21.6
5.4
1.49 | 3.18 | | 120. | 1.6 | 1 | | | 1383 | 11-23 | | ** | 19.0 | 13.2 | 2.25 | 3.29 | 29.7 | .6 | 10 | 0 | | | 1343 12-
1344 1-1
345 1-3
1346 2-8
1347 2-1
1348 2-2
1349 3-7
1350 3-1
1351 3-1
1352 3-2
1353 3-2
1354 3-3
1355 3-3 | 17
17
31
8
15 | | MOON | 14.
4.0
5.0 | 5.4
1.49 | 1.26 | 3.84 | | ٠ğ | 10 | 012 | | 1384 | 11-27 | | | 13.0 | 6.7 | 1.10 | 2.86 | 7.4 | .6 | 13 | 0 | | | 344 1-1 345 1-3 346 2-8 347 2-1 348 2-2 349 3-7 350 3-1 351 3-1 352 3-2 353 3-2 355 3-3 | 17
31
8
15 | | MOON | 4.0
5.0 | 1.49 | 1 | 1 | 68.7 | 200 | 2. | 204 | | 1385 | 12-5 | | | 9.0 | 4.37 | 0.68 | 2,71 | 2.97 | -6 | | 0 | - | | 345 1-3
346 2-8
347 2-1
348 2-2
349 3-7
350 3-1
351 3-1
352 3-2
353 3-2
355 3-3 | 31
8
15
21 | | | 5.0 | | | 2.77 | 6.8 | -6 | | | - | 1386 | 12-12 | | | 7.0 | 3.76 | 0.69 | | 2.60 | .6 | | | + | | 346 2-8 | 8
15
21 | | U.S.G.S. | | | -96 | 2.49 | 1.43 | .5 | | | FC22 | 1387 | 12-19 | | ** | 7.0 | 3.71 | 0.49 | 2.62 | 1.83 | | 14 | | + | | 1347 2-1
1348 2-2
1349 3-7
1350 3-1
1351 3-1
1352 3-2
1353 3-2
1354 3-3
1355 3-3 | 15
21 | | | 5.0 | .96 | .72 | 2.44 | 69 | .6 | | | - | 1388 | 12-26 | | ** | 20.8 | 20.8 | 3.97 | 3.84 | | 1 | - 1 | 0 | 1 | | | 21 | | | | 2,40 | .93 | 2.51 | 2.24 | 6 | 1 " | | | 1389 | 12-27 | | | 20. | 20. | 3,62 | 3.77 | | 1 | | +.0 | | | 1349 3-7
1350 3-1
1351 3-1
1352 3-2
1353 3-2
1354 3-3 | | | •• | 5.0 | 2.QB | -76 | 2.46 | 1.59 | .6 | 1 | | - | 1390 | 12-27 | | h | 25 | 24.9 | 3.53 | 3.98 | | 1 1 | | 0 | + | | 350 3-1 1351 3-1 1352 3-2 1353 3-2 1354 3-3 1355 3-3 | 7 | 1 1 | | 5.0 | 1.98 | .74 | 2.45 | 1.47 | 6 | | | | 1391 | 1-3 | 1100A | | 13.0 | 9.4 | 1,26 | 2.99 | | | 13 | | | | 1351 3-1
1352 3-2
1353 3-2
1354 3-3
1355 3-3 | | | <u>"</u> | 5.0 | 1172 | .69 | 2.40 | 1.18 | 6 | 10 | | | 1392 | 1-9 | 1110A | MOON | 13.0 | 7.7 | 0.97 | 2.88 | | .6 | | 0 | FC22 | | 1352 3-2
1353 3-2
1354 3-3
1355 3-3 | | | | 5.0 | 1.74 | .80 | 2,43 | 1.39 | .5 | | - | | 1393 | 1-16 | 1125A | U.S.G.S. | 7.3 | 4.44 | 1.07 | 2.80 | | -6 | | 0 | | | 1353 3-2
1354 3-3
1355 3-3 | | | | 11 | 4.36 | .94 | 2.67 | 4.10 | 6 | | 6 ± 02 | - | 1394 | 1-23 | 1135A | MOON | 8.0 | 4.13 | 0.97 | 2.76 | | 1-6 | 1 | 0 | FC22 | | 1354 3-3
1355 3-3 | | | | 12.3 | 5.6 | 0.46 | 2,58 | 2.55 | - 6 | | 1 | ļ | 1395 | 1-30 | 1130A | U.S.G.S | 5.5 | 2.50 | 1.60 | 2.76 | 1 | 1 i | Ì | | F00.0 | | 1355 3-3 | | <u> </u> | | 10. | 4.76 | .54 | 2,55 | 2.55 | -6 | | | | 1396 | 2-6 | 1140A | MOON
U.S.G.S. | 5.5 | 2,26 | 1,33 | 2.72 | | | Т | 7 0 | | | | | | | 26.5 | 24.3 | 4.32 | 3.99 | 105. | 6 | | | | 1397 | 2-11 | 130P
140P | MOON | 8.0 | 2,39 | | | 3.27 | | 5 | 7 <u>0</u>
7 0 | | | 1330 45. | | | | 13.5 | 13.4 | 2.38 | 3,28 | 31.9 | 6 | i | | - | 1398 | 2-20 | 1401 | U.S.G.S. | 3,8 | 1.70 | 1.78 | 2.75 | | | | | | | 1257 4-6 | | | *************************************** | 13. | | - | 2.83 | | -6 | | i | | 1399 | 3-6 | 1210P
1220P | MOON | 8.00 | 3.45 | 0.78 | 2.70 | | 1 1 | | 8 0 | | | 1357 4-1
1358 4-1 | | · | *** | 6.6 | 6.3 | 1.30 | 2.67 | 4,12 | | İ | | | 1401 | 3-15 | 1220 | U.S.G.S. | 3,2 | 1.28 | | 2.65 | | | 1 | 8 O
9 O | | | 1359 4-2 | | ΙÌ | ?** | 6.6 | 2.24 | | 2.55 | 2,26 | .6 | | | | 1402 | 3 20 | 150P
200P | | 8.0 | 2.69 | .71 | 2.66 | ĺ | | | 6 0 | i | | 1360 5-3 | | | | 6.0 | 1.80 | .99 | 2.53 | 1.79 | .6 | 1 | | - | 1403 | 3-27_ | | U.S.G.S. | 3.2 | 1.18 | ļ | 2.63 | | | | 9 0 | 1.522 | | 1361 5-9 | | | ы | 6.0 | 1.80 | | 2.49 | 1.62 | .6 | | | | 1404 | 4-2 | 303 ^P
313P | MOON | 8.0 | 2.76 | 0.69 | 2.65 | i i | 1 | - 1 | 8 0 | FC22 | | 1362 5-1 | | | PI | 6.0. | 1.80 | .88 | 2.47 | 1.58 | .6 | 1 | | | 1405 | 4-10 | | U.S.G.S. | 3.0 | 1.61 | 1.02 | 2.63 | ļ | | | 9 0 | 1 | | 363 5-2 | | | ** | 6.0 | 1.80 | .88 | 2,48 | 1.58 | .6 | | 1 | | 1406 | 4-17 | 143P
148P | MOON | 2.9 | 1,36 | 0.66 | 2,59 | | 1 | | 4 0 | FC22 | | 1364 5-2 | | | | 6,0 | 1.80 | | 2.46 | 1.27 | .6 | 1. | | | 1407_ | 4-24 | | U.S.G.S. | 2,5 | 1,25 | 0.92 | 2.63 | 1 | 1 1 | | 8 0 | | | 1365 6-6 | | | ************************************** | 6.8 | 1,36 | 1 | 2.39 | .92 | .5 | 1 | | | 1408 | 5-1 | · 1209P
1216P | MOON | 2.4 | 1.17 | 0.78 | •2.59 | 0.90 | ╽. | 5 | 5 0 | FC22 | | 1366 6-1 | | | | 1.5 | 36 | | 2.35 | .39 | .6 | | | | 1409 | 5-8 | | U.S.G.S. | 2.5 | 1.18 | 0.60 | 2,57 | 0.71 | . | 6 | 8 0 | | | 1367 6-1 | | | | 1.5 | ,30 | 1 | 2.30 | ,23 | .6 | | з о | | 1410 | 5-15 | 155P
200P | MOON | 2.4 | 1,20 | 0.75 | 2,60 | 0.90 | | 5 | 4 0 | FC22 | | 1368 6-2 | 25 | | *** | _1.5 | .30 | .93 | 2.30 | 28 | .6 | | 3 0 | | 141 | 5-23 | | U.S.G.S. | 2.5 | 1.24 | 1 | 2.61 | 0.96 | ╽. | 6 | 7 0 | | | 1369 7- | | ļļ | | 1.8 | .34 | .88 | 2.30 | | .5 | 1 | 6 0 | ļ | 1412 | 5-29 | 853A
858A | | 2.3 | 1.11 | 0.58 | 2,57 | 0.64 | . | 5 | 4 0 | FC22 | | 1370 7-9 | | | -11 | 1.0 | 1 | .56 | 2.24 | 1 | .6 | <u> </u> | 2 0 | | 1413 | 6-5 | | u.s.g.s. | 2.5 | 1.18 | 0.63 | 2.58 | 0.74 | | 3 | 7 0 | | | L371 Z-1 | | | | 5 | .05 | 1 | 2.19 | .02 | .6 | | 2 0 | <u> </u> | 1414 | 6-12 | 255P
360P | MOON | 2.0 | 0.72 | 0.28 | 2,47 | 0.20 | <u> </u> | 5 | 3 0 | FC22 | | 1372 7-2 | | | | | .13 | 1 | 2.24 | | .6 | 1 | 2 0 | ļ | 1415 | 6-19 | | u.ş.g.s. | 1.7 | 0.53 | 0.26 | 2.43 | 0.14 | | 5 . | , 0 | | | ' | 24 | | | | | | | • | | r | 1 | | 1416 | 6-26 | 854A
857A | MOON | | 0.30 | 0.73 | 2.47 | 0.22 | 1. | 5 | 2. 0. | FC22 | | | 24 | | | | | | | | | | | | 1 | 1 | | I | 1 | 1 | 1 | 1 | I. | 11. | <u>.</u> | | | | | 24 | | | | | | | | | | | | 1417 | 6-30 | | U.S.G.S. | 1.1 | 0.30 | 0.37 | 2.43 | 0.11 | | \neg | | | F. C. Digt. Form 52 4-45 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U6-R | ay c | Oct. | | Dec. | | Feb. | of Canyo | | | | 1 | ending Septen | Bopt. | |------|----------|------------|-------|------------|------------|--------------|---------------|-------------------|------|-------------|---------------|------------------| | •у | | Nov. | 1 | Jan. | | l | Apr. | May | June | July | Aug. | acpt. | | 1 | 0.02 | 0.2 | 0.2 | 3.1 | 0.7 | 0.9 | 18 | 1.8 | 0.9 | 0.2 | 0 | 0 | | 2 | 0.01 | 0.2 | 0.2 | 3.0 | 0.6 | و ٥ | 16 | 1.8 | 0.9 | 0.3 | 0 | 0 | | 3 | 0 | 0 z | 0.1 | 3.6
2.8 | 12 | 0.9 | 12 | 1.7 | 0.9 | 0.3 | 0 | 0 | | 5 | 0 | 02 | 0.1 | 2.8 | 5.4
3.3 | 1.0 | 10
8.9 | 1.6
1.6 | 0.8 | 0.3 | 0 | ő | | 6 | 0.02 | 03 | 0 2 | 2.4 | 2.7 | 1.1 | 7.9 | 1.5 | 0.7 | ŏ.ĩ | | ŏ | | 7 | 0.2 | 0.5 | 0.2 | 2.2 | 2.5 | 12 | 7.3 | 1.4 | 0.7 | 0.1 | 0 | Ö | | 8 | 0.2 | 0.4 | 0.2 | 2.1 | 2.2 | 1.0 | 6.7 | 1.5 | 0.7 | 0.1 | 0.02 | 0 | | 8 | 0.2 | 03 | 0.2 | 1.9 | 1.9 | 0.9 | 5.9 | 1.6 | 0.5 | 0.03 | 0.02 | 0 | | ווו | 02 | <u>0 2</u> | 0.2 | 1.9 | 1.9 | 0.6 | 5 A
4 .7 | 1.6 | 0.4 | 0.03 | 20.0 | 0 | | 12 | 02 | 02 | 0.2 | 1.8
1.6 | 1.8 | 0.5
0.8 | 4.7 | 1.6
1.6 | 0.3 | 0.03 | 0.02 | ŏ | | 13 | 0 2 | 0 2 | 03 | 1.6 | 1.7 | 2.4 | 43 | 1.6 | 03 | 0.03 | ŏ | ŏ | | 4 | őã | οã | 0 æ | 1.6 | 1,7 | 19 | 4.1 | 1.6 | 0.3 | 0.03 | ŏ | ŏ | | 15 | 0.2 | 0.2 | 0.2 | 1.5 | 1.6 | 1.2 | 3.9 | 1.5 | 0.3 | 0.03 | 0 | 0 | | 18 | 0.2 | ၀ ဆ | o æ | 1.5 | 1.9 | 1.0 | 3.9 | 1.5 | 0.3 | 0.03 | 0 | 0 | | 17 | 0.2 | 0.2 | 0.2 | 1.5 | 1.7 | 8. O
8. O | 3.7 | 1.5 | 0.3 | 0.03 | 0 | 0 | | 9 | 03 | S 0
S 0 | 0.2 | 1.4 | 1.6
1.5 | 0.8
3.1 | 3.5
3.5 | 1 <i>4</i>
1 5 | 02 | 01 | 0 | ŏ | | 20 | 0 2 | ŏź | 0 ž | 1.2 | 1.5 | 3.1
3.1 | 3.1 | 1.5 | ŏã | 01 | ŏ | ŏ | | 1 | 0.2 | 0.1 | 33 | 1.2 | 1.5 | 2.5 | 2.8 | 1.6 | 0.2 | 0.1 | 0 | 0 | | 12 | 0.2 | 0.2 | 130 | 1 2 | 1.5 | 1.8 | 2.7 | 1 .6 | 0.3 | 0.02 | 0 | 0 | | 3 | 0.2 | 0.1 | 123 | 1.1 | 1.1 | 1.5 | 2.4 | 1.6 | 0.3 | 0.02 | 0 | 0 | | 5 | 0 2 | 0.1 | 22 | 11 | 0.9 | 1.2 | 2.2 | 1.5
1.4 | 0.3 | 0.01 | 0 | 0 | | 6 | 0.2 | 01 | 8.2 | 60 | 11 | 1.0 | 21 | 1.5 | 0.2 | 0.51 | ŏ | - ŏ - | | 7 | ŏã | o z | 6.5 | ă ŏ | 1.0 | و ٥ | žī | 1.5 | 0.2 | ŏ | ŏ | ŏ | | 18 | 0 Z | ōã | 5.7 | 0.7 | 1.0 | 2.0 | 2.1 | 12 | 0.2 | 0 | 0 | 0 | | 8 | 0.2 | 0 z | 4.7 | 0.7 | | 2.2 | 2.1 | 1.1 | o.z | 0 | 0 | 0 | | 11 | 0.3 | 0.2 | 3.9 | 0.7 | | 75 | 1.9 | 1.0 | 0.2 | 0 | o l | 0 | | | 0.3 | | 3.5 | 0.7 | | 30 | | 1 .0 | 1 | 0 | 0 | | | | 5 .4 5 | | 356.4 | | 592 | | 159.6 | | 123 | | 0.08 |
_ | | | | 6.2 | | 50.9 | | 1443 | · | 46.4 | 1 | 2.50 | | 0 | | AN | 0.176 | ,21 | 11.5 | 1.64 | 2.11 | 4.65 | 5.32 | 1.50 | .41 | .031 | .003 | . 0 | | ET. | 11. | 12. | 707. | 101 | 117. | 286. | 317. | 92. | 24. | 5.0 | .2 | 0 | | | Remarks: | | | | | | | | | YEAR MEAN | 2.3 | 51 | | | | | | | | | | | 1 | ERIOD ACRE- | FEET 1 | 670 | P. C. Disc. Posm 52 8-44 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U 6-R | Daily d | ischarge, in se | cond-feet of | ROGERS C | REEK abov | e Mouth c | f Canyon | | | | , for the yea | r ending Septen | sber 80, 1947 | |--|--|---|--|--|---|--|--|--|--|---|---|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 04000000000000000000000000000000000000 | 04333
00333
0033
0043
0054
158
128
547 | 515107.511007.7.540 | 16
132
11
10
3.69.6.7
6.5.9.7.4.0
5.5.9.7.4.0
5.5.9.7.4.0
5.5.9.7.4.0
5.5.9.7.4.0
5.5.9.7.4.0
5.5.9.0 | 7.5.5.4.0.0.0.5.5.0.0.0.0.0.0.0.0.0.0.0.0 | | 9999998877544488 | 87. 47.74.7.7.9.8.
0000000000000000000000000000000000 | 10000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | 16
17
18
19
20
21
22
23
24
25 | 35000000000000000000000000000000000000 | 3.9
3.3
2.9
91
21
12
24
11 | 2 2
1 8
1 8
1 8
1 8 | * * 4 4 4 4 4 5 5 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 | 0,7,9,7,9,7,5,7,4,7,9,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5 | 199999411199 | 10.8
10.0
11.0
11.0
11.0
11.0
11.0
11.0 | 0.7
0.7
0.7
0.7
0.8
0.8
0.8 | , , , , , , , , , , , , , , , , , , , | 00000 | 000000 | 00000000000 | | 26
27
28
29
30
31 | 0 2
1 0
1 2
0 7
0 5 | 8 .6
7 .0
5 .9
5 .4
5 .0 | 31
94
70
46
28
22
18 | 3.7
3.5
7.0
5.0
4.3
4.1 | 3.0
3.0
3.0 | 1.7
1.7
2.8
2.2
1.9
1.9 | 1 2
1 2
1 2
1 2
1 0 | 0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7 | 0000 | 0 0 0 | 000000 | 0000 | | | 14.7 | 290.4 | 3742 | 201.0 | 97.8 | 70.5 | 41.1 | 225 | 10.5 | 1.00 | 0 | 0 | | MEAN | 0.47 | 9,68 | 12.1 | 6.48 | 3,49 | 2,27 | 1.37 | 0.73 | 0,35 | 0.032 | 0 | 0 | | ACES
Part | 29 | 576 | 742 | 399 | 194 | 140 | 82 | 45 | 21 | 2.0 | 0 | ١٠ | | | Remarks; | | | | | | · | | P | CEAR MEAN
OR ACRE- | | 30 | #### STATION FE2C-R RUBIO WASH at Glendon Way LOCATION: WATER-STAGE RECORDER, LAT. 34°04'27", LONG. 118°04'35", ON THE LEFT (EAST) SIDE OF CHANNEL 10 FEET SOUTH OF THE WESTERLY EXTENSION OF GLENDON WAY, ROSEMAD. ELEVATION OF ZERO GAGE HEIGHT, 274,05 FEET. DRAINAGE AREA: 13.4 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - RECTANGULAR CONCRETE 48.1 FT. WIDE X 10.5 FT. DEEP TO BOTTOM OF 0.5 FT. INVERT WITH 0.5 FT. FILLETTS AT VERTICAL SIDE WALLS. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBRIDGE AT STATION. RECCRDER: INSTALLED NOVEMBER 6, 1936, OVER A 4 FT. X 3 FT. CONCRETE WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY LAS FLORES AND RUBIO DEBRIS BASINS. DIVERSIONS: NONE. RECORDS AVAILABLE: NOVEMBER 6, 1936, TO SEPTEMBER 30, 1947. FOR PREVIOUS RECORDS ON RUBIO WASH SEE STATIONS F82-R, F107-R, F828-R, IN PREVIOUS REPORTS. EXTREMES OF DISCHARGE: MAXIMUM 1630 SECOND-FEET, DECEMBER 22. MINIMUM NO FLOW PART OF YEAR. MINIMUM NO FLOW PART OF YEAR. 1946-1947 (250 SECOND-FEET, NOVEMBER 13, MINIMUM NO FLOW PART OF YEAR. 1930-1947 (STATIONS F82-R, F828-R, F82C-R) MAXIMUM 2,780 SECOND-FEET, MARCH 4, 1943. MINIMUM NO FLOW AT TIMES EACH YEAR. ACCURACY: GOOD. OPERATION: LOCATED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. THE STILLING WELL AND COMMUNICATION CHANNEL WERE CONSTRUCTED BY CORPS OF ENGINEERS, U.S. ARMY. F. C. Dist. Form 52 4-46 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F82C-R | Daily dis | charge, in sec | ond-feet of | RUBIC W | ASH at G | endon Wa | | | | | , for the yea | r ending Septer | nber 30, 19 46 | |----------------------------|--------------------------------------|-------------------------------|--------------------------------|---------------------------------|--|----------------------------------|--|------------------|---|------------------------------|-----------------|-----------------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0
0 1
0 1
0 1 | 0
0
0
0
0
4 .5 | 0
0
0
0 .4
0 .1 | 0
0
3 3
0
1 3 | 000
000
000
000
000
000 | 0 0 0 0 0 | 0.6
17
0.1
0.1
0.1
0.1
2.8 | 0 0 0 | 0.1
0.1
0
0
0.1 | 0
0
0
0 | 0000 | 0000 | | 7
8
9
10 | 0.2 | 0
0
0 1 | 0 0 0 | 0000 | 00000 | 0 0 | 0 2
0 1
0 1
0 1 | 0000 | 0.1
0.1
0.1
0.1 | 000, | 0 0 | 0000 | | 12
13
14
15 | 0.1
0.1
0.1
0.1 | 0 0 0 | 2 0
0 1
0
0
0 | 0
0
0
0 .1 | 0
0
0
3.9 | 0
12
0
0 | 0 1
0 1
0 1
0 1 | 0 0 0 | 0 2
0 2
0 2
0 2 | 0
0
0 | 0 0 0 | 0000 | | 16
17
18
19
20 | 0 1
0 1
0
0
0 | 0000 | 0 0 0 | 0 1
0 1
0 1
0 0 | 0
0
0
0 .4
0 | 0
0
0
64
13 | 0.1
0
0
0 | 0
0
0
0 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 | 0000 | 0 0 0 | | 21
22
23
24
25 | 0 | 0000 | 133
244
94
1.4
1.8 | 0 1
0 1
0 1
0 1
0 1 | 00000 | 0 0 0 0 | 0
0
0 1
0 | 0 0 0 | 0.1
0.1
0.1
0.1 | 00000 | 0 0 | 00000 | | 26
27
28
29
30 | 0
0
0
0
11
7.5
0 1 | 0
0
0
1 2
0 1 | 0.1
0
2.8
0.1
0 | 0.1
0.1
0
0.0 | 0
0
0 | 0
0
26
37
132
4.8 | 0 0 0 0 | 0000000 | 0 1
0 1
0 1
0 1
0 1 | 00000 | 000000 | 00000 | | | 0.03 | 5.9 | 479.8 | 5.6 | 102.6 | ಕ. 6 ರ ಜ | 219 | 0 | 3 .8 | 0 | O. | 0 | | MEAN | 0.65 | 0.20 | 15.5 | 0.19 | 3.66 | 9.32 | 0.73 | 0 | 0.12 | 0 | 0 | 0 | | ACRE-
PEST | 40. | 12. | 952. | 12. | 204. | 573. | 43. | 0 | 7.5 | 0 | 0 | 0 | | | Remarks: | | | | | | | | | TEAR MEA
OR
ERIOD ACRI | n | 2,54
1,840 | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION | Daily | only discharge, in second-feet of RUBIO WASH at Glendon Way for the year ending September 20, | | | | | | | | | | | | |----------------------------|---|------------------------------|-------------------------------|----------------------------------|-------------------------|---|--------------------------|--------------------------|-----------------------|----------|-------|--------------------------| | Day | Oct | Nov. | Dec. | Jøn. | Feb. | Mar, | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 39
10
0 | 0
0 1
0 2
0 5 | 01
01
01
01 | 0 1
0 2
0
0 | *
*
*
* | 1 0
1 1
4.7 | +
+
6.4
0.1 | 0 1
0 1
0 1 | * | 0000 | 0 0 0 | 0
0
0 | | 6
7
8
9 | 0 | 01
98
01
0.8 | 27
0 2
0 1
+ | 0
0
0
4
0
4 | 0 1
0 1
27
0 2 | 0000 | 01
02
01
01 | 01
01
01 | ÷
÷
÷ | 0 0 0 | 0 | 0 1
0 1
0 | | 11
12
13
14
15 | +
0 1
0 2
0 1 | 35
136
181
32
01 | +
+
+
+ | 0 \$
0 1
0 0
1 0
1 0 | 01
01
01 | 0
0
0
0
2 | *
+
+
+ | 0 1
0 2
0 1
0 1 | +
+
+
+ | 0000 | 0 0 | 01
02
02
02 | | 16
17
18
19
20 | 17.4
0.2
0.2
0.1 | 01
01
01
1.8 | * + + + * | 0 1
0 6
1 4
0 2
0 2 | 0 1
2 3
4
+ | 0 1
0 1
1 1
0 2
1 8 | *
0 1
0 2
0 2 | 0 1
0 1
0 1 | +
+
+
+ | 0000 | 00000 | 0 2
0 2
0 2 | | 21
22
23
24
25 | 0 1
0 1
0 1 | 0.6
0.4
68
0.6 | 0
0
0.7
9.7
23.3 | 0 2
0 1
0 1
0 1 | +
+
+
+ | 3.8
0.2
0.1
• | 0 2
1 4
0 1
0 1 | +
+
+
+ | +-1
+
+
+ | 0 0 0 | 0000 | 0 2
0 1
0 1
0 1 | | 28
27
28
29
90 | 0 1
8.7
1.0
0 2
0 2 | 01
01
01
01 | 58
48
3.6
1.4
0.4 | 01
01
28
01
01 | 0 1
0 4
0 1 | 1.7
9.4
0.1 | 01
01
01 | 6 0
+
+
+
+ | +
+
+
+
+ | 0 0 0 | 0 0 0 | 01
01
+
+ | | 31 | 692 | | 382.6 | <u> </u> | 31.0 | 0.1 | 9.9 | ** | | 0 | 0 | | | MEAN | | 589.8 | 1 | 341 | | 25.8 | | 7.9 | | 0 | Т | 6.4 | | ACRE-
VEET | 2,23 | 19.7 | 12.3
759 | 1.10
68 | 1.11
61 | 0.83_
51 | 20 | 0.25
16 | 0 | 0 | 0 | 13 | | PEET | 137
Remarks: | 1,170
- 0.05 c | | | 01 | <u> ,,, , , , , , , , , , , , , , , , , ,</u> | 20 | | <u>'</u> | YEAR MEA | · | | #### STATION DIE-R SAN ANTONIO CREEK above Edison Company Power
Plant LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR CONTROL, LAT. 34°12'50" LONG, 117'40'00", IN NW 1/4 SE 1/4 SEC. 36 T. 24.. R. 8W, 0,5 MILE UPSTREAM FROM SOUTHERN CALIFORNIA EDISON COMPANY'S SIERRA POWER PLANT AND 8 MILES NORTHEAST OF CLARBOOKT, ALTITUDE OF GAGE ABOUT 3,400 FEET. DRAINAGE AREA: 16.9 SQUARE MILES. RECORDS AVAILABLE: MARCH, 1901, TO SEPTEMBER, 1947. AVERAGE DISCHARGE: 29 YEARS (1917-46), 11.5 SECOND-FEET, AVERAGE COMBINED DISCHARGE OF CREEK AND CONDUIT, 29 YEARS (1917-46), 24.6 SECOND-FEET, 30 YEARS (1917-47), 11.5 SECOND-FEET AVERAGED COMBINED DISCHARGE OF CREEK AND CONDUIT, 30 YEARS (1917-47), 24.7 SECOND-FEET. MES: 1945-1946 MAXIMUM DISCHARGE DURING YEAR, 250 SECOND-FEET, DECEMBER 23, (GAGE HEIGHT 3,06 FEET) MINIMUM 0.6 SECOND-FDOT, SEPTEMBER 2-3. 1946-1947 MAXIMUM DISCHARGE DURING YEAR 225 SECOND-FEET, DECEMBER 26 (GAGE HEIGHT REMARKS: RECORDS FAIR. SOUTHERN CALIFORNIA EDISON COMPANY'S CONDUIT DIVERTS WATER ABOVE STATION AND COMBINED FLOW IS PUBLISHED HEREWITH. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY. REVISIONS: FIGURES OF DISCHARGE OF SAN ANTONIO CREEK AND SOUTHERN CALIFORNIA EDISON COMPANY'S CONDUIT HAVE BEEN REVISED FOR THE PERIOD MANCH 2 TO APRIL 23, 1938. REVISED MAXIMUM DISCHARGE SHOWN. DIRCHARGE HEARUREMENTS OF SAN ANTONIO CREEK DIRCHARGE MEASUREMENTS OF SAN ANTONIO CREEK above Edison Company Power Plant DURING THE YEAR ENDING BEPTEMBER 30, 18 above Edison Company Power Plant DURING THE YEAR ENDING SEPTEMBER 30, 18 47 BEG. FT. AREA OF MEAN DAUBE SECTION VELOCITY HEIGHT EQ. FT. FT. JER SEC. FEET SAT- METH- MEAS. S. NT. SEG. CHANGE NO. TOTAL BEGTION VELOCITY MAUGE HEIGHT FEET HAT- METH- MEAS. G. HT. BEG. CHANGE NO. TOTAL BEG. FT. WIDTH FEET U.S.G.S. .37 .6 11 u.s.g.s. 0.55 6 3 0 1016 10-5 5.0 2.17 .83 .81 0 1065 10-8 1.5 0.31 1.77 0.82 .6 3 0 1017 10-10 2,32 .6 10 0 1,5 0.30 1.63 .80 0.49 5,1 .38 .87 .87 1066 10-14 0.43 .6 3 0 1018 10-18 CHANNELS .84 .81 .6 15 0 1067 10-22 1.5 0.30 1,43 0,80 1019 10-25 5.3 2.25 .70 .6 11 2.30 1.08 6 3 0 .31 .83 0 1068 10-29 1.5 0.47 .86 .6 11 0 5.9 1020 10-31 CHANNELS .86 . .94 1069 11-12 11.0 1.10_1.36 6.5 .6 11 -.02 .6 8 0 CHANNELS .6 11 0 3.78 0.65 1.08 2.47 .85 1070 11-18 8.2 1021 11-9 .92 CHANNELS ı6 11 1022 11-15 .83 .80 .6 11 0 0 8.2 2.27 1.59 18.6 1071 11-27 11.0 CHANNELS .83 .83 .6 10 0 6.9 2,32 .6 11 0 1023 11-23 1072 12-9 11.0 1.49 16.0 1024 11-26 CHANNELS .84 1.01 1.6 15 0 1073 12-30. 20.7 3.80 2.44 78.7 .6 8 0 16.0 .82 .84 .6 10 0 1025 12-3 CHANNELS 13.0 2.43 1.90 28.0 .6 13 0 1074 1-13 11.5 .82 .81 .6 12 0 13 0 1026 12-14 1075 13.0 9.1 2.22 1.65 20,2 .6 1-20 1,92 28.3 1027 12-21 .6 22 -.25 1076 1-30 12.0 5.6 1.95 1.31 10.9 6 12 0 1028 12-29 CHANNELS 1.74 26.4 .6 19 0 1077 2-5 255P BREWSTER 14.0 6.8 1.54 1.18 10.5 7 0 FC12 .б. 1029 1-9 BREWSTER 10. 4.01 1,14 6.8 .6 10 -.01 FC12 1078 2-11 U.S.G.S. 12.2 5.6 1.25 1.09 7.0 .6 13 0 310P BREWSTER U.S.G.S 3.17 1.83 5.8 .6 12 0 1079 2-19 12.0 5.3 1.17 1.03 6 2 6 6 0 1030 1-10 11. 1.14 FC12 .6 11 0 6.0 2.09 .89 2.46 1080 2-27 U.S.G.S. 2.66 1.73 1.09 .6 13 0 1031 1-21 6.1 4,59 CHANNELS .6 13 0 1102A BREWSTER 1032 1-30 .82 1.61 1081 3-5 6.0 2.86 1.40 1.02 4.0 6 0 FC12 1033 2-7 CHANNELS -81 1.63 .6 13 0 2.35 1.30 0.96 3.05 1082 3-13 6.2 .6 13 -.01 U.S.G.S. 1.43 .6 13 340P BREWSTER 1034 2-14 CHANNELS .80 0 1083 3-20 6.0 1.22 0.96 3.1 6 0 FC12 12 1035 2-20 CHANNELS .85 1,39 .6 О 1084 3-28 u.s.g.s. 6.1 1.29 0.93 3.07 14 +.01 .6. .6 12 250P BREWSTER 1.51 1085 4-3 2.65 3.2 1036 2-28 6.0 1.21 0.95 6 +.01 FC12 . ô. .6 11 1086 .85 1.33 4.9 1.35 0.93 3.16 1037 3-6 .6 11 0 1038 3-11 7.0 1.44 0.87 1,21 .6 12 0 1087 4-17 310P BREWSTER 0.87 0.88 2.1 . 6 5 0 FC12 1039 3-28 CHANNELS .85 1,77 .6 13 0_ 1088 4-25 U.S.G.S 2.31 1.56 0.99 3.60 .6 11 -.01 CHANNELS 1.25 8.6 .6 15 0 BREWSTER 1.88 0.90 0.89 1.7 .6 4 0 FC12 1.089 5-1 CHANNELS 1.31 .6 17 Ω 0.80 2.43 0.91 6 9 0 1041 4-12 10.0 1090 5-9 CHANNELS 2.07 37.6 .6. 20. -.02 BREWSTER 2.0 0.85 1.65 0.90 1.4. 4 0 FC12 1042 4-18 1091 5-14 23.1 .6 17. 0 2.0 0.65 1.38 0.85 1.55 CHANNELS 1092 5-22 1043 4-25 1044 CHANNELS 1.54 19.3 .6. 15 0 1093 5-28 BREWSTER 2.0 0.79 1.52 0.85 1.2 FC12 CHANNELS 1.42 13.3 .6. 14. 0_ 1094 6-5 CHANNE 0.84 1.65 1045 5-10 CHANNELS 1.32 9.8 6 13 0 1095 6-11 WADDICOR 07 FC37_ 1046 5-16 .6 13 0 . 5 1047 5-22 CHANNELS 1,24 6.4 CHANNE 1 83 1.04 6 0 1096 6-23 CHANNELS 1.00 4.35 .6 14 0 WADD I COR 0.99 h 83 0.89 3 0 FC37 1048 5-28 1097 <u>Б-24</u> 6.9 1.91 1.61 .6 10 0 1098 7-9 BREWSTER 0.82 0.86 10 FC12 CHANNELS .84 1.76 6 12 0 CHANNELLS 0.81 0.86 2 0 1099 1051 6-17 CHANNELS .88 2.37 .6 12 0 1100 7-23 BREWSTER 0.45 1.80 0.81 0.81 2 0 FC12 1052 6-24 CHANNELS .83 1.41 .6 11 0 Ų,5.G.S 0.39 1.92 0.80 0.75 -6 2 0 7-28 .6 5 0 1053 7-8 2.5 1.00 1.08 .81 1.08 1102 0.50 1.56 b_81 0.78 3 0 8-4 3 0 1054 7-15 2.5 1.00 .98 .81 .98 6 5 0 1103 8-12 1.5 0.61 1.64 0.85 1.00 . 5 . 6 4 0 1055 7-25 2.5 1.00 1.03 .82 1.03 .6 5 0... 1104 8-18 1.8 0.74 1.35 0.80 1.00 1.00 .88 1056 8-1 2.5 .80 .88 .6 5 0 la. FC12 1105 8-20 215P BREWSTER 0.70 1.27 0.80 0.89 13.10 1057 8-8 2,5 .80 -6 7 0 6 .88 .98 .86 1106 8-25 1.6 0.65 1.29 0.79 0.84 3 0 .6 6 0 1058 8-15 2,5 -87 1.09 .81 .95 1.5 0.62 1.05 0.74 0.65 . 6 3 0 1059 8-22 2.7 _.73 1.37 80 1.00 .6 6 0 9-8 1.7... 0.63 0.95 0.75 0.60 6 4 0 1108 __30 5 0 0.84 0.80 0.75 5 0 1060 8-30 1.5 .1 .47 .80 .44 .6 1109 9-16 0.67 Lб 4 0 1.5 0.49 1.27 0.78 0.52 .6... .5 ۵. 1110 9-17 BREWSTER 2.0 0.86 0.86 D.77 0.74 FC12 1061 9-11 4 0 2.5 .70 1.29 .77 -90 .6. 9 0... 1111_ 9-23 U.S.G.S. 2.1 0.85 0.72 0.76 0.61 6 3 0.58 .6 4 0 1063 9-24 .24 1.54 ..78. _37 Q. 1112 9-29 2.0 0.91 0.64 0.78 .6 3 0 1.5 .28 1.79 .82 .50 1064 9-30 F. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U15-R | ıy | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | |-----------------------|---------------------------------|---------------------------------|----------------------------------|--|---------------------------------|--------------------------------------|---------------------------------|--|--|---------------------------------|--|--------------------------------------| | 1 2 3 | 0.8
0.8
0.8 | 0.8
0.8
1.2 | 0.8
0.8
0.8 | 15
12
11 | 1 .4
1 .4
4 .8 | 1.7
1.6
1.6 | 12
11
9.5 | 20
20
18 | 3 2
2 9
2 .4 | 1.1
1.0
1.0 | 1.0
1.0
1.0 | 0.8 | | 5 | 8. O
8. O | 0.7 | 8. O
8. O | 9.0 | 3.1
1.8 | 1 .6
1 .4 | 8.8
9.2 | 16
16 | 2.3 | 1.0 | 1 .0
0 .9 | 8. O
8. O | | 6
7
8
9 | 1.6
1.4
1.1
0.8 | 0.8
0.9
0.9
0.9 | 0,8
0,9
0,9
8,0 | 9 2
8 4
8 1
7 1
6.7 | 1.7
1.6
1.7
1.6 | 1 4
1 3
1 3
1 2
1 2 | 9.7
9.7
9.7
9.7
9.7 | 15
14
14
14
13 | 2.0
1.8
2.0
2.1
2.1 | 1.0
1.0
1.1
1.2
1.1 | 0.8
0.8
0.8
0.8 | 8. 0
8. 0
8. 0
8. 0
8. 0 | | 1
2
3
4
5 | 0.8
0.8
0.8
0.8
0.8 | 0.9
0.9
0.9
0.8 | 0.8
0.8
0.8
0.8 | 6.7
7.5
7.9
7.3
7.1
6.4 | 1.6
1.6
1.4
1.4 | 1 2
1 3
1 7
1 6
1 6 | 9.7
9.9
10
11
11 | 13
12
11
11 | 2 1
2 3
2 3
2 3
2 1
2 4 | 1.1
1.0
1.1
1.0
1.0 | 00000 | 0.8
0.9
1.1
1.1 | | 8
9 | 0.7
0.7
0.8
0.8
0.8 | 009 | 8.0
9.0
9.0
9.0 | 5.8
5.1
4.5
3.8 | 1.4
1.4
1.4
1.4
1.4 | 1.6
1.6
1.6
2.3
2.4 | 12
12
19
16
22 | 9.9
9.5
9.0
8.4
7.7 | 3 2
2 3
1 3
1 3 | 1.1
1.2
1.2
1.2 | 0000 | 1 2
1 2
1 2
1 2
1 2 | | 1
2
3
4 | 0.8
0.7
0.7
0.7
0.7 | 0.9
0.8
0.8
0.9 | 22
111
146
65
60 | 3.2
2.5
2.4
1.8
1.8 | 13
13
13
17 | 23
21
20
21
20 | 26
27
27
26
25 | 7 3
6 9
6 7
6 3
5 9 | 1.3
1.3
1.4
1.6 | 1 .0
1 .0
1 .0
1 .0 | 1 0
1 0
1 0
0 9
0 9 | 1 2
1 2
1 2
0 9 | | 6
7
8
9
0 | 0.7
0.7
0.8
0.9
1.8 | 1.0
1.0
1.6
0.8
0.8 | 41
36
29
26
23
18 | 1.7
1.7
2.0
1.7
1.6
1.6 | 1.7
1.7
1.7 | 2.1
2.0
1.8
2.1
42
20 | 2.3
2.2
2.2
2.2
2.1 | 5.7
5.3
4.7
4.4
3.9
3.5 | 0 9
1 1
1 1
1 1
1 1 | 1.0
1.0
1.0
1.0
1.0 | 0.9
0.9
0.9
0.0
1.0
0.9 | 1.0
1.2
1.2
1.2
1.9 | | | 26.8 | 27.0 | 593.5 | 175.6 | 47.5 | 111.7 | 472.6 | 3221 | 55.6 | 32.5 | 281 | 30.5 | | N. | 0.86 | 90 | 19.1 | 5.66 | 1.70 | 3.60 | 15.8 | 10.4 | 1.85 | 1.05 | .91 | 1.0 | | E- | 53. | 54. | 1,180. | 348. | _94. | 222. | 937. | 639. | 110. | 64. | 56. | 60. | | | Remarks: | | | | | | | | Ÿ | EAR MEAL
OR | | 27
.820. | F. C. Dir. Form 52 8-44 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U 15-R | | | | | | н | ADRAUFICT | MAISION | | | | | | |----------|-----------------|--------------|----------|------------|------------|------------|------------|------------|------------|----------------|----------------|-----------------------| | ally di | scharge, in sec | ond-feet of | SAN AN | TONIO CRE | EK above | Edison Co | mpany Pow | er Plant | | , for the year | ending Septemb | er 80, 19_ 147 | | Day | Oct. | Nov. | Dec. | Jan. | • Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 2.2 | 0.7 | 19 | 7 4 | 11 | 4.2 | 2.7 | 1.7 | 1.4 | 8.0 | 8.0 | 0.7 | | 3 | 1.4 | 8. O
6. O | 18
16 | 69
56 | 11
10 | 3.7
4.2 | 2.9 | 1.7 | 1.4 | 3. O
3. O | 0 0 | 0.6
0.6 | | 4 | 1.0 | 0.6 | 16 | 4.9 | 10 | 4.2 | 2.9 | 1.4 | 1.4 | 0.6 | اوه | 0.6 | | 5 | 1.0 | 0.6 | 15 | 4.2 | 9.7 | 4.0 | 2.7 | 1.7 | 1.7 | 0.7 | 0.9 | <u>o e</u> | | 6 | 0.9 | 0.6
0.6 | 16
16 | 3 8
3 6 | 9.7 | 4.0 | 2 2 | 1.7 | 1.6 | 0.8 | 0.9 | 0 £ | |
8 | 0.6 | 0.6 | 16 | 33 | 8.6 | 3.9 | 2.9 | 1.8 | 1.6 | 12 | و٥ | 0.6 | | 10 | 0.6 | 0.6
0.6 | 16
16 | 32 | 8.6 | 3.9
3.9 | 3.0 | 1.8 | 1.3 | 1.2 | 0.8
0.9 | 0 .E | | 11 | 0.6 | 0.9 | 16 | 30 | 7.1 | 3.7 | 3.0 | 1.6 | 1.1 | 8.0 | 13 | 0.5 | | 12 | 0.6 | 4.3 | 16 | 29 | 6.7 | 3.8 | 3.0
2.7 | 1 4 | 1.0 | 0 .8
0 .8 | 1.1 | 0.8 | | 13 | 0 .6
0 .5 | 16
61 | 15
14 | 28 | 6.7
6.5 | 2.9
2.7 | 2.4 | 13 | 1.0 | 0.8 | 8.0 | 0.7
0.6 | | 15 | 0.5 | 2.4 | 13 | 27 | 6.5 | 2.7 | 2.3 | 1 3
1 3 | اوہ | ا و ٥ | 8.0 | 0.7 | | 16 | 0.7 | 2.6
2.4 | 13
12 | 28 | 6.5
6.3 | 2.7
2.7 | 4 2
2 1 | 12 | 0.7
0.8 | 0.8 | 1.0 | 0.7 | | 17 | 0.6 | 2.4 | 13 | 23 | 6.3 | 2.7 | 21 | 1.1 | l l | 8.0 | 1.0 | 0 .e | | 19 | 0.6 | 2.4 | 13 | 22 | 6 1
5 9 | 2.7 | 2 1 | 11 | 8.5 | 0.7 | 1.0 | 0.6 | | 20 | 0.5
0.5 | 18
9.6 | 14
13 | 21 | 5.9
5.7 | 2.9
3.5 | 21 | 1.3 | 1.0 | 0.7 | 1.0 | 0.7 | | 22 | 0.4 | 6.9 | 12 | 20 | 5.5 | 33 | 2.7 | 1.6 | 1.1 | 0.7 | 1.0 | 0.6 | | 23 | 0.4 | 19 | 12 | 18 | 5 3
5 1 | 3.2 | 29 | 1.4 | 1.0 | e 0 | 0.9 | 0.6 | | 24
25 | 0.4 | 18
17 | 13
43 | 16
16 | 5 1
4 9 | 3.0
2.9 | 3 2
2 9 | 1.4 | 1.0 | ا ق | 0.9 | 0 .6
0 .7 | | 26 | 0.6 | 18 | 155 | 15 | 4.7 | 29 | 2.3 | 1.3 | 1.1 | 8.0 | 0.9 | 0.6 | | 27
28 | 0.9 | 18
20 | 89
87 | 14 | 4.5 | 2.9 | 21 | 13 | 11 | 0 .8
0 .8 | e 0 | 0 £ | | 29 | 1.0 | 20 | 85 | 12 | | 32 | 13 | 13 | 1.0 | 8. 0 | 0 0 | 0.5 | | 30 | 0.9 | 20 | 80 | 11 | | 3.0 | 1.5 | 13 | 8, 0 | 8.0 | و ٥ | 0.5 | | 31 | 0.8 | | 70 | 11 | | 2.9 | | 1 4 | | 8.0 | 9, 0 | | | | 24.0 | 2303 | 962 | 884 | 2005 | 103.6 | 77.7 | 44.7 | 341 | 24.8 | 28.4 | 20.0 | | MEAN | 0.77 | 7.68 | 31.0 | 28.5 | 7.16 | 3.34 | 2.59 | 1.44 | 1.14 | 0.80 | 0.92 | | | ACRE- | 48 | 457 | 1,910 | 1,750 | 398 | 205 | 154 | 89 | 68 | 49 | 56 | 0.67
40 | | | Remarks: | 471 | -,, | 1 29170 | | | +24 | | 3 | EAR MEAN. | 7.22 | | F. C. Dist. Form 52 4-45 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No._____ | Daily | ly discharge, in second-feet of SAN ANTONIO CREEK and SOUTHERN CALIFORNIA EDISON CO.'S CONDUIT . for the year ending September | | | | | | | | nber 30, 19.46 | | | | |---|--|--|--|--|--|--|--|--|--|--|--|--| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5
6
7
8
9
10 | 11222111111111111111111111111111111111 | 12
12
12
12
12
12
12
12
12
12
12
11 | 11
11
11
11
11
11
11
10
10 | 37
34
33
32
31
30
29
29
29
29 | 19
19
26
21
20
20
20
20
20
20
20 | 17
17
17
17
16
16
16
16
16
15 | 31211222222333333333333333333333333333 | 4408876665554 | 154333333332222
2222222222222222222222222 | 18
17
18
18
17
17
17
17
17 | 14
14
13
13
13
13
13
12
12
12
13 | 12
12
12
12
12
12
12
12
12
12 | | 13
14
15
16
17
18
19
20 | 12
12
13
12
12
12
12 | 11
11
11
11
11
11 | 10
10
10
10
10
10
10 | 28
28
28
27
26
26
24 | 18
18
18
17
17
17
16 | 18
16
16
16
16
15
16 | 32
33
33
34
34
41
38 | 33
33
32
32
32
31
30 | 22
22
21
22
21
20
20
20 | 17
16
15
15
16
16
16
15 | 13
133
133
133
133
133
133 | 12
12
12
12
11
12
12
12 | | 21
22
23
24
25
26 | 12
12
12
12
12 | 11
11
11
11
11 | 44
111
146
87
82
63 | 22
22
22
22
22
21 | 16
16
16
17
17 | 16
16
16
16
15 | 49
50
50
49
48
46 | 29
29
29
28
28 | 19
19
20
19 | 15
15
15
15 | 13
12
12
12
12 | 11
11
11
11
11
12 | | 27
28
29
30
31 | 12
12
12
15
12 | 11
12
11
11 | 5 8
5 1
4 8
4 5
3 9 | 21
21
21
21
21 | 1 7
1 7 | 15
16
16
60
40 | 4 4
4 4
4 4
4 3 | 27
27
26
26
26 | 18
18
18
18 | 1 4
1 4
1 4
1 4
1 4 | 12
12
12
12
12 | 11
11
11
12 | | | 380 | 341 | 982 | 824 | 515 | 564 | 1137 | 1005 | 630 | 493 | 393 | 350 | | MEAN
ACRE-
FEET | 12.3
754. | 11.4
676. | 31.7
1,950. | 26.6
1,630 | 18.4
1,020. | 18.2 | 37.9
2,260. | 32.4
1,990. | 21.0
1,250. | 15.9
978. | 12.7
780. | 11.7
694. | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRE | N 20.5 | | F. C. Disc. Form 52 8-44 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.____ | dly d | | econd-feet of. | | | · | | , , | | .'s CONDL | | ar ending Septer | | |----------|-------------------|----------------|------------|------------|----------|----------|----------------|-------|-----------|---------------------|-----------------------|----------| | Day | Oct. | Nov. | Dec. | Jan, | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 | 12 | 12 | 41 | 95 | 3 4 | 25 | 23 | 23 | 18 | 14 | 12 | 11 | | 2 | 12 | 11 | 40 | 91 | 3 4 3 3 | 25
25 | 22 | 22 | 18 | 14 | 12 | 10 | | 3 | 1 4
1 2 | 11
12 | 3 8
3 8 | 77
71 | 33 | 25 | 23 | 22 | 18 | 13 | 12 | 10 | | 5 | 12 | 12 | 37 | 64 | 33 | 25 | 23 | 22 | 18
18 | 12 | 12
12 | 10 | | 6 | 12 | 11 | 37 | 60 | 3.3 | 25 | 23 | 22 | 18 | 10 | 12 | 10 | | 7 | 12 | 11 | 37 | 58 | 32 | 25 | 23 | 22 | 17 | 14 | 12 | 10 | | 8 | 12 | 11 | 38 | 55 | 32 | 2.5 | 23 | 22 | 17 | 14 | 12 | 10 | | 9
10 | 12 | 11 | 38 | 5 4
5 2 | 32 | 25
25 | 23 | 22 | 17 | 1 4 | 12 | 11 | | 11 | 12 | 12 | 38 | 52 | 30
29 | 24 | 23 | 22 | 17 | 13 | 12 | 11
11 | | 12 | 12 | 15 | 38 | 51 | 29 | 24 | 23 | žĩ | 17 | 13 | 12 | 11 | | 13 | īž | 29 | 3 7 | 50 | 29 | 23 | 23 | 21 | 16 | 13 | 12 | 10 | | 14 | 12 | 21 | 36 | 49 | 28 | 23 | 22 | 21 | 15 | 13 | 12 | 10 | | 15 | 12 | 16 | 35 | 49 | 28 | 23 | 22 | 21 | 16 | 13 | 11 | 10 | | 16 | 12 | 16 | 3.5 | 50 | 28 | 23 | 24 | 21 | 16 | 13 | 11 | 10 | | 17 | 13 | 15
15 | 3 4
3 5 | 4 5
4 5 | 28 | 23 | 22 | 21 | 16 | 13 | 11 | 11 | | 18 | 13
12 | 15 | 35 | 44 | 28 | 23 | 22 | 20 | 15
15 | 1 3
1 3 | 11 | 10
11 | | 20 | 10 | 3.8 | 36 | 43 | 28 | 23 | 22 | 20 | 16 | 13 | 12 | 10 | | 21 | 10 | 30 | 35 | 42 | 28 | 24 | 5.5 | 20 | 15 | 13 | 12 | 10 | | 22 | 11 | 27 | 3 4 | 42 | 28 | 23 | 23 | 20 | 15 | 13 | 12 | 10 | | 23 | 10 | 40 | 3 4 | 40 | 27 | 23 | 23 | 19 | 15 | 12 | 12 | 9.8 | | 24
25 | 10 | 39 | 3.5 | 38 | 27 | 23 | 23 | 19 | 15 | 12 | 12 | 9.6 | | 26 | | 39 | 155 | 38 | 27 | 22 | 23 | 19 | 15
15 | 12 | 11 | 9.7 | | 27 | 11
12 | 40 | 110 | 3 7 | 26 | 22 | 23 | 19 | 15 | 12 | 12 | 9.6 | | 28 | 12 | 42 | 108 | 3 7 | 26 | 22 | 22 | 19 | 14 | 12 | 12 | 93 | | 29 | 11 | 42 | 106 | 3.5 | | 23 | 22 | 18 | 14 | 12 | 11 | 8.9 | | 30 | 11 | 42 | 101 | 34 | | 23 | 22 | 19 | 14 | 12 | 1 11 | 9.5 | | 31 | 11 | | 91 | 3 4 | | 23 | | 18 | <u> </u> | 12 | 11 | | | | 362 | | 1615 | | 825 | | 682 | | 482 | | 361 | | | | | 686 | | 1569 | | 732 | | 637 | | 392 | | 302.7 | | CLE | 11.6 | 22.9 | 52.1 | 50.6 | 29.5 | 23.6 | 22.7 | 20.5 | 16,1 | 12.6 | 11.6 | 10.1 | | FET | 718 | 1,360 | 3,200 | 3,110 | 1,640 | 1,450 | 1,350 | 1,260 | 956 | 778 | 716 | 600 | | | Remarks: | | | | | | | | | YEAR MEA
OR ACRE | N 23.7
S-FRET 17.1 | 40 | ### STATION FISI-R SAN ANTONIO CREEK at Mouth of Canyon LOCATION: WATER-STAGE RECORDER, LAT. 34°09'20", LONG. 117°40'54", ON THE RIGHT (WEST) BANK, UPSTREAM FROM ALL HEADGATES OF POMONA VALLEY PROTECTIVE ASSOCIATION SPREADING GROUNDS AND ABOUT 4 MILES NORTHEAST OF CLAREMONT, ELEVATION OF ZERO GAGE HEIGHT. 2,081.66 FEET. DRAINAGE AREA: 26.5 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - GRAVEL AND BOULDERS. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: FLOWS UP TO 300 SECOND-FEET MEASURED BY WADING, NO FACILITIES FOR MEASURING HIGHER FLOW. RECCRDER: INSTALLED FEBRUARY 20, 1931, OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. STATION WAS CUT OF SERVICE FROM MARCH 2, 1938 TO MARCH 30, 1938 AND FROM JANUARY 24, 1943 TO JULY 1, 1943. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: THERE ARE DIVERSIONS FOR IRRIGATION AND POWER DEVELOPMENT. RECCRDS AVAILABLE: FEBRUARY 20, 1931 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: VES OF DISCHARGE: 1945-1946 MAXIMUM 55G SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW FOR MOST OF YEAR. 1946-1947 MAXIMUM 362 SECOND-FEET, DECEMBER 26. MINIMUM NO FLOW FOR MOST OF YEAR. 1930-1946 MAXIMUM 23,400 SECOND-FEET, ESTIMATED, MARCH 2, 1938-MINIMUM 23,400 SECOND-FEET, ESTIMATED, MARCH 2, 1938-MINIMUM NO FLOW FOR SEVERAL MONTHS EACH YEAR. ACCURACY: FAIR. CPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABURE | 4ENTB DF | SAN | ANTONI | O CREE | K | | | | | _ | | DISCHARGE | S MEABURE | HENTE OFSAN A | NTONIO | CREEK | | | | | | | | | |------|-----------|-------------------------|----------------------|-------
-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|------------------------|----------|----------------|--------------|--------------|------------------------|------------------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-------|---------|---------------------------|----------------| | | nêT. | Mouti | of Canyon | | | DURIN | IO THE YE | AR ENDING I | EPTI | CMBCR 30 | 3, 19 | ¥ 6 | | AT | Mouth | of Canyon | | | DUR | ING THE 1 | EAR ENDING | O OEPT | EMBEI | 30, 1 | •47 | | | NO. | DATE | BESIN | MADE BY | WIDTH | AREA OF
BECTION
BO. FT. | MEAN
VELUCITY
FT.PER BED. | BAUGE
HEIGHT
FEET | DISCHARGE
BED. FT. | RAT-
(NG | METH- MEA
BEG
NO | G. CHAN | HT. HETER | NO. | DATE | MEGIN | MADE BY | WIDTH | AREA OF
BEGTION
BO. FT. | MEAN
VELUCITY
FT.PER SCC. | BAUDE
HEIGHT
FEET | DISCHARGE
SEG. FT. | RAT- | METH- | MEAR. S | B. HT.
CHANGE
TOTAL | METER
NO. | | 473 | 12/21 | 1125P
1145P
1215P | BREWSTER
THOMPSON | 56.0 | 46.0 | 5.65 | 9.08 | 260. | | .6 8 | 0 | 01 FC12 | 494 | 11-12 | 223P
235P | | 12.0 | 6.40 | 1.92 | 8.14 | 12.3 | | .6 | 6 | 0 | FC12 | | 474 | 12/22 | 1230P
800A | BREWSTER | 42.0 | 35.2 | 6.82 | 9.05 | 240. | | .6 6 | 4 | 0 | 495 | 11-13 | 1058A
1110A
841A | BREWSTER - VINES | 18.0 | 23.1 | 4.98 | 8.82 | 115. | Ļļ | .6 | 6 4 | r.04 | | | 475 | 12/23 | 830A
910A | | 54.0 | 57.0 | 6.09 | 9.16. | 347. | _ | .6 8 | | 02 | 496 | 11-14 | 855A
820A | | 22.0 | 10.3 | 2.13 | 8.21 | 21,9 | | -6 | 6 | 0 | •• | | 476 | | 930A
450P | | 34.0 | 26.2 | 4.20 | 8.53 | 110. | | .6 8 | | 0 | 497 | 11-20 | 830A
620P | | 22.0 | 24.5 | 4.37 | 8.78 | 107. | H | .6 | | -, 14 | • | | _477 | 12/26 | 505P
503P | | 18.0 | 8.80 | 4.41. | 8.23 | 38.8 | H | . 6 5 | T | 0 | 498 | 11-20 | 630P
910A | | 24.0 | 20.0 | 5.05 | 8.62 | 101. | | | | -,01 | | | 478 | _1/2 | 515P
453P | | 10.0 | 3.80 | 2.16 | 8.10 | 8.2 | \neg | .6 5 | | 0 | 499 | 11-21 | 355P | BREWSTER | 26.0 | 14.4 | 2,31 | 8.28 | 33.2 | | - | -+ | 0 | | | 479 | 1/9 | 505P
418P | | 6.0 | 2.30 | 0.96 | 8.01 | 2.2 | | .6 5 | | 0 | 500 | 11-23 | 825A
840A | | 28.0 | 19.6 | | 8.51 | 79.5 | | .6 | | 0 | | | 480 | 1/16 | 315P
325P | ,, | 6.0 | 2.55 | 1.61 | 8.08 | 3.0 | | .6 4 | | 0 | 502 | 11-27 | 320P
330P | BREWSTER | 18.0 | 12.0
7.80 | 1.82 | | 14.2 | | 6 | | 0 | ** | | 482 | 1/36 | 252P
300P | | 1.5 | 0.43 | 1.21 | 7.90 | 0.52 | .6 3 | | 503 | 12-4 | 330P
340P | # | 10.0 | 5.40 | 1.52 | | 8.2 | | . 6 | | 0 | | | | | 483 | 2/3 | 550P | | 14.0 | 6.40 | 4.31 | 8.22 | 2.76 | | | ٠. ر | | 504 | 12-11 | 320P
335P | | 14.0 | 4,60 | 1.22 | 7.93 | 5.6 | 1 | .6 | | 0 | | | 484 | 2/4 | 921A
930A | | 8.0 | 2.40 | 1,29 | 7.98 | 3.1 | .6 4 | 0 | 505 | 12-18 | 345P
355P | ,, | 9.0 | 3.05 | 0.75 | 7.84 | 2.3 | | .6 | 5 | 0 | ., | | | | -485 | 3/30 | 800A
820A | | 34.0 | 29.5 | 4.98 | 8.95 | 147. | | .6 8 | 0 | 506 | 12-26 | 830A
845A | BREWSTER - VINES | 44.0 | 46.8 | 5.68 | 9.12 | 266. | | .6 | 9 | 0 | ,, | | | 486 | 3/30 | 345P
400P | BREWSTER-COOLEY | 28.0 | 25.0 | 5.36 | 8.90 | 134. | | .6 6 | 4_ | 0 | 507 | 12-26 | 610P
630P | | TWO CH | ANNELS | | 8.80 | 183. | | .6 | 2 | 0 | | | 487 | 3/31 | 845A
900A | | 21.0 | 15.4 | 4.00 | 8.38 | 61.6 | $ \bot $ | .6 7 | 0 | 01 | .508. | 12-27 | 325P
340P | | 32.0 | 27.6 | 5.00 | 8.77 | 138. | Ц | .6 | 6 | 0 | | | 488 | 4/3 | 218P
230P
348P | BREWSTER | 10.0 | 4.40 | 1.77 | 7.98 | 7.8 | 4 | .6 5 | 4_ | 0 | 509 | 12-28 | 1245P
100P
1241P | BREWSTER | 28.0 | 25.6 | 4.84 | 8.71 | 124. | | 6 | 7 | 0 | * | | 489 | 4/17 | 400P
200P | •• | 12.0 | 8.00 | 3.36 | 8.20 | 26.9 | | .6 6 | <u>;</u> | 0 | _510 | 1-2 | 1255P
501P | | 28.0 | 25.2 | 2.88 | 8.50 | 72.6 | | .6 | 7 | 0 | | | 490 | 4/24 | 215P
405P | | 13.0 | 6.55 | 2.03 | 8.10 | 13.3 | - | .6 7 | + | | 511 | 1-8 | 516P
310P | | 26.0 | _17.5 | 2.69 | 8.20 | 47.1 | - | .6 | | 0 | | | 491 | 5/1 | 420P
238P | | 14.0 | 5.36 | 1.49 | 8.03 | 8.0 | \dashv | .6 7 | - | 0 | 512 | 1-15 | 320P
243P | | 18,0 | 12.8 | 2.59 | 8.06 | 33.1 | \vdash | .6 | | 0 | | | 492 | 5/8 | 250P
248P | | 10.0 | 3.48 | 1.52 | 7.97 | 5.3 | \dashv | .6 5 | + | 0 | _51.3 | 122 | 255P | | 18.0 | 11.7 | | 8.04 | 27.9 | \vdash | .6 | | 0 | " - | | 493 | _5/15_ | 300P | ••• | 10.0 | 2.76 | 1,12 | 7.95 | 3.1 | ļ | .6 5 | | 0 | 514 | 1-28 | 120P
333P
345P | | 16.0 | 9.60 | | 7.95 | 37.5
17.8 | | .6 | 5 | 0 | | | | | | | | | | | | | | | | 516 | | 208P
220P | ,, | 18.0 | 7.60 | 1.32 | | 10.0 | | - 1 | | 0 | | | | | | | | | | | | | | | | 517 | | 138P
150P | | 14.0 | 6,60 | | 7.86 | 9.1 | | .6 | | 0 | -, | | | | | | | | | | | | | | | 518 | 2-19 | 215P
230P | | 12.0 | 5.20 | | 7.84 | 6.4 | | .6 | | 0 | | | | | | | | | | | | | | | | l | 2-27 | 320P
330P | | 10.0 | 4.20 | | 7.65 | 3.0 | | .6 | T | 0 | •• | | | | | | | | | | | | | | | 520 | 3-5 | 325P
335P | | 10.0 | 3.04 | 0.85 | 7.58 | 2.6 | | .6 | 5 | 0 | • | | | | | | | | | | | | | | | 521 | 3-13 | 439P
445P
412P | | 3.0 | 0.54 | 0.83 | 7.90 | 0.45 | | .6 | 3 | 0 | ** | | | | | | | | | | | | | | | 522 | 3-20 | 420P | | 4.0 | 0.80 | 0.91 | 7.40 | 0.73 | Ц | .6 | 4 | 0 | • | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. FI51-R | Dally di | scharge, in se | cond-feet of | SAN ANTION | IO CREEK | at Mouth | of Canyo | n | | ., | , for the yea | r ending Septe | mber 30, 19 <u>46</u> | |--|----------------|--------------|----------------------------------|--|------------------|--|------------------------------|---------------------------------|-----------------------|-------------------------------|-----------------------|-----------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3 | 0 | 0 | 0
0 | 3.2
3.2
1.0 | 0.7
0.6
14 | 000 | 24
17
9.6 | 10
9.6
10 | 0 0 | 0 0 | 0 | 0 0 | | 4
5 | 0 | 0 | U | 7.5
6.1 | 2 .4
0 | 0 0 | 6 1
3 .4 | 3.9
8.2 | 0 | 0 | 0 | 0 | | 6
7
8
9 | 0000 | 0000 | 0 0 0 | 5.1
3.7
3.0
2.4 | 0000 | 2000 | 3 .4
2 .4
0 .5
0 .4 | 6.1
6.1
6.1
8.2 | 0
0
0 | 0 0 | 0 0 | 0 0 | | 10
11 | - 0 | <u>8</u> |)
O | 2 1
4 .7 | 0 | ÿ | 03 | 8.2 | o
U | 0 | 0 | - 8 | | 12
13
14
15 | 0000 | 0000 | 0000 | 7.5
6.1
5.4
6.1 | 0000 | 00000 | 0 3
0 3
0 4
0 4 | 5 .4
4 .0
3 .0
3 .0 | 0 0 0 | 0 0 0 | 0
0
0 | 0 0 | | 16
17
18
19 | 0000 | 0000 | 2000 | 5 .4
5 .4
5 .4
4 .7 | 0000 | 0000 | 0.5
1.8
3.2
3.4 | 2.4
1.8
1.8
1.4 | 0 0 0 | 0 0 0 | 0000 | 0 0 0 | | 20
21
22
23
24 | 0000 | 0000 | +1
230
231
101 | 3.4
3.0
3.7
3.4
2.4 | 0000 | 0
0
0
0 | 39
31
20
16
15 | 0.7
0.5
0.3
0.2
0.1 | 0 0 0 | 0 0 0 | 0 0 | 0 0 0 | | 25
26
27
28
29
30
31 | 000000 | 0 0 0 | 73
+4
55
29
21
14 | 1.6
1.4
1.4
1.6
2.1
0.6 | 0
0
0
0 | 0.000000000000000000000000000000000000 | 14
13
13
14
13 | 0
0
0
0 | 0
0
0
0
0 | 00000 | 0
0
0
0
0 | 0
0
0
0 | | 01 | 0 | 0 | 079 | 0.7 أ
6. 4 د 1 | 17.7 | 151 | 3 o 3 .5 | 113.5 | 0 | 0 | 0 | 0 | | MBAN | 0 . | 0_ | 28.4 | 4.34 | 0.63 | 4.87 | 11.8 | 3,66 | 0 | 0 | 0 | | | ACRS-
PEST | 0 | 0_ | 1,740. | 267. | 35. | 300. | 701. | 225. | 0 | 0 | 0 | 0 | | | Ramarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRE | n
e-feet | 4.52
3,270. | F. C. Dist. Form 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 151-R | | | | | | . н | IDRAULIC . | DIAIRION | | | | | | |---|------------------|---------------------------------------|---|--|--|---|----------|---|------|------------------|----------------|---| | Daily d | lischarge, in se | cond-feet of | SAN ANI | ONIO CRES | K at Mout | h of Can | yon | | | , for the yes | r ending Septe | mber 30, 19_47. | | Day | Oct. | Nov. | Dec. | Jøn. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 0.6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 16
14
12
9.5
14
10
0.8 2
8.4
6.8 2
8.9
6.1
5.4
3.0
2.7
1.1
1.1
0.4
5.7
2.3
5.1
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1 | 76
74
74
74
74
74
74
74
74
74
74
74
74
74 | 16
14
11
11
11
11
12
2
8 9
12
8 9
12
8 9
17
5 6 8 8
4 7
4 7
4 0
3 7
3 0
3 0
3 7 | 3.7.7.4.3.7.7.4.3.7.7.4.3.7.7.0.0.3.2.0.5.3.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | 7.4 | 0 | | | | 0 | | | 0
a 0 | | 10115 | 1307.0 | 2432 | 23 | 7.4 | 0 | 0 | 0 | 0 | | | MEAN | | 380.5 | | 1207.0 | 0 40 | 74.4 | 0.25 | 0 | 0 | i o | 0 | 1 0 1 | | ACRE-
FEE7 | 0.02 | 12.7 |
32.6
2.010 | 2,390 | 8.69
482 | 2,40
148 | 15 | 0 | 0 | 1 0 | 0 | 0 | | Funt | 1.2
Remarks: | 755 | 2,010 | 2,390 | 402 | 140 | 1_1/ | | | YEAR MEA | | | | | Ayanan AB. | | | | | | | | | OR
PERIOD ACR | E-FEET | 5,800 | | | | | | | | | | | | | | | ### STATION U10-R SAN DIMAS CREEK at Mouth of Canyon LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR CONTROL, LAT. 34°08'45". LONG. 117°46'35", IN SW 1/4 NE 1/4 SEC. 25, T. I N., R. 9 W.. AT MOUTH OF SAN DIMAS CANYON. 0,7 MILE DOWNSTREAM FROM FLOOD CONTROL RESERVOIR AND 3 MILES NORTHEAST OF SAN DIMAS. ALTITUDE OF GAGE. ABOUT 1,245 FEET. DRAINAGE AREA: 18.3 SQUARE MILES. RECORDS AVAILABLE: APRIL TO SEPTEMBER 1916. (DISCHARGE MEASUREMENTS ONLY). DECEMBER 1916 TO SEPTEMBER 1947. AVERAGE DISCHARGE: 29 YEARS (1917-46, 5.12 SECOND FEET. 30 " (1917-47) 5.09 " " EXTREMES: 1945-1946 MAXIMUM DISCHARGE, ABOUT 250 SECOND-FEET, DECEMBER 23, MINIMUM DAILY DISCHARGE, 0,2 SECOND-FOOT, JANUARY 18-23, 1946-1947 MAXIMUM DISCHARGE, 67 SECOND-FEET, DECEMBER 26 (GAGE MEIGHT 1,86 FEET), MINIMUM DAILY DISCHARGE, LESS THAN 0,1 SECOND-FOOT FOR MANY DAYS, 1916-1947 MAXIMUM OISCHARGE (REVISED), 5,000 SECOND-FEET MARCH 2, 1938 FROM RECORDS OF RELEASE AT SAN DIMAS FLOOD CONTROL DAM AND COMPUTED INFLOW BETWEEN DAM AND GAGING STATION, NO FLOW FOR SEVERAL MONTHS DURING MOST YEARS. REMARKS: RECORDS GOOD. FLOW REGULATED BY SAN DIMAS DAM ABOVE STATION. SAN DIMAS WATER COMPANY OLVERTS WATER JUST BELDW GAGE FOR IRRIGATION. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY, 89 MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARG | E ME AS URE | MENTS DF. SAN D | IMAS CR | REEK | | | | | | | | NG. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF | MEAN
VELODITY
FT.PER SEC. | DAUGE
HEIGHT
FEET | DISCHARGE | RAT- MET | MEAS. | G. HT.
CHANGE
TOTAL | HETER
NO. | |--------|--------------|--------------------|----------------------|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|--------|----------|--------|--------------|-----------------|--------------|----------------------|------------------|---------|---------------------------------|-------------------------|-----------|-----------|-------|---------------------------|--------------| | - | AT
NEAR | Mouth | of Canyon | | | อมส | ING THE Y | EAR ENDING | SEPTE | HBER 3 | o, 19 46 | | | | END | l | | | | | SCC. FT. | | Ť | | NG. | | NO. | DATE | BESIN | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | DAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- ME | | | | 1717
1718 | 4-25
5-1 | | U.S.G.S.
BREWSTER | 4.0 | 1,39 | .59
.1.24 | -06
0-21 | 1.73 | 6 | | D | FCt 2 | | | | END | l | ì | Ì | | | | 1 | _ | | NO. | 1719 | 5-2 | | ų.s.g.s. | 4.0 | 1.48 | 1.21 | 21 | 1.79 | 6 | 8 | Q | | | 1673 | 10-5 | | U.S.G.S. | 19. | 5.5 | 1,35 | ,30 | 1.94 | .6 | 5 1.13 | 9 D | | 1720 | 5-8 | ļ | BREWSTER | 4.0 | .1.83 | 1.42 | .41 | . 2.59 | .6 | .4 | Ω. | FC12 | | 1674 | 10-10 | 1 | | 19 | 5.4 | 37 | -28 | 1.98 | - -6 | | j | | .1721 | 5-10 | | U.S.G.S. | 4.0 | 1.84 | 1.32 | .30 | 2.42 | - 6 | . В. | 0_ | | | | 10-18. | 1 | | 18. | 5.2 | .35 | 28 | 1.81 | 6 | | | | 1722 | 5-15 | | BREWSTER | 4.0 | 1.79 | 1.34 | 28 | 2.40 | 6 | 4 | 0 | C12 | | | 10-25 | | | 18. | 5.52 | .33 | .28 | 1.85 | 1 1.6 | | | ļ | _1723 | 5-16 | | u.s.g.s. | 4.0 | 1.68 | .1.35 | .28 | 2.26 | 6 | | _۵_ | ļ | | 1677 | 10-31 | | | 2.3 | .69 | İ | .24 | 1.34 | 1.6 | İ | | | 1724 | 5-22 | ļ | BREWSTER | 4.0 | 1.98 | 1.25 | .40 | 2.48 | هـ ا | | _ م | FC12 . | | 1678 | 11-9 | - | | 2.3 | .64 | 2.12 | . 25 | 1.36 | l laf | 1 | | | 1725 | 5-22 | | u.s.c.s. | 4.0 | 1.77 | 1.28 | .28 | 2.27 | .6 | . 8 | o | | | 1,679 | 1-15 | · · - | | 2.3 | | [| .24 | 1.06 | £ | | | | 1726 | 5-28 | | | 4.0 | 2.00 | 1.29 | .28 | 2.58 | .6 | . 8 | 0 | ļ | | 1680 | 11-23 | | i . " | 2.3 | 52 | | -21 | 97 | -6 | | | + | 1727 | 5-29 | | BREWSTER | 4.0 | 1.91 | 1.19 | .29 | 2.28 | .6 | 4 | 0 | FC12 | | 1681 | 1-26 | 1 | | 2.2 | .53 | 1.62 | .20 | _ 486 | 1.6 | | l | | 1728 | 6-6. | | | 4.0 | 1,89 | 1.20 | ,36 | 2,27 | | 4. | .0 | | | 1682 | 12-3 | } | | 7.3 | 1.60 | | .21 | 1.60 | .6 | | Ĭ. | | 1729. | 6-6 | ļ | u.s.g.s. | 5.3 | 2,08 | 1.22 | .36 | 2.55 | .6 | 10 | 0 | ļ | | | 2-14 | | | 1. 8.Q. | 2.10 | 77 | 25 | 1.62 | 6 | - 1 | 1 | 1 | 1730. | 6-10 | ļ | <u> </u> | 4.5 | 1.85 | 1:16 | .37 | 2,15 | ,6 | 9 | 0 | | | l | 2-14 | 1 | " | 2.3 | .63 | 2.00 | -25 | 1.26. | 1.6 | Ī | 1 | · | .1731 | 6-12 | | BREWSTER | 4.0 | 1.84 | 1.22 | 38 | 2,24 | . 6 | 4 | 0. | FC12 | | . 1685 | 2-21 | | | B.O | 2.20 | aBL | 27 | 1.7B | .6 | - 1 | 1 | | 1.732 | 6-17 | | u.s.g.s. | .4.5 | 1.78 |
 - 1.15 | .39 | 2.04 | 6 | 9 | Q | | | 1686 | 2-29 | | ".
 - | 18 | 7.7_ | 66 | 66 | 6.8 | 1.6 | | 1 | | 1733 | 6-19 | | BREWSTER | .4.0 | 1.98 | .1.34 | -44 | 2.66 | 6 | 4 | Q. | FC12 | | 1687 | L+.9 | | BREWSTER | 2.0 | 57. | 51 | 08 | .29 | - 6 | - 1 | | FC12 | 1734 | 6-24 | <u> </u> | U.S.G.S. | _ 4.5 | 1.91 | 1.30 | .28 | 2,48 | .6 | 9 | 0 | | | 1688 | -16 | - | | 2.0 | | .59 | .10 | .39 | .6 | | | 1 | 1735 | 6-26 | | BREWSTER | 4.0 | 1.91 | 1.40 | 27 | 2.68 | .6 | . 4 | 0 | FC12 | | 1689 | -23 | | | 2.0 | | .50 | 07 | 33 | - 6 | - | 1 | | 1736 | 7-3 | | ļ | 4.0 | 1.93 | 1.41 | .29 | 2.72 | | 4 | _0 | | | 1690 | -30 | | ! " | 4.0_ | 1.73 | 99 | .19 | 1.71 | 1 46 | i | | . " | 1737 | 7-5 | ļ | u.s.g.s. | 4.4 | 1.54 | 1.49 | .41 | 2.29 | .6 | 10 | Q | ļ | | 1691 | -30 | † · | Ų.s.G.s. | 4.0 | 1,50 | ±87 | .21 | 1.31 | .6 | 1 | | | 1738 | 7-8 | <u></u> | u.s.g.s. | 4.0 | 1.60 | 1.58 | .33 | 2.53 | .6 | 8 | 0 | | | 1692 | 26 | | BREWSTER | 18. | 10.4 | - 96 | .84 | 10.0 | _ .6 | 1 | - | FC12 | 1739 | 7-10 | ļ | BREWSTER | 4).0 | 1.57 | . 1 . 54 | .33 | 2.41 | .6 | 4 | ٥ | FC12 | | 1693 | 2-7 | | U.S.G.S. | 20 . | 11.2 | 1.07 | .86 | 12.0 | .€ | - 1 | 1 | | 1740 | 7-15 | | u.s.g.s. | 4.0 | 1.60 | 1.43 | 33 | 2.29 | .6 | 8 | Q | | | 1694 | 2-13 | | BREWSTER | 16. | 5.7 | 54. | ,29 | 3.08 | | 6 8 | 1 | FC12 | 1741 | Z-17 | | BREWSTER | 4.0 | 1.66 | 1.45 | 0.33 | 2.41 | | 4 | . Ω_ | FC12 | | | 2-14 | | U.S.G.S. | 14. | 7.2 | Ω .3 5 | 0.41. | 2.53 | | .6. 1 | 1 | | 1742 | 7-24 | ļ | | 4.0 | 1.64 | 1.45 | .33 | 2.38 | .6 | .4. | ۵ | | | 1696 | | | BREWSTER | 8.0 | 3,90 | | .30 | 2.87 | | | İ | FC12 | 1743 | 7-25 | ļ | U.S.G.S. | 4.0 | 1.60 | 1,44 | .32 | 2.31 | .6 | 8. | _ 0 | | | 1 | 2-20 | | U.S.G.S. | 7.5 | 3.22 | | 27 | 2.36 | | 1 | 9 0 | | 1744 | 7-31 | | BREWSTER | 4.0 | 1.64 | 1,41 | .32 | 2.32 | | 4 | 0 | FC12 | | | 2-27 | | BREWSTER | 7.0 | 2.82 | . 91 | .29. | . 2.57 | | 6 | 1 | FC12 | 1745 | 8-1 | | U.S.G.S. | 4.0 | 1.60 | 1.42 | 31 | 2.27_ | 6 | 8 | _0_ | ļ | | | 2-28 | | u.s.g.s. | 8.0 | 2.78 | 87 | 28 | 2.42 | ' | 6. 1 | 2 0 | | .1746 | .a-7 | ļ <u>.</u> . | BONAD IMAN | 15. | 10.6 | .29 | .34 | 3.10 | .6 | 7 | 0 | FC19 | | | 3-6 | | BREWSTER | 8Ω | 3.05 | | 28 | 2.36 | \ \\ \ | .6 | a _0 | FC12. | 1747 | 8-8 | ļ | U.S.G.S. | 4.9 | 1.73 | 1.39 | .32 | 2.41 | .6 | 8 | 0 | | | | 3- 7 | | U.S.G.S. | B.Q. | 2.67 | 78 | 28 | 2.09 | | 6 1 | | | 1748 | 8-14 | | BONAD IMAN | 6.0 | 1.76 | 1.15 | ,31 | 2.03 | .6 | 6 | 0 | FC19 | | | 3-13 | | BREWSTER | 7.0 | 3.55 | 1.15 | -48 | 4.07 | ! | 6 | | FC12 . | 1749 | 8-15 | | U.S.G.S. | 4.8 | 1.50 | 1.63 | .31 | 2.44 | | 10 | 0 | ļ | | | 3-14
3-20 | † | U.S.G.S.
BREWSTER | 8.5 | 3.66 | | -47 | 3.92 | 1 | 6 1 | | FC12 | .1750 | 8-21 | 1 | BONAD IMAN | 5.0 | 1.70 | 1.40 | .29 | 2.38 | .6 | . 5. | 0 | FC19 | | | | | Ī | 8.0 | 3.81 | 1.18 | .48 | 4,48 | 1 | 6 | | IFCIZ | .1751 | 8-21 | | - | 4.0 | 1.72 | 1.18 | .29 | 2.04 | | 4 | ۔ ہا | ,,, | | 1 | 3-21 | 1 | U.S.G.S. | 4.0 | .61 | .70 | .08 | .43 | î î | 6 1 | 1 | ECT | 1752 | | | U.S.G.S. | 4.6 | 2.01. | 1.27 | .29 | 2.56 | ع. ا | i | 0 | | | - 1 | 3-27 | 1 | BREWSTER | 4.0 | 1,32 | | 17, | 1.31 | li | 6 | | FC12 | 1753 | 8-28 | ļ . | BREWSTER | 4.0 | 1.93 | 1,30 | .28 | 2.50 | ↓ .∈ | - 1 | 0 | FC12 | | | 9-28 | | U.S.G.S. | 5.5 | 1.84 | | 26 | 2.11 | | 6 1 | | | 1754 | | _ | u.s.g.s. | 4.7 | 1.95 | 1.40 | .29 | 2,73 | | 10 | 0 | <u> </u> | | - 1 | 1-31 | † · · · | | 5.5 | 2.17 | | -41 | 3.14 | 1 1 | 6 1 | | 1 | 1755. | 9-4 | | BREWSTER | 4.0 | 1.86 | 1.31 | ,29 | 2.43 | | 4 | Lo. | FC12 | | - 1 | 4-3 | - | BREWSTER | 4-Q | _1.43 | | .18_ | 1.54 | 1 1 | 6 | ļ | FC12 | 1756 | 9-6 | | u.s.c.s. | 4.6 | 2,11 | 1,43 | .31 | 3.02 | 1 1 | 11 | | | | | 4-4 | | | 26 | 35.8 | 3.07 | 2.12 | 110. | | | 9Ω | | 1757. | 9-10 | | BREWSTER | 4.0 | 1.95 | 1.30 | .29 | 2.53 | .6 | - 1 | 0_ | FC12 | | | 4-4 | | U.S.G.S. | 32,5 | 40.6 | 2.66 | 2.12 | 108 | | .Б 20 | i | 1 | 1758. | 9-12 | | U.S.G.S. | 4.5 | 1.89 | 1.35 | .29 | 2.55 | .6 | | | | | 1712 | | - | BREWSTER | 2.0 | 79 | 1 | -11_ | .93 | 1 | .6 | | FC12 | 1759 | 9-18 | | BREWSTER | 4.0 | 1.87 | 1.30 | .30 | 2.44 | .6 | | ٥ | FC12 | | 1 | 4-12 | 1 | U.S.G.S. | 2.0 | 180 | 1-01 | 09 | 81 | | 6. | 4 Ω'. | | 1760 | 9-18 | | u.s.g.s, | 4.0 | 1.86 | 1.38 | .30 | 2.57 | ,, | | 0. | | | | 1-1Z | - | BREWSTER | 2.0 | | 1.05 | -07 | .79 |] [| .6 | 1 | FC12 | .1761 | 9-25 | | BREWSTER | 4.0 | 2.31 | 1.93 | .45 | 4.46 | | 5 4 | 1 | FC12 | | 1715 | | 1 | U.S.G.S. | 2.0 | | .96 | .07 | 73 | 1 | 6. | | | .1762 | | | u.s.g.s. | 4.6 | 2,33 | | .45 | 4.86 | 1 | 5 11 | ļ | | | 1716 | 4-24 | 4 | BREWSTER | 21.0 | 70 | -86 | -05 | -60 | | 6 | 4 0 | FC12 | | -your attention | , | | ηε. × × . | | | ., | 1 | 10.1 52.5 | | , | , | | | DISCHARG | MEASURE | MENTS OFSAN | DIMAS C | REEK | | | | | | | | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BESTION
89. FT. | HEAN
VELODITY
FT.FER REG. | GAUGE
HEIGHT
PRET | DISCHARGE
SEG. FT. | RAT- K | ETH- H | EAS. D. | HT.
ANGE | METER
HO. | |--------------|----------|----------------|---|---------|-------------------------------
---------------------------------|-------------------------|-----------------------|----------|-----------|----------------------|---------------------------|----------------|--------|-------------|--|-----------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------------------|--------|---------|---------------|--------------| | | HAT E | t Mout | h of Canyon | | | Our | ING THE Y | YEAR ENDIN | 9 8CPT | FEMBE | R 30, | ,, 4 | 7 | 1809 | 3-28 | | U.S.G.S. | 4.8 | 2.36 | 1.82 | 0.41 | 4.29 | $\dagger \dagger$ | | | 0 | | | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELOGITY
FT.PER BEG. | DAUDE
HEIBHT
FEEY | DIBEHARDE
SEG. FT. | RAT- | METH- | MEAS.
SEG.
NO. | G. HT.
CHANGE
TOTAL | METER | 1910 | 4-3 | 1120A
1132A | BREWSTER | 5.0 | 2.50 | 1.52 | 0.39 | 3.8 | | .6 | - 1 | 0 | FC12 | | 1763 | 10-2 | 1030A
1038A | BREWSTER
VAN DER GOOT | 4.0 | 2.33 | 2.00 | | ļ · · · · · · | 1 | | Ĩ | | HO. | 1812 | 4-11 | 1120A | U.S.G.S. | 4.0 | 2.18 | 1.63 | 0.44 | 3.56 | \vdash | -6 | 8 | 0 | | | 1764 | 10-2 | 1030 | U.S.G.S. | 4,4 | 2.25 | | 0.50 | 4.65
5.1 | | .6
.6 | 9 | 0 | FC12 | 1813 | 4-17 | 1132A
224P | BREWSTER | 4.0_ | 2.37 | 1.86 | 0.52 | 4.4 | + | .6 | 4 | ٥ | FC12 | | 1765 | 10-9 | | | 4.0 | 1,92 | 2,12 | 0.43 | 4.07 | | .6 | 8 | _ 0 | | 1814 | 4-23 | _236P_ | | 4.0 | 2.43 | 1.86 | 0.46 | 4.5 | \vdash | -6 | -4 | ۰ | | | 1766 | 10-9 | 143P
155P | BREWSTER | 4.0 | 1.97 | 1.75 | | 3.44 | | .6 | 4 | 0 | FC12 | 1815 | 4-25 | 955A | U.S.G.S. | A.1 | 2.38 | 1.64 | 0.45 | 3.91 | \vdash | -6 | | • | | | 1767 | 10-16 | 1225P
1240P | 11 | 4.0 | 2.20 | 1.95 | 0.46 | 4.3 | | .6 | 4 | 0 | | 1816 | 5-1 | 1005A
1100A | BREWSTER | 4.0 | 2.35 | 1.79 | 0.46 | 4.2 | ++ | -6 | | | FC12 | | 1768 | 10-16 | | บ.s.G.s. | 4.2 | 2.15 | 2,25 | 0.46 | 4.83 | | .6 | 9 | 0 | | 1817 | 5-8 | 11114 | U.S.G.S. | 4.0 | 2.39 | 1.80 | 0.44 | 4.3 | $\dagger \dagger$ | -6 | | | FC12 | | 1769 | 10-23 | 1:230 | | 4.0 | 1.78 | 1.75 | 0.35 | 3.11 | Ш | .6 | . 8 | 0 | | 1819 | 5-14 | 1110A
1120A | BREWSTER | 4.0 | . 2.40 | 1.83 | 0.43 | 4.40 | \Box | -6 | | | | | 1770 | 10-23 | 1245P | BREWSTER | 4.0 | 1.80 | 1.56 | 0.35 | 2.8 | \sqcup | .6 | 4 | Q | FC12 | 1820 | 5-22 | 1020A
1030A | | 4.0 | 2.33 | 1.76 | 0.42 | 4-1 | П | -6 | - 1 | 0 | FC12 | | 1771 | 10-30 | 108₽ | U.S.G.S. | 4.0 | 1.75 | 1.82 | 0.35 | 3.18 | \vdash | -6 | 10 | 0_0 | | 1821 | 5-22 | | u.s.g.s. | 4.1 | 2.49 | 1,73 | 0.42 | 4,32 | П | -6 | | ٥ | | | 1772 | 10-30 | 120P
1240P | BREWSTER | 4.0 | 1.72 | 1.69 | 0.35 | 2.9 | H | .6 | 4 | 0 | FC12 | 1822 | 5-28 | 1026 ^A
1038 ^A | BREWSTER | 4.0 | 2.37 | 1.69 | 0.41 | 4.0 | | .6 | | | FC12 | | 1773 | 11-6 | 1252P | * | 4.0 | 1.85 | 1.46 | 0.32 | 2.7 | H | .6 | 4 | 0 | ** | 1823 | 6-4 | 140P
150P | | 4.0 | 2.33 | 1,76 | 0.42 | 4.1 | Ш | -6 | 4 | | | | 1774 | 11-7 | 907A | U.S.G.S.
BREWSTER | 4.0 | 1.84 | 1.56 | 0.32 | 2,87 | \vdash | .6 | 9 | 0 | | 1824 | 6-5 | 1145A | U.S.G.S. | 4.0 | 2.46 | 1.80 | 0.43 | 4.44 | Ш | .6 | 9 (| 0 | | | 1775 | 11-13 | 915A | VINES | 4.0 | 1.27 | 1.10 | 0.18 | 1.4 | \vdash | .6 | - 1 | +.01 | FC12 | 1825 | 6-11 | 1155A
1130A | WADDICOR | 4.0 | 2,41 | 1.70 | 0.42 | 4.11 | \sqcup | .6 | 4 0 | 0 F | FC12 | | | 11-13 | 507P
523P | U.S.G.S.
BREWSTER
VINES | 22.0 | 21.6 | 1.37 | 0,28 | 2.21 | \vdash | .6 | 16
7 | 0 | FCLO | 1826 | 6-18 | 1140A | " | 4.0 | 2,43 | 1.65 | 0.39 | 4.0 | \sqcup | .6 | 4 0 | 0 | • | | 1777
1778 | 11-21 | 523 | U.S.G.S. | 18.8 | 11.5 | 3.11 | 1.52 | 35.8 | | .6
2-8 | | 0 | FC12 | 1827 | 6-19 | 1140 | U.S.G.S. | 5.1 | 2.34 | 1.57 | 0.38 | 3.68 | + | .6 | 10 0 | <u>-</u> | | | | 11-27 | 110P
122P | BREWSTER | 4.0 | 1.41 | 0.99 | 0.14 | 1.4 | H | .6 | 4 | 0 | FC12 | 1828 | 6-24 | 1150A | WADDICOR | 4.0 | 1.91 | 0.94 | 0.31 | 1.8 | \vdash | -6 | 4 . | ᅷ | FC12 | | | 11-27 | , | U.S.G.S. | 4.0 | 1.28 | 0.77 | 0,13 | 0.98 | | .6 | 8 | 0 | 7512 | 1829 | 6-30 | 1240P | U.S.G.S. | 1.8 | 0.69 | 0.87 | 0.13 | 0.60 | ++ | -6 | 7 0 | + | | | 1781 | 12-4 | 130P
140P | BREWSTER | 2.0 | 0.56 | 0.82 | 0.06 | 0.46 | | .6 | 4 | 0 | FC12 | 1830 | 7-2 | 1250P
1143A | BREWSTER | 1.9 | -0.69 | 1.06 | 0.14 | 0.73 | ++ | -6 | 4 0 | O F | FC12 | | 1782 | 12-5 | | U.S.G.S. | 1.8 | 0.48 | 0.56 | 0.05 | 0.27 | | .5 | 6 | _0 | | 1831 | 7-9
7-15 | 11484 | U.\$.G.S. | 0.5 | 0.12 | 0.75 | 0.03 | 0.09 | H. | -5 | 4 | + | | | 1783 | 12-11 | 1255P
105P | BREWSTER | 2.0 | 0.52 | 0.77 | 0.06 | 0.40 | | .6 | 4 | 0 | FC12 | 1833 | 7-16 | 316P
320P | BREWSTER | 0.5 | 0.10 | 0.50 | 0.01 | 0.01 | | .6 | \pm | \rightarrow | | | 1784 | 12-11 | 1400 | U.S.G.S. | 1.8 | 0.40 | 0.60 | 0.06 | 0.24 | | .6 | _6 | 0 | | 1834 | 7-23 | 1230P
1235P | | 0.5 | 0.10 | 0150 | 0.02 | 0.05 | \Box | .6 | | 0 | FC12 | | 1785 | 12-18 | 140P
150P | BREWSTER | 2.0 | 0.63 | 0.89 | 0.08 | 0.56 | | -6. | 4 | 0 | FC12 | | 7-29 | | U.S.G.S. | 073 | 0.36 | 0.42 | | 0.015 | \Box | .5 | 3 | 7 | - | | 1786 . | 12-19 | | u.s.g.s. | 1.5 | 0.45 | 0.76 | 0.08 | 0.34 | | -6 | 3 | . 0 | | 1836 | 7-30 | 1130
1135A | BREWSTER | 0.5 | 0.11 | 0.18 | | 0.02 | \prod | .6 | 1 | 1. | FC12 | | 1787 | 12-26 | 440P | BREWSTER · | 22 | 27.4 | 2.09 | 1.77 | 57.2 | | -6 | 22 | 0 | | 1837 | 8-27 | 1258P
102P | | 0.5 | 0.11 | 0.27 | -0.01 | 0.03 | | .6 | 1 | 0 | | | 1788 | 12-27 | 500P | VINES | 18 | 16.4 | 1.37_ | 1,36 | 22.4 | | -6 | 9 | 0 | FC12 | 1838 | 9-8 | | U.S.G.S. | 6.8 | 3.81 | 1.53 | 0.54 | 5.8 | | - 1 | 12 (| 0 | | | | 12-31 | 240P | U.S.G.S. | 22 | 19.2 | 1.10 | 1.27 | 21.1 | ╁╌ | .6 | 13 | 0 | | 1839 | 9-10 | 1255P
110P | BREWSTER | 6.0 | 3.33 | 1.44 | 0.53 | 4.8 | \sqcup | .6 | - 1 | ا ر | FC12 | | 1790 | 1-2 | 300P | BREWSTER | 17 | 10.3 | 1.00 | 0.82 | 10.3 | | .6 | 9 | _ 0 | FC12 | 1840 | 9-17 | 1239P
1245P | ,, | 1.0 | 0.25 | 0.92 | 0.05 | 0.23 | $\perp \downarrow$ | -6 | 2 1 | ۰ | | | 1791 | 1-3 | 110P
122P | U.S.G.S.
BREWSTER | 20 | 2.35 | 0.81 | 0.80 | 10,5 | \Box | -6 | 4 | 0 | ECLO | 1841 | 9-22 | 1·225P | U.S.G.S. | 0.7 | 0.10 | 0.32 | 0.01 | 0.032 | \vdash | -5 | 4 | • | | | 1792 | 1-15 | 1235P
1245P | , areas | 4.0 | 2.41 | 1.40 | 0.28 | 3.3 | tt | .6 | 4 | 0 | FC12 | 1842 | 9-24 | 1230P | BREWSTER | 0.5 | 0.10 | 0,20 | 0.00 | 0.02 | \vdash | .6 | 1 0 | 0 1 | FC12_ | | 1794 | .1-16 | 16952 | บ.s.g.s. | 5.0 | 2.14 | 1.31 | 0.31 | 2.81 | | .6 | 13 | 0 | | 1811,_ | 4-10 | 1124A | | 5.0 | 2.43 | 1.56 | 0.47 | 3.8 | Ш | .6 | 5 0 | | | | 1795 | 1-22 | 1255P
107P | BREWSTER | 4.0 | 2.21 | 1.38 | .0.30 | 3.1 | | .6 | 4 | 0 | FC12 | | | | | | | | | | | | | | | | 1796 | 1-29 | 116P
137P | | 18 | 11.8 | 1 | 0.79 | 10.6. | | -6 | 9 | 0. | | | | | | | | | | | | | | | | | 1797 | 1-30 | | U.S.G.S. | | 14.3_ | 0.71 | 0.79 | 10-1 | 1 | _6 | 17 | 0 | | | | | | | | | | | | | | | | | 1798 | 2-5 | 1118A
1130A | BREWSTER | 4.0 | 2.42 | 1.57 | 0.38 | 3.8 | | .6 | 4 | _0 | FFC12 | | | | | | | | | | | | | | | | 1799 | 2-11 | 10045 | u.s.g.s. | 4.8 | 2.28 | 1.71 | 0.40 | 3.89 | | .6 | _1,0 | | | | | | | | | | | | | | | | | | 1800 | 2-12 | | BREWSTER | 5.0 | 2.46 | 1.54 | 0.40 | 3.8 | | -6 | - 5. | _ | FC12 | | | | | | | | | | | | | | | | 1801 | 2:19 | 1143A
1155A | *************************************** | 5.0 | 2,55 | 1.49 | 0.38 | 3.8 | \vdash | .6 | 5 | 0 | "- | | | | | | | | | | | | | | | | 1802 | 2-27 | 1246P | U.S.G.S. | 4.9 | 2.16 | 1.64 | 0.39 | 3.55 | \vdash | -6 | .10 | ±.01 | - | ŀ | | | | | | | | | | | | | | | 1.803. | 2-27 | 1258P
213P | BREWSTER | 5.0 | 2.47 | | | 3.7 | \vdash | .6 | .5 | _0 | FC12 | | | | | | | | | | | | | | | | 1804 | 3-6 | 225P | | _5,0_ | 2,37 | 1 | ĺ | 3.7 | \vdash | -6 | 5 | 0. | - " | | | | | | | | | | | | | | | | 1805 | 3-13 | 200P | U.S.G.S. | 5.0 | 2.24 | 1 | | 3,82 | \vdash | -6 | _10 | 0 | | | | | | | | | | | | | | | | | 1806 | 3-13 | 1154A | BREWSTER | 5.0 | 2.38 | 1 | 0.35 | 1 | H | .6 | . 5 | 0_ | FC12 | 1 | | | | | | | | | | | | | | | 1807 | 3-20 | 1206P | ,, | 5.0 | 2.37 | 1.56 | 0.36 | 3.7 | | 6
 | 5
5 | | FC12 | 11 | | | | | | | | | | | | | | | 1808 | 3-27 | 12562 | + | 5.0 | ∠.3 6 | 1.57 | U.37 | 13.7. | 1 | ti_ | _5 | 0 | FC12 | Ħ | | | | | | | | | | | | | | F. C. Dist. From 52 8-44 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U10-R 40.60 1.35 81 0.205 0.02 13 1.2 MEAN 4.18 ACRE-FRET 3.030 3.10 185 | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |----------|------------|------------|------------|------------|------------|------------|----------|------------|------|------|------------|------------| | 1 | 4.5 | 1.8 | 1.5 | 6.7 | 1.6 | 2.4 | 1.8 | 1.9 | 2.5 | 2 .6 | 2.5 | 2.7 | | 2 | 4.3 | 1.8 | 1.6 | 6.7 | 19 | 2.4 | 2.4 | 1.9 | 2.5 | 2.6 | 2.6 | 2.7 | | 3 | 5.1 | 1 .8 | 1.6 | 6.7 | 2.7 | 2.4 | 1.6 | 19 | 2.5 | 2.7 | 2.7 | 2.7 | | 4 | 22 | 1.8 | 1.6 | 2.7 | 4.6 | 2.4 | 42 | 19 | 2.5 | 2.7 | 2.7 | 2.7 | | 5
8 | 2.2 | 1.8 | 1.7 | 0.3 | 11 | 2.4 | 1.3 | 2.6 | 2.5 | 2.6 | 2.8 | 2 .8 | | 7 | 2.3 | 19 | 1.7 | ŏÃ | 11 | 2.4 | iz | 2.6 | 2.5 | 2.6 | 3.0 | 2.7 | | á | 22 | 19 | 1.8 | 0.4 | 11 | 23 | iž | 2.6 | 2.5 | 2.6 | 3.0 | 2 .6 | | 8 | ã.õ | 19 | 1.8 | 0.3 | 8.4 | 2.3 | 1.1 | 2.6 | 2.4 | 2.7 | 2.8 | 2 .6 | | 10 | 1.9 | 19 | 1.9 | 0.3 | 3.8 | 3.0 | 1.0 | 2.6 | 1.3 | 2.7 | 2.7 | 2 .6 | | 11 | 1.9 | 1.9 | 1.9 | 03 | 3.8 | 3 .8 | 1.0 | 2.5 | 1.3 | 2.6 | 2.6 | 2 .6 | | 12 | 1.8 | 19 | 0.5 | 0.4 | 3.4 | 3.9 | 1.0 | 2.5 | 2.4 | 2.6 | 2.5
2.5 | 2.6 | | 13 | 1.8 | 19 | 2.0 | 0.4 | 3.3 | 4 1
3 9 | 1.0 | 2.4 | 2.3 | 2.4 | 2.4 | 2.6 | | 15 | 1.8
1.8 | 1.8
1.8 | 2.0 | 0.4 | 3.0
2.7 | 4 1 | 0.8 | | 23 | 2.5 | 2.4 | 2.6 | | 18 | 1.7 | 1.8 | 2.0 | 0.7 | 8. S | 4 2 | 0.8 | 2.4 | 23 | 2.5 | 2.4 | 2.7 | | 17 | 1.8 | ĩã | ã.ŏ | 0.3 | 2.8 | 4.2 | 0.7 | 2.4 | 2.2 | 2.6 | 2.4 | 2.7 | | 18 |
1.8 | 1.8 | 1.9 | s. 0 | 2.7 | 4.2 | 0.7 | 2.4 | 2.4 | 2.7 | 2.4 | 2.7 | | 19 | 1.9 | 1.7 | 1.9 | Q.2 | 2.5 | 4.3 | 0.7 | 2.5 | 2.7 | 2.7 | 2.4 | 2.6 | | 20 | 0.5 | 1.6 | 1.9 | <u>0 2</u> | 2.4 | 3.2 | 0.7 | 2.5 | 2.8 | 2.7 | 2.5 | 3 9
5 3 | | 21
22 | 2.0 | 1.6 | 3.0
8.5 | 0.2 | 23 | 0.4 | 0.6 | 2.5
2.5 | 2.8 | 2.6 | 2.5 | 5.1 | | 23 | 2.0 | 1.6
1.6 | 165 | 0.2 | 22 | 0.5 | 0.5 | 2.4 | 2.8 | 2.6 | 2.5 | 5 1 | | 24 | 1.9 | 1.5 | 775 | 03 | 24 | 0.6 | 0.5 | ž Ã | 2.7 | 2.6 | 2.5 | 5.1 | | 25 | 1.9 | 1.5
1.5 | 20 | 0.3 | 2 A | 0.6 | 0.6 | 2.4 | 2.6 | 2.6 | 2.5 | 5.0 | | 28 | 1.9 | 1.5 | 9.0 | 0.3 | 2.4 | 0.6 | 1.6 | 2.4 | 2.6 | 2 .6 | 2.5 | 5 .0 | | 27 | 19 | 1.5 | 2.0 | 03 | 2.5 | 1.5 | 2.8 | 2.4 | 2.5 | 2.6 | 2.6 | 5.0 | | 28 | 19 | 1.5 | 5.5 | 0.4 | 2.4 | 2.4 | 8. \$ | 2.4 | 2.6 | 3.6 | 2.6 | 5.0 | | 29
30 | 1.9 | 1.5 | 7.0 | 0.4 | | 2.4 | 2.5 | 2.5 | 2.5 | 2 .6 | 2.6 | 5.1
5.3 | | 31 | 1.9 | 1.5 | 6.7 | 1.0 | | 14
22 | 1.9 | 2.5
2.5 | 2.5 | 2.5 | 2.6 | <u> </u> | | - | 1.8 | | 6./_ | 1.7 | | 66 | <u> </u> | 2.5 | | £ .D | 6.1 | | | | 684 | | 4214 | | 1153 | | 1213 | | 751 | | 80.2 | | | | | 51.B | | 334 | | 109.7 | | 743 | | 809 | | 105 4 | | EAN | 2.21 | 1.73 | 13.6 | 1.08 | 4.12 | 3.54 | 4.04 | 2.40 | 2.50 | 2.61 | 2.59 | 3.5 | | RE- | 136. | 103. | 836. | 66 | 229. | 218. | 241 | 147. | 149. | 160. | 159. | 209. | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. U 10~R HYDRAULIC DIVISION SAN DIMAS CREEK at Mouth of Canyon 80, 19_47_ for the year ending Sept charge, in sec Feb. Oet. Nov. Jan. Мау June July Aug. Sept. 00100000111 2333322211111999888788778 ٨ 0.02 ¥ 2555555550010000 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 80 81 0.02 0.04 3.7 3.7 3.7 3.7 3.7 4 1 3 2 2 1 1 1 1 1 9 9 1 4 4 4 4 4 4 3 3 4 1 ٨ 1.5 1.5 1.7 0.7 0.6 300331 37737999 4 2 4 2 4 3 4 3 4 3 4 3 00: 1192 2714 121.8 0.62 125.6 931 3.73 4.19 249 229 4.23 260 1823 5.88 538 362 4.35 242 318.2 8.75 10.6 631 3,85 236 ### STATION F218-R SAN DIMAS WASH below Puddingstone Diversion Dam LOCATION: WATER-STAGE RECORDER, LAT. 34°07'52", LONG. 117°46'58". ON SAN DIMAS TYPE FLUME ABOUT 75 FEET WEST OF THE SOUTHERLY END OF PUDDINGSTONE DIVERSION DAM. ABOUT 3.0 MILES NORTHWEST OF LA VERNE. ELEVATION OF GAGE ABOUT 1130 FEET. DRAINAGE AREA: 18.8 SQUARE MILES, 16.2 SQUARE MILES CONTROLLED BY SAN DIMAS DAM AND 2.6 SQUARE MILES CONTROLLED BY PUDDINGSTONE DIVERSION DAM. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL. CONTROL - 3 FT. X 3 FT. SAN DIMAS TYPE FLUME. DISCHARGE MEASUREMENTS: LDW AND HIGH FLOWS MEASURED BY WADING. RECORDER: INSTALLED NOVEMBER 28, 1945 IN A WOODEN HOUSE OVER A 2 FT. X 4 FT. CONCRETE STILLING WELL. A RATIONAL HORIZONTAL WEEKLY RECORDER WAS IN SERVICE FROM NOVEMBER 28, 1945 TO SEPTEMBER 30, 1947. REGULATION AND/OR DIVERSIONS: FLOW ENTIRELY REGULATED BY PUDDINGSTONE DIVERSION DAM. INFLOW TO PUDDINGSTONE DIVERSION DAM IS REGULATED BY SAN DIMAS DAM. SAN DIMAS WATER CO. DIVERTS WATER FOR IRRIGATION. RECORDS AVAILABLE: NOVEMBER 28, 1945 TO SEPTEMBER 30, 1947. SOME STREAM MEASUREMENTS FOR EARLIER YEARS ARE AVAILABLE. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 42 SECOND-FEET APRIL 4. MINIMUN NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 9,8 SECOND-FEET DECEMBER 27 TO JANUARY 2. MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. SAN DIMAS WASH below Puddingstone Div. Dam -44 ___DURING THE YEAR ENGING MEPTEMBER 30, 19346_ SEGIN AREA OF MEAN DAUGE DISCHARGE SECTION VELOCITY HEIGHT SEC. FT. ND. WIDTH METER NO. IO44A 1100A BREWSTER .6 7 0 11.4 1.94 1.08 22.2 FC12 28 12/24 6.0 800A 820A .6 7 0 16.0 1.44 1.08 23.0 12/25 12.0 29 1240P 1255P " 110P 120P " 410P .6 7 0 7,68 1.34 0.62 10.3 6.0 12/26 1.49 1.01 0.16 1.5 .6 4 0 31 1/2 4.0 424P " 16.8 2.47 1.68 41.5 .6 6 0 6.0 DISCHARGE MEASUREMENTS OF SAN DIMAS WASH NETA DE OW Puddingstone Diversion Dam DURING THE YEAR ENDING BEPTEMBER 30, 1947 | | _ | | | | | | | | | | | | | |-----|-------|----------------|----------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|----------|----------------------|---------------------------|--------------| | NG. | DATE | BESIN | MADE BY | WIDTH
FEET | AREA OF
SCOTION
SQ. FT. | MEAN
VELOCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | 90
90 | MEAB,
BEC.
No, | G. HT.
GHANGE
TOTAL | HETER
NO. | | 33 | 11-16 | 920A
930A | BREWSTER | 6.0 | _5.64 | 0.96 | .0.38 | 5.4 | | .6 | 6 | ۰ | FC12 | | 34 | 11-22 | 115P
130P | ** | 6.0 | 6.72 | 1.16 | 0,50 | 7.8 | | .6 | 6 | _0 | ** | | 35 | 12-26 | 508P
520P | | 6.0 | 7.44 | 1,32 | 0.60 | 9,8 | _ | .6 | 6 | 0 | ** | | 36 | 1-8 | 1215P
1230P | ** | 6.0 | 6.36 | 1.16 | 0.50 | 7.4 | L | .6 | 6 | 0 | - | | 37 | 1-15 | 1112A
1120A | •• | 2.0 | 0.41 | 0.98 | 0.05 | 0.40 | _ | .6 | 4 | 0 | •• | | 38 | 1-22 | 1130A
1135A | •• | 1.5 | 0.36 | 0.86 | 0.04 | 0,31 | <u></u> | .6 | 3 | 0 | •• | | 39 | 1-29 | 1128A
1140A | | 6.0 | -6.00 | 1.07 | 0.45 | 6.4 | | .6 | 6 | 0 | •• | | 40 | 2-5 | 1002A
1010A | ** | 1.5 | 0.36 | 1,58 | 0.08 | 0.57 | | .6 | 3 | 0 | -11 | #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F218-R | Dally d | ischarge, in se | cond-feet of | SAN DIN | AS WASH | elow Pud | lingstone | Diversio | n Dam | | for the yea | r ending Septer | mber 30, 19_4 | |----------------------------------|-----------------|--------------|-----------------------|-----------------------------|-----------------------------|------------------|-------------------------|---------|---------|-------------------------------|------------------|---------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 0 0 | 0 0 0 | . 0 | 0
0.7
1.4
0.4
0 | 0
0
0
0 | 0 0 0 | 0
0
0
13
17 | 0 0 0 0 | 0 0 0 | 0 0 0 | 00000 | 0 0 0 | | 6
7
8
9 | 0000 | 0 0 0 | 0 0 | 0 0 0 | 0
0
1.4
4.9
4.3 | 0 0 | 00000 | 0 0 0 | 0 0 0 | 0 0 0 | 0000 | 0 0 0 | | 11
12
13
14
15 | 00000 | 0 0 0 0 | 0000 | 0000 | 3.7
0.1
0 | , 000 | 00000 | 0 0 0 | 0 0 0 | 0 0 0 | 00000 | 0 0 0 | | 16
17
18
19
20 | 00000 | 00000 | 00000 | 0000 | 0 0 0 | 0 0 0 0 | 0 0 0 | 0 0 | 0 0 0 | 0 0 0 | 0
0
0
0 | 0000 | | 21
22
23
24
25 | 00000 | 00000 | 7 9
22
22
18 | 0000 | 0 0 0 | 0
0
0
0 | 0
0
0
0 | 0 0 0 0 | 0000 | 0 0 0 | 0
0
0
0 | 00000 | | 26
27
28
29
30
31 | 0000 | 0000 | 7.6
0
0
0 | 00000 | 0 | 0 0 0 0 0 | 0
0
0
0 | 000000 | 0 0 0 0 | 0000 | 000000 | 0 0 0 0 | | | 0 | 0 | 775 | 2.5 | 14.4 | 0 | 3 0 | 0 | 0 | 0 | 0 | 0 | | MEAN
ACRE-
PEET | 0
0 | 0 | 2.50
154. | 0.81
5.0 | 0.51 | 0 | 1.00 | Ω | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | | YEAR MEA
OR
TERIOD ACRE | | 247. | P. C. Dist. Form 55 4-45 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Daily discharge, in second-feet of SAN DIMAS WASH below Puddingstone Civers (Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. Sta. No. F 218-R | Daily | discharge, in s | second-feet of | SAN | DIMAS WAS | H below P | uddingsto | ne Divers | ion Dam | | for the yes | ar ending Septe | mber 30, 19_47 | |---|-----------------|---|---
--|---|-----------|-----------|---|---|---|---|----------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 3 2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 | 9.8.6
9.8.6
8.6.2
7.7.5
3.10
0.4.4
0.4.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3.3
0.3 | 67
717
87
80
95
1138
00
00
00
00
00
00
00
00
00
00
00
00
00 | | | 0 | 0 | 0 | 0 | | | 31 | 0 | 4.3 | 9.8
9.8 | 6.4
6.4 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | , | 0 | 602 | 561 | 99.9 | 27.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | MEAN | 0 | 2.01 | 1.81 | 3,22 | 0.99 | o | 0 | 0 | 0 | 0 | 0 | 0 | | ACRE-
FEET | 0 | 119 | 111 | 198 | 55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | | OR | N 0.67
FEET 48 | | ### STATION F209-R SAN GABRIEL RIVER-WEST FORK below San Gabriel Dam #2 LOCATION: WATER-STAGE RECORDER, LAT. 34°14'39", LONG. 117°57'25", ON THE LEFT (MORTHEAST) BANK OF THE WEST FORK OF THE SAN EABRIEL RIVER ABOUT 7 MILES ABOVE JUNCTION OF THE EAST AND WEST FORKS AND 0.5 WILE DOWNSTRAM FROM SAN GABRIEL DAM NO. 2. ELEVATION OF ZERO GAGE MEIGHT, 2083-37 FEET. DRAINAGE AREA: 41.0 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND BOULDERS. CONTROL - CONCRETE CONTROL WITH LOW FLOW NOTCH ABOUT 35 FEET BELOW THE STATION. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 6 FEET BELOW STATION. RECORDER: INSTALLED DECEMBER 8, 1933, WASHED OUT IN THE MARCH 2, 1938 STORM. REINSTALLED MARCH 10, 1938. REMOVED MAY 3C, 1938. INSTALLED JULY 8, 1938 IN A CONCRETE HOUSE OVER A 4 FT. X 4 FT. CONCRETE WELL IN THE SAME LOCATION AS THE OLD WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 3O, 1947. REGULATION: 40.4 SQUARE MILES REGULATED BY SAN GABRIEL DAM NO. 2. 0.6 SQUARE MILES UNREGULATED. DIVERSIONS: NONE. RECCRDS AVAILABLE: WAY 26, 1932 TO DECEMBER 8, 1933 STREAM MEASUREMENTS DNLY. RECORDER RECORDS DECEMBER 8, 1933 TO FEBRURRY 21, 1938: MARCH 10, 1938 TO MAY 30, 1938: AND JULY 8, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: VES OF DISCHARUCE: 1945-1946 MAXIMUM 814 SECOND-FEET, MARCH 30, MINIMUM 0,6 SECOND-FOET, JAUUST 23, 1946-1947 MAXIMUM 1240 SECOND-FEET, JANUARY 6, MINIMUM 0,1 SECOND-FOET, SEPTEMBER 28, 1033-1947 MINIMUM 0,1 SECOND-FORT, SETTIMATED, MARCH 2, 1938. MINIMUM LESS THAN 0.1 SECOND-FOOT AT VARIOUS TIMES. ACCURACY: GOOD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, FOR MEASURING OUTFLOW FROM SAN GABRIEL DAM NO. 2. | | ISCHARDE | HEABUREH | ENTE OFSA | N GABRI | EL - W | EST FO | RK | | | | | - | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | MEAN
VELOCITY
FT.PER BEG. | HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- H | | G, HT.
CHANGE
TOTAL | METER
ND. | |--------------|----------|-----------------------|---------------------------------|--------------|-------------------------------|----------------------------------|-------------------------|-----------------------|-------|---------|-------------|--|-------|--------|--------------------------|---------------------------------|---------------|-------------------------------|---------------------------------|----------------|-----------------------|----------|-------|---------------------------|--------------| | | HARL. | . 4 | pelow San Gabrie | Dam N | lo. 2 | DURIN | THE YEA | AR ENDING I | BEPTE | MDER : | ao, 1948. | - | 1709 | 12/5 | 925A
940A | | 12.0 | 7.39 | 0.31 | 3.10 | 2.3 | | .6 11 | 0 | ·- | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
EXCTION
EQ. FT. | MEAN .
VELODITY
T.PER SEC. | BAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | HETH- K | EAS. B. HT. | HETER | 1710 | 12/7 | 1026A
1040A
1050A | TREAT
MIDDLETON
MIDDLETON | 12.0 | 7.53 | 0.29 | 3.09 | 2.2 | | .6 9 | 0 | | | 1679 | 10/5 | 1117A
1137A | MIDDLETON | 13.3 | 10.6 | 0.59 | 3,26 | 6.3 | - | .6 | | FC26 | 1711_ | 12/14 | 1104A
152P | WENTZ
MIDDLETON | 12.0 | 7.33 | 0.30 | 3.09 | 2.1 | | .6 10 | 0 | FC29 | | 1680 | 10/12 | 1017A
1037A | TREAT
MIDDLETON | 13.8 | 9.97 | | 3,26 |
5.9 | | .6 | | FC29 | 1712 | 12/20 | 206P
347P | WENTZ | 11.5 | 7.10 | | 3.09 | 2.2 | \vdash | .6 10 | 0 | | | 1681 | 10/16 | 925A
1000A | TREAT | 14.0 | 10.5 | 0.65 | 3,26 | 6.8 | | .6 | 14 0 | FC26 | 1713 | 12/24 | 413P
1007A | MIDDLETON
MIDDLETON | 56.0 | 1,15- | 3.91 | 5.66 | 136. | | .6 12 | 0 | | | 1682 | 10/19 | 1010A
1030A | TREAT
MIDDLETON
MIDDLETON | 12.0 | 7.89 | 0,84 | 3.26 | 6.6 | | .6 1 | 12 0 | | 1714 | 12/25 | 1028A
1038A
1 100A | WENTZ
MIDDLETON
WENTZ | 52.0
45.0 | 57.7 | 1,15 | 4.74 | 66.6 | | .6 13 | 0 | | | 1683 | 10/19 | 1034A
1052A | TREAT | 12.0 | 7.83 | 0.86 | 3.26 | 6.7 | | .6 1 | 2 0 | ļ | 1716 | 12/26 | 240P
257P | MIDDLETON
WENTZ | 38.0 | 42.2 | 0.90 | 3.85 | 37.8 | | .6 13 | 0 | | | 1684 | 10/23 | 1045A
1010A | TREAT | 12.0 | 7.76 | 0.86 | 3.25 | 6.6 | | .6 1 | 2 0 | ļ.· | 1717 | 12/29 | 934A
946A | MIDDLETON
WENTZ | 12.0 | 8.46 | 0.77 | 3.22 | 6.5 | | .6 11 | .02 | FC26 | | 1685 | 10/25 | 1045A
950A | MIDDLETON | 12.0 | 7.90 | | 3,24 | 6.2 | - | .8 1 | | FC29 | 1718 | 1/1 | 840 A
852 A | MIDDLETON
TREAT
WENTZ | 12.8 | 6.76 | 0.27 | 3.08 | 1.8 | 11 | .6 11 | 0 | FC29 | | 1686_ | 10/30 | 1020A | TREAT | 12.5 | 7.68 | | 3.25 | 6.9
5.9 | | .6 1 | | FC26 | 1719 | 1/4 | 1125A
1145A
800A | MIDDLETON | 13.0 | 6.89 | 0.25 | 3,09 | 1.7 | - | .6 12 | 0 | FC26 | | 1687 | 11/3 | 1045A
455P
514P | MIDDLETON | 47.0 | 68.3 | 1,60 | 4.57 | 109. | | .6 1 | _ | FC29 | 1720 | 1/8 | 835A
1039A | WENTZ
MIDDLETON | 18.0 | 7.37 | 0.26 | 3.10 | 1.9 | \vdash | .6 13 | 0 | | | 1689 | 11/3 | 800P
830P | TREAT | 47.5 | 69.5 | 1.50 | 4.57 | 104. | | .6 1 | 14 0 | | 1721 | 1/8 | 1059A
1232P
1253P | WENTZ
MIDDLETON
WENTZ | 47.0 | 81.4 | 1.56 | 4.69 | 127. | + | .6 16 | 0 | FC26 | | 1690 | 11/4 | 630A
650A | MIDDLETON
TREAT | 46.0 | 69.5 | 1.55 | 4.55 | 108. | | .6 | 14 0 | " | 1722 | 1/11 | 1253P
128P
157P | WENTZ
MIDDLETON | 46.0 | 71.8 | 1.26 | 4.42 | 84.2 | | .6 16 | | | | 1691 | 11/4 | 725A
740A
1000A | MIDDLETON
TREAT
TREAT | 53.0 | 102. | 2.49 | 5.19 | 254. | | .6 | 13 0 | | 1724 | 1/12 | 915A
950A | WENTZ | 13.0 | 7.08 | I | 3.07 | 1.7 | | .6 13 | 0 | | | 1692 | 11/4 | 1022A | MIDDLETON | 52.7 | 103. | 2.45 | 5.20 | 254. | | .6 | 15 .01 | | 1725 | 1/15 | 845 A
914A | | 13.0 | 6.81 | 0,21 | 3.06 | 1.4 | | .6 11 | 0 | | | 1693 | 11/5 | 755A
820A | TREAT
MIDDLETON | 12.5 | 8.43 | 0.64 | 3.19 | 5.4 | | .6 1 | 12 0 | FC26 | 1726 | . 1/18 | 1025A
1055A | | 12.0 | 7.00 | 0,20 | 3.07 | 1.4 | \sqcup | .6 12 | 0_ | | | 1694 | 11/5 | 850A
1055A | MIDDLETON | 50.2 | 98.2 | 2.24 | 5.09 | 220. | | .6 1 | | FC25 | 1727 | 1/22 | 1000A
1038A
1028A | WENTZ | 13.0 | 6.31 | 0.22 | 3.07 | 1.4 | H | .6 12 | 0 | | | 1695
1695 | 11/5 | 225P
250P | TREAT
MIDDLETON
THEAT | 59.0
60.0 | 131. | 3.75
4./3 | 5.74
6.17 | ,491.
719. | | .6 1 | | FC2€ | 1728 | 1/25 | 1049A
904A | MIDDLETON | 13.0 | 6.79 | | 3.08 | 1.5 | \vdash | .6 13 | | | | 1697 | 11/6 | 1105A
1125A | TREAT | 11.0 | 7.54 | | 3,14 | 3,5 | | .6 1 | | | 1729 | 1/29 | 930A
1040A | WENTZ
WENTZ | 13.0 | 6.95 | 1 | 3.08 | 1.6 | H | .6 13 | 1 | | | 1698 | 11/6 | 426P
448P | TREAT
BRUSSTAR | 48.5 | 95.2 | 2.19 | 5.04 | 209. | | . 6 1 | .01 | | 1730 | 2/1 | 1103A
1104A
1140A | MIDDLETON | 13.0 | 7.38 | | 3.11 | 2.3 | | .6 13 | | | | 1699 | 11/7 | 800A
830A
915A | TREAT | 12.0 | 7.80 | 0.45 | 3,14 | 3.5 | | .6 | 11 0 | | 1732 | 2/5 | 1013A
1051A | " | 13.0 | 7.26 | | 3.10 | 2.1 | | .6 13 | | | | 1700 | 11/10 | 1055A | TREAT | 18.5 | 23.9 | 1.77 | 3.98 | 42.3 | | .6 1 | 6 0 | FC26 | 1733 | 2/5 | 1230P
1252P | MIDDLETON
WENTZ | 46.0 | 7.1.9 | 1.47 | 4.56 | 106. | | .6 15 | .01 | | | 1.701 | 11/10 | 1120A
835A | | 17.4 | 21.2 | 1.39 | 3.76 | 29.5 | | .6 1 | | | 1734 | 2/8 | 656A
740A | WENTZ | 45.0 | 67.6 | 1.34 | 4.46 | 90.6 | Ш | .6 14 | 0 | | | 1702 | 11/12 | 855A
335P | | 18.3 | 20.2 | 1.41 | 3.75 | 28.4 | | .6 1 | | | 1735 | 2/8 | 1006A
1028A
905A | MIDDLETON
WENTZ | 45.5 | 70.1 | 1,32 | 4.49 | 93.2 | Ш | .6 16 | 0 | - | | 1703 | 11/12 | 348P
845A
900A | | 12.8 | 8.25
7.71 | 0.55 | 3.16 | 4.5
2.2 | _ | .6 1 | | † :. | 1736 | 2/9 | 942A
930A | WENTZ | 13.0 | 6.58 | 0.25 | 3.05 | 1.7 | H | .6 13 | | | | 1705 | 11/20 | 920A
940A | | 12.0 | 7.58 | 0.28 | 3.09 | 2,1 | | .5 1 | | FC29 | 1737 | 2/12 | 1010A
1015A | | 13.0 | 6.21 | T | [| 1.5 | | .6 13 | | | | 1706 | 11/23 | 435P
450P | | 12.0 | 7.60 | | 3.09 | 1.9 | | .6 1 | | FC26 | 1738. | 2/15 | 1043A
920A | " | 13.0 | 6.69 | | 3.05 | 1.7 | H | .6 13 | + | - | | 1707 | 11/27 | 1010A
1030A | 11 | 12.0 | 7.45 | 0.29 | 3.09 | 2.2 | | .6 1 | 1 0 | | 1739 | 2/19 | 956A
1015A
1045A | | 13.0 | 6.75 | | 3.06 | 1.5 | Н | .6 13 | 1 | - | | 1708 | 12/1 | 1015A
1035A | | 12.0 | 7.66 | 0.30 | 3.10 | 2.3 | | .6 1 | 1 0 | ٠٠ | 1741 | 2/26 | 936A
1009A | | 13.0 | 6.78 | | | 1.5 | | .6 13 | + | | | | | | • | | | | | | | | | | 1 | | | , | | | | , | , | | | - | | | | DISCHARGE | MEABUREH | ENTS OFS | AN GABR | IEL - I | WEST. FO | ORK | | | | | - | NO. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA DF
BEGTION
BD. FT. | MEAN
VELDOITY
T.PER MED. | GAUGE
HEIGHT
PEET | DISCHARGE
SEC. FT. | RAT- | ETH- MEAN
BEG
ND. | G. HT. | METER
NO: | |-------|--------------|-----------------|---------------------|---------|-------------------------------|----------------------------------|-------------------------|-----------------------|---------|-------|--|--------------|----------------|-------|---------------------------|------------------------|---------------|-------------------------------|--------------------------------|-------------------------|-----------------------|-----------------|-------------------------|----------|-------------------| | • | # | be | low San Gabriel | Dam No | 2 | DURING | O THE YEA | R ENDING | BEPTEM | BER : | 19_¥6 | - | 1801 | 5/18 | 840A
902A | | 16.0 | 6.48 | 1.80 | 3,44 | 11.7 | | .6 8 | 0 | 1 | | MO. | DATE - | BEGIN | HADE MY | WIDTH | AREA OF
SECTION
SQ. FT. | HEAM
VELODITY
Fr. PER BED. | DAUGE
HEIGHT
FEET | DIECHARGE
BEC. FT. | RAT- NE | TH- 4 | EAS. G. HT.
EC. CHANGE
ID. TGTAL | HETER
NO. | 1802 | .5/21 | 836A
906A
741A | | 17.0 | 6.23 | 1.85 | 3,41 | 11.6 | \Box | .6 15 | 0 | ļ | | 1742 | 3/1 | 1110A
1134A | WENT Z
MIDDLETON | 13.0 | 6.83 | 1 | 3.07 | 1.6 | | . 6 | | 1 | 1.803_ | 5/23 | 809A
322P | MIDDLETON | 17.0 | 6.12 | 1.89 | 3.39 | 11.6 | \vdash | .6 15 | 0 | :- - | | 1743 | 3/5 | 917A
946A | WENTZ | 13.0 | 6.68 | | 3.08 | 1.6 | | .6 | | †· | 1804 | 5/24 | 335P
915A | WENTZ | 17.5 | 6.28 | 1.56 | 3.41 | 9.8 | ⊦⊹ | .6 9 | 0 | FC32 | | 1744 | 3/9 | 938A
1002A | | 13.0 | 6.95 | | 3.08 | 1.6 | Ħ | .6 | | ļ., | 1805 | 5/28 | 930A
1034A | WENTZ | 17.6 | 6.28 | 1.53 | 3.43 | 9.6 | \vdash | .6 8 | 0 | <u> </u> | | 1745 | 3/12 | 921 A
1942 A | WENTZ | 13.0 | 6.93 | | 3.08 | 1.7 | | .6 | 3 0 | FC26 | 1806 | 5/31 | 1048A
830A | 11 | 16.6 | 6.27 | 1.43 | 3,37 | 9.0 | \vdash | .6 8 | 0 | | | 1746 | 3/15 | 1034A
1059A | | 13.0 | 6.94 | 1 | 3.68 | 1.7 | П | .6.1 | 3 0 | | 1807 | 6/4 | 847A
943A | WENTZ | 16.6 | 5.31 | 1.34 | 3.33 | 7.2 | \vdash | .6 8 | 0 | | | 1747 | 3/18 | 907A
937A | WENTZ
MIDDLETON | 46.0 | 71.8 | 1.39 | 4.51 | 99.7 | | .6 1 | 502 | ļ | 1808 | 6/7 | 957A
900A | MIDDLETON | 10.6 | 5.17 | 1.34 | 3.32 | 7.0 | \vdash | .6 10 | 0 | " - | | 1748 | 3/18 | 1000A
1034A | MIDDLETON
WENTZ | 58.0 | 125. | 3.81 | 5.77 | 476 | | .6 1 | 5 0 | | 1809 | 6/11 | 920A
917A | WENTZ | 10.4 | 5.14 | 1.31 | 3.31 | 6.8 | \vdash | .6 10 | 0 | - 11 | | 1749 | 3/18 | 1050A
1110A | MIDDLETON
WENTZ | 58.0 | 126. | 3.83 | 5.77 | 483. | | .6.1 | 3 . 0 | | 1810 | 6/14 | 939A
840A | -11 | .10.2 | 4.71 | 1.26 | 3.30 | 6.0 | \vdash | .6 9 | 0 | <u> </u> | | 1750 | 3/18 | 1128A
1202P | WENTZ
MIDDLETON | 58.0 | 130. | 3.59 | 5.76 | 467 | | .6 1 | 301 | | 1811 | .6/18 | .858A
1120A | WENTZ | 10.0 | .4.49 | 1.18 | 3.28 | 5.3 | ₩ | -6 10 | <u> </u> | FC32 | | 1751 | 3/18 | 322P
341P | MIDDLETON
WENTZ | 58.0 | 122. | 3.72 | 5.73 | 454. | | . 6 1 | 3 0 | | 1812 | 6/21 | 1136A
915A | ** | 9.4 | 3.53 | 1.21 | 3.25 | 4.4 | \vdash | .6 9 | 0 | + | | 1752 | 3/18 | 342P
410P | WENTZ
MIDDLETON | 58.0 | 129. | 3.70 | 5.73 | 479. | | . 6 1 | 301 | | 1813 | 6/25 | 935A
950A | | 10.0 | 3.49 | 1.21 | 3,26 | 4.2 | \vdash | -6 10 | -0. | '' | | 1753 | 3/19 | 724A
747A | WENTZ | 14.0 | 9,99 | | 3.24 | 4.7 | Π. | .6 1 | | | 1814 | 6/28 | 1018A
843A | | 10.1 | 3.28 | 1.19 | 3.25 | 3.9 | \vdash | -6 10 | 1-0- | | | 1754 | | 1123A
1145A | MIDDLETON
WENTZ | 45.4 | 72.1. | 1,47 | 4.54 | 106. | Π. | 6 1 | | | .1815 | 7/2 | 903A
1035A |
WENTZ | 9.6 | 2.97 | 1.15 | 3.20 | 3.4 | 1-+ | .6 9 | 0 | '' | | 1755 | 3/19 | 248P
330P | WENTZ _ | 45.74 | 72.5 | 1.38 | 4.54 | 99.9 | | .6 1 | | | 1816 | 7/5 | 1048A
1000A | MIDDLETON | 9.4 | 2.98 | 1.01 | 3.19 | 3.0 | \vdash | .6 9 | 0_ | + | | 1756 | 3/20 | 312P
345P | | 44.9 | 68.8 | 1.33 | 4.44 | 90.2 | | .6 1 | 4 0 | | 1817 | 7/9 | 1020A | WENTZ | 9.2 | 2.96 | 0.96 | 3.18 | 2.9 | | .6 8 | - | + | | 1757 | 3/21 | 820A
850A | •• | 13.5 | 7.75 | | 3.08 | 1.4 | | .6 1 | | ļ | 1818_ | 7/12 | 1100 A
1118 A
910 A | •• | 9.2 | 2.82 | 0.82 | 3.17 | 2.3 | \vdash | .6 9 | 1-0- | | | 1758 | 3/22 | 256P
320P | | 13.5 | 7.76 | | 3.07 | 1.3 | | .6 1 | | | 1819 | 7/16 | 928W | WENTZ | 9.3 | 2.76 | 0.84 | 3.17 | 2.3 | $\vdash \vdash$ | .6 9 | | + | | 1759 | 3/23 | 835 A
855 A | MIDDLETON
WENTZ | 46.4 | 81.0 | 1.63 | 4.70 | 132. | | .6 1 | | FC29 | 1820 | 7/19 | 1046A
1048A |
MIDDLETON
MIDDLETON | 10.5 | 3.10 | 0.84 | 3.18 | 2.6 | | .6 10 | 0 | FC2 | | 1760 | 3/23 | 930A
955A | WENTZ
MIDDLETON | 46.4 | 81.3 | 1,64 | 4.70 | 133. | | 6 1 | | | 1821 | 7/19 | 1100A
1111A | WENTZ | 6.8 | 2.34 | 1.20 | 3.18 | 2.8 | \vdash | .6 6 | 0 | " | | 1761 | 3/25 | 1117A
1140A | MIDDLETON | 47.5 | 95.7 | 2.12 | 5.01 | 203 | | 6 1 | 5 -02 | | 1822 | 7/23 | 1123A | WENTZ | 6.5 | 1.96 | 1.12 | 3,15 | 2.2 | - | .6 5 | 0 | FC32 | | 1762 | 3/26 | 933A
957A | WENTZ
MIDDLETON | 13.5 | 7.67 | 2.15 | | 16.5 | | 6 1 | 4 | FC26 | 1825 | 7/26 | 953A
1011A
1015A | | 6.4 | 1.91 | 0.89 | 3,15 | 1.7 | \vdash | .6 6 | 0 | <u>ا</u> | | 1763 | | 1100A
1144A | WENTZ | 16.0 | 9.70 | 2.38 | | 23.1 | | 6 1 | | | 1824 | 7/26 | 1030A | | 7.0 | 2.16 | 0.88 | 3.15 | 1.9 | | .6 7 | 0 | '' | | 1764 | 3/28 | 340P
420P | | 16.0 | 8.10 | 2.68 | | 21.7 | | 6 1 | | | 1825 | 7/29 | 900A
912A
200P | MIDDLETON | 6.0 | 2.43 | 0.70 | 3.14 | 1.7 | \vdash | .6 7 | 0 | FC29 | | 1765 | | | MIDDLETON
WENTZ | 16.5 | 13.0 | 1.81 | | 23.5 | 1 1 | IRF ! | , | FC29 | 1826 | 8/2 | 208P
915A | | 5.2 | 1.43 | 0.91 | 3.12 | 1.3 | | .6 5 | 0 | <u> </u> | | 1766. | 3/29 | 846P
910P | WENTZ
OLIVER | 17.0 | 19.9 | 2 35 | | 46.8 | | IRF (| | FC26 | 1827 | 8/6 | 935A
1040A | WENTZ
WENTZ | 5.2 | 1.45 | 0.87 | 3,12 | 1.3 | | .6 10 | -0 | | | 1767 | | 1241P
.116P | WENTZ | 58.0 | 128. | 2.51 | 5,39 | 322. | Ť | .6 1 | 2 .48 | | 1828 | 8/9 | 1052A
850A | MIDDLETON | 5.5 | 1.22 | 1.06 | 3.11 | 1.3 | | .6 9 | 0 | FC32 | | 1768 | 3/30 | 340P
430P | | 58.0 | 139. | 4.47 | 5,95 | 621. | | ł | 3 0 | | 1829 | 8/13 | 904A
950A | WENTZ | 5.4 | 1.16 | 1-11 | 3.11 | 1.3 | \vdash | .6 9 | ۰ | ļ | | 1769 | 4/1 | 838A
914A | | 57.0 | 179. | 4.20 | 5.73 | 500 . | | | 4 0 | | 1820 | 8/16 | 1005A
1100A | | 5.5 | 1.18 | 1.07 | 3.10 | 1.3 | \vdash | 6 9 | 0 | ļ | | 1770 | 4/3 | 309P
351P | | 15.2 | 8.38 | 0.51 | 3.21 | 4.3 | | . 6 1 | 2 0 | | 1831 | 8/20 | 1120A
707A | | 5.3 | 1.13 | 1.02 | 3.10 | 1.2 | \vdash | 6 9 | 0_ | ··- | | 1271 | 4/6 | 732A
800A | 44 | 15.2 | 9.46 | | 3, 26 | 5.9 | | .6 1 | 4 C | | 1832 | .8/23 | 720A
458P | | 4.9 | 0.86 | 6.75 | 3.07 | 0.6 | \vdash | 6 8 | - | | | 1772 | 4/6 | 823A
908A | | 57.0 | 129. | 4.03 | 5.74 | 521. | | _[| 5 0 | | _1833 | .8/23 | ,518P | WENT Z. | .5.3 | .1.12 | 0.76 | 3.12 | 0.9 | -+ | . 6 7 | 0 | FC32 | | 1773 | 4/7 | 824A
900A | | 56.0 | 122. | 3.69 | | 450. | | .6 1 | 6 0 | | _1 8 34 | 8/27 | 238P
1035A | MIDDLETON | 4.5 | 0.95 | 0.95 | 3.09 | 0.9 | - | .6 7 | 0 | | | 1774 | 4/8 | 255P
312P | MIDDLETON | 18.0 | 28.9 | 2,59 | 4.18 | 74.8 | | 6 1 | 1 .04 | FC29 | -1835 | 8/30 | 1055A
1100A | WENTZ
WENTZ | 4.9 | 1.40 | 0.69 | 3.12 | 1.0 | + | .6 9 | 0 | + | | 1775 | 4/9 | 140P
158P | | 17.5 | 14.6 | 4.82 | | 70,4 | | .6 1 | 0 | | 1.836 | 9/4 | 1121A
1049A | YORK | 4.8 | 1,32 | 0.79 | 3.11 | 1.0 | \vdash | .6 9 | 0 | +"- | | 1776 | 4/10 | 1042A
1104A | WENTZ | 19.0 | 14.3 | 4.95 | | 70.7 | | .6 1 | 0 | FC26 | 1837 | 9/6_ | 1112A
1005A | WENTZ | 5.0 | 1.32 | 0.76 | 3.12 | 1.0 | $\vdash \vdash$ | .6 9 | -0_ | +" | | 1777 | 4/11 | 123P
155P | •• | 40.7 | .11.7 | 5.71 | | 66.9 | | 6 1 | 0 | | _1838_ | 9/10 | 1015A
1037A | MIDDLETON | 4.7 | 1,16 | C.86 | 3,12 | 1.0 | \vdash | .6 7 | - | FC29 | | 1778 | 4/12 | 1058A
1128A | | 18.3 | 13.4 | 4.69 | | 62.9 | St | JRF 1 | 1 | | _1839_ | 9/13 | 1054A
938A | WENTZ | 4.8 | 1.08 | 0.66 | 3.10 | 0.7 | \vdash | .6 9 | 1 | FC32 | | 1779 | 4/13 | 826A
848A | | 19.1 | 13.8 | 4.51 | | 62.2 | S | JRF 1 | 1 | | -1840 | 9/17 | 1000A
1015A | | 4.9 | 1.04 | 0.67 | 3.10 | 0.7 | -+ | .6 9 | 0 | + | | 1780 | 4/15 | 920A
945A | MIDDLETON | 35.0 | 12.2 | 5.19 | | 63.3 | _ | .6 1 | 1 | FC29 | 1841 | 9/20 | 1034A
1057A | | 5.0 | 1.07 | 0.74 | 3.10 | 0.8 | | .6 8 | T | :- | | 1781 | 4/16 | 733A
800A | WENTZ | 29,0 | 9.66 | 5.84 | | 56.5 | | .6 1 | 2 | FC26 | 1842 | 9/.24 | 1107A
1012A | | 5.0 | 1.05 | 0.77 | 3.10 | 0.8 | | .6 8 | | + | | 1782 | . 4/17 | 730A
800A | ** | 41.0 | 11.9 | 4.79 | | 57.0 | sı | JRF1 | 6 | | 18/13 | 9/27 | 1032A | | 5.0_ | 1.05 | 0.72 | 3.10 | 0.8 | | .6 9 | 0 | ''- | | 1783 | 4/18 | 718A
739A | | 35.0 | 10.3 | 5.99 | | 61.6 | SL | JRF 1 | 0 | | | | | | | | | | | | | | | | 1784 | _4/19 | 720A
740A | | 39.0 | 10.3 | 5,25 | | 53.9 | sı | JRF | 7 | | | | | | | | | | | | | | | | 1785 | 4/20 | 735 A
800 A | | 35.0 | 8.91 | 5.56 | | 49.6 | sı | JRF1 | 2 | | | | | | | | | | | | | | | | 1786 | 4/22 | 1140A
1157A | MIDDLETON | 20.0 | 7.40 | 4.40 | 4.28 | 32.5 | 1 | . 6 1 | 0 0 | FC29 | l | | | | | | | | | | | | | | 1787 | 4/23 | 116P
145P | WENTZ | 24.0 | 7.19 | 4.46 | 3.93 | 32.1 | 4 | . 6 1 | 0 0 | FC26 | | | | | | | | | | | | | | | 1788 | 4/24 | 115P
139P | | 25.5 | 6.72 | 4.51 | 4.20 | 30.4 | | .6 | 8 0 | ı.i | | | | | | | | | | | | | | | 1789 | 4/25 | 858A
928A | | 24.5 | 6.21 | 4.14 | 3.99 | 25.8 | | .6 | 9 0 | ļ. <u>.</u> | İ | | | | | | | | | | | | | | 1790 | 4/26 | 1025A
1048A | WENTZ | 24.0 | -6.14 | 3.89 | 3.97 | 23.9 | - | -6 | 0 0 | EC26 | | | | | | | | | | | | | | | 1791 | 4/27 | 834A
857A | | 22.5 | 6.48 | 3.52 | 3.75 | 22.8. | | 6 | 9 0 | | 1 | | | | | | | | | | | | | | 1792 | 4/30 | 830A
852A | ** | 19.5 | 6.39 | 3.38 | 3.65 | 21.7. | 1 | Б | 9 0 | | ļ | | | | | | | | | | | | | | 1793 | 5/2 | 928A
946A | 11 | 20.0 | 5.80 | 2.96 | 3.64 | 20.2 | 1 | .6 1 | مام | ļ | Ì | | | | | | | | | | | | | | 1794 | | 1008 A
1630A | | 19.7 | 7.13 | 2.68 | 3.60 | 19.1 | | 6 1 | _م_ا | | | | | | | | | | | | | | | | 1794X | 5/4 | 915A
938A | | 19.0 | 7.16 | 2.34 | 3.55 | 16.8 | \perp | 6 | 9 0 | ļ | 1 | | | | | | | | | | | | | | 1795 | 5/6 | 1027A
1043A | MIDDLETON | 19.0 | 6.67 | 2.31 | 3.56 | 15,4 | | . 6 | 9 0 | FC 29 | l | | | | | | | | | | | | | | 1796 | 5/7 | 128P
144P | WENTZ | 17.5 | 5.56 | 2.67 | 3.50 | 14.8 | | .6 | 8 0 | FC26 | 1 | | | | | | | | | | | | | | 1797 | _5/9 | 910A
934A | | 18.0 | 6.40 | 2.22 | 3.50 | 14.2 | | .6 | 9 0 | | ļ | | | • | | | | | | | | | | | 1798 | _5/11 | 850A
912A | ** | 18.0 | 7.32 | 2,04 | 3.52 | 15.0 | | .6 | 9 0 | | | | | | | | | | | | | | | | | | 818A | | 1 | i 1 | | _ I | | - [| - 1 | 1 | | 1 | | | | | | | | | | | | | | 1799 | 5/14 | 840A
930A | | 16.6 | 5.90 | 2.22 | 3.50 | 13.1 | L | 6 | 8 0 | | - | | | | | | | | | | | | | | | DIBCHARGE | HEABUREHS | INTE OFSAN_GAB | RIEL - | WEST F | FORK | | | | | | | ND. | DATE | BEGIN | HADE BY | WIDTH | AREA OF
BECYLON
BO, FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FERT | BERAHSBID | RAT- NE | TH. MEAN | CHANGE
TOTAL | нетка | |--------------|-----------|-------------------------|-----------------------------|--------------|-------------------------------|---------------------------------|-------------------------|--------------|-------------|----------------------|---------------------------|----------------|---------------|------|-----------------------|----------------|-------|-------------------------------|---------------------------------|-------------------------|--------------|-----------------|---------------|-----------------|--------------| | | NEAR_ DE | Low Sa | n Gabriel Dam #i | 2 ., | | pur | NO THE Y | EAR ENDING | ВЕРТЕМВЕ | R 30, | ,, 47 | | 1903 | 1-6 | 850A
915A | 14 | 49.0 | 58.7 | 1.19 | 4.18 | 69.7 | 1M0 0 | 6 14 | TOTAL | NO. | | | DATE | BEDIN | | WIDTH | AREA OF
BESTION
BG. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | D)SCHARGE | RAT- METH- | MEAU.
SEC.
NG. | B, HT.
CHANGE
TOTAL | METER
NO. | 1904 | 1-6 | 1230P
1252P | ** | 50.0 | 67.3 | 1.47 | 4.43 | 98.6 | | 6 15 | 0 | | | NU. | | 1021A | 1 | i | | | | SEC. FT. | ING OD | | | | 1905 | 1-6 | 255P
315P
923A | ** | 23.0 | 31.6 | 2.60 | 4.32 | 82.0 | 0. | 6 13 | 0 | ••• | | 1844 | 10-1 | 945A | WENTZ | 6.0 | 1.64 | .1.04 | .3.17. | 1.7 | 0.6 | | 0 | FC32 | 1906 | 1-7 | 934A
312P | WENTZ - WILSON | 22.0 | 14.2 | 5.04 | | 71.6 | · 0. | 6 11 | | FC32 | | 1845
1846 | 10-2 | 1003A
434P
455P | " | 9.8 | 2.74
4.70 | 1.57 | 3.24 | 3.7
7.5 | 0.6 | ì | 02 | | 1907 | 1-8 | 328P
305P | WENTZ | 40.4 | | 5.59 | | 69.7 | 1 | RF.8 | - | - | | 1847 | 10-4 | 1040A
1103A | - | 11.7 | 3.48 | 1.21 | 3.28 | 4.2 | 0.6 | 1 | | ., | 1908 | 1-9 | 324P | | 41.4 | | 5.14 | | 67.7 | | RF 9 | + | - | | 1848 | 10-8 | 947A
1004A | ,, | 6.0 | 1.72 | 1.19 | 3.20 | 2.1 | 0.6 | 6 | 0 | н | 1909 | 1-10 | 148P
108P
130P | •• | 26.0 | | 5.03 | | 56,4
55.7 | 1 1 | 6 12 | | - | | 1849 | 10-11 | 1000A
1018A
1000A | ** | 5.8 | 1.53 | 1.13 | 3.16 | 1.7 | 0.6 | 9 | 0 | | 1911 | 1-13 | 1255
116 | | 23.0 | 11.5 | 4.52 | | 52.0 | | . 6 12 | | FC29 | | 1850 | 10-15 | 1016A
1035A | ** | 6.0 | 1.58 | 1.05 | 3.16 | 1.7 | 0.6 | 10 | 0 | | 1912 | | 943/ | A WENTZ | 22.0 | 10.8 | 4.70 | | . 50.6. | | .6 11 | | FC32 | | _1851 | 10-18 | 1051A
1023A | <u></u> | 6.0 | 1.93 | 1.31 | 3.21 | 2.5 | 0.6 | 1 | 0 | _ - | 1913 | 1-15 | 953/
1006/
922/ | <u> </u> | 22.0 | 10.3 | 4.49 | | 46.2 | 0 | .6 11 | ļ | | | 1852 | 10-22 | 1043A
950A
1012A | " | 6.0 | 1.80 | 1.10 | 3.18 | 2.0 | 0.6 | 1 | - | | 1914 | 1-16 | 943/ | | 21.0 | 11.3 | 3.75 | | 42.2 | - | .6 11 | | | | 1853
1854 | 10-25 | 1008A
1030A | • | 7.6 | 2.40 | 1.18 | 3.23 | 2.8 | 0.6 | 1 | 0 | | 1915 | 1-17 | 107 | A | 21.0 | 10.4 | 3.85 | | 40.0 | 1 1 | .6 11 | - | *** | | 1855 | 11-1 | 1030A
1046A | | 7.1 | 2.25 | 1.03 | 3.20 | 2.3 | 0.6 | 7 | 0 | ,, | 1916 | | 1201 | A | 20.5 | 1116 | 3.17 | | 36.9 | 1 | 6 11 | | FC32 | | 1856 | 11-5 | 1206P
1222P
1026A | * | 7.3 | 2.23 | 0.96 | 3.23 | 2.2 | 0.6 | 7 | 0 | - | .1917
1918 | 1-20 | 1114
116
131 | ? | 18.5 | 16.5 | 2.24 | | 35.9 | 1 1 | .6 15 | | FC29
FC32 | | 1857 | 11-8 | 1049A | | 7.6 |
2.57 | 1.22 | 3.27 | 3.1 | 0.6 | | 0 | - | 1919 | 1-22 | 912 | 1 | 18.5 | 15.8 | | | 33.1 | | .6 9 | | | | 1858 | 11-12 | 1114A
1235P | ** | 14.0 | 5.29 | 1.19 | 3.32 | 6.3 | | 14 | +.04 | ". | 1920 | 1-23 | 9.12 | 1. | 18.8 | 14,9 | 2.15 | | 32.0 | | .6 10 | | - | | 1859 | 11-15 | 100P | | 19.0 | 16.4 | 2.74 | 3.89 | 44.9 | | 18 | ļ. | † <u>"</u> | 1921 | 1-24 | 904/
919/
110 | | 18.2 | 15.2 | 1.92 | | 29.2 | 0 | .6 9 | | | | 1860 | 11-19 | 1149A
1130A
1156A | | 16.5 | 31.6 | 2.52 | 4.34 | 30.7
79.7 | | 14 | 0 | ļ., , | 1922 | 1-25 | 126 | , , | 20.0 | 14.4 | 2.04 | | 29.4 | 0 | .6 10 | + | | | 1862 | 11-22 | 349P
415P | • | 35.4 | 47.5 | 6.16 | 5.21 | 293. | | 16 | T | . (| 1923 | 1-27 | 1127 | MIDDLETON | 16.5 | 14.5 | 2.14 | | 31.0 | | .6 14 | +- | FC29 | | 1863 | 11-22 | 535P
621P | WENTZ - DE VORE | 56.5 | 98.0 | 6,43 | 5.61 | 630. | | 10 | T | | 1924 | 1-28 | 150
913 | A | 25.0 | 18.3 | 3.14 | | 57.5 | 1 | .6 13 | + | FC32 | | 1864 | 11-23 | 1033A
1106A | WENTZ | 56.0 | 11 1. | 3.87 | 5.76 | 430. | 1 | 11 | 0_ | | 1925 | 1-29 | 933/
912/
928/ | N J. | 18.7 | 11.6 | 2.94 | | 35.2
28.7 | 1 1 | .6 10 | + | | | 1865 | 11-24 | 1125A
1159A | | 49.0 | 108- | 3.91 | 5.70 | 422. | 0.6 | 11 | 0 | <u></u> | 1926 | 1-31 | 926 | A | 18.6 | | 3,42 | | 27.5 | $\Gamma \Gamma$ | .6 10 | \top | | | 1866_ | 11-25 | 356P
428P
1120A | *** | 49.0 | 93.9 | 3.58 | 5.52 | 336. | 0.6 | 10 | _ه | <u> </u> | 1928 | 2-1 | 906/
925/ | \ | 20.5 | | 3.53 | | 28.4 | | .6 11 | | : | | 1867 | 11-26 | 1156A
245P | 40 | 49.0 | 94.6 | 3.32 | 5.38 | 314. | 0.6 | 12 | 0 | - | 1929 | 2-3 | 1115/ | M., | 18.7 | 9.91 | 2.93 | ļ | 29.0 | 0 | .6 15 | | FC29 | | 1868 | 11-26 | 305P
330P | MIDDLETON | 49.0 | 85.8 | 3.40 | 5,35 | 293. | 0.6 | | 01 | FC32 | 1930 | 2-4 | 920 | WENTZ | 17.4 | 8.61 | 2.84 | | 25.0 | 0 | .6 9 | <u> </u> | FC32 | | 1869 | 11-26 | 350P
1032A | MIDDLETON . WENTZ WENTZ | 21.0 | 30.1 | 1.52 | 4.23 | 58.3 | 0.6 | 15 | 0 | <u> </u> | 1931 | 2-5 | 929/
958/
905 | 11.4 | 17.0 | 9.10 | 2.65 | - | 24.2 | - 0 | 6 17 | - | - | | 1870 | 11-27 | 1055A
1055A
1114A | MENIZ. | 20.5 | 25.9 | 1.68 | 3.99 | 43.6 | | 10 | 0 | | 1932 | 2-6 | 933 | Α | 17.4 | 9.62 | 2.36 | | 22.7 | ++ | 0.6 1 | ' | | | 1872 | 11-30 | 1048A
1106A | | 20.7 | 27.2 | 1.56 | 3.97 | 42.5 | 0.6 | 1 | 0 | | 1933 | 2-7 | 940 | A | 17.0 | 9.52 | | | 22.2 | 1 1 | 0.6 1 | | | | 1873 | 12-3 | 1148A
1206P | ** | 20.3 | 26.7 | 1.47 | 3.92 | 39.4 | 0.6 | 1.1 | 0_ | | 1 | 2-8 | 1116 | A | 17.0 | | 2.26 | 3.69 | 21.3 | 1 | 0.6 1 | | 1 | | 1874 | 12-5 | 1134A
1150A | MIDDLETON - WENTZ | 21.0 | 25.3 | 1.35 | 3.91 | 34.2 | p <u>.6</u> | 11 | 0_ | | 1935 | 2-10 | 1132
144
202 | P | 19.0 | 9.34 | 2.83 | 3.76 | 27.8 | 1 1 | 0.6 10 | | - | | 1875 | 12-5 | 1236P
1252P
944A | 11 ''41 | 21-0 | 30.4 | 1-91 | 4.18 | 58.2 | 0.6 | 12_ | 0 | | | 2-12 | 941
957 | A | 19.0 | | 2.93 | 3.67 | 23.0 | 1 1 | 0.6 10 | | ••• | | 1876 | 2-7 | 1008A | WENTZ | 43.0 | 1 | 1.44 | 4.15 | 56.6 | 0.6 | 1 | 0 | -11 | 1936 | 2-13 | 135 | P ** | 19.0 | 7.44 | 3.09 | 3.68 | 23.0 | | 0.6 1 | 0 | - da | | 1877 | 12-9 | 1156A
155P
216P | DE VORE + WILSON | 37.3
43.1 | 23.6 | 1.30 | 3.80 | 24.7 | 0.6 | 15 | 0 | " | 1939 | 2-14 | 909 | A ** | 19.5 | 7,85 | 2.75 | 3.65 | 21.6 | | 0.6.1 | - | | | 1879 | 12-10 | 1114A
1134A | WENTZ | 20.5 | 22.9 | 1.29 | 3.80 | 29.7 | 0.6 | 1 | 0 | ** | 1940 | 2-15 | 1106 | A | 19.5 | 8.02 | 2.75 | 3,65 | 22.1 | + | 0.6 1 | | - | | 1880 | 12-12 | 943A
1002A | | 20.6 | 23.2 | 1.16 | 3.78 | 27.0 | 0.6 | 11 | 0 | ٠., | 1941 | 2-17 | 436 | | 19.5 | 8.53 | | 3.64 | 22.8 | | 0.6 1 | T | FC29 | | 1881 | 12-14 | 951A
1015A | . 11 | 20.6 | 23.1 | 1.11 | 3.77 | 25.8 | 0.6 | 11 | 0 | +- | 1942 | 2-18 | 935
950 | A | 19.5 | 10,2 | 1.98 | 3.63 | 19.9 | 1 [| 0.6 10 | | FC32 | | 1882 | 12-17 | 1032A
1106A | - | 20.4 | 22.4 | 0.98 | 3.74 | 22.2 | 0,6 | 17 | 0 | * | | 2-22 | 940 | A | 19,5 | 9.74 | | 3.64 | 18.6 | | 0.6 10 | | - | | 1883 | 12-19 | 1012A
1034A
1132A | м | 20.0 | 18.8 | | 3.73 | 21.4 | 0.6 | 11 | 0_ | | | 2-24 | 1040
1055 | A MIDDLETON | 18.7 | 8.74 | | 3.62 | 17.2 | | 0.6 1 | | -,, | | 1884 | 2-20 | 1153A
1056A | ** | 17.3 | | 0.70 | 3.48 | 7.4 | 1 1 | 9 | 0 | | 1946 | 2-25 | 910
940
923 | A WENTZ | 19.0 | 9,18 | 1.94 | 3.62 | 17.8 | 1 | 0.6 1 | 0 | FC26 | | 1885 | 12-22 | 1115A
120P
200P | 71 | 17.4
52.0 | 108. | 0.68
3.69 | 5.62 | 7.6
399. | 1 1 | 16 | 0 | ,, | 1947 | 2-27 | 945 | A ** | 18.5 | 8.30 | 1 | 3.61 | 17.7 | 1 | 0.6 10 | | | | 1887 | 12-25 | 1035P | WENTZ - WILSON | 60.0 | 173. | 5.78 | 6.56 | 1000. | | 12 | | | 1948 | | 1011 | Α '" | 18.8 | 8.39 | | 3.61 | 17.9 | | 0.6 14 | | | | 1888 | 2-26 | 120P
156P | ., ., | 62.0 | 189. | 5.93 | 6,67 | 1120 | | 13 | 0 | | H | 3-3 | 905 | A MIDDLETON | 18.2 | 8.23 | | 3,60 | 17.1 | | 0.6 1 | 1 | FC29 | | 1889 | 12-27 | 917A
956A | WENTZ | 59.0 | 1.72. | 5.44 | 6.42 | 937. | | 13 | 01 | ,,, | 1950
1951 | 3-4 | 920
938
955 | | 18.2 | 8.56 | 2.04 | 3,61 | 17.5 | 1 1 | 0.6 | | FC26 | | 1890 | 12-27 | 250P
326P
936A | ** | 52.0 | 122. | 3.54 | 5.60 | 432. | 1 | 15 | 1 | - | | 3-6_ | 955
923
940 | A | 18.5 | 8.36 | | 3.60 | 16.6 | | 0.6 1 | | - | | 1891 | 12-28 | 1014A
448P | - 0 | 53.0 | 130. | 4.13 | 5.84 | 538. | 1-1- | 14 | | - | Ħ | 3-10 | 1108 | | 17.5 | 7.93 | 1. | 3.58 | 15.8 | | 5.6 10 | , | FC29 | | 1892 | 12-28 | 529P
435P | ** | 54.0 | 143. | 4.19 | 5,89 | 600. | | 11 | | | li l | 3-11 | 936
956 | A WENTZ | 17.5 | 7.73 | 1 | 3.60 | 15.9 | 1 1 | 2.6 10 | | FC26 | | 1893 | 12-29 | 455P
1115A | STUNDEN | 49.0 | 103. | 3.51 | 5,51 | 362. | | 11 | 0 | | 1955 | 3-13 | 202
216
915 | P · ** | 17.2 | 7.44 | 1 | 3.58 | 14.7 | 1 1 | 0.6 | | | | 1894 | 12-30 | 1133A
1054A
1124A | MIDDLETON WENTZ - MIDDLETON | 49.9 | 78.7 | | 4.80 | 156. | | 15 | | FC18 | 1956 | 3-15 | 932 | A | 17.2 | 7.29 | 1.93 | 3.59 | 14.1 | | 0.6 10 | 0 | | | 1896 | 12-31 | 902A
939A | WENTZ - MIDDLETON | 48.4 | 79.4 | | 4.58 | 111. | | 16 | | FC32 | | 3-17 | 1208 | P MIDDLETON | 16.5 | | 1.91 | 3,57 | 12.9 | | 0.6 9 | | FC29 | | 1897 | 1-2 | 935A
1009A | 10 1 | 48.4 | | 1.43 | 4.58 | 111. | | 16 | | | | 3-18 | 1014 | A WENTZ | 17.3 | 6.97 | | 3.55 | 12.9 | | 0.6 9 | | FC26 | | 1898 | 1-3 | 1040A
1110A | ., | 48.4 | 78.0 | | 4.56 | 105. | | 15 | | | 1959 | 3-20 | 1159 | A *** | 16.2 | 6.55 | 1 | 3.58 | 13.5 | 1 1 | 6 10 | 1 | | | 1899 | 1-4 | 937A
1002A
850A | , | 48.4 | 76.0 | 1.38 | 4,54 | 105. | 0.6 | 7 | T | | 1960
1961 | 3-21 | 927
944 | A | 17.4 | 7.22 | 2 2.28 | 3.62 | 18.4 | | 0.6 10 | | - | | 1960 | 1-5 | 934A
1017A | ** | 51.0 | 99.9 | 2.63 | 5,20 | 263. | | 15 | | | 1962 | 3-24 | 953
1005 | A | 16.5 | 7.39 | | 3.61 | 15.4 | | 0.6 | _ | FC29 | | 1901 | 1-5 | 1052A
806A | ** | 51.0 | 102. | 2.78 | 5.27 | 284. | | 15 | | | 1963. | 3-25 | 928
945 | A WENTZ | 15.6 | 6.82 | | 3.58 | 14.2 | | 0.6 | | FC26 | | 1902 | 1-6 | 827A | MIDDLETON | 47.0 | 47.9 | 1.10 | 3.99 | 52.7 | 0.6 | 15 | 0 | FC18 | 1964 | | 1000 | | 15.8 | 6,59 | ' | 3,56 | 13.5 | | 0.6 | 0 | _ | | | | | DISCHAR | GE MEABURE | MENTE OFS | AN GABRIEL | L WE | ST FOR | K | | | | | | NO. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SD. FT. | MEAN
VELOCITY
FT.FER SEC. | GAUGE
HEIBHT
FEET | DISCHARGE
BEG. FT. | RAT- METH- | MEAS. | G. HT.
DHANGE
TOTAL | METER
NO. | |------|---------|-------------------------|--------------------|------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------------|--------|--------------------------|--------------|------|------|-------------------------|--|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------|-------|---------------------------|--------------| | | *** | belo | w San Gabriel | Dam #2 | | DUR | ING THE Y | EAR ENDIN | 3 8 EPTEM | BER 30 | ., ., 47 | - | 1997 | 6-27 | 1106A
1123A
1020A | 11 | 12.9 | 2.95 | 0.95 | 3,33 | 2.8 | 0.6 | 12 | 0 | ** | | HQ. | DATE | BESIN | HADE BY | WIDTH | AREA OF
SCOTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARDE
SEC. FT. | RAT HET | | G. HT
CHANGE
YDTAL | HETER
NO. | 1998 | 6-30 | | MIDDLETON | 11.0 | 2.74 | 0.95 | 3.32 | 2.6 | 0.6 | 10 | 0 | | | 1965 | 3-28 | 132P
151P | | 18.8 | 10.1 | 2.43 | 3.71 | 24.6 | .0.6 | 10 | p | ٠, | 1999 | | 1010A
1000A | LANG - MIDDLETON | 9.2 | 2.12 | 0.85 | 3.29 | 1.8 | 0.6 | I | 0 | | | | 3-29 | 945A
1005A | | 17.4 | 8.88 | 2127 | 3.63 | 20,2 | 0.6 | 11 | 0 | | 2000 | | 1012A
1036A | LANG | 9.7 | 2.16 | 0.83 | 3,28 | 1,8 | 0.6 | [| -0,- | | | | 3-31 | | MIDDLETON | 17.5 | 8.62 | 1.96 | 3.61 | 16.9 | 0.6 | 9 | 0 | FC29 | | 7-10 | 1052A
1235P | MIDDLETON | 7.5 | 1.92 | 0.89 | 3,28 | 1.7 | 0.6 | | 0 | * | | 1968 | 4-1 | 948A
1002A | WENTZ | 16.9 | 8.09 | 1.89 | 3.59 | 15.3 | 0.0 | 10 | 0 | FC26 | 2002 | 7-17 | 945A
956A | ** | 7.5 | 1.75 | 0.86 | 3.28 | 1.5 | 0.6 | i i | 0 | | | 1969 | 4-3 | 916A
930A | | 16.5 | 7.54 | 1.87 | 3.57 | 14.1 | 0.0 | 9 | 0 | | | 7-21 | 924A
935A | ** | 7.5 | 1.65 | 0.73 | 3.27 | 1,2 | 0.6 | 7 | 0 | .,, | | 1970 | 4-5 | 1102A
1116A
1023A | | 17.4 | 7,66 | 1.83 | 3.57_ | 14.0 | 0.1 | 3 9 | 0 | ļ | 2005 | 7-24 | 931A
944A | 43 | 7.5 | 1.64 | 0.73 | 3.27 | 1.2 | 0.6 | 7 | 0 | | | 1971 | 4-7 | 1035A
948A | MIDBLETON | 17.5 | 7.02 | 1.71 | 3,56 | 12.0 | | 1 | 1 | FC29 | 2006 | 7-28 | 1005A
1014A | • | 7.5 | 1.54 | 0.71 | 3.25 | 1.1 | 0.6 | 7 | 0 | ., | | 1972 | 4-8 | 1003A
942A | WENTZ | 17.4 | 7.42 | 1.76 | 3.55 | 13.1 | 1 1 | 5 10 | | FC26 | 2007 | 7-31 |
1045A
1055A
1150A | MIDDLETON-WENTZ | 7.5 | 1.56 | 0.70 | 3,26 | 1.1 | 0.6 | 7 | 0 | ** | | 1973 | a-11_ | 956A
1001A | | 17.0 | 7.10 | | 3.53 | 11.8 | 0.1 | 5 9 | 0 | · · · · · | 2008 | 8-4 | | MIDDLETON | 4.8 | 1.38 | 0.87 | 3.26 | 1.2 | 0.6 | 8 | 0 | | | | 4-15 | 1015A | | 17.0 | 6.65 | | 3.51 | 10.1 | 0. | 6 9 | Q_ | | 2009 | B•7 | 1015A
954A | | 4.7 | 1.29 | 0.85 | 3.25 | 1.1 | 0.6 | 8 | 0. | | | 1975 | 1 | 1030A
1030A | | 15.3 | 5.25 | 1 | 3.45 | 9.5 | 1 0- | | 1 | 1., | 2010 | B-11 | 1005A
1246P | | 4.7 | 1.23 | 0.89 | 3,26 | 1.1 | 0.6 | 8 | 0 | | | | 1 | 1044A
1053A
1109A | † | 14.0 | 4.17 | 2.42 | 3,48 | 9,9 | 0. | | 1 | - | 2011 | 8-15 | 1257P
1023A | -44 | 4.7 | 1.20 | 0.83 | 3.25 | 1.0 | 0.6 | 8 | 0 | | | 1977 | i | 1040A
1053A | | 14.5 | 5.48 | | 3,50 | 10.2 | TT | 6 8 | 1 | - | 2012 | 8-18 | 1040A
1034A | LANG | 4.8 | 1.16 | 0,73 | 3.25 | 0.85 | 0.6 | 8 | | FC26 | | 1979 | [| 1012A
1023A | | 14,3 | 5.08 | 1 | 3.46 | 8.6 | 0. | | | ٠, | 2013 | 8-21 | 1046A
958A | | 4.9 | 1.17 | 0.85 | 3,24 | 1.0 | 0.6 | 7 | 0 . | | | | 5-6 | 227P | | 13.8 | 4.78 | | 3.44 | 7.4 | | 6 9 | Ī | | 2014 | 8-26 | 1010A
952A
1005A | <u> </u> | 4.8
5.0 | 1,09 | 0.7.8 | 3,23 | 0.85 | 0.6 | .8 | 0 | | | 1981 | 5-9 | | WENTZ | 14.0 | 4.88 | } | 3.44 | 6.8 | | 6 8 | | | 2016 | 9-2 | 1025A
1033A | MIDDLETON | 4.7 | 1.08 | 0.76 | 3,24 | 0.82 | 0.6 | 7 | C
C | *** | | 1982 | 5-12 | | MIDDLETON | 14.0 | 5.13 | 1.46 | 3.46 | 7.5 | 0. | 6 13 | _ 0 | FC29 | 2017 | 9-4 | 940A
950A | *** | 3.5 | 0.93 | 0.98 | 3.24 | 0.91 | 0.6 | 7 | 0 | | | 1983 | 5-13 | 1010A
1020A
953A | WENTZ | 13.7 | 4.89 | 1.43 | 3,45 | 7.0 | 0. | 6 8 | 0 | FC26 | 2018 | 9-8 | 955A
1005A | ** | 3.5 | 0.94 | 0.94 | 3.24 | 0.88 | 0.6 | 7 | 0 | | | 1984 | 5-16 | 1005A | L. | 13.7 | 5.07 | 1.52 | 3,45 | 7.7 | 0. | 6 9 | 0 | . | 2019 | 9-11 | 1000A
1008A | | 3.5 | 0.97 | 0.9.2 | 3.24 | 0.89 | 0.6 | 7 | 0 | - | | 1985 | 5-20 | 1019A
1044A | | 13.7 | 4.32 | 1.26 | 3.42 | 5.4 | 1 1 | 6 8 | | | 2023 | 9-22 | 948A
1000A | , | 4.0 | 1.01 | 0.75 | 3.23 | 0.76 | 0.6 | 8 | 0 | | | 1986 | 5-23 | 1104A
1033A | - 91 | 12.6 | ! | 1.30 | 3.41 | 5.6 | | 6 13 | 1 | | 2024 | 9-24 | 215P
226P | * | 4.1 | 1.39 | 1,08 | 3.28 | 1.5 | 0.6 | 8 | 0 | | | 1987 | | 1055A
1031A | | 13.7 | | 1.27 | 3.42 | 5.4 | | 6 13 | | -:- | 2025 | 9-25 | 155P
267P
643A | | 4.2 | 1.49 | 1.07 | 3.28 | 1.6 | 0.6 | 8 | 0 | · # | | 1988 | 1 | 1150A | WENTZ | 13,8 | 4.06 | | 3.40 | 4.8 | T | 5 8 | | | 2026 | 9-26 | 646A
655A | ъ | 2.2 | 0.43 | 0.14 | 3.13 | 0.06 | 0.6 | 3 | 0_ | | | 1989 | | 956A
1018A | MIDDLETON
WENT7 | 13.7 | 4.29 | 1 | 3.40 | 5.3
5.4 | | 13 | | FC29 | 2027 | 9-26 | 700A
930A | *** | 3.6 | 0.56 | 0.11 | 3,13 | 0.06 | 0.6 | 4 | 0 | - •• | | 1991 | - | 1106A
1128A | | 13.6 | i - | 1.34 | 3.41 | 6.2 | | 6 14 | | 1 | 1 | 9-26 | 942A
953A | | 4.2 | 1.47 | 1.09 | 3.29 | 1.6 | 0.6 | 8 | 0 | ** | | 1992 | 1 | 1000A
1028A | | 13.4 | | 1.17 | 3.40 | 4.8 | | 6 14 | 1 | | 2029 | 9-29 | 1004A
948A | 189 | 4.5 | 1,64 | 1.28 | 3.30 | 2.1 | 0.6 | 8 | 0 | | | 1993 | | 956A
1017A | | 13.2 | | 1.09 | | 4.4 | Υ [- | 6 14 | | | 2020 | 9-15 | 958A
1032A | *************************************** | 4.1 | 1.23 | 0.98 | 3.27 | 1.2 | 0.6 | 7 | 0 | | | 1994 | 1 | 953A
1014A | -11 | 13.0 | | 0.90 | 3.34 | 3.1 | 0.0 | 13 | 0 | | 2021 | 9-15 | 1040A
956A | | 3.7 | 1.08 | 0.96 | 3,26 | 0.75 | 0.6 | 7 | 0 | | | 1995 | | 1023A
1045A | | 12.9 | 3.00 | | 3.34 | 3.0 | 1 1 | 12 | 0 | | 2022 | 9-18 | 10064 | | 4,2 | 1.00 | L. 0.00 | | . 4112 | 1 | | <u> </u> | | | 1996 | 6-24 | 1023A
1040A | 71 | 12,7 | 3.18 | 0.94 | 3.34 | 3.0 | ↓ 0.6 | 12 | 0 | | | | | | | | | | | | | | | | F. Q. Di | ri. Form \$2 4-44 | | | | FLO | LOS ANGELE
COD CONTRO
YDRAULIC | OL DISTRICT | : | | | Sta. 1 | No. F209-R | |----------------------------------|---------------------------------------|---|--|---------------------------------|--------------------------------|--------------------------------------|---------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------| | Daily | ilscharge, in s | econd-feet of | SAN GAB | RIEL RIVE | R-MEST FO | RK below | San Gabri | el Dam ∦2 | | for the yea | r ending Septer | nber 30, 19 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 63
63
61
61 | 6.1
6.1
3.8
199
173 | 23333333333333333333333333333333333333 | 1.7
1.7
1.8
1.6
1.8 | 1.6
1.6
3.7
2.2
52 | 1.6
1.6
1.6
1.6 | 500
159
4.4
4.7
5.0 | b 2.1
b 20
b 19
17
16 | 7.5
7.5
7.2
7.5
7.2 | 3.8
3.2
3.2
3.0
3.0 | 13
13
13
13 | 0.9
0.9
1.0
1.0 | | 8
7
8
9 | 63
63
63
65 | 71
50
3.5
3.5
24 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1.8
1.9
60
100
94 | 103
97
75
1.5 | 1.6
1.6
1.6
1.6 | 334
418
155
b 70 | 15
15
14
14
14 | 72
72
8 72
8 6.8
8 6.8 | 3.0
3.0
2.8
2.8
2.8 | 13
13
13
13 | 1.0
1.0
1.0
1.0 | | 11
12
13
14
15 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 29
18
22
22
22 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 79
1.6
1.5
1.4
1.4 | 1.5
1.5
1.5
1.5 | 1.7
1.8
1.7
1.7 | 63
62
62
63 | 15
14
14
14
14 | 8 6.4
6.4
6.1
5.8
5.4 | 2.8
2.6
2.6
2.6 | 1 3
1 3
1 3
1 2 | 1.0
0.8
0.8
0.8 | | 18
17
18
19
20 | 55555
665 | 2 2 2 2 2 1 2 1 | X X X X X X X X X X X X X X X X X X X | 1.4
1.5
1.5
1.5 | 15
15
15
15 | 1.7
1.8
279
70
71 | 57
57
55
54
50 | 13
13
12
12 | 5.4
5.4
5.0
4.7 | 2.6
2.6
2.8
2.8 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8. 0
8. 0
8. 0
8. 0
8. 0 | | 21
22
23
24
25 | 6.5
6.5
6.3
6.3 | 2 1
2 1
2 1
2 1
2 1 | 6.0
438
480
456
155 | 1.4
1.4
1.5
1.5 | 1.5
1.5
1.5
1.6 | 1.4
1.3
86
104
43 | 41
32
32
30
26 | 12
11
10
11
10 | 4 .4
4 .4
4 .7
4 .7 | 2.6
2.4
2.2
2.0
1.9 | 1 1
1 0
1 0
1 0
0 9 | 0.8
0.8
0.8
0.8
0.8 | | 26
27
28
29
30
31 | 653355
663 | 200000000000000000000000000000000000000 | 56
35
34
13
1.8 | 1.5
1.6
1.6
1.6
1.6 | 1.6
1.6
1.6 | 16
b 19
22
30
304
602 | 24
23
23
22
b 22 | 11
11
10
9.4
8.7
7.9 | 4 .4
4 .4
4 .4
4 .4
4 .0 | 1 .8
1 .8
1 .7
1 .7
1 .7 | 0.8
0.5
1.1
1.0
1.0 | 0.8
0.8
0.8
0.9
1.1 | | | 197.7 | 6603 | 1721.0 | 375.4 | 366.5 | 1676.8 | 25061 | 410.0 | 1723 | 78.7 | 362 | 26.4 | | MEAN | 6.38 | 55.0 | 55-5 | 12.1 | 13.1 | 54.1 | 86.2 | 13.2 | 5.74 | 2.54 | 1.17 | 0.88 | | PERT | 392. | 1,310. | 3,410. | 745. | 727. | 3.330. | 5,130. | 812. | 342. | 156.
YEAR MEA | 72.
N2 | 52.
2.8
16.480. | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 209-R | | | second-feet of | T | RIEL RIVER | | | | T | el Dam #2 | | | | | |----------|----------|----------------|------------|------------|----------|-------|-------------|------------|------------|----------|--------|-------|--| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May , | June | July | Aug. | Sept. | | | 1 | 29 | 2 .4 | 40 | 111 | 29 | 17 | 15 | 8.7 | 5 .4 | 2.4 | 1.1 | 0.9 | | | 2 | 3.8 | 2.4 | 39 | 111 | 29 | 17 | 1.5 | 8.3 | 5.4 | 2.0 | 1.1 | 0.9 | | | 3 | 4.6 | 2.5 | 39 | 108 | 28 | 17 | 14 | 8.3 | 5.4 | 1.6 | 1.2 | 0.9 | | | 4 | 4 .4 | 2.4 | 36 | 104 | 25 | 17 | 14 | 7.9 | 5.4 | 1.8 | 1.2 | 0.9 | | | 5 | 3 .0 | 2.2 | 4 6
5 8 | 212 | 2 4 | 17 | 14 | 7.5 | 5.0
5.0 | 1.8 | 11 | 0.9 | | | 8 | 2.6 | 2.2 | 56 | 72 | | 16 | 13 | 7.5 | 5.0 | 1.8 | 11 | 0.9 | | | 7 8 | 2.2 | 2.4 | 55 | 70 | 22
21 | 16 | 13 | 72 | 5.0 | 1.8 | 11 | و ٥ | | | 9 | 2.2 | 1 9 | 40 | 68 | 23 | 16 | 13 | 6.8 | 5.0 | 1.7 | 11 | 1.0 | | | 10 | ĩã | 1 9 | 30 | 58 | 28 | 16 | īž | 72 | 4.7 | 1.7 | 11 | ۆ ō | | | 11 | 1.8 | 3.4 | 28 | 56 | 24 | 15 | 12 | 72 | 4.4 | 1.7 | 11 | 0.9 | | | 12 | 1.7 | 8.8 | 27 | 54 | 23 | 15 | 11 | 72 | 4.4 | 1.7 | 11 | 8. Õ | | | 13 | 1.7 | 3.6 | 27 | 52 | 23 | 14 | 11 | 7.2 | 4.4 | 1.7 | 1.1 | 1 .0 | | | 14 | 1.7 | 4.4 | 26 | 50 | 22 | 14 | 11 | 7.2 | 4.0 | 1.7 | 1.1 | و ٥ | | | 15 | 1.7 | 4.5 | 24 | 46 | 22 | 14 | 11 | 7.2 | 3.8 | 1.7 | 1.0 | 9.0 | | | 16 | 2 .8 | 41 | 23 | 42 | 21 | 14 | 10 | 7.2 | 3.2 | 1.6 | 1.0 | 0.9 | | | 17 | 2 .6 | 38 | 22 | 40 | 21 | 14 | 9.4 | 6.8 | 3.2 | 1.5 | 1.0 | و ٥ | | | 18 | 2.4 | 3 4 | 22 | 38 | 20 | 13 | 8.7 | 6.8 | 3.4 | 1.4 | 1.0 | 1.0 | | | 19
20 | 2.2 | 31 | 21 | 37 | 20 | 13 | 9.1 | 6.4 | 3.0 | 1.3 | 1.0 | Q 9 | | | 21 | 0.5 | 4 3
7 6 | 13
7.5 | 36 | 19 | 14 | 9.4 | 6.1
5.8 | 3 A
3 A | 12 | 1.0 | 0.8 | | | 22 | 2 .0 | 218 | 7.5 | 33 | 19 | 17 | 9.8 | 5.4 | 3.6 | 12 | 0.0 | a. 0 | | | 29 | 2.0 | 432 | 7.5 | 32 | 18 | 16 | 9.8 | 5.8 | 3.2 | 12 | 0.8 | 0.7 | | | 24 | 2.0 | 413 | 7.5 | 31 | 18 | 16 | 9.8 | 5.4 | 3.0 | 12 | ŏã | 0.7 | | | 25 | 2.0 | 354 | 293 | 30 | 18 | 15 | 9.8 | 5.4 | 2.8 | 12 | o.a | 0.7 | | | 26 | 2.0 | 222 | 1110 | 29 | 17 | 14 | 9.8 | 5.0 | 2.8 | 11 | 8.0 | 0.6 | | | 27 | 2.6 | 56 | 736 | 34 | 17 | 14 | 10 | 5.6 | 2.8 | 11 | 9.0 | 0.1 | | | 28 | 3.0 | 4.7 | 511 | 51 | 17 | 19 | 10 | 5.4 | 2.8 | 1.1 | 0.9 | 0.1 | | | 29 | 2 .8 | 4.3 | 476 | 35 | | 20 | 10 | 5.0 | 2.6 | 1.1 | 0.9 | 0.9 | | | 30 | 2.6 | 42 | 198 | 29 | | 19 | 9.4 | 4.7 | 2.6 | 1.1 | و٥ | e.o | | | 31 | 2 .4 | | 111 | 29 | | 17 | | 5.0 | |
11 | 0.9 | | | | | 76.0 | | 4137.4 | | 611.0 | | 337.4 | | 118.3 | | 31.0 | | | | | | 22499 | | 1881.0 | | 489,0 | | 2049 | | 46.7 | | 24.4 | | | EAN | 2.45 | 75.0 | 133.5 | 60.7 | 21.8 | 15.8 | 11.2 | 6.61 | 3.94 | 1.51 | 1.00 | 0.81 | | | CRE- | 151 | 4,400 | 8,210 | 3,730 | 1,210 | 970 | 669 | 406 | 235 | 93 | 61 | 48 | | | | Remarks: | | | | | | | | 3 | TEAR MEA | N 28.0 | | | | | | | | | | | | | | | | | | ### STATION P3-R SAN GABRIEL RIVER-WEST FORK above Forks LOCATION: WATER-STAGE RECORDER, LAT. 34°14'30", LONG. 117°51'45". ON THE RIGHT (SOUTH) BANK. 0,2 MILE ABOVE RINCON RANGER STATION, 2 MILES ABOVE EAST FORK AND ABOUT 13.5 MILES NORTH OF AZUSA. ELEVÁTION OF ZERO GAGE HEIGHT. 1474.94 FEET. DRAINAGE AREA: 102 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND BOULDERS. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 15 FEET BELOW STATION. RECORDER: INSTALLED DECEMBER 3, 1930 AT P3-R. REMOVED MARCH 2, 1938. INSTALLED ON APRIL 4, 1938. IN A TEMPORARY RECORDER HOUSE AND WELL AT THE ORIGINAL LOCATION. REMOVED JULY 12, 1938 AND INSTALLED AT STATION P3R-R. REMOVED ON SEPTEMBER 27, 1938 AND REINSTALLED AT ORIGINAL LOCATION IN A CONCRETE HOUSE OVER A 4 FT. X 4 FT. CONCRETE WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY SAN GABRIEL DAM NO. 2. DIVERSIONS: NONE. RECORDS AVAILABLE: DECEMBER 3, 1930 TO SEPTEMBER 30, 1947. FOR RECORDS PRIOR TO DECEMBER 3, 1930, AT THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT OFFICE FILED WITH STATION PI-R, SAN GABRIEL RIVER - WEST FORK 0,5 MILE ABOVE FORKS; RECORDS FROM JULY 12, 1938 TO SEPTEMBER 27, 1938. ARE FROM STATION P3B-R. SAN GABRIEL RIVER - WEST FORK, 400 FEET BELOW NORTH FORK. EXTREMES OF DISCHARGE: WES OF DISCHARGE: 1945-1946 MAXIMUM 6,20 SECOND-FEET, MARCH 30. MINIMUM 5,9 SECOND-FEET, SEPTEMBER 29. 1946-1947 MAXIMUM 4150 SECOND-FEET, DECEMBER 26. MINIMUM 6,3 SECOND-FEET, SEPTEMBER 29. 1930-1947 (STATIONS PI.R. P3-R. P38-R) MAXIMUM 43,000 SECOND-FEET, ESTIMATED, MARCH 2, 1938. MINIMUM 0,3 SECOND-FOOT, OCTOBER 17, 1931. ACCURACY: GOOD. OPERATION: MOVED FROM A PREVIOUS LOCATION BY THE DISTRICT FOR THE PASADENA WATER DEPARTMENT. THIS STATION WAS LATER TAKEN OVER, RECONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITHTHE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | DISCHARGE | HEASUR | EMENTS OF SAN GAR | INIEL - | WEST | FORK | | | | | | | ₩0. | DATE | BEGIN
END | MADE BY | WIOTH
FEET | AREA OF
BECTION
BQ. FT. | MEAN
VELOCITY
FT.FER SEC. | GAUDE
HÉIBHT
FEET | SEC. FT. | RAT- METH- | MEAS. Q,
BEC. CHAP
NO, YOT | HT.
IDE
AL | |------------|-----------|-----------------------|-------------------|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------------------|-----------------|----------------------------|-----------------|-------|------|------------------------|----------------------|---------------------|-------------------------------|---------------------------------|-------------------------|----------|------------|----------------------------------|------------------| | | | abo | ve Forks | | | DUR | ING THE 1 | EAR ENDIN | O SEPTEM | BE9 30 | , ₁₉ 4 <u>6</u> | | 1759 | 2-1 | 100P
122P | | 30.2 | 22.1 | 1.09 | 7.57 | 24.1 | 0.6 | 14 0 | Ì | | HD. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
BG, FT. | MEAN
VELOCITY
FT.PER SECT | BAUGE
HEIGHT
FEET | DISCHARGE
BEG, FT, | MAT- MET | H- HEAT
BEC. | DHANGE
TOTAL | METER | 1760 | 2-3 | 310P
336P
1105A | ļ . . | 63.5 | 83.1 | 3.33 | 8.84 | 277. | 0.6 | 15 0 | 4 | | 1700 | 10-2 | 1030/ | MIDDLETON | 24.0 | | | | | Ti. | T | İ | FCoo | 1761 | 2-4 | 1127A
335P | - - | 34.5 | 29.2 | 1.69 | 7.85 | 49.3 | 0.6 | 150 | 1 | | 701 | 10-5 | 300F
318F | | 23.8 | 10.7 | 1.32 | 7.62 | 15.3 | 0. | | 21-0.0 | FC29 | 1762. | 2-5 | 355P
420P | | 31.0 | 25.1 | 1.47 | 7.72 | 36.8 | 0.6 | 11 | | | 702 | 10-6 | 713F | | 25.2 | | 1.28 | 7,58 | 13.7 | 0. | 1 | 1 | ļ " | 1763 | 2-5 | 446P
320P | ļ . | 57.0_ | 51.2 | 2.42 | 8.34 | 124. | 0.6 | 18 +.02 | - | | 703 | 10-8 | 127F | TREAT MIDDLETON | 24.5 | 15.0 | 1.90 | 7.82 | 28.5 | 10 | | 3 +0.0 | | 1764_ | 2-8 | 346P
132P | " | 53.7 | 64.6 | 2,03 | 8,33 | 131. | 0.6 | 16. Q | ł | | 704 | 10-8 | 153F
207F | | 24.5 | 13.6 | 1.70 | 7.72 | 23.1 | 0. | | | | 1765 | 2-11 | 153P
251P | | 31.2 | 23,7 | 1.25 | 7.65 | . 29.7 | 0.6 | 14 0 | | | 705 | 10-11 | 749F | | 24.5 | | | | | 10. | | | | 1766 | 2-15 | 309P
1120A | MIDDLETON - WADDICOR | 30.8 | 21.9 | 1.28 | 7.60 | 28.1 | 0.6 | 13 Q. | | | 7 | | 925A | | | 12.9 | 1.51 | 7.66 | 19.5 | 0. | | 1 | | 1767 | 2-16 | 1139A
130P | MIDDLETON | 30.8 | 22.8 | 1.24 | 7.63 | 28.3 | 0.6 | 14 0 | | | 706
707 | 10-15 | 300P | MIDDLETON | 24.5 | 11.9 | 1.45 | 7,64 | 17.3 | 0. | | 1 | | 1768 | 2-18 | 152P | | 30.5 | 21.6 | 1.26 | 7.60 | 27.3 | 0.6 | 13 0 | . ļ. | | 7 | 10-19 | 316P
344F | | 24.0 | 11.9 | 1.39 | 7.62 | 16.6 | 0. | | 1 | | 1769 | 2-21 | 945A
1008A
TT30A | | 28.9 | 22.0 | 1.23 | 7.59 | 27.0 | 0.6 | 14 0 | | | 708 | 10-22 | 403F | | 24.2 | 11.9 | 1.39 | 7.63 | 16.5 | 0. | 1 | 1 | | 1770 | 2-25 | 1152A | MIDDLETON | 29.0 | 21.8 | 1.24 | 7.58 | 27.0 | 0.6 | 14 C | | | 709 | 10-26 | 345P | | 24.0 | 11.6 | 1.30 | 7.61 | 15.1 | 10. | 6 12 | 2 0 | | 1771 | 3-1 | 145P
207P | | 29.0 | 21.2 | 1.19 | 7.56 | 25.3 | 0.6 | 14 0 | _ | | 710 | 10-29 | 1140A
330F | * | 24.5 | 12.6 | 1.44 | 7.66 | 18.1 | | 5 13 | +0.01 | ! :: | 1772 | 3-4 | 1215P
1237P | | 28.7 | 20.7 | 1.19 | 7.56 | 24.7 | 0.6 | 14 0 | , | | 711 | 10-29 | 350P | | 24.6 | 13.3 | 1.47 | 7.68 | 19.6 | 0. | 6 13 | *0.01 | | 1773 | 3-7 | 1148A
1212P | | 28.9 | 20.6 | 1.15 | 7.55 | 23.6 | 0.6 | 14 0 | , [| | 712 | 10-30 | 1042#
232P | • | 25.0 | 14.7 | 1.75 | 7.76. | 25.7. | 0. | 6 .13 | 3 .0 | | 1774 | 3-11 | 1047A
1107A | MIDDLETON | 29.8 | 22.1 | 1.06 | 7.54 | 23.3 | 0.6 | 13 0 | , [| | 113 | 10-30 | 258P | | 35.5 | 23.5 | 2.11 | 8.01 | 49.6 | 0. | 5 16 | i 0. | •• | 1775 | 3-15 | 1028A
1052A | | 29.5 | 22.0 | 1.12 | 7,57 | 24.7 | 0.6 | 14 0 | | | 114 | 10-31 | 1127A
1146A | | 24.5 | 14.5 | 1.73 | 7.76 | 25.1 | ۱. | 6 1: | 3-0-01 | " | 1776 | 3-18 | 125P
148P | MIDDLETON-WENTZ | 64.0 | 116. | 4.18 | 9.24 | 485. | 0.6 | | | | 15 | _11-1 | 1030A | ь | 24.3 | .13.2 | 1.65 | 7.71 | 21.8 | lo. | 5 .12 | 20 | _ " | 1777 | 3+18 | 150P
225P | ₩ENTZ-MIDDLETON | 64.0 | | Ĭ | | | ١. | | | | 16 | 11-4 | 110P
138P | * | 60.5 | 68.5 | 3.50 | 8.82 | 240. | 0. | 20 | 0 | | | | 305P
335P | MIDDLETON | | 121. | 3.97 | 9.24 | 480. | 0.6 | .15 | - 1 | | 17 | _11-6_ | 1008A
1033A | " | 33.7 | 29.9 | 0.69 | 7,68 | 20.6 | 0. | 5 14 | 1 0 | | 1778 | 3-19 | 930A | , modelion | 57.0 | 58.2 | 2.73 | 8.50 | 159. | 0.6 | 17 0 | | | 18 | 11-6 | 815P
850P | | 59.5 | 68.7 | 3,11 | 8.72 | 214. | , o. | 5 20 | 0 | | 1779 | 3-20 | 958A
1230P | | 57.2 | 53.9 | 2.60 | 8.42 | 140. | 0.6 | 16 | | | 19 | _11-7 | 405
430P | | 33.5 | 22.2 | 1.18 | 7.72 | 26.2 | 0. | ١. | i | ,, | 1780 | 3-21 | 1250P
233P | | 31,1 | 24.5 | 1.49 | 7.74 | 36.5 | 0.6 | 13 <u>C</u> | - | | 720 | 11-9 | 1137A | | 33,5 | 18,6 | 1,00 | 7.62 | 18.6 | 0. | 1 | 1 | | 1781 | 3-23 | 305P
950A | | 57.5 | 58.4 | 2.65 | 8.49 | 155. | 0.6 | 21 0 | | | 721 | 11-10 | - 355F
415F | | 36.5 | 27.1 | 1.72 | 7,92 | 46.6 | 0. | 6 1 | 5 0 | " | 1782 | 3-25 | 1008A
150P | | 31.0 | 24.5 | 1.62 | 7.77 | 39.8 | 0.6 | 13 -0. | 01 | | 22 | 11-13 | 118P
140P | MIDDLETON | 33.0 | 17.4 | 0.97 | 7.60 | 16.9 | | 6 15 | 0 | .FC29 | 1783 | 3-25 | 210P
100P | ··· | 60.0 | 63.0 | 2.60 | 8.52 | 164. | 0.6 | 16 -0. | 16 | | | li | 1050A | " | | ļ | | | İ | | | | | 1784 | 3:26 | 122P
935A | <u> </u> | 32.5 | 27.6 | 1.75 | 7.84 | 48.4 | 0.6 | 14 0 | \dashv | | 23 | 11-16 | 1112A
355P
424P | ,, | 29.5 | 16.4 | 0.99 | 7.58 | 16.3 | 1 1 | 6 14 | | | 1785 | 3-28 | 957A
337P | | 34,0 | 30.4 | 1.99 | 7.94 | 60.4 | 0.6 | 14/+. | 01 | | | 11-23 | 310P
334P | ** | 29.0 | 15.9 | 0.95 | 7.56 | 15.1 | | 6 14 | 1 | | 1786 | 3-29 | 403P
725A | | 41.5 | 33.0 | 2.15 | 8.07 | 71.9 | 0.6 | 16 | 01 | | - | 11-27 | 355P
417P | ,, | 29.0 | | | | | 1 1 | | 1 | | 1787 | 3-30 | 750A
945A | | ,71 ₊ 0_ | 310. | 7.74 | 11.16 | 2400. | SURF | 16 -0. | 04 | | | | 935A | | | 16.1 | 0.95 | 7.56 | 15.3 | | 5 14 | 0 | | 1788 | 3-30 | 1007A | | 72.0 | 302. | 8.28 | 11.22 | 2500. | | 14 + | .04 | | 27 | 11-30 | 1000A
315P | | 29.2 | 16.3 | 0.98 | 7.57 | 15.9 | 10. | 6 14 | Ψ. | · · · · · · · · | 1789 | 3-30 | 1220P | MIDDLETON-RUSSELL | 72.0 | 299. | 8.49 | 11.35 | 2540. | 0.6 | 14 + | . 10 | | | 12-3 | 342P
130P | " | 28.5 | 16.4 | 0.94 | 7.57 | 15.4 | 0. | 6 .15 | -o | | 1790 | 3-30 | 145P
205 P | | 72.0 | 288. | 8.89 | 11.33 | 2560. | 0.6 | 14 - | .06 | | | 12-7 | 150P
1114A | * | 28.5 | 16.4 | 0.96 | 7.57 | 15.B | i I | 14 | a | | 1791 | 3-30 | 453P
517P | | 70.0 | 242. | 8.14 | 10.89 | 1970. | 0.6 | 14 - | .04 | | 30 | 12-10 | 1136A
204P | * | 28.5 | 16.4 | 0.95 | 7.57 | 15.5 | 0. | 5 14 | 0 | | 1792 | 3-30 | 744P
802P | | 70.0 | 224. | 7.77 | 10.75 | 1740. | 0.6 | 15 + | .02 | | 31 | 12-14 | 225P | * | 28.5 | 16.2 | 0.91 | 7.57 | 14.8 | 0. | 6 14 | 0 | | 1793 | 3-30 | 1020P
1040P | | 70.0 | 223. | 7.17 | 10.60 | 1600 | 0.6 | 15 - | .04 | | 32 | 12-17 | 1149A
1048A | • | 28.5 | 16.4 | 0.94 | 7,57 | 15.4 | 0. | 6 15 | -0 | | 1794 | 3-31 | 610A
635A | MIDDLETON-RUSSELL | 68.0 | 203. | 6.50 | 10.19 | 1320. | 0.6 | 15 | 03 | | 33 | 12-20 | 1110A | | 28.5 | 16.2 | 0.96 | 7.57 | 15.5 | 0. | 6 14 | 0 | | 1795 | 4-1 | 1045A
1106A | MIDDLETON | 66.0 | 157. | 5,34 | | 1 | | | | | 34 | 12-21 | 1153A
117P | ** | 38.6 | 34.4 | 1.71 | 8.04 | 58.8 | 0. | 5
16 | +.06 | | | | 145P | | | | | 9,64 | 838. | 0.6 | 15 0 | | | 35 | 12-21 | 140P
332P | | 55.5 | 44.1 | 2.36 | 8.28 | 104. | 0. | 5 15 | +.06 | | 1796 | 4-2 | 213P
253P
322P | | 60.0 | 83.1 | 2.91 | 8.62 | 242. | 0.6 | . 17 | - 1 | | 36 | 12-21 | 352P | ** | 59.0 | 65.6 | 3.09 | 8.62 | 203. | | 15 | +.04 | | 1 | | 105P | | 55.5 | 80.5 | 1.95 | 8.32 | 157. | 0.6 | 16 0 | T | | 37 | 12-21 | 706P | MIDDLETON-RUSSELL | 65.0 | 109. | 4.31 | 9.15 | 471, | O.
SUR | 14 | +.14 | <u></u> | 1798 | 4-6 | 133P
125P | | 66.0 | 146. | 4.87 | 9.44 | 711 • . | 0.6 | 15 0 | - | | 38 | 12-21 | 755P
812P | | 67.0 | 164. | 5.67 | 9.78 | 930. | 0.0 | 16 | +.16 | | 1799 | 4-8 | 140P
343P | ·········· | 63.0 | 108. | 3.66 | 8.94 | 395. | 0.6 | 13 -0. | | | | 12-21 | 935P
1010P | | 71.0 | 298. | | 11.24 | 2410. | 1 1 | 15 | 1+.28 | | 1800 | 4-9 | 410P
215P | | 51.5 | 77.2 | 2.36 | 8.42 | 182. | 0.6 | 15-0. | 01 | | 40 | 12-22 | 1220A
1245A | | 69.0 | 225. | 6.80 | 10.35 | 1530- |] | 15 | 10 | .,, | 1801 | 4-12 | 240P
200P | ••• | 48,5 | 39.4 | 4.54 | 8.36 | 179. | 0.6 | 16 - 0. | 22 | | 41 | 12-22 | 820A
847A | | 70.0 | 227. | | 10.60 | 1640. | 1 | 16. | | | 1802 | 4-15 | 228P
307P | | 43.0 | 33.2 | 4.79 | | 159. | 0.6 | 14 - | - | | | | 1110A
1135A | | | 241. | | 10.85 | 1940. | 1 i | 16. | | | 1803 | 4-19 | 330P
1002A | | 38.8 | 28.6 | 4.51 | 8.02 | 129. | 0.6 | 13 -0. | 02 | | | 12-23 | 135P
155P | | | 221. | 6.88 | 10.48 | 1520. | 1 1 | 15 | 18 | | 1804 | 4-22 | 1030A
910A | ļ " | 38.5 | 27.0 | 3.96 | 7.95 | 107. | 0.6 | 14 0 | 1 | | | 12-22 | 355P
415P | ., ,, | | 204. | 6.57 | 10.21 | 1340. | | 16 | 1 | - | 1805 | 4-26 | 936A
938A | | 38.0 | 24.5 | 3.77 | 7.91 | 92.4 | 0.6 | 16 0 | 1 | | | 12-22 | 655P
715P | ** ** | 68.0 | 197. | | 10.10 | 1280. | | 16 | 0 | | 1806 | 4-29 | 1005A
228P | ** | 37.5 | 22.7 | 3.56 | 7 .85 | 80.7 | 0.6. | 17 0 | | | | | 935F | | | | | | | | 1 | T | | 1807 | 5•3 | 248P | | 36.5 | 20.6 | 3.39 | 7.77 | 69.8 | 0.6 | 15 0 | | | 46 | 12-22 | 1001F
902A | \ | 68.0 | 192. | 6.25 | 10.07 | | 1 1 | 3 17 | 04 | FC29 | 1808 | 5-6 | 1142A
1204P | * | 35.5 | 18.7 | 3.22 | 7.73 | 60,3 | 0.6 | 15 - 0. | 01 | | 17 | 12-23 | 925A
800A | * * | 70.0 | 240. | 7.25 | 10.74 | | 1 | 18 | 12 | " | 1809 | 5-10 | 547P
613P | <u> </u> | 36.0 | 19.5 | 3.12 | 7.75 | 60.9 | 0.6 | 17 0 | | | 18 | 12-24 | | MIDDLETON | 65.0 | 142. | 5,13 | 9.51 | 728. | 1 1 | 5 15 | | ., | 1810 | 5-13 | 422P
445P
1250P | | 35.3 | 18.8 | 3,14 | 7.74 | 59.0 | 0.6 | .140 | - 1 | | 9 | 12-28 | 358P | * | 47.0 | 40.1 | 2.54 | 8,22 | 102. | | 6 19 | | | 1811 | 5-17 | 112P | 6 | 35.5 | 18.3 | 2.98 | 7.72 | 54.6 | 0.6 | 15 0 | - ! | | iO | _1•1 | 956A
205P | MIDDLETON - TREAT | 35.5 | 29.7 | 1 | 7.84 | 1 | 1 1 | 15 | 1 | | 1812 | 5-20 | 928A
948A | | 35.5 | 19.0 | 2.98 | 7,71 | 56.6 | 0.6 | 14 -0. | - | | 1 | 1-4 | 230F | MIDDLETON | 33.0 | 27.7 | 1.61 | 7.78 | 44.5 | 0. | 8 15 | 0 | | 1813 | 5-24 | 908A
928A | * | 35.5 | 17.0 | 3.03 | 7.70 | 51.5 | 0.6 | 13 0 | - 1 | | 12 | 1-8 | 217F
342F
334F | | 57.6 | 53.3 | 2.40 | 8.35 | 128. | 0. | 6 16 | 0 | | 1814 | 5-27 | 940A
958A | | 35.5 | 16.9 | | t | 50.8 | i | 13 +0. | | | 3 | 1-11 | 403F | ' " | 54.0 | 64.6 | 1.98 | 8.31 | 125. | 0. | 16 | 0 | | 1815 | | 335P
357P | | | | | 7.69 | | 0.6 | - 1 | - 1 | | 54 | 1-14 | 127F
150F | * | 30.5 | 23.9 | 1.23 | 7,64 | 29.5 | 0. | 6 14 | 0 | | | 5-31 | 936A | | 34.3 | 15.0 | 2.78 | 7.61 | 41.6 | 0.6 | 12 0 | | | 55 | 1-18 | 250F
313F | • • | 30.2 | 23.0 | 1.24 | 7,62 | 28.5 | 0. | 6 14 | 0 | | 1816 | 6-3 | 952A | , | 34.2 | 14.2 | | 7.61 | 42.0 | 0.8 | 12 0 | - 1 | | 56. | | 140F
202F | ' | 30.3 | 22,5 | 1 | 7.60 | ł | 1 1 | 6 14 | | | 1817 | 6•7 | 257P
1105A | | 33.5 | 13.4 | | 7.57 | 33.4 | 0.6 | 12 0 | \neg | | 57 | 1-25 | 140F | · | 30.5 | 22.5 | T | 7.59 | I | 0. | 5 15 | 0 | | 1818 | 6-10 | 1122A
933A | MIDDLETON | 33.7 | 13.6 | 2.58 | 7.58 | 35.1 | 0.6 | 12 0 | | | - | | 202F | d | | , ,,,,, | 1 | T | T | T T | | 1 | | 1819 | 6.13 | 950A | | 33.7 | 13.3 | 2.40 | 7.56 | 31.9 | 0.6 | 12 0 | - 1 | | ### BOVE FORKSDURING THE YEAR ENDING BEPTENBER 30, 19 40 1872 11-13 1230A 1872 11-13 1252A 1872 11-13 1252A 1872 11-13 1252A 1872 11-13 1252A 1872 11-13 | No. | |--|---| | MG. DATE SIGN MADE BY WITHY AREA OF MEANY BOOKY | | | 1874 11-13 85881 " | 32.0 30.0 21.1 3133 300 0.0 10 3 | | 1000 lo (5 1500 lo Dours) 00 5 10 1 0 05 10 1 0 1 0 1 0
1 0 | " 53.0 89.0 7.84 9.16 697. 0.6 13 +.14 " | | 1820 6-17 155Fl G. BROWN 33.5 12.1 2.25 7.52 27.2 Q.6 16 0 FC24 1875 11-13 956A " 905A 9005A 33.0 12.6 2.17 7.51 27.3 Q.6 16 0 " 1876 11-13 1057A " | 02.0 123. 7.96 9.33 1030. 0.6 13 7.14 | | 1822 6-24 925A " 33.0 12.4 2.11 7.50 26.2 0.6 16 0 " 1877 11-13 1207F " | " 70.0 164, 7.62 10.15 1250, 0.6 14 + .14 "
" 70.0 175, 7.88 10.21 1380, 0.6 14 + .06 " | | 1823 6-28 925A " 33.0 11.4 2.22 7.50 25.3 0.6 17 0 " 1878 11-13 327P " 765P | . 59.0 127. 6.31 9.54 801. 0.6 1206 " | | 1824 7-1 246F_MIDDLETON 33.0 11.0 1.82 7.48 20.0 0.6 14 0 FC29 1879 11-13 730P " | " 58.0 111. 4.48 9.05 497. 0.6 1304 " | | 1825 7-5 241P " 16.2 8.99 2.20 7.50 19.8 0.6 13 0 " 1880 11-14 612P MIDDLETON 1826 7-8 930A " 16.7 10.3 1.92 7.48 19.8 0.6 12 0 " 1881 11-14 822A " | | | 1827 7-12 237P 16.5 8.46 2.16 7.45 18.3 0.6 12 0 1 1992 11.44 10.00 PM 10.5 PM | 317 337 337 337 337 337 337 337 337 | | 1828 7-15 946A " 16.5 8.59 2.00 7.44 17.2 0.6 12 0 " 230P 230P 1883 11-14 253P " | " 55,5 79.3 2.80 8.43 222, 0.6 1402 " | | 1829 7-19 154P " 16.5 8.68 2.12 7.45 18.4 0.6 12 0 " 1884 11-15 2339 MIDDLETO | 53.3 59.8 2.56 8.14 153. 0.6 1401 " | | 1830 7-22 923A 16.4 9.35 2.07 7.45 19.4 0.6 12 0 1885 11-18 225P " | 46.2 48.4 2.00 7.91 97.4 0.6 14 0 " | | 1839 7-29 350P " 16.0 7.42 1.79 7.39 13.3 0.6.13 0 " 850A | 56.0 108. 4.97 8.93 537. 0.6 14 + .08 "
61.0 133. 6.37 9.39 847. 0.6 13 + .08 " | | 1833 8-2 353P " 16.0 7.54 1.70 7.35 12.8 0.6 13 0 " 1888 11-20 1008A " | 66.0 167. 6.88 9.85 1150. 046 13 + .20 | | 1834 8-5 948A " 16.0 7.96 1.91 7.38 15.2 0.6 12 0 " 1889 11-20 1150A " 1240P | 69.0 223. 7.27 10.21 1620. 0.6 14 + .02 | | 1835 8-9 240P " 16.0 8.11 1.78 7.36 14.4 0.8 12 0 " 1890 11-20 103P " 928A 9.12 0.40 " 185 7.41 1.81 7.35 12.4 0.6 10 0 " 205P | 70.0 232, 7.54 10.35 1750. 3.4 1602 " | | 1837 8-16 250P " 15.5 7.03 1.52 7.29 10.7 0.6 10 0 " 1892 11-20 507P " | 68.0 186. 6.50 10.21 1210. 0.6 1602 | | 1838 8-19 308P " 16.5 7.42 1.68 7.27 12.5 0.6 11 0 " 1893 11-21 1005A " | 63.0 109. 3.50 8.92 381. 0.6 1402 " | | 1839 8-23 308P " 14.8 5.88 1.67 7.24 9.8 0.6 12 0 " 1894 11-22 1028A " 1038A " 1894 11-22 1028A " 1038A 1038 | 59.5 88.5 2.95 8.62 261. 0.6 2001 " | | 1840 8-26 254P " 14.5 5.45 1.80 7.22 9.8 0.6 10 0 " 1895 11-22 530P " 230P " 835P | 58.0 111. 3.96 9.02 440. 0.6 14 +.04 " | | 1841 8-30 248P " 12.0 5.30 1.91 7.20 10.1 0.6 10 0 " 1896 11-22 906P " 745A 1842 9-3 335P MIDDLETON 12.5 5.29 1.89 7.20 10.0 0.6 10 0 FC29 1897 11-23 815A " | 65.0 136. 5.02 9.43 682. 0.6 16 +.02 * | | 1843 9-6 311P " 13.0 5.35 1.85 7.18 9.9 0.6 12 0 " 1898 11-23 950A " | 66.0 144. 5.83 9.64 840. 0.6 16 +.08 "
67.0 172. 6.68 9.92 1150. 0.6 16 +.04 " | | 1844 9-10 435P 13.0 5.09 1.71 7.16 8.7 0.6 10 0 " 1899 11-23 1120A MIDDLET | CN-CROWELL 68.0 183. 6.78 10.18 1240. 0.6 16 +.04 " | | 1845 9-13 334P " 13.0 5.10 1.80 7.17 9.2 0.6 11 0 " 1900 11-23 1200N " | " 69.0 191. 6.76 10.22 1290. 0.6 15 +.08 - | | 1846 9-16 1105A 13.0 5.49 1.84 7.19 10.1 10.6 12 0 " 1901 11-23 150P " 430P | " 69.0 191. 6.80 10.23 1300. 0.6 1506 " | | 1847 9-20 1008A " 13.0 5.63 1.76 7.19 9.9 0.6 12 0 " 1902 11-23 453P " 1848 9-23 311P " 13.0 5.01 1.72 7.18 8.6 0.6 12 0 " 1903 11-24 1210P MIDDLET | 06.0 161. 6.19 10.03 1120. 0.6 15 2.06 | | 1849 9-27 138P " 13.0 4.93 1.78 7.17 8.8 0.6 12 0 " 1904 11-25 332P " | 60.0 128. 4.52 9.30 579. D.6 15 0 FC18 | | 1850 9-30 1036A " 13,3 5,62 1,80 7,21 10,11 0,6 11 0 " 1905 11-29 1235P " 1110A | 54.0 71.9 2.17 8.24 156. 0.6 18 0 FC29 | | 1906 12-2 1134A "
 1025A " | 53.0 62.1 1.98 8.08 123. 0.6 15 0 | | 1907 12-5 1047A "
 130P
 1908 12-9 150P MIDDLET | 52.7 58.1 1.88 8.00 109. 0.6 14 0 " DN-SPANGLER 52.5 61.5 2.02 8.08 124. 0.6 14 0 " | | 1116A
1909 12-12 1137A MIDDLET | | | DISCHARGE MEASUREMENTS OF SAN GABRIEL - WEST FORK 1910 12-16 200P " | 41.0 38.7 1.83 7.77 70.9 0.6 14 0 " | | Above Forks DURING THE YEAR ENDING SEPTEMBER 30, 19 47. 1911 12-19 1150A " | 39.5 37.2 1.79 7.74 66.7 0.6 14 0 " | | NO. DATE BEGIN MADE BY WIDTH AREA OF MEAN BAUDE DIRECTAGGE RAT METH MEAN Q. MIT. METER 28264 | 37.0 32.0 1.50 7.57 47.7 0.6 13 0 FC18
60.5 97.9 3.27 8.80 320. D.6 15 +.01 " | | 1124A 1925 200 MINDEST | 00 - TREAT 66.0 157. 5.41 9.66 849. 0.6 15 + .06 ** | | 1852 10-1 403P " 35.0 16.5 2.60 7.65 42.9 0.6 12 0 " 1915 12-25 740P " | " 70.0 238. 7.35 10.48 1750. D.6 15 + .15 FC29 | | 1853 10-2 145P " 16.0 10.2 2.48 7.43 25.2 0.6 13 0 " 1916 12-25 1130P MIDDLET | ON 74.0 336. 10.2 11.63 3440. 5URF 5.6. 15 + 30 " | | 1854 10-4 1023A " 27.5 12.2 2.18 7.48 26.6 0.6 1201 " 1917 12-26 105A " 1855 10-7 1134 MIDDLETON 17.0 2.07 7.0 2.07 7.0 1144 MAD DEE COT 17.0 1.07 1.07 1.07 1.07 1.07 1.07 1.07 | 75.0 395. 9.88 11.65 3900. SURF 1514 ** | | 1053 107 1740 200 17.0 7.33 2.07 7.33 19.4 0.6 11 0 | 74.0 376. 9.81 11.59 3690. " 1603 FC18 70.0 272. 7.98 10.83 2170. D.6 1406 " | | 137A 1137A 122 01/7 2119 7.32 14.6 0.6 11 0 2 240P MIDDLET | ON | | 1130A
1858 10-17 1147A " 18.5 8.49 2.08 7.37 17.7 D.6 11 0 " 1921 12-27 730A MIDDLET | | | 1859 10-21 1034A " 16.0 6.95 2.22 7.32 15.4 D.5 12 0 " 1922 12-27 155P " | 69.0 234. 6.58 10.33 1540. 0.6 17 0 | | 1860 10-24 1252P MIDDLETON-BLAKELY 16.0 6.59 2.25 7.33 14.8 0.6 11 0 " 1923 12-27 430P " 402P | 68.0 210. 5,67 9.97 1190. 0.6 1701 ** | | 1861 10-28 1140A BLAKELY 31.6 11.4 2.04 7.42 23.2 D.6 16 0 FC35 1924 12-28 435P " 300P | 68.0 198. 5.25 9.69 1040. D.6 17 0 ** 65.0 140. 3.28 8.92 459. D.6 16 0 ** | | 1002 10 112P 945A | 66,2 109. 2.80 8.91 305. D.6 18 0 " | | 1864 11-7 110P " 15.2 8.16 2.11 7.33 17.2 D.6 12 +.01 " 1927 1-7 1025A " | 64.5 90.5 2.18 8.32 197. 0.6 19 0 | | 1865 11-8 102P " 16.5 9.04 2.35 7.40 21.2 0.6 11 0 " 1928 1-10 1108A " 325P | 62.0 77.4 2.21 8.19 171. 0.6 17 0 | | 1866 11-11 842P " 34.0 16.5 2.85 7.62 47.0 0.6 14 0 " 1929 1-13 348P " 245P | 55.5 49.0 3.10 152. 0.6 15 FC29 | | 1867 11-12 1018A " 44.5 34.2 3.60 8.16 130. 0.6 14 0 " 1930 1-16 307P " 305P | 50.2 42.0 3.14 132. 0.6 15 "
52.5 48.3 2.55 123. 0.6 16 " | | 1869 11-12 710P MIDDLETON-CROWELL 50.0 50.0 5.84 8.56 292, 0.6 1202 " 1932 1-23 410P " | 52.7 45.9 2.59 119. 0.6 17 | | 1870 11-12 945P 97P 97P 50.0 56.0 5.96 8.65 334. 0.6 12 02 933 1-27 352P 932 9 | 44.0 35.4 2.78 98.3 0.6 17 ** | | 1871 11-12 1136P " " 52.0 66.4 7.23 8.91 480. 0.6 13 +.06 " 1934 1-28 1158A " | 53,5 42,4 3,30 7.99 140. 0.6 15 +.01 - | | | DIRCHARG | E HEABURE | HENTE OF SAN | GABRIEL | - WES | T FORK | | | | | | | | |------|----------|----------------------|------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------------|-------------|----------------------|---------------------------|--------------| | | MEAN, | abov | re Forks | | | | ING THE Y | EAR ENDING | 9 9 E P | TEMBI | OR 30, | 1 <u>• 4</u> 2 | 7 | | HO. | DATE | BESIN | HADE BY | WIETH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELODITY
FT.PER BED. | MAUNE
HEINHT
FEET | DISCHARSE
SEC. FT. | RAY- | METH-
DD | MEAS.
SEG.
NG. | B. HT.
DHANGE
TOTAL | HETER
HO. | | 1935 | 1-28 | 304P
328P | | 60.0 | 47.4 | 3,58 | 8.12 | 170. | L | 0.6 | 18 | 0 | | | 1936 | 1-30 | 1112A
1130A | MIDDLETON-MELLEN | 49.0 | 33.9 | 3,13 | | 106. | | 0.6 | 17 | | | | 1937 | 2•3 | 140P
206P | MIDDLETON | 50.0 | 29.2 | 3,22 | 7.76 | 94.1 | | 0.6 | 23 | 0 | | | 1938
 2.6 | 1120A
1148A | -11 | 50.5 | 29.1 | 3.10 | 7.74 | 90.1 | | 0.6 | 24 | 0 | | | 1939 | 2-10 | 245P
308P | •• | 50.0 | 28.9 | 3.35 | 7.74 | 96.7 | | 0.6 | 16 | | | | 1940 | 2-13 | 200P
224P | • | 49.5 | 26.2 | 3.06 | 7.72 | 80.1 | | a.o. | 17 | 0 | " , | | 1941 | 2-17 | 310P
333P | | 49.5 | 30.0 | 2.47 | 7,74 | 74.1 | | 0.6 | 16 | 0 | " | | 1942 | 2-20 | 1030A
1057A | | 50.2 | 33.3 | 2.29 | 7.75 | 76.1 | | 0.6 | 17 | 0 | • | | 1943 | 2-24 | 355P
420P | - | 47.5 | 33.6 | 2.14 | 7.68 | 71.7 | | 0.6 | 17 | 0 | | | 1944 | 2-27 | 913A
936A | | 47.0 | 34.6 | 1.94 | 7.69 | 67.1 | | 0.6 | 15 | 0 | | | 1945 | 3-3 | 407P
432P | | 47.0 | 35.0 | 1.86 | 7.66 | 65.0 | | 0.6 | 16 | 0 | ** | | 1946 | 3-6 | 142P
208P | | 45.0 | 33.6 | 1.75 | 7.65 | 58.7 | | 0.6 | 16 | ٥ | | | 1947 | 3-10 | 310P
334P | | 43.5 | 32.1 | 1.76 | 7.63 | 56.6 | | 0.6 | 15 | 0 | | | 1948 | 3-13 | 252P
315P | - | 42.2 | 29.7 | 1.75 | 7.60 | 52.0 | | 0.6 | 15 | o | | | 1949 | 3-17 | 417P
443P | • | 43.2 | 30.6 | 1.65 | 7.58 | 50.4 | Γ | D.6 | 15 | 0 | | | 1950 | 3-20 | 245P
308P | | 44.0 | 31.8 | 1.91 | 7.63 | 60.8 | | 0.6 | 15 | 0 | | | 1951 | 3-21 | 1133A
1203P | ** | 48.0 | 34.9 | 2.06 | 7,70 | 71.8 | | D.6 | 16 | 0 | | | 1952 | 3-24 | 1140A
1205P | ** | 43.5 | 30.0 | 1.85 | 7.63 | 55.5 | | 0.6 | 15 | 0. | ** | | 1953 | 3-27 | 1237P
100P | | 42.5 | 29.1 | 1.70 | 7.58 | 49.6 | | 0.6 | 15 | 0 | | | 1954 | 3-28 | 308P
332P | - | 46,5 | 36.2 | 2.11 | 7.74 | 76.4 | | 0.6 | 16 | . 0 | | | 1955 | 3-31 | 313P
335P | | | - | | | | | | | | | | 1956 | | 237P | _ | 42.5 | 29.2 | 1.89 | 7.61 | 55.1 | - | 0.6 | 14 | _0 | ** | | | 4-3 | 258P
1130A | ** | 43,5 | 35.0 | 1.85 | 7.63 | 64.6 | | 0.6 | 14 | 0 | | | 1957 | 4-7 | 1158A
1006A | ** | 43.0 | 29.7 | 1.70 | 7.57 | 50.5 | | 0,6 | 15 | 0 | | | 1958 | 4-10 | 1028A
205P | | 43.0 | 30.3 | 1,57 | 7.54 | 47.6 | | 0.6 | 15 | 0 | | | 1959 | 4-14 | 226P
928A | MIDDLETON - MAZE | 42.0 | 27.4 | 1.59 | 7.48 | 43.6 | <u>'</u> | 0.6 | 15 | .0 | | | 1960 | 4-17 | 950A
928A | MIDDLETON | 42.2 | 28.3 | 1.53 | _7.47 | 43.2 | | 0.6 | 14 | ٥ | | | 1961 | 4-21 | 950A
910A | * | 42.3 | 26.6 | 1.62 | 7.48 | 43.2 | | 0.6 | 14 | -0 | - | | 1962 | 4-24 | 935A
130P | | 42.3 | 27.8 | 1.51 | 7.48 | 41.9 | - | 0.6 | 15_ | 0 | • | | 1963 | 4-28 | 153P | - | 42.0 | 27.5 | 1.45 | 7.48 | _39.9 | | 0.6 | 14 | 0 | ** | | 1964 | 5-1 | 1124A
1035A | | 41.5 | 26.4 | 1.53 | 7.43 | 40.4 | | 0.6 | 15 | 0 | | | 1965 | 5-5 | 1057A
938A | * | 30.0 | 22.4 | 1.46 | 7.38 | 32.6 | - | 0.6 | 15 | 0 | ., | | 966 | 5-8 | 958A
104P | | 29.5 | 21.3 | 1.48 | 7.39 | 31.6 | - | 0.6 | 14 | 0 | | | 1967 | 5-12 | 126P
917 A | * | 30.0 | 23.2 | 1.41 | 7.38 | 32.7 | - | 0.6 | 15 | 0 | *** | | 1968 | 5-15 | 940A
1005A | 199 | 31.0 | 23.3 | 1.48 | 7.40 | 34.5 | | 0.6 | 15 | 0 | | | 969 | 5-19 | 1028A
933A | . " | 29.5 | 21.0 | 1.31 | 7.34 | 27.6 | - | 0.6 | 15 | 0 | | | 1970 | 5-22 | 952A
1040A | ·* | 29.5 | 20.5 | 1.39 | 7.33 | 28.4 | | 0.6 | 15 | +.01 | | | 971 | 5-26 | 1100A
925A | . " | 29.0 | 19.7 | 1.31 | 7,31 | 25.9 | | 0.6 | 14 | 0 | ** | | 972 | 5-29 | 947A
355P | 19 | 29.7 | 20.4 | 1.38 | 7.33 | 28.1 | | 0.6 | 15 | 0 | ** | | 973 | 6-2 | 418P | ** | 29.5 | 20.3 | 1.31 | 7.30 | 26.5 | - | 0.6 | 15 | 0 | • | | 974 | 6-6 | 1022A
938A | | 29.5 | 20.5 | 1.38 | 7.32 | 28.3 | <u> </u> | 0.6 | 15 | 0 | * | | 975 | 6-9 | 1000A
917A | H | 29,5 | 19.1 | 1,37 | 7.30 | 26.2 | _ | 0.6 | 15 | 0 | • | | 276 | 6-12 | 938A
915A | * | 27.5 | 18.4 | 1.23 | _7.27 | 22.7 | <u> </u> | 0.6 | 14 | 0 | | | 977 | 6-16 | 934A
912A | | 27.1 | 16.6 | 1.18 | 7.23 | 19.6 | - | 0.6 | 13 | 0 | • | | 978 | 6-20 | 934A
928A | ** | 27.7 | 17.5 | 1.19 | 7.23 | 20.8 | <u> </u> | 0.6 | 14 | 0 | - | | 979 | 6-23 | 950A
124P | | 27.2 | 16.7 | 1.13 | 7.22 | 18,8 | <u> </u> | 0.6 | 14 | 0_ | - | | 980 | 6-27 | 140P
130P | MIDDLETON - LANG | 27.5 | 16.0 | 1.10 | 7.19 | 17.6 | <u> </u> | 0.6 | _14 | 0 | | | 981 | 6-30 | 148P | MIDDLETON | 23.5 | 14.8 | 1.10 | 7.16 | .16.4 | L | 0.6 | 12 | ٥ | | | 1982 | 7-3 | 1230P | LANG - MIDDLETON | 23.0 | 13.8 | 1,07 | _7.14 | 14.8_ | | 0.6 | 12 | ۰ | | | 983 | 7-7 | 1213P
1234P | LANG | 25.5 | 16.6 | 0.90 | 7 .2 2 | 14.9 | | 0.6. | 13 | ٥ | | | | 7-10 | 110P
128P | | 25.0 | 15.7 | 0.76 | 7.20 | _11.9 | | 0.6 | 13 | ٥ | | | 984 | 7-10 | 240P | | | 12.7 | 0.76 | | | | | 1.3 | | | | | NO. | DATE | BES3R | MADE BY | WIDTH | AREA OF
BEGTION | HEAN
VELOCITY | THEISH | DISCHARGE
SEC. FT. | RAT- | METH- | HEAS. | E. HT. | METER | |----|------|------|----------------|---------------------------|-------|--------------------|------------------|--------|-----------------------|------|-------|-------|--------|-------| | i | | | IND | | PEET | ap. FT. | FY.PER SEC. | FEET | MEG. PT. | i Hu | | NO. | TOTAL | HD. | | | 1986 | 7-17 | 1221P
1240P | 14 | 24.5 | _15,2 | 0.82 | 7.19 | 12.4 | L. | 0.6 | _13 | 0 | | | E# | 1987 | 7-21 | 200P
218P | | 24.5 | 15.1 | 0,72 | 7.16 | 10.9 | | 0.6 | 13 | 0 | ** | | o. | 1988 | 7-24 | 300P
318P | | 25.0 | 14.5 | 0.70 | 7.15 | 10.1 | | 0.6 | 13 | 0 | ** | | _ | 1989 | 7-28 | 322P
340P | | 22.7 | 13.3 | 0.65 | 7.13 | 8.6 | | 0.6 | 12 | 0 | •• | | _ | 1990 | 7-31 | 1257P | MIDDLETON
VAN DER GOOT | 24.5 | 14.6 | 0.75 | 7.14 | 10.9 | | 0.6 | 13 | 0 | - | | | 1991 | 8-4 | 338P | MIDDLETON | 22.5 | 13.2 | 0.65 | 7.12 | 8.6 | | 0.6 | 12 | 0 | | | _ | 1992 | 8+7 | 135P
154P | | 23.7 | 13.1 | 0.64 | 7.12 | 8.4 | | 0.6 | 12 | 02 | | | | 1993 | 8-11 | 1245P
103P | ., | 22.5 | 14.0 | 0.76 | 7.15 | 10.7 | | 0.6 | 12 | 0 | | | - | 1994 | 8-14 | 104P
122P | | 22.5 | 13.5 | 0.73 | 7.14 | 9.9 | | 0.6 | 12 | 0 | ** | | _ | 1995 | 8-18 | 1247P
125P | LANG | 22.5 | 13.1 | 0.72 | 7.13 | 9.4 | | 0.6 | 22 | 0 | ** | | _ | 1996 | 8-21 | 100P | ** | 22.5 | 13.7 | 0.72 | 7.12 | 9.8 | | 0.6 | 14 | 0 | | | | 1997 | 8-26 | 1245P
103P | | 22.7 | 13.5 | 0.74 | 7.12 | 10.0 | | 0.6 | 13 | 0 | - | | | 1998 | 8-28 | 1255P
112P | | 22.6 | 13.6 | 0.72 | 7.12 | 9.8 | | 0.6 | 14 | 0 | | | , | 1999 | 9-2 | 127P | MIDDLETON | 22.5 | 12.4 | 0.64 | 7.10 | 7.9 | | 0.6 | 12 | 0 | | | | 2000 | 9-4 | 332P
357P | | 22.5 | 12.2 | 0,61 | 7.08 | 7.4 | | 0.6 | 11 | 0 | | | _ | 2001 | 9-8 | 103P | | 21.0 | 12.4 | 0.70 | 7.12 | 8.7 | | 0.6 | 11 | 0 | | | | 2002 | 9-11 | 305P
327P | | 20.5 | 11.9 | 0.72 | 7.11 | 8.6 | | 0.6 | 11 | 0 | | | _ | 2003 | 9-15 | 122P | ** | 20.5 | 51.4 | 0.68 | 7.09 | 7.8 | | 0.6 | 11 | 0 | ** | | | 2004 | 9-18 | 120P
1237P | | 21.2 | 12.7 | 0.84 | 7.15 | 10.7 | | 0.6 | 11 | 0 | | | _ | 2005 | 9-22 | 120P
138P | - | 21.0 | 12,0 | 0.77 | 7.12 | 9.2 | Γ | 0.6 | 11 | 0 | | | | 2006 | 9.25 | 1038A | ,, | 21.0 | 12.0 | 0.78 | 7.10 | 8.5 | | 0.6 | 11 | 0 | ., | | | 2007 | 9-29 | 100P | | 21.0 | 11.6 | 0.64 | 7.08 | 7.4 | | 0.6 | 11 | 0 | | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. P3-R | SAN GABRIEL RIVER-WEST FORK above Forks for the year ending asy Oct. Nov. Dec. Jun. Feb. Mar. Agr. May June July Aug | | |--|---------------------------------------| | 1 13 21 16 48 24 25 854 75 42 19 13 13 13 18 16 46 24 25 461 72 40 19 14 13 13 14 190 16 45 53 25 182 68 38 17 14 194 16 43 70 25 168 64 36 18 17 14 194 16 43 70 25 168 64 36 18 17 14 194 16 43 70 25 168 64 36 18 17 14 194 16 43 70 25 168 64 36 18 17 14 194 16 43 70 25 168 64 36 18 17 14 194 16 43 135 24 4658 61 33 18 14 194 18 18 16 133 36 22 192 62 33 18 14 194 19 19 19 19 19 19 19 19 19 19 19 19 19 | Sent | | 2 1 3 1 8 1 6 4 6 2 4 2 5 4 61 7 2 4 0 1 9 1 6 4 1 4 1 90 1 6 4 5 5 3 2 5 1 9 8 7 0 4 0 1 8 1 4 4 1 4 1 90 1 6 4 5 5 3 2 5 1 8 2 6 8 3 8 1 7 1 4 6 1 4 1 94 1 6 4 3 7 0 2 5 1 6 8 6 4 3 6 1 8 1 7 1 4 6 2 0 6 0 1 6 4 1 1 35 2 4 4 8 6 6 1 3 4 1 7 1 4 8 2 3 2 0 1 6 7 7 1 2 4 2 3 3 3 9 6 1 3 3 1 8 1 4 8 2 3 2 0 1 6 7 7 1 2 4 2 3 3 3 9 6 1 3 3 1 8 1 4 9 2 0 1 8 1 6 1 3 8 3 6 2 2 1 9 2 6 2 3 2 1 9 1 4 10 1 8 3 1 1 6 1 3 2 3 0 2 3 1 6 8 2 3 2 1 9 1 4 10 1 8 3 1 | Jege. | | 6 1 4 194 16 43 70 25 168 64 36 18 14 6 20 60 16 41 135 24 480 61 34 17 14 7 24 85 16 39 132 24 658 61 33 18 14 8 23 20 16 77 124 23 339 61 33 19 14 9 20 18 36 138 36 22 192 62 33 18 14 10 18 31 16 132 30 23 188 62 32 19 14 11 18 46 16 128 31 23 164 61 31 19 14 12 18 42 16 44 30 23 179 59 30 | 10 | | 7 24 85 16 39 132 24 658 61 33 18 14 8 23 20 16 77 124 23 339 61 33 19 14 10 18 31 16 132 30 23 188 62 32 19 14 11 18 46 16 128 31 23 164 61 31 19 14 12 18 46 16 128 31 23 164 61 31 19 14 12 18 42 16 44 30 23 179 59 30 19 12 18 18 18 18 16 29 29 30 173 59 30 19 11 14 17 16 16 28 28 28 28 166 59 29 18 11 | 9.6 | | 11 18 46 16 128 31 23 144 61 31 19 14
12 18 42 16 44 30 23 179 59 30 19 12
13 18 18 16 29 29 30 173 59 30 19 12
14 17 16 16 28 28 28 166 59 29 18 11 | 9 .6
9 .6
8 .8 | | 15 17 16 16 28 29 25 159 58 29 16 10 | 9.6
9.6
8.8
8.8 | | 18 17 16 16 28 28 28 23 152 57 28 16 16 19 17 16 16 28 27
23 145 53 28 17 11 19 17 16 16 28 27 265 137 53 27 18 12 17 16 16 28 27 146 129 52 26 19 12 20 17 16 16 28 27 126 125 52 27 20 11 | 8.8
9.6
8.8
8.8 | | 21 16 16 423 27 27 38 118 52 26 18 11
22 16 15 1500 27 27 30 108 52 27 17 16
23 16 15 1190 27 27 94 102 51 27 16
24 16 15 714 26 27 139 98 50 26 16 8 | 9.6
1.8 8.8
1.8 9.6 | | 28 16 16 171 26 27 50 92 50 25 16 8 8 16 16 171 26 27 50 92 50 25 16 8 8 16 16 16 128 25 26 46 90 50 24 14 8 18 16 16 105 25 26 57 65 47 24 14 98 18 20 16 84 25 74 81 45 22 14 10 10 10 10 10 10 10 10 10 10 10 10 10 | 8.0
8.0
9.6
8.0
8.8
12 | | 31 25 53 24 1190 43 14 10 550 5113 1220 6217 894 356 1042 1337 4580 1751 532 |) . | | 17.7 34.7 165. 43.1 43.6 1/8. 207. 56.5 29.8 17.2 11. | 5 9.19 | | REPRINT 1,090 2,070 10,140 2,650 2,420 9,080 12,330 3,470 1,770 1,060 707 | | YEAR MEAN 65.3 OR PERIOD ACRE-FEET 47,330. F. C. Dist. Form 52 4-48 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. P 3-R | | | | | | н | YDRAULIC I | DIVISION | | | | | | |----------------------------------|----------------------------------|--|---|---------------------------------|----------------------------|----------------------------|----------------------------|--|----------------------------|------------------------------------|------------------------------------|---------------------------------| | Daily d | ischarge, in se | econd-feet of | SAN GAB | RIEL RIVE | R - WEST | FORK abov | ne Forks | | | , for the yea | r ending Septer | nber 30, 19 <u>47</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept | | 1
2
3
4
5 | 32
29
22
25 | 19
17
15
15 | 134
121
116
112
121 | 329
306
287
270
353 | 98
96
94
95 | 66
65
66
68 | 57
58
63
60
57 | 3 8
3 5
3 3
3 0
3 0 | 27
27
27
26
27 | 17
15
15
14
14 | 9.7
9.7
9.2
8.9 | 7.6
7.6
7.6
7.6
7.6 | | 6
7
8
9 | 16
15
15
14
14 | 15
15
20
18 | 156
144
132
115
87 | 296
197
186
180
172 | 93
91
89
97
97 | 62
60
58
58 | 54
52
51
50
48 | 30
32
32
32
33 | 27
26
26
26
25 | 1 4
1 4
1 3
1 3
1 3 | 8.9
8.9
9.7
10 | 7.6
7.9
8.2
8.6
8.9 | | 11
12
13
14
15 | 1 4
1 4
1 4
1 4
1 4 | 29
231
680
250
159 | 8 4
8 0
7 8
7 6
7 4 | 159
155
152
145
138 | 91
86
80
76
74 | 56
552
551 | 46
44
42
41
39 | 33
30
30
33
33 | 23
21
20
20
19 | 13
13
12
12 | 10
9.7
9.7
9.2
9.2 | 8 .6
8 .2
8 .2
7 .9 | | 16
17
18
19
20 | 18
17
15
15 | 128
114
103
93
754 | 71
70
68
66
60 | 132
129
127
125
123 | 76
76
78
76
76 | 51
50
50
52
58 | 39
39
41
41
39 | 32
29
27
26
26 | 19
18
18
19
20 | 12
12
12
12 | 92
92
89
89 | 7.9
8.9
10
9.7
8.9 | | 21
22
23
24
25 | 15
15
14
14 | 385
374
970
790 | 51
50
50
62
1000 | 122
121
119
113
108 | 73
71
68
66
66 | 70
63
60
56
52 | 41
42
41
41
39 | 27
27
27
26
25 | 20
19
18
17 | 11
11
11
11 | 10
11
11
11 | 88888
88888
88888 | | 26
27
28
29
30
31 | 15
21
25
23
21
21 | 601
434
203
178
156
146 | 2270
1390
1030
906
551
365 | 103
98
131
115
106 | 68
68
68 | 51
51
70
63
56 | 41
42
42
41
39 | 25
27
29
27
27
27
28 | 17
17
17
17
17 | 10
10
10
10
9 2
9 2 | 11
11
10
10
9 2
8 2 | 7 9
7 6
7 3
7 0
7 6 | | , | 5,49.0 | 6944.0 | 9690.0 | 5 1 98.0 | 0. 2825 | 1801.0 | 1370.0 | 919.0 | 637.0 | 376 A | 299.5 | 2469 | | MEAN | 17.7 | 231 | 313 | 168 | 81.5 | 58.1 | 45.7 | 29.6 | 21.2 | 12.1 | 9.66 | 8.23 | | ACRE-
FEET | 1,090 | 13,770 | 19,220 | 10,310 | 4,530 | 3,570 | 2,720 | 1,820 | 1,260 | 747 | 594 | 490 | | | Remarks: | | | | | | | , | | TEAR MEA
OR
ERIOD ACRI | | ,120 | ### STATION PAB-R SAN GABRIEL RIVER-EAST FORK above Forks LOCATION: WATER-STAGE RECORDER, LAT. 34°14'09", LONG, 117°48'16", ON THE RIGHT (NORTH) BANK ABOVE THE HIGH WATER LINE OF SAN GABRIEL DAM NO. 1. 2.5 MILES ABOVE THE WEST FORK, AND 8 MILES NORTHEAST OF GLENDORA. ELE-VATION OF ZERO GAGE HEIGHT, 1567.04 FEET. FORMER STATION P4-R WAS ABOUT 0,6 OF A MILE DOWNSTREAM. DRAINAGE AREA: 88.2 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND, GRAVEL AND BOULDERS. CONTROL - A CONCRETE CONTROL WITH A 20 FOOT LOW FLOW NOTCH WAS CONSTRUCTED IN NOVEMBER 1947. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 23 FEET ABOVE GAGE. RECORDER: INSTALLED NOVEMBER 30, 1932, AT STATION P4-R. MOVED TO STATION P4B-R DECEMBER 10, 1938, AND INSTALLED IN A CONCRETE HOUSE OVER A 4 FT. X 4 FT. CONCRETE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: AT STATION P4-R AND P4B-R. NOVEMBER 30, 1932 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 2760 SECOND-FEET, DECEMBER 21. MINIMUM 19 SECOND-FEET SEVERAL DAYS IN DECEMBER. 1946-1947 MAXIMUM 1900 SECOND-FEET, DECEMBER 26. MINIMUM 12.5 VARIOUS TIMES. 1932-1946 MAXIMUM 46,000 SECOND-FEET, MARCH 2, 1938 (COMPUTED BY GEOLOGICAL SURVEY). MINIMUM 1,5 SECOND-FEET, OCTOBER 1, 1934. ACCURACY: POOR DUE TO EXTREME CHANNEL SHIFT. OPERATION: MOVED FROM A PREVIOUS LOCATION BY THE DISTRICT FOR THE PASADENA WATER DEPARTMENT. THE STATION WAS LATER TAKEN OVER, RECONSTRUCTED AND OPERATED BY THE DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | | | | | | | | | | | | | L | | | | | | | | | | | | | | |-------|-----------|-------------------------|-------------------------|---------------|-------------------------------|----------------------------------|-------------------------|-----------------------|----------|----------|--------|--------------|------|-------|-----------------------|----------------------------------|---------------|-------------------------------|---------------------------------|----------------|-----------------------|-------------------|-----|----------------------|---------------------------|--------------| | | DISCHARGE | MEASURE | SA | N GABRI | EL - E | AST FO | RK | | | | | | MO. | DATE | BESIN | MADE BY | WIDTH
FEET | AREA DF
SECTION
NO. FT. | HEAN
VELOCITY
FT.PER BEG. | HEISHT
FEET | DISCHARGE
SEC+ FT. | RAT- H | DD. | HEAS.
BEC.
ND. | G. HT,
DHANGE
TOTAL | METER
NO- | | • | | bove F | orks | | | нуяца | IQ THE YE | AR ENDING | BEPTE | 48ER 30, | 19.48 | | 1385 | 12/20 | 934A
955A | | 23.5 | 9.80 | 2.06 | 7.98 | 20.2 | | -6 | 13 | | <u> </u> | | NO. | DATE | REDIM | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT, PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. IT. | RAY- | OD NO. | D. HT. | HETER
NG+ | 1386 | 12/21 | 810P
825P
1035P | WADDICOR | 50.0 | 106. | 10.1 | 9.31 | 1070. | \vdash | 6 | -6 | to.42 | FC11 | | 1.357 | 10/2 | 930A
952A | MIDDLETON | 17.3 | 8.87 | 2.49 | 7.93 | 22.1 | | .6 15 | 0 | FC29 | 1387 | 12/21 | 1055P | WADDICOR | .126. | 265. | 10.4 | 10.87 | 2760 | \vdash | 6 | В. | 10.06 | <u> </u> | | 1358 | 10/5 | 350P
412P | | 17.3 | 8.37 | 2.38 | 7.92 | 19.9 | | .6 14 | 0 | | 1388 | 12/22 | 130A
549A | SPANGLER | 118. | 189. | 10.1 | 10.44 | 1910. | \vdash | .6 | | -0.08 | <u>''</u> | | 1359 | 10/7 | 800A
822A | ** | 35.9 | 13.2 | 2.32 | 7.97 | 30.6 | | .6 18 | 0 | | 1389 | 12/22 | 607A
828A | WADDICOR
WADDICOR | TWO CHA | NNELS | | 10.95 | 1970. | \vdash | .6 | | -0.04 | - | | 1360 | _10/8 | 1010A
1035A | MIDDLETON
F.W. TREAT | 36.0 | 12.6 | 1.89 | 7.97 | 23.8 | | .6 19 | 0 | | 1390 | 12/22 | 1103A | SPANGLER
WADDICOR | | | | 10.55 | 2000. | \forall | | | -0.14 | | | 1361 | 10/8 | 1040 A
1113A | TREAT
MIDDLETON | 36.0 | 12.9 | 1.87 | 7.97 | 24.1 | | .6 19 | 0 | | 1391 | 12/22 | 1118A
210P | SPANGLER
WADDICOR | | | | 9.10 | 1910. | | | | -0.02 | ļ | | 1362 | 10/11 | 1040A
1110A | TREAT
MIDDLETON | 19.5 | 9,31 | 2.52 | 7.97 | 23.5 | | .6 16 | 0 | | 1392 | 12/22 | 229P
426P
443P | SPANGLER
WADDICOR
SPANGLER | | | | 9.10 | 847. | | .6 | | 0.20 | | | 1363 | 10/15 | 1035A
1055A | MIDDLETON | 19.5 | 9.19 | 2.55 | 7,97 | 23.4 | | .6 15 | +.01 | ļ. <u>.</u> | 1394 | 12/22 | 641P
652P | WADDICOR
SPANGLER | | | | | 1100. | | .6 | | | | | 1364 | 10/19 | 430P
452P
1235P | | 19.0 | 8.68 | 2.38 | 7.97 | 20.7 | | .6 14 | 0 | | 1395 | 12/22 | 1051P | WADDICOR
SPANGLER | | | | | 832. | \prod | .6 | | | | | 1365 | 10/22 | 1257P
1025A | | 19.0 | 9.09 | 2.41 | 7.96 | 21.9 | Н | .6 14 | 0 | | 1396 | 12/23 | 605A | WADDICOR
SPANGLER | | | | 10.20 | 1580. | | .6 | 8 | +0.20 | ., | | 1366 | 10/26 | 1046A
952A | •• | 19.0 | 8.96 | 2.38 | 7.96 | 21.3 | | .6 14 | Q | <u></u> | 1397 | 12/23 | 818A
832A | WADDICOR
SPANGLER | ., ., | | | 10.33 | 2080. | \Box | .6 | 10 | + 0.02 | | | 1367 | 10/29 | 1010A
1208P | •• | 19.0 | 9.47 | 2.40 | 7.97 | 22.7 | | .6 14 | 0 | | 1398 | 12/23 | 1006A
1024A | WADD LOR
SPANGLER | | | | 10.30 | 1620. | | .6 | 10 | -0.04 | 074 | | 1368 | 10/30 | 1238P
350P | | 37.5 | 20,2 | 3.85 | 8.18 | 77.8 | - | .6 19 | 01 | | 1399 | 12/23 | 116P | WADDICOR
SPANGLER | | | | 10.11 | 1230. | Ш | . 6 | 11 | 0 | | | 1369 | 10/30 | 420P
1007A | | 37.0 | 18.6 | 3.36 | 8.09 | 62.5 | \vdash | .6 19 | 02 | | 1400 | 12/24 |
1100A
1140A | MIDDLETON | THREE C | HANNELS | | 8.28 | 481. | Ц | .6 | 23 | 0 | FC29 | | 1370 | 10/31 | 1028A
930A | | 19.8 | 11.1 | 2.27 | 8.02 | 30.8 | | .6 15 | 0 | | 1401 | 12/24 | 417P
426P
735A | WADDICOR
SPANGLER
WADDICOR | THREE C | HANNELS | | 8.14 | 402. | ₩ | -6 | 12 | | FC11 - | | 1371 | 11/1 | 950A
1118A
1133A | | 20.0 | 9,87 | 2.84 | 8.03 | 29.5 | | .6 14 | 0 | | 1402 | 12/25 | 748A
955A | SPANGLER | | | | | 274. | \vdash | -6 | 10 | | <u> </u> | | 1372 | 11/6 | 205P | | 19.7 | 9.77 | | 8.00 | 24.6 | | .6 14 | , | | 1403 | 12/28 | 1035A | MIDDLETON | TWO CHA | NELS | | | 154. | ₩ | -6 | 23. | | FC20 | | 1374 | 11/13 | 1210P
1232P | | 20.0 | 10.2 | 2.28 | 8.03 | 23.3 | | .6 15 | 0 | | 1404 | 1/1 | 1105A
330P | TREAT | THREE C | KANNELS | | | .114. | ₩ | 6 | 26 | | | | 1375 | 11/16 | 947A
1010A | | 19.5 | 9.86 | | 8.00 | 22.6 | | .6 14 | 0 | :. | 1405 | 1/4 | 402P
1000A | MIDDLETON | | | | | 108. | + | -6 | 21 | | " | | 1376 | 11/19 | 1040A
1102A | | 24.0 | 9.96 | 2,19 | 8.00 | 21.8 | | .6 12 | 0 | | 1406 | 1/11 | 1038A
1057A | | TWO CHA | INELS. | - | | 78.6 | + | -6 | 21 | | | | 1377 | 11/23 | 150P
211P | | 23.7 | 9.84 | 2.08 | 7.99 | 20.5 | | .6 12 | . 0 | | 1407 | 1/14 | 1130A
132P | | | | | | 63.7 | \vdash | -6 | 20 | | | | 1378 | 11/27 | 1003A
1027A | | 23.4 | 9.76 | 2.09 | 7.99 | 20.4 | | .6 12 | į ė | | 1408 | 1/18 | 2C2P
1046A | | | | | | 57.4 | $\dagger \dagger$ | | 22 | | | | 1379 | 11/30 | 1054A
1112A
1050A | MIDDLETON | 23.4 | 9.90 | 2.17 | 8.00 | 21.5 | | .6 12 | ٥ | FC29 | 1409 | 1/21 | 305P
330P | | | | | | 56.4 | \sqcap | .6 | | | | | 1380 | 12/3 | 1108A
225P | | 24.0 | 9.75 | 2.15 | 8.00 | 21.0 | | .6 12 | 0 | | 1411 | 1/28 | 130P
152P | | 26.0 | 21.2 | 2.58 | | 54.6 | | .6 | | | | | 1381 | 12/7 | 243P
940A | | 23.5 | 9.69 | 2.10 | 8.00 | 20.4 | \vdash | .6 12 | - | | 1412 | 1/30 | 330P
352P | | 25.5 | 20.9 | 2.42 | | 50.6 | \prod | .6 | | | | | 1382 | 12/10 | 1000A
304P | | 23.5 | 9.92 | 2.10 | 7.99 | 2 0 .8 | H | .6 12 | 0 | <u></u> | 1413 | 2/1 | 235P
258P | | 25.3 | 20.2 | 2.51 | | 50.8 | | .6 | | | | | 1383 | 12/14 | 327P
1024A | | 23.0 | 9.55 | 2.04 | 7.99 | 19.5 | \vdash | .6 13 | 0 | | 1414 | | 117P
140P | | 25.2 | 21.6 | 3.23 | | 69.7 | | .6 | | | | | 1384 | 12/17 | 1045A | <u></u> | 23.5 | 9.64 | 1.97 | 7,98 | 19.0 | | .6 13 | 0 | | | | | | | | | | | | - | | | | | | 2/6
2/8
2/11
2/15
2/16
2/18 | желинем
вкеим
вме 307Р
330Р
202Р
221Р
1035А
1057А
1227Р
1240Р
1020А | | WIDTH PEET | AREA OF SEC. FT. | | RK
8 THE YE | AR ENDING | | | | | | жо. | BAYE - | END
1115A | MADE BY | | AREA OF
BEGTION
BQ. FT. | HEAR
VELOCITY
T, PER SEC. | MAUSE
HEIGHT
FEET | SEG. FT. | ING C | .6 23 | CHANGE
TOTAL | FC29 | |--------------------------------------|--|---|---|------------|------------------|---------------------------------|-------------------------|-----------------------|---------------------|--------------|---------|-------------------|--------------|--------------|--------------|-------------------------|-----------|-----------|-------------------------------|---------------------------------|-------------------------|--------------|----------|-------|-----------------|---| | 1415
1416
1417
1418
1419 | 2/6
2/8
2/11
2/15
2/16
2/18 | 307P
330P
202P
221P
1035A
1057A
1227P
1240P | MADE BY | | AREA OF | DURIN | Q THE YE | AR ENDING | | | | | | " | | | | | | | | | | 6 123 | | LFC29 | | 1416
1417
1418
1419 | 2/6
2/8
2/11
2/15
2/16
2/18 | 307P
330P
202P
221P
1035A
1057A
1227P
1240P | | | AREA OF | | | | BEFTE | HEER | 30, 1 | 46 | | 1467 | 5/20
5/24 | 1147A
1115A
1147A | MIDDLETON | T,WO CHAP | NELS | | 8.50 | 85.1
84.3 | | .6 20 | | | | 1416
1417
1418
1419 | 2/8
2/11
2/15
2/16
2/18 | 307P
330P
202P
221P
1035A
1057A
1227P
1240P | ** | 25.0 | | MEAN
VELOCITY
FT.PEX BEG. | BAUFE
HEIBHT
FEET | DISCHARDE
SEC. FT. | RAT- | ETH- | MEAS. I | A. HT, | HETER
HU- | 1468
1469 | 5/27 | 1125A
1157A | | | | | 8.44 | 75.1 | | .6 24 | 0 | FC18 | | 1416
1417
1418
1419
1420 | 2/8
2/11
2/15
2/16
2/18 | 202P
221P
1035A
1057A
1227P
1240P | | | | | | | | _ | 13 | - DIAL | | 1470 | 5/31 | 937A
1020A | | | | | 8.40 | 70.7 | | .6 25 | 0 | FC11 | | 1417
1418
1419
1420 | 2/11
2/15
2/16
2/18 | 1035A
1057A
1227P
1240P | | 24.6 | 18.7 | 3.09
2.88 | | 57.8
54.7 | | .6 | - | | | 1471 | 6/3 | 1115A
1147A | | | | | 8.38 | 62.6 | | .6 25 | 0 | FC18 | | 1418 | 2/15
2/16
2/18 | 1227P
1240P | •• | 25.0 | 19.0 | 3.03 | | 57.6 | П | . 6 1 | -7 | | | 1472 | 6/7 | 1120A
1154A | | | | | 8.36 | 62.4 | | .6 25 | 0 | FC29 | | 1419 | 2/16
2/18 | | MIDDLETON
WADDICOR | 24.6 | 18.0 | 3,06 | | 55.1 | | .6 1 | \neg | | | 1473 | 6/10 | 140P
215P | | | | | 8.33 | 56.2 | 1 | .6 24 | .01 | FC18 | | 1420 | 2/18 | 1039A | MIDDLETON | 25.0 | 18.4 | 2.97 | | 54.6 | | | 14 | | | 1474 | 6/13 | 1120A
1157A | | | | | 8.33 | 56.4 | | .6 26 | .01 | FC29 | | 1 | | 1120A
1139A | | 24.6 | 17.7 | 2.85 | | 50.4 | | .6 | 12 | | | 1475 | 6/17 | 1130A
1150A | BROWN | | | _ | 8.29 | 51.8 | | .6 17 | - | FC24 | | | ~~~ | 1051A
1112A | | 24.5 | 18.0 | 2.74 | | 49.4 | | .6 1 | 13 | | | 1476_ | 6/21 | 1132A
1155A
1130A | | ., ,, | | | 8.27 | 48.3 | 1 | .6 17 | - | | | 1422 | 2/25 | 3457
407P
3307 | *1 | 25.0 | 17.3 | 2.84 | 8.23 | 49.2 | Ш | .6 | 13 | 0 | | 1477 | 6/24 | 1150A
1130A | | | | | 8.27 | 51.4 | -+ | .6 17 | | | | 1423 | 3/1 | 352P | NIDDLETON | 24.2 | 16.6 | 2.80 | 8.24 | 46.6 | | -6 | 13 | _0_ | FCES | 1478 | 6/28 | 1154A
1116A | | ** ** | | | 8.25 | 48.4 | | .6 17 | | | | 1424 | 3/4 | 155P
328P | "WENTZ | 24.5 | 16.8 | 2.66 | 8,25 | 44.7 | \vdash | -6 | 12 | 0 | | 1479 | 7/1 | 1151A
1118A | MIDDLETON | | | | 8.23 | 44.6 | -+ | .6 25 | T | FC29 | | 1425 | 3/7 | 352P
354P | MIDDLETON
MIDDLETON | 24.3 | 17.2 | 2.46 | 8.24 | 42.4 | H | -6 | 14 | 0 | | 1480 | 7/8 | 1152A
1115A | | | | | 8.20 | 40.9 | \vdash | .6 24 | 0 | + | | 1426 | | 412P
1244P | WENTZ | 24.5 | 16.9 | 2,52 | 8,24 | 42.5 | \vdash | -6 | 13 | 0 | ·· | 1481 | 7/12 | 1147A
1114A | | | | | 8.18 | 39.0 | | .6 23 | 1 | 1. | | | 3/11 | 900A | MIDDLETON | 24.5 | 16.4. | 2.46 | 8.35 | 40.3 | \vdash | | 13 | 0 | | 1482 | 7/15 | 317P | | | | | 8.17 | 39.1
37.6 | \Box | .6 22 | | . | | 1428 | 3/15 | 922A
405P | | 25.0 | 17.4 | 2.53 | 8.37 | 44.0 | + | -6 1 | 13 | 0 | - | 1483 | 7/19
7/22 | 348P
1121A
1150A | | | | | 8.16 | 36.4 | | .6 22 | | | | 1429 | 3/19 | 420P
840P
853P | G. BROWN
G. BROWN
SPANGLER | 24.5 | 19.4. | 2.66 | 8.43 | 51.7 | H | .61 | 13 | | EC24_ | 1485 | 7/26 | 1121A
1154A | | | | | 8.15 | 36.4 | | .6 24 | 0 | | | 1430 | 3/19 | 715A
730A | G. BROWN
SPANGLER | 24.5 | 18.9 | 2.88 | 8.43 | 57.4
51.0 | | | 3 | 0 | | 1485 | 7/29 | 1116A
1152A | | | | | 8.12 | 33.4 | | .6 24 | 01 | | | 1432 | | 1135A
1150A | G. BROWN
SPANGLER | 24.0 | 18.5 | 2.72 | 8.40 | 50.4 | | | 13 | 0 | | 1487 | 8/2 | 908A
943A | | | | | 8.10 | 32.0 | | .6 24 | 0 | <u> -</u> | | 1433 | 3/20 | 335P
350P | G. BROWN
SPANGLER | 24.5 | 19.4 | 2.52 | 8.40 | 49.3 | | 6.1 | 3 | 0 | | 1488. | 8/5 | 1114A
1147A | | <u></u> | | | 8,09 | 31.2 | | .6 23 | 0 | <u> </u> | | 1434 | 3/21 | 1110A
1126A | MIDDLETON
SPANGLER | 25.0 | 18.9 | 2.45 | 8.39 | 46.3 | | .6 1 | 3 | 0 | FC29 | 1489 | 8/8 | 147P
(217P | MIDDLETON | тию сна | NNELS | | R.08 | 28.2 | \vdash | 16 2 | 3 0 | FC29 | | 1435 | 3/22 | 1035A
1055A | MIDDLETON | 25.3 | 17.8 | 2.58 | 8.38 | 46.0 | | .6 1 | 3 | ٥., | | 1490 | 8/12 | 1120A
1154A
1122A | ,, | | | | 8.08 | 28.8 | \vdash | -6 2 | 4 | <u> </u> | | 1436 | 3/26 | 300P
321P | | 24.5 | 18.1 | 2.61 | 8.38 | 47.2 | | .6 1 | 12 | ٥ | <u> </u> | 1491 | 8/16 | 1153A
1122A | | | | | 8.07 | 28.2 | ┝╌┼ | .6 2 | 4 | | | 1437 | 3/28 | 1032A
1051A
218P | | 26.0 | 22.4 | 2.88 | 8.46 | 64.4 | \sqcup | -6.1 | 3 | 0 | | 1492 | 8/19 | 1152A
1128A | | ,, | | | 8.05 | 27.0 | - | .6 2 | | + | | 1438 | 3/29 | 239P
902A | G. BROWN | 25.5 | 21.0 | 3.11 | . 8.46 | 65.4 | | .6 1 | 13 | 0.10 | | 1493 | 8/23 | 1202P
108P | | | | | 8,05 | 25.3 | \vdash | -6 2 | | 1. | | 1439 | 3/30 | 925A
952A | SPANGLER
G. BROWN | THREE C | ANNELS | | 9.40 | 1040. | | .6 1 | | | FC11_ | 1494 | 8/26 | 137P
1137A | | | | | 8.04 | 25.1 | H | -6 2 | | 1 | | 1440 | 3/30 | 1020A | SPANGLER
G. BROWN | TWO CHAN | NELS | | 10.10 | 1130. | \vdash | .6 Þ | 4 | .42 | | 1495 | 8/30. | 1158A
110P | | | | | | 23.4 | | 6 1 | , | | | | | 1138A | SPANGLER
G. BROWN | | | | 10.24 | 1200. | \vdash | .6 2 | T | .08 | | 1496 | 9/3 | 135P
155P
212P | | | | | | 21.0 | | EST. | | | | | | 210P
235P | SPANGLER G. BROWN SPANGLER | 132. | 187. | 1 1 | 10.06 | 1230 | | .62 | - 1 | -26
-19
-40 | | 1498 | 9/10 | 350P
406P | | | | | | 21.0 | | EST | | ı. | | | 3/30 | 255P
317P | G. BROWN
SPANGLER | THREE CH | 186. | 7.41 | 10.07 | 1380.
999. | | .6 2
.6 1 | + | .12 | | 1499 | 9/13 | 200P
215P | | | | | | 21.2 | | B.6 1 | - | | | 1445 | 3/30 | 330P
400P | S. AROWN
SPANGLER | | HANNELS | | 10.00 | 1090 | | <i>1</i> 6 : | | t 10 | EC11 | 1500 | 9/16 | 235P
255P | | | | | | 21.9 | \sqcup | .6 1 | 4 | FC29 | | 1446 | 3/30 | 507F
530P | G. BROWN
SPANGLER | | | | 10.00 | 946. | | .6 | - 1 | ±.08 | <i>tr</i> | .1501. | 9/20 | 1115A
1135A | | 15.0 |
9.89 | 2,23 | | 22.1 | \vdash | .6 1 | 4 | | | 1447 | 3/30 | 735P
895P | G. BROWN
SPANGLER | | | | 9.83 | 723. | Ш | .6 | - 1 | 05
15 | | 1502 | 9/23 | 1020A
1038A | | 15.0 | 9:92. | 2.18 | <u> </u> | 21.6 | | .6 1 | 2 | '' | | 1448 | 3/30 | 1010P
1035P | G. BROWN
SPANGLER | | ļi | | 9.91 | 782. | | .6 | 13 | ±.06 | | 1503 | 9/27 | 1145A
1203P
220P | | 15.0 | 9.33 | 2.23 | ļ | 20.8 | \vdash | .6 1 | | + | | 1449 | | 1210A
1235A
735A | G. BROWN
SPANGLER
G. BROWN | тию сна | NELS | | 9.83 | 706. | $\vdash \downarrow$ | .6 | 12 | 03 | | 1504 | 9/30 | 237P | | 13.5 | 7.68 | 2,67 | | 20.5 | - | .6 1 | 2 | " | | 1450 | 3/31 | 800A
1120A | SPANGLER
G. BROWN | | | | 9.62 | 488. | $\vdash \vdash$ | .6 | 12 | 03 | | | | | | | | | | | | | | | | 1451 | 3/31 | 1147A
200P | SPANGLER
MIDDLETON | | | | 9.53 | 421. | \vdash | -6 | 17 | -0- | | | | | | | | | | | | | | | | 1452 | | 220P
1031A | SPANGLER
MIDDLETON | 55_0 | 51.9 | 5.09 | 9.21 | 264 | \vdash | П | 15 | 0 | FC29 | | | | | | | | | | | | | | | 1453 | 4/5 | 1100A
1043A | SPANGLER | TWO CHA | INELS | \vdash | 9.05 | 218. | $\vdash \vdash$ | .6 | - 1 | 0 | FC29_ | | | | | | | | | | | | | | | 1454 | | 215P | MIDDLETON | | | | 8.99 | 189 | \vdash | -6 2 | | .02 | | | | | | | | | | | | | | | | 1455 | | 250P
1015A
1053A | | | | | 8.92
8.95 | 192. | \Box | 6 2 | 21 | -0- | | | | | | | | | | | | | | | | 1457 | | 1145A
1230P | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ., ., | | | 8,95 | 192. | \Box | . 6 Z | | 0 | | | | | | | | | | | | | | | | 1458 | | 1120A
1152A | 11 | 43.5 | 45.4 | 4.58 | 8.98 | 208. | | | 15 | 02 | | | | | | | | | | | | | | | | 1459 | 4/22 | 222 ^p
255P | | TWO_CHA | | | 8.89 | 177. | | | 21 | .01 | | | | | | | | | | | | | | ļ | | 1460 | 4/25 | 1114A
1150A | " | | | | 8,82 | 162 | | .6 2 | 21 | ٥ | | | | | | | | | | | | | | 1 | | 1461 | 44/29 | 1125A
1157A | ** | | | | 8.76 | 141. | \Box | .6 2 | 20 | ٥ | <u></u> | | | | | | | | | | | | | | | 1452 | 5/3 | 1120A
1155A | | | | | A.68 | 131. | | .6 2 | 22 | ۰ | <i></i> | | | | | | | | | | | | | | | 1463 | 5/6 | 250P
320P
938A | | | | | 8.60 | 107. | \vdash | .6 2 | 22 . | .01 | | | | | | | | | | | | | | | | 1454 | 5/10 | 938A
1014A
203P | | | | | 8.60 | 108. | $\vdash \vdash$ | .6 2 | 24 | ۰ | <u></u> | | | | | | | | | | | | | ļ | | 1465 | 5/13 | 242P
940A | | | | | 8.55 | 98.4 | \vdash | .6 2 | 26 | ۰ | | | | | | | | | | | | | | | | . 1466 | | 10004 | BROWN | <u></u> | ļļ | | 8.53 | 90.6 | - | .6 1 | 9 | 0 | | ł | | | | | | | | | | | | | | | DISCHARDE | HEABUREI | HENTS OFSAN GA | BRIEL - | - EAST | FORK | | | | | | | MO. | DATE | SZGIH | MADE BY | WIDTH
FEST | AREA OF
BESTION
\$Q. FT. | HEAN
VELDOITY | BAUGE
HEIGHT
FEET | DISCHARGE
SEG. FT. | RAT- HEY | | U. HT.
CHANGE
TOTAL | METER
NO. | |--------------|--------------|------------------------|--------------------|---------|-------------------------------|---------------------------------|-------------------------|--------------|-----------|---------------------|-------------------|--------------|------|-------|-----------------------|--|---------------|--|--|-------------------------|-----------------------|--------------------|--------------|---------------------------|--| | - | | above | Forks | | | DUR | ING THE Y | EAR ENDING | BEPTEME | IER BC | , ₁₉ 4 | 7 | 1563 | 12-19 | 1032A
1053A | 69 | 24,5 | 22.6 | 3.22 | 7.77 | 72.7 | - | 1 | O | | | | | BEGIN | | WIDTH | AREA OF | MEAN | BAUGE | DISCHARGE | RAT: HETE | MEAR | нт. | | 1564 | 12-23 | 920A
938A | MIDDLETON | 24.5 | 22.4 | 3.10 | 7.73 | 69.4 | .6 | 1.2 | 0 | FC18 | | но. | DATE | 1027A | MADE BY | FEET | ARTA OF
MEDTION
EQ. FT. | HEAN
VELOCITY
FT.PER BEG. | BAUBE
HEIGHT
FEET | SEO. FT. | HAT- METH | MEAS
BEC.
HG. | CHAHUK
TOTAL | HETER
NO. | 1565 | 12-25 | 950A
1010A | MIDDLETON-SPANGLER | | ì | | 8.49 | 278. | ÉS
.6 | 7 | +.04 | | | 1505 | 10-1 | 1045A | MIDDLETON | 23.5 | 22.6 | 3,41 | 6.69 | 77.0 | .6 | 12 | +.06 | FC29 | 1566 | 12-25 | 750P
825P | STUNDEN-SPANGLER | 115. | 146. | 7.52 | 10.04 | 1100. | .6 | T | + .25 | | | 1506 | 10-1 | 225P
245P
315P | •• | 24.5 | 25.7 | 3,29 | 6.86 | 84.5 | -6 | 13 | +.02 | " | 1567 | 12-25 | 1010P
1050P | | 120. | 152. | 7,24 | 9.33 | 1100. | .6 | 18 | +.10 | <u>. </u> | | 1507 | 10-2 | 333P
315P | -11 | 21.0 | 20.8 | 1.71 | 6.29 | 35.6 | 6 | | 02 | ** | 1568 | 12-26 | 1240A
115A
250A | 1 | 120. | 164. | 8.23 | 10.00 | 1350. | .6 | 21 | +.20 | - | | 1508 | 10-4 | | MIDDLETON | 17.7 | 9.87 | 3.24 | 5.78 | 32.0 | .6 | | | - | 1569 | 12-26 | 325A
925A | | 120. | 178. | 9.32 | 10.24 | 1660. | .6 | 14 | 02 | | | 1509 | 10-7 | 1000A | VAN DER GOOT | 17.0 | 9.11 | 2.79 | 5.7: | 25.4 | .6 | 1 | 01 | | 1570 | 12-26 | 955A
105P | 11 18 | 120. | 164. | 7.57 | 10.38 | 1240. | .6 | 21 | 02 | | | 1510 | 10-11 | 1240P
1256P | MIDDLETON | 16.0 | 8.69 | 2.62 | 5.73 | 22.8 | .6 | | 1 | ļ | 1571 | 12-26 | 130P
245P | * * | 110. | 130. | 7.31 | 9.99 | 952. | .6 | 19 | 08 | 1 | | 1511 | 10-17 | 1030A
1046A | n | 16.5 | 9.26 | 2.62 | 5.71 | 23.4 | .6 | | | | 1572 | 12-26 | 310P
805Å | ** ** | 105. | 127. | 7.18 | 9.85 | 913. | .6 | 1 | 07 | - | | 1513 | 10-21 | 130P | | 16.5 | 8.78 | 2.57 | 5.69 | 22.5 | .6 | 7 | - | | 1573 | 12-27 | 845A
1050A | " " | TWO CHA | NELS | | 9.58 | 771. | .6 | | 0 | - | | 1514 | 10-24 | 208P | MIDDLETON-BLAKELY | 15.5 | 8.42 | 2.40 | 5.74 | 20.2 | .6 | T | | | 1574 | 12-27 | 1120A
115P | | | | | 9.65 | 882. | .6 | | | | | 1515 | 10-28 | 1240P
1255P | BLAKELY | 21.5 | 19.7 | 1.49 | 5.77 | 29.4 | .6 | ` | 3 0 | FC35 | 1575 | 12-27 | 145P | | | ! | | 9.56 | 706. | .6 | 1- | | | | 1516 | 10-31 | 1140A
1152A | | 21.1 | 18.5 | 1.46 | 5.77 | 27.1 | .6 | 1 | 0 | ** | 1576 | 12-28 | 250F | MIDDLETON-SPANGLER | TWO | HANNELS | | 9.22 | 528. | -6 | 1 | 01 | | | 1517 | 11-4 | | MIDDLETON | 21.0 | 17.4 | 1.34 | 5.73 | 23.3 | .6 | 1 | 0 | FC29 | 1577 | 12-31 | 325F | MIDDLETON
MIDDLETON-SPANGLER | | - | | 9.80 | 242. | .6 | 10 | +.01 | FC11
FC18 | | 1518 | 11-17 | 322P
338P | | 16.0 | 11.5 | 1.96 | 5.73 | 22.6 | 6 | 10 | 0 | | 1579 | t-7 | 1120 | A) | | | | 9.62 | 174. | | | | 1018 | | 1519 | 11-8 | 200P | | 16.0 | 12.3 | 2.16 | 5.77 | 26.6 | .6 | 10 | 0_0 | •• | 1580 | 1-9 | 410 | | | -44 | | 9.47 | 156. | 1 1 | 6 25 | | - | | 1520 | 11-12 | 1135A
1153A
440P | · • | 25.5 | 18.4 | 3.80 | 6.21 | 69 .9 | 6 | 1 | +.01 | ** | 1581 | 1-10 | 925
957 | A | | | | 9.46 | 150. | | 6 24 | | - | | 1521 | 11-12 | 500P
650P | | 25.5 | 23.5 | 3,74 | 6.49 | 87.8 | .6 | 1: | 01 | FC36 | 1582 | 1-13 | 215
247 | P | ** | 71 | | 9.43 | 134. | 1 | 6 24 | ` | FC29 | | 1522 | 11-12 | 710P
845P | STUNDEN - SPANGLER | 26.0 | 21.3 | .3,90 | 6.47 | 83.3 | .6 | 1: | 301 | | 1583 | 1-16 | 1015 | A | ** | -49 | | 9.38 | 117. | | 1 | | | | 1523 | 11-12 | 903P
1245A | * * | 27.0 | 22.1 | 4.03 | 6.47 | 89.1 | .6 | 13 | +.01 | | 1584 | 1-20 | 125
156 | P | -1. | | | 9.30 | 108. | | . | | | | 1524 | 11-13 | 105A
340A | | 26.0 | 25.4 | 4.65 | 6.56 | 118. | -6 | 1: | +.02 | | 1585 | 1+23 | 222 | P | | | | 9.34 | 99.2 | | - 1 | | - | | 1525 | 11-13 | 415A
640A | - tr a | 24.0 | 20.9 | 7.77 | 6.72 | 162. | .6 | 1 | 502 | ļ | 1586 | 1-27 | 200l
228l | Р ** | | • •• | | 9.31 | 91.0 | 1. | 6 22 | . 0 | | | 1526 | 11-13 | 655A
830A | " " | 45.0 | 38.9 | 3.60 | 6.74 | 140. | .6 | | +.04 | * | 1587 | 1-28 | 143
215 | Р " | | | | 9.53 | 153. | | 22 | . 0 | • | | 1527 | 11-13 | 850A
955A | | 45.0 | 44.6 | 4.00 | 6.86 | 179. | .6 | 1 | +.09 | T | 1588 | 1-30 | | MIDDLETON-"ELLEN | - 44 | | | 9.29 | 88.5 | | 20 | 0 | - | | 1528 | 11-13 | 1015A | STUNDEN-SPANGLER | 40.0 | 42.0 | 7.42 | 7,62 | 312. | -6 | 1 | | | 1589 | 2-3 | 247
316 | | | | ļ | 9.26 | 74.7 | 1 | 21 | 0 | ! | | 1529
1530 | 11-13 | 1140A
1237P
107P | | 55.0 | 55.2
64.2 | 9.00 | 8.13
8.54 | 484.
579. | .6 | 1 | +.02
0 | | 1590 | 2-6 | 1005 | | -40 | " | | 9.24 | 73.7 | . f | 6 21 | 0 | | | 1531 | 11-13 | 330P
350P | | 35.0 | 42.4 | 8.23 | 8.50 | 349. | .6 | | | | 1591 | 2-10 | 155 | Р •• | | <u> </u> | | 9.23 | 78.0 | ' | 8 21 | 0 | | | 1532 | 11-14 | 700A
720A | | 25.0 | 26.2 | 5.68 | 7.97 | 149. | .6 | | 1 | | 1592 | 2-13 | 337 | P .**. | | " | ļ | 9.20 | 58.2 | 4-1- | 6 21 | 0 | | | 1533 | 11-14 | 905A
940A | | 30.0 | 31.1 | 4.12 | 7.93 | 128. | .6 | | | .,, | 1593 | 2-17 | 1140 | Р ** | - pa*- | | | 9.16 | 65.4 | | 3 ·20 | 01 | | | 1534 | 11-14 | 1035A
1055A | 49 19 | 30.0 | 30.4 | 4,27 | 7.94 | 130. | | T . | +.04 | -17 | 1594 | 2-20 | 1210 | P | - | - | <u> </u> | 9.23 | 66.7 | 1-1-2 | 6 21 | 0 | | | 1535 | 11-14 | 125P
145P | | 30.0 | 27.1 | 4.24 | 7.92 | 115. | .6 | T | | | 1595 | 2-24 | 312
1027 | Pi ···· | • | | | 9.20 | 59 .7 | 110 | 5 21 | 1 | | | 1536 | 11'-14 | 255P
310P | | 30.0 | 28.0 | 4.03 | 7.90 | 113. | .6 | 1 | Ι. | | 1596 | 2-27 | 1056 | A ··· | - | | | 9.19 | 61.6 | 1 1 | 6 21 | | 75 | | 1537 | 11-14 | 31 5P
330P | ** | _30.0 | 29.2 | 3.73 | 7.89 | 109. | .6 | 1 | | ** | 1597 | 3-3 | 1120 |)A | - | - | | 9.16 | .55.9 | 1 1 | 6 21 | 0 | - | | 1538 | 11-14 | 500P
515P | | 30.0 | 28.9 | 3.78 | 7.89 | 109. | .6 | 14 | 01 | *** | 1598 | 3-6 | 1146 | i r | - | - | | 9.17 | 55.7 | 1. [| 19 | | T. | | 1539 | 11-15 | 750A
810A
1118A | и и | 29.0 | 24.4 | 3.17 | 7.75 | 77.2 | ,6 | 14 | ٠ | | 1599 | 3-10 | 1145 | A | <u> </u> | | | 9.15 | T | | 6 2 | | | | 1540 | 11-15 | | MIDDLETON | 29.2 | 22.4 | 3.49 | 7.77 | 78.1 | 6 | 14 | 01 | FC29 | 1600 |
3-13 | 1220
247
316 | P | TWO | CHANNEL | | 9.15 | 52.2 | 1 1 | 6 19
6 20 | - 1 | FC29 | | 1541 | 11-18 | 103P | -11 | 29.3 | 19.2 | 3,04 | _7.66 | 58.4 | 6 | 14 | _هـــ | | 1602 | 3-20 | 1152 | A | | | | 9.18 | 50.3 | 1 1 | 6 20
6 21 | | | | 1542 | | 1215P
100P | STUNDEN-SPANGLER | 65.0 | 83.8 | 10.9 | 9.23 | 912. | .6 | 12 | 0 | FC36 | 1603 | 3-21 | 128 | P | | | | 9.26 | 1 | | 6 22 | | | | 1543 | , | 120P
213P | | 100. | 100. | 9.09 | 9.20 | | .6 | 13 | | | 1604 | 3-24 | 142
212 | P | | | | 9.21 | \$5.5 | | 6 21 | | 1 - | | 1544 | | 238P
402P | | 100. | 122. | 9.74 | 9.25 | | \$∪R | F 13 | +.02 | • | 1605 | 3-27 | 225
2 253 | P | | | | 9,19 | 53.2 | 1 1 | 6 21 | | | | 1545 | 11-20 | 422P
607P | | 100. | 111,. | 6.75 | 9.27 | | .6 | | T^{-} | | 1606 | 3-28 | 147
215 | Р ** | | | | 9.28 | 71.0 | | 6 21 | | *** | | 1546 | | 622P | | 100. | 89.2 | 7.05 | 9,24 | | | | + .03 | | 1607 | 3-31 | 152
223 | P • | | | | 9.22 | | | 6 20 | | .** | | 1547 | 11-21 | 1115A | MIDDLETON | 66.5 | 61.8 | 4.14 | 8.60 | 256. | .6 | 1 | | FC29 | 1608 | 4-3 | 1150 | P " | ** | | | 9.22 | 58.8 | | 5 20 | 1 | | | 1548 | | 1148A
1038A | STUNDEN-SPANGLER | 59.0 | 39,1 | 4.40 | 8.18 | | .6 | | | | 1609 | 4-7 | 300
1129 | ₽ ₩ | | | <u> </u> | 9.17 | 54.3 | 11. | 6 20 | | | | 1549
1550 | } | 1158A
1233P | * ** | 95.0 | 92.6 | 7.35 | 9.15 | 596.
912. | -6 | Т | +.24 | FC36 | 1610 | 4-10 | 1125
1158
328 | A | • | | <u> </u> | 9.20 | 55.2 | 44. | 6 20 | 0 | | | | 11-23 | 115P
150P | | 115. | 151. | 7.03 | 10.10 | | .6 | _ | +.02 | - | 1611 | 4-14 | | P MIDDLETON-MAZE | | ! | ļ | 9.17 | 53.2 | 44. | 6 20 | 0 | - | | 1552 | 11-23 | 303P | STUNDEN-SPANGLER | 120. | 136. | 6.84 | 9.96 | 930 | .6 | ; | -0.17 | - | 1612 | 4-17 | | A MIDDLETON | | | 1 | 9,21 | 57.2 | - | 6 15 | 0 | | | 1553 | 11-23 | 600P
630P | * " | 120. | 116. | 6.17 | 9.70 | 716. | .6 | : 1 | 0.16 | | 1613 | 4-21 | | P MIDDLETON | | | | 9,22 | 57.9 | 1-4 | 5 20 | <u> a</u> | | | 1554 | 11-24 | 705A
740A | | 35.0 | 47.5 | | 9.42 | 392. | .6
5UR | | | | 1614 | 4424 | 321 | A " | *** | ļ.,, | - | 9,21 | 52.8 | ++4 | 5 20 | 0 | | | 1 555 | 11-24 | 235P
255P | MIDDLETON-SPANGLER | | 64.7 | | 8.93 | 349. | | | | FC11 | 1615 | 4-28 | 140 | P | -761 | . 40 | | 9.19 | 48.6 | ++4 | 5 18 | <u> </u> | | | 1556 | 11-25 | 1150A
1212P | MIDDLETON | 55.0 | 50.6 | 5.25 | 8.52 | 266. | | 15 | 1 | | 1616 | 5-1 | 207i | 5, 4 | -10 | *** | | 9.17 | 47.9 | ++ | 519 | - | | | 1557 | 11-29 | 1105A
1130A | ** | 26.5 | 32.1 | | | 1.57 | | 13 | 1 | FC29 | 1617 | 5-5 | * 1110 | P | *** | | - | 9.16 | 44.4 | + | 1.8 | | - 1 | | 1558 | 12-2 | 240P
310P | -11 | 26.0 | 30.8 | 4,19 | 8.00 | 129. | | 1.5 | 1 | | 1618 | 5-8 | 1142/ | <u> </u> | | | | 9.18 | 45.0 | | 22 | 1 | | | 1559 | † 2-5 | 940A
1002A | | 25.5 | 29.6 | i | 7.95 | 118. | 1 1 | 13 | 1 | | 1619 | 5-12 | 1034 | 4 | + | + | + | 9.15 | 37.7 | 11. | 1 | | -+ | | 1560 | 12-9 | | MIDDLETON-SPANGLER | 25.5 | 27.0 | 3.89 | 7.90 | 105. | | 13 | | - | 1820 | 5-15 | 11/20/ | \ | | | + | 9.15 | 43.4 | 1 1 | 5 20 | | | | 1561 | 12-12 | | MIDDLETON | 25.0 | 25.2 | 3.64 | _7.83 | 91.7 | .6 | 1 | | - | 1621 | 5-19 | 1148 | | | | | 9,13 | 37.1 | 1 1 | \neg | 1 | - | | 1562 | 12-16 | 240P
303P | MIDDLETON-SPANGLER | 25.0 | 24.6 | 3.34 | .7.81 | 82.2 | .6 | 13 | 0 | - | 1622 | 5-22 | 1135/ | | - 79 | +=- | | 9.13 | 37.8 | 1 | | 1 | + | | | | | | | | | | | | | | | 1623 | 5-26 | 152 | | | +- | + | 9.11 | 35.1 | | 19 | - 0 | + | | | DIBCHARGE | E HEABURE | MENTS OF SAN G | ABRIEL | - EASI | FORK | | | | | | | | NO. | DATE | RND | HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAH
VELOCITY
FT.PER SEC. | SAUDE
NEISHT
FERT | DISCHARGE
BEG. FT. | ING H | DD MEA | CHANG
TOTAL | zi " | |-----|--------------|----------------|------------------|--|--------------|---------------------------------|-------------------------|-----------|--------|-------|---------|---------------------------|--------------|------|------|----------------------|----------------|--------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------|------------------|----------------|------| | | 147-
NEAS | | above Forks | | | DURIN | NO THE Y | EAR ENDIN | G BEPT | EMBEI | R 30, 1 | . 47 | | 1641 | 7-28 | 140P
208P
200P | #
MIDDLETON | | ļ | | 9.00 | 16.8 | | .6 16 | 0 | - | | ĸa. | DATE | BESIN | HADE BY | WIDTH | AREA OF | MEAN
VELDOITY
FT.FER SEC. | BAUGE
HEIGHT
FEET | DIECHARGE | RAT- | | MEAN. | D. HT.
CHANGE
TOTAL | METER
NO. | 1642 | 7+31 | 217P | VAN DER GOOT | <u></u> | | <u> </u> | . 9.00 | 16.4 | | .6 16 | | ļ., | | | | 1057A | | + | 1 | 71.747, 420. | | | 1-1 | | Part | ILLIAL | | 1643 | 8-4 | 253P | MIDDLETON | | | | 9.00 | 16.2 | | 6 17 | 10 | | | 624 | 5-29 | 1128A | | TWO C | ANNELS | l | 9.12 | 36.4 | | .6 | 18 | 0 | FC29 | 1644 | 8-7 | 310P
337P | | | | | 0.00 | 15.0 | - 1 | | | Τ. | | 625 | 6-2 | 230P
257P | | | ,, | | 9.11 | 33.7 | | .6 | 17 | 0 | | 1645 | 8-11 | 312P
337P | - | 1. | | | 8.99 | 17.0 | 1 | 6 15 | | + | | | | 1125A
1156A | | ١., | ۱., | | | | | _ | | | | 1045 | | 1052A | | + | + | | 3,00 | | | 5 110 | +.~. | +- | | 626 | 6-6 | 1053A | | + | | | 9.12 | 33.8 | + | -6 | 20 | 0 | | 1646 | 8-14 | 1113A | ** | ** | | <u> </u> | 9.35 | 17.7 | | 6 15 | 0 | | | 627 | 6-9 | 1123A
1025A | • | " | | | 9.12 | 32.0 | + | .6 | 20 | 0 | | 1647 | 8-18 | 215P | LANG | | L | | 9.29 | 15.8 | | 6. 17 | 0 | Ι. | | 628 | 6-12 | 1056A | | •• | - | | 9.09 | 30.3 | | .6 | 21 | 0 | | | | 153F | | | T | | | | - 1 | - | | | | 000 | 6.16 | 1027A
1058A | | ١., | | | | | T | | | | | 1648 | 8-21 | 220F | LANG | TWO (| CHANNELS | ļ | 9,31 | 17.1 | | 6 1 | 40 | /1 F | | 629 | 6-16 | 1030A | ļ | + | | | 9.09 | 28.8 | - | -6 | 21. | _0 | | 1649 | 8-26 | 210F | | | | | 9.29 | 15.2 | 1. | 6 1 | 9 0 | | | 630 | 6-20 | 1055A | | | - | | 9.08 | 28,1 | 1 | .6 | 16 | 0 | | 1043 | 0-20 | 155F | | 1 | | - | 3,23 | | -1 | <u> </u> | ¥ | + | | | | 1034A | | | 4. | | | | | - | | | | 1650 | 8-28 | 220F | | | | | 9.29 | 14.7 | | 6 1 | 5 0 | 4 | | 631 | 6-23 | 1100A | | * | ** | | 9.08 | 26.5 | + + | .6 | 17 | 0 | ** | l | | 305F | | 1 | ٠,, | | | | - 1 | | | | | 632 | 6-27 | 1202P | MIDDLETON-I ANG | | | | 9.07 | 24.4 | | _ | 18 | 0 | | 1651 | 9-2 | 207F | MIDDLETON | - | +"- | | 9.24 | 12.9 | -+ | 6 1 | 5 0 | + | | | | 236P | | | | | 9.07 | 24.4 | | -0 | 18 | | | 1652 | 9-4 | 233F | | | - | | 9.27 | 13.5 | | 6 1 | 4 0 | | | 633 | 6-30 | | MIDDLETON | * | ** | | 9.05 | 22.5 | | .6 | 20 | 0 | | | | 318F | | ۱ | | 1 | | | | | | T | | 634 | 7-3 | 112P | LANG-MIDDLETON | ,, | - | | 9.04 | 21.8 | | .6 | | | | 1653 | 9-8 | 340F | | ļ <u>"</u> | " | | 9.28 | 13.8 | -+ | 6 1 | 4 0 | | | | | 120P | LATO-NITEDELIGIT | | 1 | | 9,04 | 41.0 | 1 | .0 | 21 | 0 | | 1654 | 9-11 | 156F | | | - | | 9.27 | 14.0 | ١. | 6 1 | з о | | | 635 | 7-7 | 157P | LANG | | | | 9.00 | 21.0 | 1. | .6 | 21 - | 01 | | | | 250F | • | | | T | | | | | T ~ | | | 636 | 7-10 | 222P
250P | | | | | | | I = I | | | | | 1655 | 9-15 | 311F | | " | -11 | | 9.26 | 12.8 | | 6 1 | 3 0 | _ | | 636 | 7-10 | 350P | | | | | 9.02 | 20.5 | - | -6 | 21 | 0 | | 1656 | 9-18 | 125P | | | | İ | 9.32 | 16.1 | - 1 | 6 1 | 4 0 | ł | | 637 | 7-14 | | MIDDLETON | ** | - | | 9.02 | 18.6 | 1 1 | .6 | 21 | 0 | ** | | | 305F | | | | | 3.02 | 10 | | <u> </u> | 9 0 | + | | | | 114P | | | | | | | | | | | | 1657 | 9-22 | 326F | | - " | | ļ | 9.27 | 13.5 | | 6 1 | 4 0 | _[_ | | 638 | 7-17 | 142P | ļ | | - | - | 9.01 | 19.5 | 1 | .6 | 20 | 0 | ** | 1658 | 9-25 | 925A | | | | | 9.28 | 14.9 | | 6 1 | 4 0 | | | 639 | 7-21 | 330P
358P | | | | | 9.00 | 17.3 | | .6 | 19 | | | 050 | | 245F | | | + | - | 5.20 | 14.9 | | - ' | 4 0 | + | | | | 140P | | | | | #.UI | 17.3 | | -0 | 18 | | | 1659 | 9-29 | 306P | h | | | | 9.24 | 12.4 | | 6 1 | 4 0 | | | 640 | 7-24 | 205P | • | ** | - | | 9.01 | 18.1 | | -6 | 18 | 0 | | 1 | | į. | 1 | 1 | 1 | 1 | I | 1 " 1 | - 1 | 1 | 1 | 1 | | J. U. | AM. FORM 62 1-56 | | | | | OD CONTRO | | - | | | Sta. 1 | No.P4B-R | |-------|------------------|--------------|---------|-----------|-----------|------------|---------|--------|---------|---------------|------------------|---------------| | | | | | | | YDRAULIC | | • | | | , | | | | | | 2111 21 | | | | | | | | | | | Dally | discharge, in s | cond-feet of | SAN GA | BRIEL RIV | ER-EAST F | UKK above | forks | | | , for the yea | er ending Septer | nber 30, 1946 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Арг. | May | June | July | Aug. | Sept. | | 1 | 21 | 29 | 22 | 114 | 51 | 4.6 | 286 | 135 | 65 | 4.2 | 29 | 23 | | 2 | 21 | 27 | 21 | 112 | 50 | 4.5 | 241 | 132 | 64 | 4.2 | 29 | 23 | | 3 | 21 | 24 | 21 | 110 | 170 | 4.5 | 235 | 126 | 64 | 42 | 29 | 22 | | 4 | 20 | 24 | 21 | 108 | 70 | 4.4 | 228 | 124 | 62 | 4.2 | 29 | 22 | | 5 | 20 | 24 | 21 | 103 | 54 | 4.4 | 214 | 119 | 61 | 41 | 29 | 21 | | 6 | 26 | 27 | 21 | 98 | 58 | 4 3 | 212 | 115 | 59 | 41 | 29 | 21 | | 7 | | 27 | 21 | 93 | 58 | 42 | 206 | 113 | 59 | 40 | 29 | 21 | | 8 | 26 | 24 | 21 | 89 | 58 | 4 1 | 137 | 111 | 59 | 40 | 29 | 21 | | 9 | 23 | 24 | 20 | 85 | 58 | 41 | 184 | 109 | 5 8 | 3.9 | 29 | 2ī | | 10 | 24 | 24 | 20 | 81 | 5.8 | 40 | 184 | 109 | 56 | 3 9 | 28 | 21 | | 11 | 24 | 23 | 20 | 78 | 5.8 | 39 | 139 | 104 | 56 | 38 | 28 | 21 | | 12 | 2.4 | 2.5 | 20 | 7.4 | 57 | 3 9 | 194 | 100 | 55 | 38 | 28 | 21 | | 13 | 24 | 24 | 20 | 71 | 56 | 50 | 194 | 1 9 8 | 53 | 38 | 28 | 21 | | 14 | 24 | 23 | žŏ | 67 | 56 | 48 | 191 | 98 | 52 | 38 | 28 | 21 | | 15 | 24 | 23 | 20. | 64 | 5.5 | 4 4 |
194 | 96 | 51 | 38 | 27 | 22 | | 18 | 24 | 23 | 19 | 63 | 5 4 | 42 | 204 | 92 | 51 | 3 8 | 27 | 22 | | 17 | 24 | 23 | 19 | 62 | 5 4 | 39 | 206 | 90 | 50 | 3 6 | 26 | 22 | | 18 | 21 | žž | 19 | 61 | 53 | 39 | 204 | 88 | 48 | 40 | 25 | 22 | | 19 | 21 | 2 ã | 19 | ĕō | 52 | 56 | 212 | 8.5 | 4.6 | 3 9 | 25 | 22 | | 20 | ãã | ãã | 19 | 59 | 52 | 53 | 206 | 85 | 4.6 | 3 9 | 25 | 22 | | 21 | 23 | 21 | 553 | 58 | 51 | 4.6 | 191 | 86 | 4.6 | 3.6 | 2.5 | 2.2 | | 22 | 22 | 20 | 1520 | 58 | 5 O | 46 | 180 | 34 | 4.6 | 3.6 | 2.5 | 22 | | 23 | 2.2 | | 1150 | 58 | 49 | 46 | 173 | 80 | 4 7 | 3.6 | 25 | 22 | | 24 | 21 | 20 | 478 | 57 | 49 | 50 | 168 | 78 | 4.8 | 36 | 25 | 22 | | 25 | 21 | 20 | 268 | 5.7 | 4.8 | 50 | 164 | 77 | 4.8 | 3.5 | 25 | 22 | | 26 | 21 | 20 | 226 | 56 | 4.8 | 50 | 164 | 75 | 47 | 3.4 | 2.5 | 21 | | 27 | 21 | 20 | 190 | 55 | 47 | 48 | 159 | 73 | 47 | 3 4 | 25 | 21 | | 28 | 21 | 20 | 161 | 54 | 4 6 | 5 3 | 152 | 70 | 47 | 3 3 | 24 | 21 | | 29 | 26 | 22 | 140 | 53 | | 64 | 148 | 68 | 46 | 3.2 | 24 | 21 | | 30 | 50 | 22 | 125 | 52 | | 773 | 143 | 67 | 43 | 31 | 23 | 27 | | 31 | 3 2 | | 118 | 52 | | 462 | | 65 | | 30 | 23 | | | | 745 | | 5333 | | 1630 | | 5813 | 1 | L530 | | 825 | | | | · · · - | 689 | | 2262 | | 2568 | | 2952 | | 1163 | | 653 | | MEAN | | 23.0 | 172.0 | 73.0 | 58.2 | 82.8 | 193.8 | 95.2 | 52.7 | 37.5 | 26.6 | 21.8 | | PEET | 1480. | 1370. | 10.560. | 4.490. | 3,230. | 5,090. | 11,530. | 5,860. | 3, 130. | 2.310. | 1,640. | 1.300. | | | Remarks: | | | | | | | | | YEAR MEA | N7 | .8 | F. C. Dist. Form 52 4-48 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. P 4 B-R | | | | | | 14 | YDRAULIC | DIVISION | | | | | | |------|---------------|----------------|--------------|----------------|-----------|----------|-------------|-------|-------|----------------|------------------|-------------| | щy | lischarge, in | second-feet of | SAN GAI | RIEL RIV | ER - EAST | FORK abo | ve Forks | | | , for the year | ar ending Septer | nber 30, 19 | | e.y | Oct | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | May | June | July | Aug. | Sept | | 1 | 71 | 26 | 134 | 250 | 83 | 58 | 58 | 47 | 35 | 23 | 18 | 13 | | 2 | 44 | 2.5 | 129 | 240 | 80 | 58 | 60 | 47 | 35 | 23 | 18 | 13 | | 3 | b 3 4 | 24 | 124 | 225 | 7.4 | 58 | 60 | 47 | 37 | 20 | 18 | 14 | | 4 | b 3 2 | 24 | 119 | 210 | b 74 | 60 | 58 | 47 | 32 | 20 | 15 | 14 | | 5 | 29 | 24 | 117 | 196 | b 74 | 58 | 50 | 47 | 30 | 20 | 1.5 | 14 | | 8 | 28 | 23 | 134 | 187 | 74 | 55 | 53 | 47 | 32 | 20 | 15 | 14 | | 7 | 26 | 23 | 124 | 178 | 71 | 5.5 | 50 | 47 | 30 | b 20 | 15 | 14 | | 8 | 25 | 27 | 115 | 174 | 7.4 | 55 | 50 | 47 | 27 | b 18 | 18 | 14 | | 3 | 24 | 26 | 106 | 161 | 80 | 53 | 53 | 4.5 | 30 | 18 | 20 | 14 | | lO } | 23 | 26 | 98 | 150 | 77 | 50 | 5.5 | 42 | 30 | 18 | 20 | 14 | | 11 | 22 | 31 | 94 | 150 | 69 | 50 | 55 | 42 | 27 | 18 | 18 | 14 | | [2 | 22 | 73 | 89 | 146 | 69 | 50 | 50 | 42 | 27 | 18 | . 18 | 14 | | 13 | 23 | 261 | 89 | 135 | 6.9 | 50 | 47 | 42 | 25 | 20 | b 18 | 13 | | 4 | 24 | 122 | 89 | 132 | 69 | 50 | 53 | 42 | 20 | 20 | 17 | 13 | | 15 | 25 | 79 | 87 | 125 | 66 | 50 | 53 | 40 | 25 | 20 | 17 | 13 | | 6 | 27 | 64 | 83 | 118 | 63 | 50 | 53 | 35 | 27 | 18 | 17 | 13 | | 17 | 24 | 61 | 81 | 118 | 66 | 50 | 58 | 35 | 27 | 18 | 1.7 | 15 | | 18 | 24 | 59 | 7.5 | 118 | b 69 | 55 | ₽ 58 | 35 | 25 | 18 | 17 | 17 | | 19 | 24 | 59 | 74 | 115 | b 66 | 5.5 | 4 58 | 35 | 2,5 | 18 | 17 | 16 | | 20 | 23 | 504 | 72 | 109 | 6.6 | 58 | 4 53 | 3.5 | 27 | 18 | 17 | 14 | | 21 | 22 | 314 | 72 | 0 106 | 63 | 71 | 58 | 35 | 2.5 | 18 | 17 | 14 | | 22 | 22 | 171 | 72 | b 103 | 63 | 69 | 58 | 35 | 25 | 18 | 17 | 14 | | 23 | 22 | 516 | 72 | 100 | b 60 | 63 | 55 | 35 | 25 | 18 | D 17 | 14 | | 24 | 21 | 371 | 81 | 100 | 60 | 58 | 5.5 | 32 | 23 | 18 | b 16 | 14 | | 25 | żō | 269 | 433 | 97 | 60 | 5.5 | 53 | b 35 | 23 | 18 | b 16 | 1.4 | | 16 | 19 | 204 | 1160 | 94 | 60 | 50 | 5.5 | 35 | 23 | 18 | b 16 | 14 | | 17 | 28 | 174 | 723 | 91 | 60 | 53 | 53 | 40 | 23 | 15 | b 16 | 13 | | 18 | 29 | 166 | b 528 | 113 | 60 | 71 | 50 | 37 | 25 | 15 | b 15 | 13 | | 19 | 29 | 158 | D 452 | 91 | | 69 | 50 | 37 | 25 | 15 | 15 | 13 | | 10 | 28 | 144 | 9 376 | 88 | | 66 | 47 | 35 | 23 | 15 | 14 | 13 | | 31 | 26 | | 301 | 88 | | 60 | · | 35 | | 15 | 14 | | | | 840 | 4048 | 6303 | 4308 | 1919 | 1763 | 1619 | 1237 | 813 | 569 | 518 | 416 | | | | 1 | r | ſ - | 1 | | 1 | | | | T | , | | AN | 27.1 | 135 | 203 | 139 | 68.5 | 56.9 | 54.0 | 39,9 | 27.1 | 18.4 | 16.7 | 13.9 | | RE- | 1,670 | 8,030 | 12,500 | .8,540 | 3,810 | 3,500 | 3,210 | 2,450 | 1,610 | 1,130 | 1,030 | 825 | | | Remarks: | | | | | | | | | YEAR MEA | | | | | | | | | | | | | 1 | PERIOD ACR | E-FEET 48 | .295 | ### STATION F250-R SAN GABRIEL-AZUSA CONDUIT at weir below San Gabriel Dam #1 LOCATION: WATER-STAGE RECORDER, LAT. 34*12*15". LONG. 117*51'16". ON THE LEFT (EAST) SIDE OF THE SANDBOX ON AZUSA CONDUIT. 12 FEET ABOVE THE 25-FOOT WEIR NAN OAPPROXIMATELY 100 FEET BELOW THE 30-FOOT OUTLET TUNNEL AT SAN GABRIEL DAW #1; APPROXIMATELY 2500 FEET BELOW THE OLD EDISON INTAKE (ABANDONED), AND APPROXIMATELY 3900 FEET ABOVE STATION F220-R. CHANNEL AND CONTROL: CHANNEL - CONCRETE SANDBOX WITH SLUICE GATES AND A CONCRETE BY-PASS CHANNEL. A SECONDARY BOX WITH A TAINTOR GATE AND A 10-FOOT WEIR CONTROLS THE FLOW INTO THE CONDUIT. CONTROL. 125-FOOT SHARP CRESTED WEIR WITH TWO END CONTRACTIONS. STATION F250-R GIVES A RECORD OF THE HEAD ONTHE 25-FOOT WEIR; STATION F250-R GIVES A RECORD OF THE HEAD ONTHE 25-FOOT WEIR; STATION F250-R GIVES A RECORD OF THE FLOW DOWN THE AZUSA CONDUIT BELOW THE TAINTOR GATE. RECORDER: INSTALLED FEBRUARY 14, 1935 OVER A 24-INCH CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1944 TO SEPTEMBER 30, 1947. REGULATION: THE FLOW OF THE SAN GABRIEL RIVER, AVAILABLE AT SAN GABRIEL DAW #1 IS PARTIALLY REGULATED BY SAN GABRIEL DAW #2, AND THE ENTIRE FLOW INTO THE SANDBOX IS REGULATED BY VALVE DISCHARGE FROM SAN GABRIEL DAM #1. RECORDS AVAILABLE: FEBBUARY 14, 1935 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: FLOW ENTIRELY REGULATED BY VALVE RELEASE. CAPACITY OF 25-FOOT WEIR IS APPROXIMATELY 165 SECOND-FEET. CAPACITY OF THE AZUSA CONDUIT IS APPROXIMATELY 95 SECOND-FEET. ACCURACY: EXCELLENT. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. REMARKS: STATION F250-R IS A RECORD OF DISCHARGES FROM SAN GABRIEL DAM #1 THROUGH THE SANDBOX ONLY AND DOES NOT NECESSARILY REFLECT DISCHARGE TO THE AZUSA CONDUIT. (SEE STATION F220-R). # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.F250-R | aily di | scharge, in se | cond-feet of S | AN GABRI | EL-AZUSA | CONDUIT a | t weir be | low San G | abriel Da | m No. L | , for the yea | r ending Septer | mber 30, 19 | |----------------------------------|------------------|---------------------------------|--|---|-------------------------------|------------------------------------|----------------------------|----------------------------|----------------------|-------------------------------|----------------------|----------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4 | 0 0 0 | 0
0
0
1 1 | 3 7
3 7
3 7
3 7 | 9888 | 38 8 8 | 65
65
66
65 | 0.5
0.5
0.5
0.5 | 90
90
90 | 90
90
90
90 | 90
90
90 | 90
90
90 | 90
90
90 | | 5
7
8
9 | 0
0
0
0 | 99
93
0.5
0.5
0.2 | 3 7
3 7
3 7
3 7
3 7 | 87
87
87 | 139
139
114
101 | 65
65
65
65 | 0.5
0.5
3.3
6.5 | 90
91
90
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90 | 90
90
90
90 | | 10
11
12
13
14
15 | 0 0 0 | 0.2
0.2
15
40
39 | 3 7
3 7
3 7
3 7
3 8
4 0 | 9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 101
101
101
97
90 | 65
65
65
65
65 | 51
15
0.2
0 | 90
90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90
90 | | 16
17
18
19
20 | 0 0 0 | 39
39
39
39
38 | 4 0
4 0
4 0
4 0
4 0 | 555580
66999 | 90
90
90
90
74 | 65
65
65
65
36 | 0
0
0
0
4 7 | 90
90
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90 | 89
83
71
71 | | 21
22
23
24
25 | 00000 | 3 7
3 7
3 7
3 7
3 7 | 73
96
88
90
90 | 87
87
87
87 | 65
65
65
65
65 | 40
65
65
65
59 | 70
70
70
82
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 71
71
70
70
70 | | 26
27
28
29
30 | 00000 | 37
37
37
37
37 | 98
99
98
98
98 | 37
37
36
36
38 | 67
67
66 | 57
60
60
60
6.8
0.5 | 90
91
92
91
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 9999999 | 70
71
71
71
71 | | | 0 | 862.8 | 1731 | | 2507 | 18103 | 1050.7 | | 700 | | 2790 | 2441 | | EAN | 0 | 28.8 | 55.8 | 86.8 | 89.5 | 58.4 | 35.0 | 90.0 | 90.0 | 90.0 | 90.0 | 81.2 | | RE- | 0 | 1,710 | 3,430. | 5,340. | 4,970. | 3,590. | 2,080. | 5,540. | 5,360. | | 5.530. | 4.840. | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRI | | .3
47,930. | F. C. Dist. Form 52 4-48 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 250-R | ay | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | |-----|----------|------------|---------|------------|------------|-------|----------|----------|----------|----------|-------|----------| |
1 | 70 | 70 | 89 | 119 | 90 | 0 | 60 | 61 | 60 | 59 | 60 | 60 | | 2 | 70 | 71 | 89 | 137 | 90 | 0 | 60 | 61 | 60 | 59 | 60 | 60 | | 3 | 71 | 71 | 88 | 137 | 90 | 0 | 60 | 61 | 60 | 59 | 60 | 60 | | 4 | 71 | 71 | 88 | 137 | 90 | 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 5 | 71 | 71 | 88 | 138 | 90 | 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 6 | 71 | 71 | 89 | 136 | 91 | 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 7 | 71 | 71 | 90 | 135 | 91 | 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 8 | 71 | 71 | 90 | 135 | 92 | 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 9 | 71 | 71 | 90 | 135 | 108 | 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 10 | 70 | 71 | 90 | 135 | 136 | 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 1 2 | 70 | 71 | 90 | 135 | 136 | 0 0 | 61 | 61 | 60 | 59 | 60 | 60 | | 3 | 70 | 82 | 90 | 131 | 136 | 0 | 61 | 61 | 59 | 59 | 60 | 60 | | 4 | 70 | 91 | 90 | 133 | 136 | 0 | 61 | 61 | 59 | 59 | 60 | 62 | | 5 | 70 | 90 | 90 | 136 | 136 | 0 | 61 | 61 | 59 | 59 | 60 | 61 | | 6 | 70 | 100 | 90 | 137 | 136 | 0 | 61
61 | 61 | 59
59 | 59
59 | 60 | 60
60 | | 7 | 70 | 106
106 | 90 | 136
134 | 136
136 | 53 | 61 | 61
61 | 59 | 59 | 60 | 61 | | 18 | 70 | 106 | 90 | 135 | 136 | 80 | 61 | 61 | 59 | 59 | 60 | 61 | | 9 | 70 | 106 | 90 | 135 | 106 | 80 | 61 | 61 | 59 | 59 | 61 | 61 | | 20 | 70 | 106 | 121 | 135 | 91 | 80 | 61 | 61 | 59 | 5 9 | 61 | 61 | | 21 | 70 | 106 | 137 | 136 | 91 | 74 | 61 | 61 | 59 | 59 | 60 | 61 | | 22 | 70 | 106 | 137 | 136 | 91 | 63 | 61 | 61 | 59 | 59 | 60 | 61 | | 23 | 71 | 108 | 125 | 136 | 90 | 63 | 61 | 61 | 59 | 60 | 60 | 61 | | 4 | 71 | 106 | 122 | 136 | 3 0 | 63 | 61 | 61 | 59 | 60 | 60 | 61 | | 25 | 71 | 107 | 136 | 136 | _ 0 | 63 | 61 | 61 | 59 | 60 | 60 | 61 | | 26 | 71 | 108 | 137 | 136 | 0 | 62 | 61 | 61 | 59 | 60 | 61 | 61 | | 7 | 71 | 96 | 137 | 136 | 0 | 60 | 61 | 60 | 59 | 60 | 61 | 61 | | 8 | 71 | 90 | 99 | 136 | 0 | 60 | 61 | 60 | 59 | 60 | 61 | 61 | | 19 | 71 | 90 | 90 | 136 | | 60 | 61 | 60 | 59 | 60 | 61 | 61 | | 11 | 71 | 90 | 90 | 136 | | 60 | 61 | 60 | 59 | 60 | 60 | 60 | | 1 | 71 | | 92 | 120 | | 60 | | 60 | | 60 | 60 | | | - | 136 | | 3124 | | 2555 | | 1827 | | 1781 | | 1866 | | | _ | | 2660 | J 4 4 4 | 4171 | 2000 | 981 | | 1886 | | 1838 | | | | 4N | 70.5 | 89.3 | 101 | 135 | 91.2 | 31.6 | 60.9 | 60.8 | 59.4 | 59.3 | 60_2 | 60.5 | | ET | 4,340 | 5,320 | 6,200 | 8,270 | 5,070 | 1,950 | 3,620 | 3,740 | 3,530 | 3,650 | 3,700 | 3,600 | | ÷ | Remarks: | | | | | | | | | YEAR MEA | | .2 | ### STATION F220-R SAN GABRIEL-AZUSA CONDUIT at Garcia Canyon LOCATION: WATER-STAGE RECORDER, LAT. 34*11'30", LONG. 117°51'25", ON THE WEST SIDE OF OPENING IN CONCRETE CONDUIT CONNECTING TUNNELS 4-A AND 4-B OF THE AZUSA CONDUIT WHICH DIVERTS WATER FROM THE SAN GABRIEL RIVER. THE STATION IS ABOUT 0,8 MILE BELOW SAN CABRIEL DAW. NO. 1, AND 2 MILES ABOVE MORRIS DAW. ELEVATION OF GAGE ABOUT 1200 FEET. CHANNEL AND CONTROL: STATION LOCATED ON SHORT OPEN SECTION OF CONCRETE CHANNEL. THE FLOW OVER THE 25 FOOT WEIR (STATION F250-R) MAY BE SPILLED BEFORE REACHING STATION F220-R. FLOW WHICH REACHES STATION F, F, 220-R MAY BE BY-PASSED AROUND THE 25 FOOT WEIR AT STATION F250-R. DISCHARGE MEASUREMENTS: FROM TOP OF TUNNEL PORTAL. RECORDER: INSTALLED FEBRUARY 26, 1933 OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. RECORDS AVAILABLE: FEBRUARY 26, 1933 TO SEPTEMBER 30, 1947. (SEE 'RECORDER' (SEE 'REMARKS') EXTREMES OF DISCHARGE: FLOW ENTIRELY REGULATED BY TAINTOR GATE SETTING AND VALVE DISCHARGE AT SAN GABRIEL DAM NO. 1. APPROXIMATE CAPACITY 95 SECOND-FEET. ACCURACY: EXCELLENT. 4.33 4.54 4.6 20.9 4.32 4.55 90.1 20.8 4.33 4.55 90.0 4.43 4.54 92.2 90.0 .. 10 .. 10 " 10 " 10 0 " 0 FC18 0 _0 20.B 20.8 4.6 386 5/17 _387_ 5/25 388 389 6/12 6/5 908A 857A 917A 915A 938A 150P 208P 935A BROWN 955A MIDDLETON OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. REMARKS: THIS RECORD REFLECTS FLOW DIVERTED TO THE AZUSA CONDUIT FROM SAN GABRIEL DAM. PUBLISHED HEREWITH ARE RECORDS OF DIVERSION TO THE AZUSA COMDUIT FROM MORRIS DAM FOR 1945-46. NO DIVERSION WAS MADE DURING 1946-47. THESE RECORDS TOGETHER WITH STATION 220-R COMPLETE THE RECORDS OF ANNUAL DIVERSION THROUGH THE COMDUIT. RECORDS OF DIVERSION FOR 1942-43. 1942-44. 1944-45 ARE ALSO PUBLISHED HEREWITH DUE TO THE OMISSION OF THESE RECORDS FOR THOSE YEARS. | | | | | | | | 4 | | | | | | v | | | | , | | | | | | | | | |-------|-----------|-----------------|-----------------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------|----------------------|---------------------------|--------------|-----|-------------|--------------------------|-----------|-------|--------------------|---------------------------------|-------------------------|-----------------------|----------|-------------------|---------------------------|--------------| | | DIRCHARGE | E MEABURE | KENTE OF SAN GA | ABRIEL | - AZUS | A COND | UIT | | | | | | NO. | DATE | BEO;N
ÉHD | MADE BY | WIDTH | SECTION
SQ. FT. | MEAH
VELOCITY
FT.PER SEG. | BAUBE
HEIGHT
FEET | DIECHARGE
SEG. FT. | RAT- M | ETH- MEAS
BEG. | E, HY.
CHANGE
YOTAL | METER
NO. | | | NAT. | Garcia | Canyon | | | DUR | IING THE Y | EAR ENDING | HEFTEMB | EN 30, | 19.46 | - | 390 | 6/20 | 935 A
958 A | BROWN | 4.6 | 21.0 | 4.28 | 4.57 | 89.8 | | . 2
. 85 10 | 0 | FC24 | | ND. | DATE | ENO | MADE BY | WIDTH | AREA OF
BECTION
BG. FT. | HEAN
VELODITY
FT-PER BEQ. | BAUGE
HEIBHT
PEST | DISCHARGE
SEC. FT. | RAT- HETH- | MEAB.
SED.
ND. | G. HT.
SHANGE
TOTAL | METER
NO. | 391 | 6/27 | 950 A
1015 A
640 A | | 4.6 | 21.0 | 4,30 | 457 | 90.2 | | " 10 | 0 | | | 367 | 11/14 | 200P
223P | MIDDLETON | 4.6 | 10.5 | 3.84 | 2.30 | 40.3 | .2 | 10 | 0 | FC29 | 392 | 7/5
7/12 | 702A
838A | MIDDLETON | 4.6 | 21.0 | 4.29 | | 90.1 | | . 10 | 1 | | | 368 | 11/24 | 1100A
1122A | ** | 4.6 | 9.59 | 3.85 | 2, 11 | 36.9 | | 10 | 0 | | | 7/19 | 900A
621A
642A | | 4.6 | 20.9 | 4.32 | | 90.2 | M | . 10 | 0 | | | 369 | 11/30 | 133P
157P | •• | 4.6 | 9,86 | √3.81 | 2.16 | 37.6 | | 10 | 0 | | 394 | 7/26 | 900A
921A | | 4.6 | 20.9 | 4.31 | | 90.0 | | 10 | , | | | _370_ | 12/8 | 1028A
1050A | | 4.6. | 9.77 | 3.78 | 2.14 | 37.0 | | 10 | 0 | " | 396 | 8/2 | 633A
653A | | 4.6 | 21.0 | 4.29 | | 90.0 | m | . 10 | 0 | | | 371 | 12/15 | 1103A
1124A | | 4.6 | 10,4 | 3,83 | 2.28 | 39.8 | | 10 | 0 | | 397 | 8/9 | 635 A
658 A | | 4.6 | 21.0 | 4.28 | | 89.9 | | . 10 | 0 | | | 372 | 12/28 | 147P
212P | <u>.</u> | 4.6 | 19.8_ | 4.34 | 4.32 | 85.9 | | 10 | 0 | | 398 | 8/16 | 910A
932A | | 4.6 | 21.2 | 4.25 | 4.62 | 90.2 | | . 10 | 0 | | | _373_ | 1/5 | 210P | ** | 4.6 | 19.6 | 4.37 | 4.28 | 85.6 | | 10 | 0 | ** | 399 | _8/23_ | 848A
910A | | 4.6 | 21.1 | 4.27 | 4,61 | 90.1 | | . 10 | 0_ | | | 374 | 1/10 | 226P | | 4.6 | 19.6 | 4.35 | 4.28 | 85.2 | | 10 | 0 | ** | 400 | 8/30 | 844A
903A | " | 4.6 | 21.2 | 4.26 | 4.63 | 90.3 | | .1 10 | 0 | <u> </u> | | _375 | 1/18 | 1027A
936A | | 4.6 | 19.4 | 4.39 | 4.24 | 85.2 | | 10 | 0 | •• | 401 | 9/6 _ | 1052A
1115A | * | 4,6 | 21.6 | 4.17 | 4.72 | 90.2 | \sqcup | " 10 | 0 | | | 376 | 1/23 | 1000A | | 4,6 | 21.3 | 4.11 | 4.34 | 87.5 | - " | 10 | 0 | | 402 | 9/13 | 10,25 A
1048 A | | 4.6 | 21.7 | 4.17 | 4.74 | 90.5 | | " 10 | 0 | | | 377 | 1/26 | 1114A
1041A | MIDDLETON | 4.6 | 19.9 | 4.39 | | | | 10 | 0 | -:- | 403 | 9/18 | 118P
138P
237P | | 4.6 | 16.7 | 4.24 | 3.64 | 70.8 | \vdash | . 10 | 0_ | | | 378 | 1/31 | 1102A
1038# | HOOKER | 4.6 | 19.9 | 4.45 | 4.35 | 88.5 | | 10 | 0 | | 404 | 9/27 | 255P | | 4.6 | 16.6 | 4.26 | 3.63 | 70.7 | \vdash | " 10 | 0 | ļ., | | _379 | 2/6 | 16024
1030 A | MIDDLETON | 4.6 | 0.92 | 4.40 | 0.23 | 88.9 | FLOAT | 10 | 0 | | | | | | | | | | | | | | | | _380 | 2/9 | 1038A
1037A | | 4.6 | 0.92 | | 0,22 | 0.04 | ., | 4 | 0 | | | | | | | | | | | | | | | | 381 | 2/23 | 937A
956A | ., | 4.6 | 16.1 | 4.39 | | | .2 | 10 | 0 | FC29 | | | | | | | | | | | | | | | 383 | 4/27 | 1004A | | 4.6 | 20.9 | 4.39 | | | | 10 | 0 | | | | | | | | | | | | | | | | 384 | 5/3 | 902A | ** | 4.6 | 20.8 | 4.35 | | 90.5 | 1 | 10 | ٥ | | | | | | | | | | | | | | | | 385 | | 848A
908A | •• | 4.6 | 20.8 | 4.35 | | | | 10 | 0 | 1 | | | | | | | | | | | | | | | | DISCHARGE | MEASUREM | ENTS OF SAN GABR | JEL - J | AZUSA (| CONDUIT | ī ī | | | | | | на. | DATE | BEGIN | HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELDOITY
FT.PER SEG. | SAUDE
HEIGHT
FEET | | RAT- METH- MEAS.
ING DD MC. | B. HY.
GHANGE
YDTAL | HETER
NO. | |------|------------|----------------------|-------------------|---------------|--------------------|-------------------------|----------------|------------|----------|---------------------|-----------------|--------------|-----|------|----------------|------------------|-------|-------------------------------|---------------------------------|-------------------------|-------|--------------------------------|---------------------------|--------------| | | AT
HEAR | Garcia | Canyon | | | DUR | NO THE Y | SAR ENDING | BEPTE | MBER 30 | , ,, 47 | 7 | 434 | 4-4 | 1034À
1055A | -11 | 4.6 | 14.3 | 4.24 | 3.12 | 60.7 | .2 10 | ٥ | | | | | REGIN | | | AREA DF | MEAN | GAUGE | | | | T | | 435 | 4-11 | 905A
926A | ++ | 4.6 | 14.3 | 4.25 | 3.13 | 60.8 | :27 10 | 0 | | | NO. | DATE | END | MADE BY | WIDTH
FEET | BESTION
RG. FT. | VELOCITY
FT.PER SEC. | HEIGHT
FEET | | RAT- MI | BEC. | GHANGE
TOTAL | METER
NO. | 436 | 4-18 | 848A
910A | *** | 4.6 | 14.5 | 4.20 | 3.16 | 60.9 | .2
.87 10 | 0 | | | _405 | 10-4 | 215P
237P | MIDDLETON | 4.6 | 16.5 | 4.30 | 3.60 | 70.9 | | .2
.87 10 | _0 | FC29 | 437 | 4-25 | 91 6A
935A | | 4.6 | 14.4 | 4.25 | 3.15 | 61.2 | .2
.87 10 | 0 | | | 406 | 10-11 | 235P
256P | | 4.6 | 16.3 | 4,32 | 3,57
| 70.4 | | 87 10 | 0 | | 438 | 5-2 | 918A
938A | " | 4.6 | 14,5 | 4,21 | 3,16 | 61.1 | .2
.87 10 | 0 | | | 407 | 10-17 | 120P
140P | 14 | 4.6 | 16.5 | 4,28 | 3,60 | 70.6 | | .2
.87 10 | 0_ | | 439 | 5-9 | 1130A
1150A | | 4.6 | 14.5 | 4.21 | 3.18 | 61.0 | .2
.87 10 | 0 | | | 408 | 10-24 | 1034A
1052A | BLAKELY-MIDDLETON | 4.6 | 16.6. | _4.29 | 3,62 | 71.2 | | 2
87 10 | | | 440 | 5-16 | 904A
925A | | 4.6 | | 4.18 | 3.18 | 61.1 | :2
:87 10 | 0 | | | 409 | 10-31 | 100P
122P | BLAKELY | 4.6 | 16.6 | 4.27 | 3.62 | 70.9 | | 87 10 | 0 | FC35 | 441 | 5-23 | 1204P
1225P | ** | 4.6 | 14.5 | 4.23 | _3.18 | 61,3 | .2
.87 10 | 0 | *** | | 410 | 11-7 | 947A
1006A | MIDDLETON | 4.6 | 16.5 | 4,31 | 3.61 | 71.1 | | 2
87 10 | 0 | FC29 | 442 | 5-27 | 923A
944A | | 4.6 | 14.3 | 4.19 | 3,13 | 59.9 | .2
:87 10 | 0 | | | 411 | 11-15 | 338P
358P | • • • | 4,6 | 21.5 | 4,26 | 4.68 | 91.6 | | 87 10 | 0_ | • | 443 | 6-5 | 1054A
1116A | -11 | 4.6 | 14.4 | 4.17 | 3.15 | 60.1 | .2
.87 10 | 0 | | | 412 | 11-21 | 250P
312P | | 4.6 | 20.2 | 4.37 | 4.40 | 88.2 | ٠. | 87 10
2 | 0 | | 444 | 6-13 | 908A
930A | | 4.6 | 14.1 | 4.17 | 3.09 | 58.8 | .2
.87 10 | 0 | | | 413 | 11-29 | 300P
321P | ** | 4.6 | 20.1 | 4.29 | 4,38 | 86.3 | _ . | 87 10 | 0 | • | 445 | 6-19 | 1035A
1057A | ** | 4.6 | 14.1 | 4.18 | 3.09 | 59.0 | .2
.87 10 | 0 | | | 414 | 12-6 | 122P | 194 | 4.6 | 20.3 | 4.33 | 4.43 | _88.0 | | 2
87 10 | 0 | | 446 | 6-27 | 855A
917A | MIDDLETON - LANG | 4.6 | 14.2 | 4,15 | 3.10 | 59.0 | ,2
,2
10 | 0 | | | 415 | 12-12 | 235P
255P | | 4.6 | 22.0 | 4.04 | 4.45 | 88.8 | | 2
9 10 | 0 | | 447 | 7-3 | 240P
302P | LANG - MIDDLETON | 4.6 | 14.1 | 4.23 | 3.09 | 59.6 | .2
.83 10 | 0 | -# | | 416 | 12-19 | 153P
212P
214P | | 4.6 | 20.3 | 4.41 | -4.44 | . 89.6 | | 2
85 10 | 0_ | | 448 | 7-3 | 305P
325P | - t | 4.6 | 14.1 | 4.20 | 3,09 | 59.2 | .2
.85 10 | _o_ | | | 417 | 12-19 | 235P
253P | | 4.6 | 20.3 | 4.35 | 4,44 | 88.4 | ١. | 25
85 10 | 0 | FC18 | 449 | 7-8 | 1056A
1124A | LANG | 4,6 | 14.1 | 4.21 | 3.09 | 59.4 | .85 10 | 0 | | | 418 | 1-2 | 315P | MIDDLETON-HOOKER | 4.6 | 19.7 | 4.41 | 4,30 | 86.8 | | 2
87 10
2 | 0 | | 450 | 7-11 | 948A
1015A | -6 | 4.6 | 14,1 | 4.22 | 3.09 | 59.5 | .2
.85 10 | ٥ | ** | | 419 | 1-10 | 216P | MIDDLETON | 4.6 | 19.6 | 4.50 | 4.29 | 88.4 | | 87 10
2 | 0 | | 451 | 7-18 | 923A
944A | MIDDLETON | 4.6 | 14.1 | 4.16 | 3.08 | 58.6 | .87 10 | 0_ | - | | 420 | 1-10 | 240P | ** | 4.6 | 19.6 | 4.43 | 4.29 | 86.9 | | 87 10 | 0 | F€29 | 452 | 7-22 | 316P
336P | *** | 4.6 | 14.6 | 4.12 | 3.19 | 60.2 | .2
.87 10 | 0 | | | 421 | 1-17 | 1118A
925A | ** | 4.6 | 19.8 | 4.48 | 4.33 | 88.8 | | 2
87 10 | 0 | FC18 | 453 | 7-25 | 1050A | *** | 4.6 | 14.6 | 4.13 | 3.18 | 60.3 | :2
:87 10 | . 0 | 1-10 | | 422 | 1-23 | 945A
955A | | 4.6 | 20.3 | 4.46 | 4.42 | 90.6 | | 83 10 | 0 | | 454 | 8-1 | 1000A
1022A | | 4.6 | 14.5 | 4.16 | 3.17 | _60.3 | .2
.87 10 | 0 | | | 423 | 1-23 | 1017A
325P | ** | 4.6 | 20.3 | 4.43 | 4.42 | 90.0 | L | 83 10 | _ 0 _ | FC29 | 455 | 8-8 | 955A
1015A | | 4.6 | 14.5 | 4.14 | 3.16 | 60.0 | .2
.87 10 | 0 | | | 424 | 1-30 | 347P | MIDDLETON-MELLEN | 4.6 | 20.8 | 4.46 | 4.55 | 92.7 | | 83 10 | 0 | FC18 | 456 | 8-15 | 628A
650A | | 4.6 | 14.6 | 4.16 | 3.20 | 60.7 | .87 10 | 0 | | | 425 | 2-4 | 1116A
255P | MIDDLETON | 4.6 | 20.2 | 4.45 | 4.40 | 89.8 | | 83 10 | 0 | " | 457 | 8-22 | 950A
1020A | LANG | 4.6 | 14.6 | 4.16 | 3.18 | 60.6 | :87 10 | 0 | | | 426 | 2-6 | 313P | | 4.6 | 20.3 | 4.37 | 4.44 | 88.7 | | 87 10
2 | 0 | · u | 458 | 8-29 | 1000A
1020A | - 198 | 4.6 | 14.6 | 4.18 | 3.20 | 61.0 | .2
.87 10 | 0 | | | 427 | 2-14 | 1047A
250P | | 4,6 | 21.8 | 4.21 | .4.75 | 91.8 | | 87 10
.2 | 0_ | | 459 | 9-5 | 855A
914A | MIDDLETON | 4.6 | 14.4 | 4.17 | 3.15 | 60.0 | .2
.87 10 | 0 | | | 428 | 2-20 | 305P
253P | 44 | 4,6 | 21.8 | 4.18 | 4.76 | 91.1 | | .87 10 | 0 | | 460 | 9-12 | 924A
945A | | 4.6 | 14.4 | 4.13 | 3,14 | 59.5 | .2
.87 10 | 0 | | | 429 | 2-25 | 305P
355P | -0 | 4.6 | 1.53 | 0.65 | 0.35 | 1.0 | \vdash | .6 10 | 0 | FC29 | 461 | 9-16 | 930A
950A | | 4.6 | 14.8 | 4,22 | 3,24 | 62.4 | .2
.87 10 | | | | 430 | 3-6 | 400P
905A | | 4.6 | 1.19 | 0.25 | 0.27 | 0.30 | | URF 5 | 0 | | 462 | 9-19 | 925A
945A | - | 4.6 | 14.7 | 4.14 | 3.22 | 60.8 | .2
.87 10 | 0 | | | 431 | 3-17 | 910A
905A | - 10 | 4.6 | 0.94 | 0.08 | 0,22 | 0.08 | | LOAT 4 | 1 | <u> </u> | 463 | 9~26 | 1120A
1142A | | 4.6 | 14.6 | 4,15 | 3.19 | 60.8 | .2
.87 10 | 0 | | | 432 | 3-27 | 923A
923A | | 4.6 | 14.2 | 4.29 | 3.11 | 60.9 | | .83 10 | 0 | FC29 | 1 | | • | | | | | | • | | | | | 433 | 3-27 | 923A
940A | | 4.6 | 14.2 | 4.26 | 3.11 | 60.5 | | .87 ¹ 10 | 10 | | Ã | | | | | | | | | | | | | P. G. Dist. | Form, 52 4-48 | | | | FLO | los angele
OD CONTRO
YDR AUL IC I | OL DISTRICT | r | | | Sta. 2 | No. F220-F | |----------------------------------|-----------------------|---------------------------------|---------------------------------|--|----------------------------|--|----------------------------|----------------------|----------------------|-------------------------------|----------------------------|----------------------------| | Daily dis | charge, in s | second-feet of | SAN GA | BRIEL-AZUS | SA CONDUIT | at Garc | ia Canyon | 1 | | , for the yea | r ending Septer | nber 30, 19 46 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | +
+
+
+
+ | +
+
+
+ | 3 8
3 8
3 8
3 8
3 8 | 37
35
36
36 | 999999999 | +
+
+
+ | +
+
+
+ | 90
90
90 | 90
90
90
90 | 90
90
90
90 | 99999 | 90
90
90
90 | | 8
9
10 | + + + + + + | + + + + + + | 38
37
37
37
37 | 36
36
36
35 | 89
89
32
02
02 | + + + | + + + + + | 90
90
90 | 90
90
90
90 | 90
90
90
90 | 90 | 90
90
90
90 | | 11
12
13
14
15 | + + + + + | +
+
14
40
39 | 3 7
3 7
3 7
3 8
4 0 | 555555
5055 | 0 2
0 2
0 1
0 1 | +
+
+
+ | +
+
+
+ | 90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 99999 | 90
90
90
90 | | 16
17
18
19
20 | + + + + + | 3 9
3 9
4 0
4 0
3 9 | 4 0
4 0
4 0
4 0
4 0 | 35
35
37
30 | +
0 T
0 T | - 0 .6
+
+
+ | +
+
+
47 | 90
90
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 89
83
71
71
71 | | 21
22
23
24
25 | +
+
+
+ | 3 7
3 7
3 7
3 7
3 7 | 66
79
47
36 | d7
d7
d7
d7 | +
+
+
+ | +
+
+
+ | 71
72
71
83
91 | 90
90
90
90 | 90
90
90 | 90
90
90
90 | 90
90
90
90 | 70
70
69
68
67 | | 26
27
28
29
30
31 | + + + + + + | 3 7
3 7
3 7
3 7
3 8 | 06
06
06
07
07 | 07
07
07
07
07
08
09 | + + + | +
+
+
+
+ | 92
92
91
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90 | 90
90
90
90
90 | 69
70
70
70
70 | | ·' | * | 661 | 1633 | 2679 | 657.5 | 0 .6 | 892 | 2790 | 2700 | 2790 | 2790 | 2428 | | MEAN | + | 22.0 | 54.5 | 87.4 | 2.35 | 0.02 | 29.7 | 90.0 | 90.0 | 90.0 | 90.0 | 80.9 | | PEET | + | 1,310 | | 5,310. | 1,300. | 1.2 | 1.770. | 5.530. | 5,360. | | 5.530. | 4,820. | | | Remarks: | + = 0.05 | c.f.s.~o | r less. | | | | | , | YEAR MEA
OR
PERIOD ACRI | | 5.0
39.820. | ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 220-R | Daily d | lischarge, in s | econd-feet of | SAN GABE | HEL-AZUSA | CONDUIT | at Garci | a Canyon | | | , for the year | ending Septen | ber 30, 19 <u>47</u> | |---------------|-----------------|---------------|------------|------------|------------|----------|----------|----------|----------|------------------|---------------|----------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 | 70 | 6 B
7 O | 8 8
8 8 | 83
87 | 9 0
9 0 | 0.3 | 61
61 | 61
61 | 60
60 | 59
59 | 60
60 | 60
60 | | 3 | 71 | 69 | 88 | 8.8 | 90 | 03 | 61 | 61 | 60 | 59 | 60 | 60 | | 4 | 70 | 70 | 88 | 8.8 | 90 | 0.3 | 61 | 61 | 60 | 59 | 60 | 60 | | 5 | 70 | 70 | 88 | 88 | 88 | 0.3 | 61 | 61 | 60 | 59 | 61 | 60 | | 6 | 70 | 71 | 88 | 88 | 8.8 | 0.3 | 61 | 61 | 60 | 59
59 | 61
61 | 60
60 | | 7 | 70 | 71 | 88 | 8.8 | 8.8. | 0.3 | 61 | 61 | 60
60 | 59 | 60 | 60 | | 8 | 70 | 71 | 89 | 88 | 8 8
8 9 | 03 | 61
61 | 61 | 60 | 59 | 60 | 59 | | 10 | 70 | 72 | 89
89 | 8 8
8 8 | 92 | 03 | 61 | 61 | 60 | 59 | 60 | 59 | | 11 | 70 | 72 | 89 | 38 | 92 | 03 | 61 | 61 | 60 | 59 | 61 | 59 | | 12 | 70 | 84 | 89 | 87 | 92 | 0.3 | 61 | 61 | 59 | 59 | 62 | 60 | | 13 | 70 | 91 | 89 | 87 | 92 | 0.3 | 61 | 61 | 59 | 59 | 61 | 63 | | 14 | 70 | 91 | 8.8 | 8.8 | 92 | 0.3 | 61 | 61 | 59 | 59 | 61 | 61 | | 15 | 70 | 91 | 8.8 | 8.9 | 92 | 0.2 | 61 | 61 | 59 | 59 | 61 | 60 | | 16 | 70 | 91 | 88 | 89 | 92 | 0.1 | 61 | 61 | 59 | 59 | 61 | 60 | | 17 | 70 | 91 | 8.8 | 89 | 92 | 0.7 | 61 | 61 | 59
59 | 59
59 | 61
61 | 61
62 | | 18
19 | 70 | 91 | 8.8 | 89 | 92 | 01 | 61
61 | 61
61 | 59 | 59 | 61 | 62 | | 20 | 70 | 91 | 68
69 | 90
90 | 91
92 | 01 | 61 | 61 | 59 | 59 | 61 | 61 | | 21 | 70 | 91 | 90 | 90 | 92 | 0.1 | 61 | 61 | 59 | 59 | 60 | 61 | | 22 | 70 | 88 | 90 | 90 | 92 | 01 | 61 | 61 | 59 | 60 | 60 | 61 | | 23 | 70 | 88 | 89 | 90 | 91 | 0.1 | 61 | 61 | 59 | ು 60 | 60 | 61 | | 24 | 70 | 88 | 89 | 90 | 33
0.8 | 01 | 61 | 61 | 59 | 60 | 60 | 61 | | 25 | 70 | 8.8 | 9.0 | 91 | 0.8 | 0.1
| 61 | 61 | 59 | 60 | 61 | 61 | | 26 | 71 | 88 | 90 | 91 | 0.3 | 20 | 61 | 61 | 59 | 60 | 61
61 | 61 | | 27 | 71 | 87 | 90 | 91 | 03 | 60 | 61 | 60 | 59
59 | 60 | 61 | 61 | | 28 | 71 | 87 | 8 8
8 8 | 92
92 | د ت | 61
61 | 61
61 | 60 | 59 | 60 | 60 | 60 | | 30 | 71
71 | 88 | 88 | 92 | | 61 | 61 | 60 | 59 | 60 | 60 | 60 | | 31 | 70 | - 00 | 88 | 91 | | 61 | | 60 | | 60 | 60 | | | 1 | | ! | | | - | | · | | | | | | | 2 | 2176.0 | 2468.0 | 2747.0 | 2760.0 | 121.7 | 3294 | 1830.0 | 1886.0 | 1781.0 | 1839.0 | 1878.0 | 1815.0 | | MEAN | 70.2 | 82.3 | 88.6 | 89.0 | 75.8 | 10,6 | 61.0 | 60.8 | 59.4 | 59.3 | 60.6 | 60.5 | | ACBE-
FEET | 4,320 | 4,900 | 5,450 | 5,470 | 4,210 | 653 | 3,630 | 3,740 | 3,530 | 3,650 | 3,720 | 3,600 | | | Remarks: | | | | | | | | Y | EAR MEAR | | | | | | | | | | | | | P | OR
ERIOD ACRE | -FEET | 46,900 | | | | | | | | | | | | | | | F. C. Dist. Form 52 4-45 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.____ | - 41 4. | | | SAN GAR | DIEL - 47119 | | YDRAULIC
 DIVERSI | | torage at | Morris Da | am | . audi- = Cantar | ober 20 10 NS | |----------------------------------|------------------------|-------------|---------|--------------|--------|-----------------------|---|--|--|--|--|--| | Day Day | scharge, in se
Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мву | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 | 0 0 0 | 000000 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 50000000000000000000000000000000000000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 68.0
68.0
68.0
69.0
69.0 | 67.0
67.0
67.0
67.0
68.0
69.0 | | 8
9
10
11
12
13 | 0 | 0 0 0 | 0000 | 0000 | 00000 | 000 | 0 0 0 | 0
0
0
0 | 889
889
887
885
885 | 88.7
88.7
88.8
88.4
88.5
88.5 | 69.0
69.0
69.0
69.0
69.0 | 69.0
67.0
67.0
66.0
67.0
68.0 | | 14
15
16
17
18 | 0000 | 0000 | 0 0 0 0 | 000000 | 00000 | 0000 | 000000000000000000000000000000000000000 | 0 0 0 | 8885
8885
8885
8885 | 88.5
88.4
88.4
88.4
88.4 | 68.0
68.0
68.0
68.0
68.0
70.0 | 67.0
28.0
0
0 | | 20
21
22
23
24
25 | 0 0 0 | 000000 | 0 0 0 0 | 00000 | 0000 | 000000 | 0 0 0 | 55.5
88.5
88.8
89.0
88.4 | 8885
8884
8888
8888 | 88.5
88.5
88.4
88.4
88.4 | 70.0
69.0
69.0
68.0
68.0 | 0 0 0 0 0 | | 26
27
28
29
30
31 | 0 0 0 | 0000 | 00000 | 000000 | 0 0 | 00000 | 0
0
0
0 | 88.4
88.4
88.4
88.4
88.4
88.4 | 88.4
88.6
88.9
89.1
89.1 | 88.4
88.4
80.9
66.8
68.1
68.4 | 68.0
68.0
68.0
68.0
68.0 | 0 0 0 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10291 | 658.0 | 26733 | 120.0 | 973 | | MEAN | 0 | 0 | o | <u> </u> | 0 | | | 33.2 | 88.6 | 86.2 | 68.4 | 32.4 | | CRE-
FEET | O
Remarks: | 0 | . 0 | 0 | 0 | 0 | | 2040 | 5270
Y | 5300
TEAR MEAN
OR
ERIOD ACRE | 4200
v 25.9
_{-FEET} 187 | 1930
40 | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION SAN GABRIEL-AZUSA CONDUIT DIVERSION from Sto Sta. No.____ | Daily dia | scharge, in se | cond-feet of | SAN GABE | I EL-AZUSA | CONDUIT | DIVERSIO | N from St | orage at h | dorris Da | M , for the year | r ending Septer | nber 30, 19 44 | |--|---|---|-----------------------|---|------------------|---|---|--|---|---|--|--| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5
6
7
8
9 | 000000000000000000000000000000000000000 | 0 | 0 0 0 0 0 0 0 0 0 0 | 000000000000000000000000000000000000000 | 0000000000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000 | 888
888
888
888
888
888
888
888 | 8115
7990
7800
7800
7800
7800
7800
7800 | | 11
12
13
14
15
16
17 | 0 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 00000 | 8 8 .0
8 9 .0
8 9 .0
8 9 .0
8 6 .0
8 9 .0
8 8 .0 | 0 0 0 | 57.0
89.0
89.0
89.0
89.0
89.0 | 0 0 0 | 00000 | 88 Q
88 Q
88 Q
88 Q
88 Q
88 Q | 78.0
75.0
73.0
73.0
73.0
71.5
70.0 | | 19
19
20
21
22
23
24
25 | 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0
0
0
0
0 | 000000000000000000000000000000000000000 | 0000000 | 89.0
89.0
89.0
89.0
89.0
89.0 | 0 0 0 0 0 | 32.0
0
0
0
0
0 | 0 0 0 0 0 | 0 4
87.0
88.0
88.0
88.0
88.0 | 88.0
88.0
88.0
88.0
88.0
88.0 | 70 0
70 0
70 0
70 0
70 0
70 0 | | 26
27
28
29
30
31 | 0 0 0 0 0 | 0 0 0 | 0000 | 0 0 0 0 0 | 0
0
0
0 | 0 0 0 0 | 58 Q
58 Q
8 9 Q
8 6 Q
2 9 Q | 0000 | 0000 | 0.88
0.88
0.88
0.88
0.88 | 83.0
83.0
83.0
83.0
83.0
83.0 | 70.0
70.0
70.0
70.0
70.0 | | | 0 | 0 | 0 | 0 | 0 1 | 661.0 | 262.0 | 623.0 | 0 1 | .113.4 | 691.0 | 214.0 | | MEAN
ACRE-
FEET | 0 | 0 | 0 | 0 | 0 | 53.6
3290 | 8.73
520 | 20.1
2340 | 0 | 35.9
2210 | 86.8
5340 | 73.8
4390 | | 1 | Remarks: | | | | | | | | F | YEAR MEA
OR
PERIOD ACRE | | 990 | F. C. Dist. Form 52 4-48 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.____ | | | | | | H | YDRAULIC 1 | DIVISION | | | | | | |----------------------------------|------------------------------|--------------------------------------|-----------|------------|-----------|------------|-------------------------|------------------|----------|-------------------------------|----------------|--------------------------------------| | Dally | discharge, in se | cond-feet of S | AN GABRIE | EL-AZUSA (| CONDUIT D | VERSION | from Stor | age at Mo | rris Dam | , for the year | r ending Septe | mber 30, 19 <u>45</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept | | 1
2
3
4
5 | 50.0
50.0
50.0
50.0 | 14.0
45.0
45.0
46.0
47.0 | 0000 | 00000 | 00000 | 00000 | 00000 | 0 0 0 | 0 0 0 | 0000 | 0 0 0 | 00000 | | 6
7
8
9 | 50.0
50.0
50.0
27.0 | 5 3 .0
2 0 .0
0 | 00000 | 00000 | 0000 | 0 0 0 | 0000 | 0000 | 0000 | 0000 | 0000 | 00000 | | 11
12
19
14
15 | 0000 | 0 0 0 | 00000 | 0000 | 0000 | 0 0 0 | 0 0 0 | 0
0
0
0 | 00000 | 0 0 0 | 0 0 0 | 0000 | | 18
17
18
19
20 | 0 0 0 0 | 0
0
0
0 | 00000 | 00000 | 00000 | 0 0 0 | 0
0
1 4
0
0 | 0 0 0 0 | 00000 | 00000 | 0 0 0 0 | 0000 | | 21
22
23
24
25 | 0000 | 00000 | 0000 | , 00 | 00000 | 0 0 0 0 | 0000 | 00000 | 00000 | 00000 | 0000 | 0
0
0
0
55.4 | | 26
27
28
29
30
31 | . 00000 | 0000 | 00000 | 00000 | 0 | 000000 | 0 0 0 | 00000 | 0000 | 0
0
0
0
0
22.0 | 00000 | 88.7
88.7
88.7
88.7
88.7 | | | 427.0 | 271.0 | 0 | 0 | 0 | 0 | 1.4 | o | 0 | 22.0 | 0 | 498.9 | | MBAN | 13.8 | 9.03 | 0 | 0 | | 0 | 0.05 | 0 | 0 | 0.71 | .0 | 16.6 | | ACRE-
FEST | 847 | 538 | 0 | 0 | 0 | 0 | 2.8 | 0 | 0 | 44 | 0 | 990 | | | Remarks: | | | | | | | | | TEAR MEAN
OR
ERIOD ACRE | | 20 | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |----------|--|--|---|---|---|---|---|---|---|---|---| | 78.0 | 70.0 | 0 | 0 | -0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | 0 | | | | | | | | | | | | | 0 | | 71.0 | 61.0 | | | | | | | | | | 0 | | 70.0 | | | | | | | | | | | 0 | | | | | | | | | | | | | 0 | | | | | | | | | | | | | 0 | | | | | | | | | | | | | l ö | | | | | | ŏ | | | | | | | ŏ | | | | ŏ | | Ö | Ö | | | ō | ō | ō | ŏ | | 70.0 | 64.0 | o | 0 | 0 | O | 3.0 | 0 | 0 | 0 | 0 | 0 | | | 45.0 | | | 0 | 0 | 50.0 | Q | | | | 0 | | | 0 | | Q | | | | | | | | 0 | | | 0 | | 9_ | | | | | | | | 0 | | | | | 9 | | | | | | | | 0 | | | | | l o | | | | | | | | 0 | | | | | % | | | | | | | | 6 | | | | | 7 | | | | | | | | ŏ | | | ğ | ŏ | ð | | | | | | | | ō | | 70.0 | δí | õ | òi | ŏ | Ŏ | l ō l | ō | O . | Ō | 0 | Ò | | 70.0 | ō | 0 | ō | ō | Ó | Ó | 0 | 0 | 0 | 0 | 0 | | 70.0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | | 0 | | | | 0 | | | | | | | | | 0 | | | | | | | | | | | | | 0 | | | | 0 | | | | | | | | | Q | | | | | | 0 | | | | | | | 0 | | 70.0 | | o l | | | | | | | | | 0 | | 70.0 | | ŏ | ă l | | | | | | | | | | | | · · · · · · | | | | 4000 | | 0
| | | <u></u> | | 1810 | 836.0 | O | 0 | | 0 | 499.0 | 0 | J | 0 | J | 0 | | 70.4 | 37.9 | 0 | 0 | o | Q | 16.6 | 0 | 0 | 00 | 0 | . 0 | | A330 | 1660 | 0 | o | ٥ | 0 | 990 | 0 | 0 | 0 | 0 | 0 | | Remarks: | | | | - | | · · · · · · · · · · · · · · · · · · · | | · | | | | | | 78 0
71 0
71 0
70 0
70 0
70 0
70 0
70 0
70 | 78.0 70.0 71.0 61.0 71.0 65.0 71.0 61.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7 | 78.0 70.0 0 71.0 65.0 0 71.0 65.0 0 71.0 65.0 0 71.0 61.0 0 70.0 70.0 0 70.0 70.0 0 70.0 70.0 0 70.0 70.0 | 78.0 70.0 0 0 0 0 0 0 11.0 65.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.0 70.0 0 0 0 0 0 0 0 0 11.0 65.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.0 70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.0 70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.0 70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.0 70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.0 70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.0 70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ### STATION US-R SAN GABRIEL RIVER below Morris Dam LOCATION: WATER-STAGE RECORDER LAT. 34°10'10". LONG. 117°53'16", IN SW 1/4 SEC. 13. T. i. N., R. 10 W., i MILE DOWNSTREAM FROM MORRIS DAM AND 3 MILES NORTHEAST OF AZUSA. ALTITUDE OF GAGE, ABOUT 870 FEET. DRAINAGE AREA: 211 SQUARE MILES. RECORDS AVAILABLE: 1894 TO SEPTEMBER 1947. RECORDS AVAILABLE: 1894 TO SEPTEMBER 1997. AVERAGE DISCHARGE: 1896-1946 50 YEARS 118 SECOND-FEET. 1895-1946 51 YEARS 168 SECOND-FEET. AVERAGE COMBINED DISCHARGE OF RIVER AND DIVERSIONS, &DJUSTED FOR STORAGE AND EVAPORATION IN MORRIS RESERVOIR AND SAN GARRIEL RIVER FLOOD CONTROL RESERVOIRS 1 AND 2. 1896-1947 51 YEARS 117 SECOND-FEET. 1895-1947 52 YEARS 167 SECOND-FEET. AVERAGE COMBINED DISCHARGE OF RIVER AND DIVERSIONS. ADJUSTED FOR STORAGE AND EVAPORATION IN MORRIS RESERVOIR AND SAN GABRIEL RIVER FLOOD CONTROL RESERVOIRS 1 AND 2. 1945-1946 MAXIMUM DISCHARGE DURING YEAR, 980 SECOND-FEET, DECEMBER 23. (GAGE HEIGHT, 3,04 FEET). MINIMUM DAILY 0,3 SECOND-FEET ALGUST 2, 3. 1946-1947 MAXIMUM DISCHARGE 2,980 SECOND-FEET DECEMBER 31 (GAGE HEIGHT, 4.87 FEET). BINIMUM NO FLOW MOST OF YEAR. 1894-1947 MAXIMUM DISCHARGE, 65,700 SECOND-FEET, MARCH 2, 1938. BY COMPUTATION OF FLOW OVER SPILLWAY AT MORRIS DAM. NO FLOW FOR SEVEFAL MONTHS IN EACH YEAR 1894-1936, 1940, AND 1941, 1947. REMARKS: RECORDS GOOD. FLOW REGULATED BY SAN GABRIEL FLOOD CONTROL RESERVOIRS 1 AND 2. AND BY MORRIS RESERVOIR OF METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA, AZUSA CANAL (FORMERLY POWER CANAL OF SOUTHERN CALIFORNIA EDISON COMPANY), DIVERTS ABOVE HIGH-WATER LINE OF MORRIS RESERVOIR AT A POINT ABOUT 3 MILES ABOVE STATION. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY, WITH THE EXCEPTION OF 68 MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SUR NORMAL UNREGULATED FLOW: COMBINED RUNOFF OF RIVER AND AZUSA CANAL, ADJUSTED FOR STORAGE AND EVAPORATION IN MORRIS RESERVOR AND SAN GABRIEL RIVER FLOOD CONTROL RESERVOIRS I AND 2 USING RECORDS FURN SHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. THESE FIGURES OF RUNOFF ARE EQUIVALENT TO COMBINED RECORDS OF SAN GABRIEL RIVER AND SOUTHERN CALIFORNIA EDISON COMPANY'S CANAL AS FUELISHED FROM 1894 TO 1933. | | 1945-46 | 1946-47 | |-----------|--------------|--------------| | MONTH | A.F. | A.F. | | | | | | OCTOBER | 2.644 | 2,913 | | NOVEMBER | 2,596 | 22,954 | | DECEMBER | 22,241 | 31,047 | | JANUARY | 7.672 | 18,149 | | FEBRUARY | 5,845 | 8,322 | | MARCH | 15,217 | 7,127 | | APRIL | 21,492 | 5,774 | | MAY | 9,191 | 4,467 | | JUNE | 5,110 | 3,160 | | JULY | 3,645 | 2,190 | | AUGUST | 2,680 | 1.769 | | SEPTEMBER | 2,372 | 1.496 | | TOTALS | 100.705 A.F. | 109.368 A.F. | | | | | | | DISCHARGE | E MEABUREH | SAN GABRIEL | RIYER | | | | | | | | | | ND. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
BEGTION
BQ. FT. | MEAN
VELOCITY
FT.PER SEG. | GAUGE
HEIGHT
FEET | DIRGHARGE
BEC. FT. | RAT- MET | TH- MEAS.
SEC.
NO. | E. HT.
CHANGE
TOTAL | METER
NO. | |-------|-----------|----------------|---------------------------------------|--------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------|----------|---------------------------|----------------|--------------|--------------|----------------|------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------------------|--------------------------|---------------------------|--------------| | | t be | low Mor | ris Dam | | | DUR | ING THE Y | EAR ENDING | SCPT | EMBER | 30, | ,,46 | - | 1887 | 5-16 | | MOON | CHANNE | LS | | .99 | 50.7 | 1. | 6 11 | 0 | FC22 | | ND. | DATE | BEGIN | HADE BY | WIDTH | AREA DF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.MER BEC. | SAUGE
HEIGHT
PEET | DISCHARGE
SEC. FT. | RAY- M | (ETH- | SEC. | G. HT.
CHANGE
TOTAL | METER
NO. | 1888 | 5-17 | | U.S.G.S. | 44. | 47.7 | .96 | .99 | 45.6 | | 6 22 | | | | 1000 | 10.2 | CND | u.s.g.s: | <u> </u> | | ĺ | ĺ | | | -61 | | | | | 5-23 | | ** | 44. | 48.9 | .95 | .98 | | | 6 22 | 1 | | | 1833 | 10-3 | | | 6.3 | 6.5 | 1.42 | .58
.58 | 7.4
5.4 | | CONDOD. | 14
23 | | | 1890
1891 | 5-23
5-29 | - | MOON
U.S.G.S. | CHANNE
44. | 48.3 | .92 | .98 | 4878 | | 6 11
6 22 | | FC22 | | 1835 | 10-4 | | STUNDEN | 22, | 19.5 | .42 | .58 | 8.2 | | | 10 | | FC36 | | 5-30 | - | MOON | CHANNE | | 1.52 | .98 | | | | 0 | FC22 | | 1836 | 10-10 | | U.S.G.S. | 20.5 | 20.4 | .39 | .56 | 8.0 | | | 21 | 0 | | l | 6-6 | | U.S.G.S. | 43, | 37,2 | 1.52 | .97 | | | 8 17 | 0 | | | 1837 | 10:11 | | STUNDEN | 4.0 | 4.19 | 1,81 | .56 | .7.6 | | .6 | 4 | 0 | FC36 | 1894 | 5-6 | | Moon | CHANNE | | .,,,, | .97 | 1 | 1 1 | 6 12 | 1 | FC22 | | 1838 | 10-18 | | Moon | 8.0 | 4.65 | 1.35 | .55 | 6.3 | | :6 | 8 | 0 | FC22 | 1895 | | | U.S.G.S. | 3.5 | 3,25 | .65 | _45 | | | 6 7 | | | | 1839 | 10-19 | ļi | U.S.G.S. | 20. | 19.5 | .43 | .55 | 8.3 | | .6 | 20 | 0 | ļ | 1896 | 6-13 | | MOON | 3,0 | 2.25 | .68_ | .39 | 1.54 | ∐. | 6 3 | 0 | FO22 | | 1840 | 10-25 | | Moon | 6.0 | 4.95 | 1 35 | .55 | 6.7 | | .6 | 6 | 0 | FC22 | 1897 | 6-17 | | BROWN | CHANNE | ı.s | ļ | .35 | .67 | ↓ ↓. | 6 7 | 0 | FC13 | | 1841 | 10-25 | - | U.S.G.S. | 20. | 19.3 | .37 | .55 | 7.2 | - | .6 | 20 | 0 | | 1898 | 6-18 | ļ | U.S.G.S. | 2.0 | .60 | 103 | ,38 | .62 | 1 | 6 4 | ļ. | - | | 1842 | 11-1 | | MOON | 7.0 | 4.60 | 1.26 | ,54 | 5.8 | | ١.6 | _ 7 | 0 | FC22 | 1899 | 6-20 | | | 1.8 | .67 | .85 | .41 | .57 | ┼ | 6 3 | | | | 1843 | 111-1 | - | U.S.G.S. | 19.5 | 13.2 | .48 | .54 | 6.3 | | .6 | 18 | | | 1900 | 6-20 | <u> </u> | | 2.0 | 0.60 | 0.90 | 0.41 | 0.54 | \vdash | .6 4 | 0 | | | | 11•7 | <u> </u> | *** | 6,0 | 4.80 | 1 | .56 | 6.04 | | | | | | 1901 | 6-20 | | MOON | 2.0 | .48 | 1.04 | .41 | .50 | 4 | .5 2 | 2 0 | FC22 | | 1845 | 11-8 | | MOON | 10.
CHANN | 7.4 | 7.6 | .90 | 5.6
36.3 | | .6 | 6
12 | 0 | FC22 | 1902 | 6-25 | | U.S.G.S. | 1.8 | .57 | .88 | 40 | .50 | ++ | .6 3 | 0 | | | 1846 | 11-15 | 1 | p. | CHANN | | | .88 | 34.1 | 17 | | 14 | | | 1903 | 1 | | MOON | 2.0 | .48 | | .41 | | 1 | .5 2 | 1 | FC22 | | 1848 | 11-27 | | U.S.G.S. | 35,4 | 33.2 | 1.00 | .89 | 33.1 | | 6000 | 23 | ~ | | 1904 | 7-3 | | | 1.8 | 61 | | -42 | | | .5 2 | i | + | | 1849 | 11-29 | | Moon | CHANN | | | .89 | 34.4 | | .6 | 12 | | FC22 | 1905 | | | U.S.G.S. | 1.9 | -64 | 1 | .42 | | 1 1 | 5 6 | | | | 1850 | 12-4 | | υ.s.g.s. | 32.5 | 34.5 | .95 | .90 | 32.7 | | -81 | 21 | | | 1906 | 1 | | MOON | 1.8 | .79 | 1 | .47 | 1 | | | 0 | FC22 | | | 12-6 | ļ | Moon | CHANN | į. | <u> </u> | .90 | 34.0 | | .6 | 13 | 0 | FC22 | 1908 | | | U.S.G.S. | 1.8 | .76 | | .42 | | 1 | 6 3 | T | | | 1852 | 12-13 | | | CHANN | ELS | | .90 | 34.8 | | .6 | 12 | 0 | ,, | 1909 | | | MOON | 1.8 | .54 | | .41 | | | - 1 ' | 0 | FC22 | | 1853 | 12-14 | ļ <u>.</u> | U.S.G.S | 44. | 38.4 | .77 | .90 | 29.7 | | :6 | 22 | 0 | <u> </u> | 1910. | | | 74 | 1.8 | .72 | 1 | .50 | ľ | 1 1 | .5 2 | 1 | | | 1854 | 12-20 | - | <u> </u> | 43 | 45.7. | 46 | .86 | 21.0 | | .8 | 22 | .0 | ļ | 1911 | 7-25 | | U.S.G.S. | 1.8 | 72 | 1.36 | 50 | .98 | | 6 3 | 0 | | | 1855 | 12-20 | | MOON | CHANN | ELS | | 0.86 | _311.7_ | | 6 | _11 | 0 | FC22 | 1912 | 7-31 | | | _1.8. | 54 | .70 | .42 | .38 | 11 | 6 3 | 0_ | | | 1856 | 12-23 | | | 104. | 209 | 4138 | 2.97 | 916. | | .6 | i | _0_ | +" | 1913 | 8-1 | ļ | MOON | 1.8 | 252 | .75 | .39 | .39 | 4 | .5 2 | . 0 | FC22 | | 1857 | 12-23 | | U.S.G.S. | | 217. | 4.22 | 2.97 | | 1-1 | .6 | | 0 | - | 1914 | 8-7 | ļ | u.s.g.s. | 2.0 | .98 | 1,.72 | .51 | 1.69 | + | .6 4 | 0_ | - | | 1858 | 12-26 | | MOON | 115. | 229. | 4.15 | 2.94 | 950. | - | | 11 | | FC22 | 1915 | 8-8. | | MOON | 1.9 | .90 | 1.66 | .52 | 1.49 | ++ | 5 2 | 0 | FC22 | | 1859 | 12-27 | | U.S.G.S. | 102. | 200 | 4.13 | | 1 | | | 21 | | ECOO | 1 | 8-14 | | U.S.G.S. | 3.0 | 1.62 | 1.98 | 59 | | E | 6 6
ST. | <u> </u> | + | | 1860 | 1-24 | | Woon .
U.S.G.S. | 2.1 | .82 | 1.38 | .34 | 1.13 | | .6 | 4 | 0 | FC22 | 1317 | | - | MOON | 2.0 | 1-11 | 1 | 58 | 1 | 1 | 6 2 | 1 | FC22 | | 1861 | 2-7 | | Moon | CHANN | 1 | 1.36 | 1.03 | | | .6 | | ľ | FC22 | 1918 | | | U.S.G.S. | 51.3 | 1.91 | 1 | .58 | | | .6 9
.6 2 | | FC22 | | 1863 | 2-8 | | บ.s.g.s. | 46. | 48.0 | 1.04 | 1.03 | 49.9 | | | | +.02 | | | 8-22 | † | MOUN | 2.0 | 1.17 | | .57 | | $T \cap T$ | .5 2 | | 1022 | | 1864 | 2-15 | | •• | 48. | 61.4 | i | | 81.6 | | .6 | | | | 1921 | 8-29 | | U.S.G.S. | 2.5 | 1.00 | | .53 | 1 | | - 1 | 0 | 1 | | 1865 | 2-21 | ļ | 194 | 46. | 56.7 | i | 1.14 | 70.6 | | .6 | | | | 1922 | 9-5 | | STUNDEN | 4.0 | 1.46 | | .53 | | T. | - 1 | 5 0 | FC36 | | 1866 | 2-21 | | MOON | CHANN | ELS | | 1.14 | 70.9 | | .6 | 13 | 0 | FC22 | 1 | 9-6 | | υ.s g.s. | 2.3 | 1.11 | | 0.52 | 1 | 1 | .6. 5 | | |
| 1867 | 2-28 | | ** | CHANN | EL,S | ļ | 1.11 | 65,9 | | .60Na | 15 | 0 | - | 1924 | 9-18 | | - 186 | 95. | 178. | 3.61 | 2.36 | 1 | | .6 16 | 5 0 | | | 1868 | 2-28 | | U.S.G.S. | 57. | 64.6 | 1.23 | 1.11 | 79.7 | 1-1 | :8 | 19 | 0 | ļ | 1925 | 9-25 | <u> </u> | . 44 | 98 | 147. | 2.93 | 2.18 | 430. | $\downarrow \downarrow$ | .6 1f | <u>.</u> | | | 1869 | 3-7 | - | , , , , , , , , , , , , , , , , , , , | 48. | 54.2 | 1.15 | 1,10 | 62.6 | Н | .6 | | | | 1 | | | | | | | | | | | | | | 1870 | l | | Moon | CHANN | 1 | | 1.10 | 1 | \vdash | | 13 | 1 | FC22 | - | | | | | | | | | | | | | | 1871 | | | | CHANN | | | 1.12 | | \vdash | | | 0. | | - | | | | | | | | | | | | | | | 3-14 | | U.S.G.S. | 55. | 56.9 | | i | | + | | 42 | 1 | | - | | | | | | | | | | | | | | 1873 | | + | Noon | 48. | 60.0 | 1.22 | | | † | 6 | | 0 | Econ | 1 | | | | | | | | | | | | | | 1874 | | 1 | MOON | CHANN | | † | 1.08 | Į. | H | | | 0 | FC22 | | | | | | | | | | | | | | | 1875_ | | 1 | u.s.g.s. | CHANN | 54.5 | 1.0- | 1.08 | 58.3 | 1 1 | | 13
23 | | 1 | | | | | | | | | | | | | | | 1876 | | T | ** | 44. | 54.5 | 1 | 1 | 1 | 1 | | 23 | | T | 1 | | | | | | | | | | | | | | 1878 | | 1 | MOON | CHAN | 1 | 1.05 | 1.03 | | | .6 | ł | 0 | FC22 | 1 | | | | | | | | | | | | | | 1879 | 1 | 1 | ** | CHANN | 1 | | 1.0 | | \prod | 1 | 1 | 0_ | <u></u> | 1 | | | | | | | | | | | | | | 1880 | 1 | | u.s.g.s. | 44. | 48.8 | 1.06 | | 1 | | | 22 | 1 | | 1 | | | | | | | | | | | | | | 1881 | | | MOON . | CHAN | | | | 55.8 | L | | | 0 | FC22 | _ | | | | | | | | | | | | | .6 11 0 1.00 50.4 1.00 46.4 1.00 51.7 .99 50.9 48.5 1.04 48.7 CHANNELS | | DISCHARGE | SPUBASH | ментв ог SA! | GABRIE | L RIVE | R | | | | | | | | NO. | DATE | BEGIN
END | HADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METH
ING DO | MEAS,
BEC.
NO. | G. HT.
GHANGE
TOTAL | METER
NO. | |-------|-----------|--------------------------------------|---------------------|--------------|-------------------------------|----------------------------------|-------------------------|-----------------------|--------|-------------|-------|---------------------------|--------------|---------------|-----------|----------------|---|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------------------|----------------------|---------------------------|--------------| | | N#AT- | below | Morris Dam | | | | NO THE Y | EAR ENDIN | 3 SEPT | FEMBER | 30, | 19.47 | - | 1949 | 12-30 | 105P | MOON | 113 | 408 | 6.94 | 4.80 | 2830 | .6 | 12 | 0 | <u> </u> | | NO. | DATE | #FOIN | HADE BY | WIDTH | AMEA OF
SECTION
EQ. FT. | HEAN
VELOCITY
FT. PER MEG. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH- | HEAS. | G. HT.
CHANGE
TOTAL | METER
NO. | 1950 | 12-30 | 150P | LANG | 113 | 418 | 6.84 | 4.82 | 2860 | .6 | 13. | 0 | | | | | KND | | | 1 mg. PT. | PT.PER MEG. | | | 1 | | ND. | TOTAL | 1 | 1951 | 12-30 | | U.S.G.S. | 113 | 436 | 6.67 | 4.82 | 2910 | .6 | 23. | .0 | | | 1926 | 10-2 | 107P | U.S.G.S. | 2.8 | 0.77 | 0.42 | 0.37 | 0.32 | | •6 | 6 | 0 | | 1952 | 1-3 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | _44 | 49.6 | _1411 | 1.00 | 55.3 | .6 | 22. | .Q | | | 1927 | 10-3 | 110P | MOON | 2.0 | 0.40 | 0.33 | 0,29 | 0.13 | | .5 | 2 | 0 | FC22 | 1953 . | 1-9 | 1140A
1155A | MOON | CHANNELS | | | 104 | _ 56.1 | 6 | 12 | Ω | FC22 | | 1928 | 11-13 | 12000 | U.S.G.S. | 42. | 41.2 | 1.01 | 0.93 | 41.7 | | .6 | 33 | 0 | | 1954 | 1-16 | | U.S.G.S. | 38. | 45.8 | 1,30 | 1,02 | 59.6 | 6.8 | 16 | 01_ | | | 1929 | 11-15. | 1220P
1235P
1023A | MOON | CHANNE | s | | 0.95 | 42,8 | | .6. | 11. | 0 | FC22 | 1955 | 1-23 | 1220P
1235P | MOON | 28.0 | 42.6 | 1.52 | 1.02 | 56.2 | .5 | | .0 | FC22 | | 1930 | 11-22 | 1025A | ** | 31. | 33.7 | 1.44 | 1.00 | 48.5 | | .6 | 13 | 0 | | 1956 | 1-30 | | , | CHANNE | | | 1.01 | | | | | 1.522 | | 1931 | 11-22 | ļ <u>.</u> | U.S.G.S. | 36. | 38.6 | 1.37 | 0.99 | 52.9 | | 6.8 | 16 | 0 | | | 1-30 | | u,s,g,s, | 40 | | 1.25 | 1.01 | | 6
.2 | 14. | .0. | | | 1932 | 11-27 | 755 ^A
812 ^A | MOON
ROCKENMEYER | 86 | 148 | 3.69 | 2.47 | 546 | | .5 1 | 10 | 03 | FC22 | .1957
1958 | 2-6 | 1230P | MOON | 40 | 42.8 | 1.23 | 0,02 | 53.5 | 6.8
EST. | 31 | . Ω | i | | 1933_ | 11-27 | | U.S.G.S. | 100 | 169 | 3.37 | 2.45 | 570 | | .6 | 11 | _0 | | 1959 | 2-11 | 1230 | U.S.G.S. | 39 | 42.1 | 1,21 | 1.00 | 51,00 | | | | | | 1934 | 11-27 | | | 100 | 170 | 3.45 | 2.45 | 587 | | .6 | 10 | 0 | | | | 125P
145P | MOON | CHANNEL | | . اعدا | | 53.8 | | 1 1 | Ω | EC00 | | 1935 | 11-27 | 1200N
1220P | MOON | 111 | 234 | 3.25 | 2.68 | 762 | | .6 1 | 13 | 0 | FC22 | 1960 | 2-14 | 200P | , wood | CHANNEL | | | 1.00 | | - 1 | 14 | 0 | FC22 | | 1936 | 11-29 | 810A
821A | MOON
ROCKENMEYER | 85. | 140 | 3,19 | 2.31 | 446 | | | . 1 | 0 | | 1961 | 2-20 | 220P | | | | | 1,02 | 57.1 | 1.2 | 13 | 0 | | | 1937 | 12-3 | | U.S.G.S. | 135. | 214. | 2,36 | | | l i | .6
2-8 2 | 1 | | | 1962 | 2-26 | 1115A | U.S.G.S. | 38.0 | 46.4 | 1.50 | 1.14 | 69.5 | -6.8 | 1 | 0 | <u> </u> | | 1938 | 12-4 | 752A
805A | MOON
ROCKENMEYER | 85. | 140. | | 2.31 | | lΙ | .6 1 | | ο | FC22 | 1963 | 2-27 | 1140A
110P | MOON | CHANNEL | | | 1.14 | 75.1 | - 6 | 15_ | 0 | FC22 | | 1939 | 12-5 | 505 | U.S.G.S. | 95. | 156. | | | | | T | | | 1022 | 1964 | 3-6 | 130P
240P | | CHANNEL | S | | 1,13 | 70.4 | 6 | 18 | ٥ | <u>-"</u> | | | | 1215P | | | | | 2,31 | | | | 18. | 0. | | 1965 | 3-13 | 300P | | CHANNEL | s | | 1.14 | 73.5 | 6 | 15 | 0 | | | 1940 | 12-6 | 1230P
835A | MOON | 85 | 132 | 3,20 | | | - † | .6 1 | | 0 | FC22 | 1966 | 3-15 | 235P | U.S.G.S. | 38.0 | 46.4 | 1.58 | 1,13 | 73.5 | 6 | 35 | .Q | | | 1941 | 12-11 | 850A | | | 132 | 2.77 | 2.19 | 366 | H | .B. 1 | 12. | 0 | FC20 | 1967 | 3-20 | 255P | WOON | CHANNEL | s | | 1,14 | 75.5 | | 16 | 0 | FC22 | | 1942 | 12-12 | 130P | U.S.G.S. | 90 | 144 | 2,97 | 2.19 | 428 | | .6 | 18 | 0 | | 1968 | 3-27 | | U.S.G.S. | 39 | 43.9 | 1.49 | 107 | 65.2 | 2-8 | 35 | 0 | | | 1943 | 12-18 | 144P | MOON | CHANNEL | s | | 0.94 | 45.3 | ا . ا | .6 .1 | 12. | 0 | FC22 | 1969 | 3-27 | 122P
137P | MOON | TWO CHA | NNELS | | 0.63 | 16.2 | .6 | 12 | 01 | FC22 | | 1944 | 12-19 | | U.S.G.S. | 44. | 47.3 | 0.90 | 0.94 | 42.5 | ļ | .6 | 22 | 0 | ļ | 1970 | 7-16 | | U.S.G.S. | 23.5 | 26.9 | 1.06 | 0.84 | 28.4 | . 6 | 19 | 0 | | | 1945 | 12-27 | | " | 46 | 56.2 | 1.17 | 1.05 | 65.8 | | .6 2 | 23 | 0 | | 1971 | 7-17 | 1242P
1252P | MOON
PAYNE | 6.0 | 6.0 | 2.00 | 0.65 | | 6 | 5 | | ECOO | | 1946 | 12-28 | 1030A
1130A | MOON
STEVENS | 111 | 386 | 7.54 | 4.84 | 2910 | | .6. | 9 | Q | FC22 | 1 | F- '! * - | | 1 | -912 | 6.6 | 2148 | | 13.9 | L . L. | j | 02 | 1 222 | | 1947 | 12-29 | | U.S.G.S. | 116 | 424 | 6.67 | 4.82 | 2830 | | .6 | 2 | +.01 | | | | | | | | | | | | | | | | 1948 | 12-29 | | | 113 | 442 | 6.99 | 4.83 | | | | 12 | 0 | | | | | | | | | | | | | | | | | ist. Form 52 4-46 | | 6.41 | | F | IYDRAULIC | ROL DISTRIC | CT | | | Sta. | No. UE-R | |---|---|--|--|---|---|--|---|--|--|---|-----------------------------------|--| | | discharge, in a | 1- | T | GABRIEL | RIVER Del | OW Morris | s Dam | | | . , for the yea | ending Septe | mber 30, 19 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 1 2 2 3 4 4 5 5 6 7 7 8 9 10 11 12 13 11 14 15 16 17 18 19 20 21 22 22 23 24 25 5 26 27 28 8 29 30 31 | 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 611
611
611
611
611
611
611
617
57
37
36
34
34
34
34
34
34
34
34 | 34
34
34
34
34
34
34
34
34
34
34
34
35
33
32
33
32
32
31
31
31
31
31
31
31
31
31
31
31
31
31 | 29 1177 462 452 452 418 337 3337 2855 2855 2857 277 277 277 277 277 277 271 2114 2114 | 1 2
1 2
1 9
1 1
5 7
4 8
8 9
9 9
9 8
8 4
8 4
8 4
8 4
8 4
8 4
8 6
6 6
6 6
6 6
6 6
6 6 | 664
664
663
663
663
663
663
663
664
664 | 845166830917866644444422222222222222222222222222222 | 52225551115511155511555555555555555555 | 48
48
48
48
47
47
21
19
11
10
10
10
10
10
10
10
10
10
10
10
10 | 0.55
0.56
0.78
0.90
0.11
0.90
0.87
0.65
0.44
0.82
11.10
0.00
0.00
0.00
0.00
0.00
0.00
0. | 000000111122222355999522248651114 | 211111199999
199744842666654456665222222443666654442266222100 | | | 2549 | 680.0 | 1809 | 5929.9 | 18063 | 1871.0 | 1670.0 | 1553.0 | 465 <i>3</i> | 22.9 | 73.0 |
187.3 | | MEAN | 8.22 | 22.7 | 167. | 191. | 64.5 | 60.4 | 55.7 | 50.1 | 15.5 | .74 | 2.35 | 273. | | ACRE-
PEET | 506. | 1,350. | 10,280. | 11,760. | 3,580. | 3,710. | 3,310. | 3,080. | 923. | 45. | | 16,240. | | | Remarks: | | | | | | | | | TEAR MEA
OR
ERIOD ACRE | | ,930. | ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U8-R | | | second-feet of | 1 | RIEL RIVER | | | | | ī | 1 | ending Septen | | |------|----------|----------------|------------|-------------|----------|------------|------|-----------------|------|-------------------|---------------|-------| | 2.57 | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 | 0.5 | 0 | 468 | 1500 | 1.7 | 73 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0.3 | 0 | 468 | 5 4 | a. o | 71 | o | o | 0 | 0 | 0 | 0 | | 3 | 0 1 | 0 | 468 | 52 | 0.5 | 71 | 0 | 0 | .0 | 0 | 0 | 0 | | 4 | 0 | 0 | 468 | 52 | 0.4 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 1 0 | 468 | 52
56 | 0.2 | 70
70 | 0 . | 8 | 8 | 8- | - 0 | - 8 | | 7 | 0 | 0 | 421 | 57 | 01 | 71 | ŏ | ŏ | 0 | 0 | 8 | ŏ | | á | ö | 0 | 421 | 58 | 01 | 73 | ŏ | ŏ | 6 | 0 | ŏ | ŏ | | 9 | ŏ | l ŏ | 421 | 58 | 5.3 | 73 | ŏ | l ŏ | l ŏ | Ö | ŏ | ŏ | | 0 | ō | l ŏ | 421 | -58 | 51 | 73 | ō | Ιŏ | ō | ŏ | ō | ō | | 1 | 0 | 0 | 421 | 58 | 52 | 73 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0 - | 22 | 421 | 58 | 52 | 73 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | 0 | 38 | 426 | 57 | 52 | 73 | o | o o | 0 | 0 | 0 | 0 | | 4 | o o | 4 3 | 426 | 56 | 52 | 73 | 0 | 0 | 0 | 0 | 0 | 0 | | 16 | 8 | 43 | 426
372 | 5 6
5 6 | 52
52 | 73
73 | 0 | 0 | 0 | 29 | 0 | 0 | | 7 | ŏ | 43 | 44 | 56 | 52 | 73 | ŏ | ŏ | 0 | 18 | ŏ | ŏ | | 8 | ŏ | 47 | 4 4 | 57 | 52 | 75 | ŏ | ŏ | ŏ | 2.6 | ŏ | ŏ | | 9 | ŏ | 50 | 43 | 57 | 54 | 75 | ŏ | l ŏ | ŏ | 0.8 | . o l | ŏ | | 20 | Ó | 60 | 4.3 | 56 | 56 | 75 | 0 | 0 | 0 | ŏ | ō | 0 | | 1 | 0 | 51 | 4 3 | 5 6
5 6 | 56 | 71 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 | 0 | 50 | 48 | 56 | 54 | 66 | o | O. | 0 | 0 | 0 | 0 | | 3 | o | 5 4 | 52 | 56 | 5 4 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 50 | 52 | 54 | 66 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | | 26 | - 8 | 50 | 62 | 5 4
5 4 | 73
73 | 6 6
6 6 | - 0 | 8 | - 8 | 0 | 0 | 0 | | 7 | Ö | 65
612 | 64 | 54 | 73 | 38 | ŏ | ŏ | 6 | 0 | ŏ | ő | | 8 | ŏ | 589 | 1970 | 54 | 73 | 72 | ŏ | ŏ | 0 | 0 | ŏ | ŏ | | 9 | ŏ | | 2920 | 54 | , , | 1.7 | ŏ | ŏ | ŏ | Ö | ŏ | ŏ | | 30 | ŏ | 468 | 2920 | 54 | | 1.0 | Ō | ō | ŏ | ŏ | ŏ | ŏ | | 1 | ō | | 2930 | 39 | | ŌŽ | | Ö | | Ö | 0 | | | | | | | | | , | | | | | | | | | 0 9 | 2856.2 | 8252.0 | 1
3149.0 | 1082 | 19001 | 0 | 0 | 0 | 64.4 | 0 | o | | | | 2836.2 | | 3149.0 | | 19001 | | , - | | 04.4 | | | | AN | 0.03 | 95.2 | 589 | 102 | 39.6 | 61.3 | 0 | 0 | 0 | 2.08 | 0 | 0 | | ET. | 1.8 | 5670 | 36,200 | 6,250 | 2,200 | 3,770 | 0 | 0 | 0 | 128 | 0 | 0 | | | Remarks: | - | | • | • | - | | | | YEAR MEAL | 74.9 | | | | | | | | | | | | | OR
PERIOD ACRE | FEET 54. | 220 | #### STATION S100A-R SAN GABRIEL RIVER AZUSA DUARTE TUNNEL DIVERSION at Mouth of Canyon - LOCATION: WATER-STAGE RECORDER, LAT. 34°C9'33", LONG. 117°54'27", AT WEIR BOX AT THE DOWNSTREAM PORTAL OF THE AZUSA DUARTE TUNNEL ABOUT 250 FEET SOUTH OF THE CAYYON ROAD AT THE MOUTH OF SAN GABRIEL CANYON. ELEVATION OF GAGE, ABOUT 750 FEET. - GENERAL: THIS STATION MEASURES ALL FLOW DIVERTED BY THE SAN GABRIEL RIVER WATER COMMITTEE AT THE MOUTH OF SAN GABRIEL CANYON, - CHANNEL AND CONTROL: CONCRETE WEIR BOX WITH TWO BROAD-CRESTED WEIRS. THESE WEIRS DIVIDE THE FLOW BETWEEN THE EAST SIDE SPREADING GROUNDS AND THE _FISH CANYON SPREADING GROUNDS. EITHER SIDE CAN BE DIVERTED FOR IRRIGATION. - REGULATION: RIVER FLOW AT THE CANYON MOUTH IS PARTIALLY REGULATED BY MORRIS DAM AND SAN GABRIEL DAWS NOS, I AND 2. THE DIVISION OF THE DIVERTED FLOW CAN BE REGULATED AT THE WEIRS BY INSERTING CONSTRICTIONS. - RECORDS AVAILABLE: THE TUNNEL WAS CONSTRUCTED IN 1887. RECORDS OF DIVERSION SINCE 1918 ARE AVAILABLE AT THE OFFICE OF THE SAN GABRIEL RIVER WATER COMMITTEE, 124 WEST FOOTHILL BOULEVARD, AZUSA. - ACCURACY: EXCELLENT. - OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE SAN GABRIEL RIVER WATER COMMITTEE. - REMARKS: THESE RECORDS WERE FURNISHED BY MR. MORGAN PIERCE, WATER MASTER OF THE SAN GABRIEL RIVER WATER COMMITTEE, PUBLISHED HEREWITH ARE THE RECORDS FROM OCTOBER 1, 1945 TO SEPTEMBER 20, 1947. RECORDS PRIOR TO OCTOBER, 1939 WERE PUBLISHED WITH THE RECORDS OF STATION F100-R WHICH WAS ABANDONED NOVEMBER, 1940. # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No._S100A-R | Daily | discharge, in s | econd-feet of | SAN GABRI | IEL - AZU | SA DUARTE | TUNNEL D | IVERSION. | at Mouth | o.f Canyon | , for the yea | r ending Septer | nber 30, 19 1 (| |----------------------------|--|--------------------------------------|--------------------------------------|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|-----------------|------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 4 0 .5
4 .8
3 .8
3 .8
3 .4 | 2.4
2.4
2.3
2.0
1.9 | 25.7
25.7
25.7
25.7
25.7 | 0000 | 0
0
0
0
233 | 52.6
56.4
56.4
55.7
55.7 | 27.5
59.5
58.8
56.4
53.4 | 503
503
503
503
49.6 | 452
452
452
452
453 | 00000 | 0000 | 0000 | | 6
7
8
9 | 4 .0
3 .8
3 .4
3 .0
2 .9 | 1.9
1.9
1.9
1.9
1.9 | 25.7
25.7
25.7
25.7
25.7 | 0000 | 33.0
36.9
40.2
57.2
65.0 | 55.7
56.4
58.8
58.8
59.9 | 549
55.7
603
61.8
549 | 49.6
49.6
49.6
49.6
49.6 | 43.0
43.0
43.0
42.3
26.3 | 0000 | 00000 | 00000 | | 11
12
13
14
15 | 2 9
2 9
2 9
2 9
2 7 | 1.9
1.9
8.2
25.1
26.8 | 25.7
25.7
25.7
25.7
25.7 | 0 0 0 | 65.0
65.0
65.0
65.0 | 611
611
626
628
596 | 51 1
54 1
55.7
52.6
52.6 | 48.8
48.1
48.1
48.1 | 2.5
1.5
1.3
1.0 | 0000 | 00000 | 0 0 0 0 | | 16
17
18
19
20 | 25
25
25
26
24 | 26.8
27.4
26.8
26.3
26.3 | 25.7
25.7
25.7
24.0
21.7 | 0000 | 63.4
61.8
61.0
61.0
59.5 | 60.9
60.9
61.4
62.7
60.3 | 51.8
51.8
51.8
51.8
51.1 | 481
473
473
473
473 | 0.8
0.5
00
00 | 0 0 0 | 00000 | 0 0 0 | | 21
22
23
24
25 | 2 A
2 A
2 A
2 A
2 5 | 263
263
257
257
257 | 27.4
18.3
0
0 | 0 0 0 | 51.8
48.8
48.1
48.1 | 58.8
58.8
58.8
58.8
56.8 | 511
511
511
511
511 | 4 6 .6
4 6 .6
4 6 .6
4 6 .6 | 00000 | 0 0 0 | 00000 | 0
0
0 | | 26
27
28
29
30 | 2 1
2 1
2 7
2 8 | 25.7
25.7
25.7
25.7
25.7 | 00000 | 0000 | 4 8 .1
4 8 .8
4 8 .8 | 58.8
58.8
58.8
58.8
31.1 | 511
511
511
511
511 | 46.0
46.0
46.0
46.0
46.0 | 0000 | 0000 | 00000 | 0000 | | 31 | 1264 | 4762 | 554.0 | 0 | 12763 | 9.7 | 1578.6 | 46.0
1487.0 | 430.5 | 0 | 0 | 0 | | EAN | 4.98 | 15.9 | 17.9 | 0 | 45.6 | 56.4 | 52.6 | 48.0 | 14.4 | 0 | 0 | . 0 | | CRE-
PEST | | 945. | 1.100. | 0 | 2,530. | 3,470. | 3,130. | 2,950. | 854. | 0 | 0 | 0 | | | Remarks: | | | | | | | | | EAR MEA
OR
ERIOD ACRE | | o
5,230. | F. C. Dist. Form 53 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. S 100 A-R | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |----------|----------|-----------------|--------------|--------------|------------|--------------|----------|----------|----------|------------|-------------|------------| | 1 | Ö | 0 | 683 | 0 | 0 | 673 | 0 | 0 | | | | | | 2 | ō | l õ | 6.8 3 | 9.7 | 0 | 673 | 0 | 0 | Ó | 0 | Ō | 0 | | 3 | 0 | 0 | 683 | 15.8 | 0 | 681 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | o | 0 | 68.3 | 14.6 | 0 | 673 | o | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 0 | 68.3 | 142 | 0 | 673 | 0 | 0 | 0 | 0 | 0 | 0 | | 6 | 0 | 0 | 68.3 | 14.6 | Ŏ | 66.5 | 0 | 0 | 0 | 0 | 0 | o o | | 7 8 | 0 | 0 | 683
683 | 15.8
15.8 | 0 | 66.5
67.3 | 0 | 0 | 0 | 0 | 0 | 0 | | 9 | ő | 0 | 683 | 15.8 | ŏ | 673 | 0 | ŏ | 0 | ŏ | 0 | 6 | | 10 | ŏ | 6 | 683 | 15.8 | 39.4 | 673 | ŏ | ŏ | ŏ | ŏ | ŏ | l ŏ | | 11 | | - ŏ | 683 | 15.8 | 481 | 673 | ŏ | ő | o - | i | 0 | o | | 12 | ŏ | 0 | 683 | 15.8 | 49.6 | 66.5 | ŏ | ŏ | ŏ | ŏ | ŏ | Ō | | 13 | ò | 0 | 683 | 15.5 | 49.6 | 66.5 | Ò | 0 | O | 0 | 0 | 0 | | 14 | 0 | 0 | 683 | 15.0
15.0 | 49.6 | 65.8 | 0 | 0 | 0 | 0 | 0 | 0 | | 15 | <u> </u> | 15.0 | 683 | | 503 | 65.8 | <u> </u> | o | 0 | _ <u>o</u> | ō | 0 | | 16
17 | 0 | 29.4 | 64.7 | 14.6 | 503 | 65.8 | 0 | 0 | 0 | 0 | 0 | 0 | | 18 | 0 | 329 | 27.6
24.8 | 14.6
14.6 | 503
503 | 65.0
65.0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 | ŏ | 39.7 | 25 1 | 14.6 | 51.8 | 65.0 | ŏ | ŏ | ŏ | ŏ | 0 | ŏ | | 20 | ŏ | 16.5 | 25.7 | 142 | 52.6 | 65.0 | ŏ | ŏ | l ŏ | Ö | ŏ | ŏ | | 21 | ō | 261 | 25.7 | 133 | 52.6 | 641 | ō | Ö | 0 | O | ō | Ö | | 22 | 0 | 381 | 27.4 | 133 | 52.6 | 59.6 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 | 0 | 423 | 31.7 | 16.7 | 52.6 | 59.6 | . 0 | 0 | 0 | 0 | 0 | 0 | | 24 | Q | 382 | 31.7 | 21.7 | 59.5 | 59.5 | . 0 | 0 | 0 | 0 | 0 | 0 | | 25
26 | 0 | 423 | 402 | 223 | 68.1 | 595 | <u>Q</u> | <u>o</u> | <u> </u> | <u> </u> | <u> </u> | 0 | | 26 | 0 | 4 6 .0
6 9 3 | 41.6
29.1 | 223 | 681
681 | 595
395 | 0 | 0 | 0 | 0 | 0 | 0 | | 28 | ŏ | 683 | 0 1 | 245 | 681 | 6.9 | 0 | ŏ | ŏ | ŏ | ŏ | ŏ | | 29 | ŏ | 683 | ŏ | 22.8 | 00.4 | 1.7 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 30 | ŏ | 683 | ŏ | 223 | | و ة | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 31 | 0 | | o_ | 18.6 | | 0 | | Ō | | 0 | Ŏ | | | | 0 | | 1419.8 | | 10316 | | 0 | | 0 | | 0 | | | | | 677.0 | | 5019 | |
17416 | | 0 | | 0 | | 0 | | AN | 0 | 22.6 | 45.8 | 16.2 | 36.8 | 56.3 | 0 | 0 | 0 | 0 | 0 | 0 | | RE- | 0 | 1,340 | 2,820 | 995 | 2,050 | 3,450 | . 0 | 0 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | , | YEAR MEA | N 14. | 7
0,660 | #### STATION F190-R SAN GABRIEL RIVER at Foothill Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°08'13", LONG. 117°56'32", ON THE DOWNSTREAM SIDE OF FOOTHILL SOULEVARD SRIDGE 2 MILES WEST OF AZUSA, ELEVATION OF ZERO GAGE HEIGHT, 558.84 FEET. DRAINAGE AREA: 230 SQUARE MILES. CHANNEL AND CONTROL: WEST SIDE OF CHANNEL IS A CONCRETE WALL, BOTTOM IS COMPOSED OF SAND, CRAVEL AND BOULDERS. EAST SIDE OF CHANNEL IS A ROCK AND WIRE LEVEE. NO ARTIFICIAL CONTROL. NEW CHANNEL CONSTRUCTION WAS COMMENCED IN THE SUMMER OF 1947. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 340 FEET BELOW THE STATION. RECORDER: INSTALLED APRIL 25, 1932. REMOVED ON APRIL 20, 1938, AMO INSTALLED IN A 30 INCH DIAMETER CORRUGATED IRON PIPE SERVING BOTH AS A HOUSE AND AS A WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. AN AUXILIARY STILLING WELL IS MAINTAINED ON THE MEST SIDE OF THE CHANNEL. REGULATION: FLOW PARTIALLY REGULATED BY SAN GABRIEL DAMS NOS. 1 AND 2, AND MORRIS DAM. DIVERSIONS: THERE ARE DIVERSIONS FOR IRRIGATION, POWER DEVELOPMENT AND SPREADING. RECORDS AVAILABLE: STREAM MEASUREMENTS STARTING FEBRUARY 22, 1932. RECORDER RECORDS AFRIL 25, 1932 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 1670 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW FOR SEVERAL MONTHS. 1946-1947 MAXINUM 3200 SECOND-FEET, DECEMBER 28MINIMUM NO FLOW FOR SEVERAL MONTHS. MINIMUM HOUSE TO THE STATE OF T ACCURACY: GOOD. -OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DIECHARGI | E MEABURE) | 1ENTB OF | SAN GA | BRIEL | RIVER | | | | | | | | NO. | DAYE | BEBIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOGITY
FT.PER SEC. | BAUDE
HEIBHT
FEET | DISCHARGE
SEC. FT. | H TAB | TH- MEA | AS. G.
G. GM.
T. | HT. | METER
NO, | |-------------|-------------|-----------------------|----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-------|----------------------|---------------------------|--------------|------|---------|-------------------------|-----------------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------|------------------------|-----|--------------| | | AT
HEARL | Foothi | ll Boulevard | | | DUR | ING THE Y | TAR ENDING | SEPT | EMBER | 30, | ·•46 | | 481 | 2/26 | 305P
325P
145P | ** | 28.0 | 31.1 | 0.47 | 4.46 | 14.7 | | . 6 | 14 | 0 | | | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER BED. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- M | ETH- | MEAS.
BEC.
NO. | B. HT.
CHANGE
TOTAL | METER
NO. | 482 | 3/1 | 155P
1250P
1255P | | 7.2
4.0 | 4.66
2.47 | | | 8.3 | | | | 0 | | | 458 | 10/4 | 1130A
1140A | STUNDEN | 4.0 | 2.77. | 0.47 | 3,90 | 1.3 | | .6 | 4 | ٥ | FC36 | 484 | 3/13 | 1220P | | 3.5 | _1.85 | 0.69 | | 0.94 | | .6 | | ٥ | | | 459 | 10/11 | 1115A
1125A | | 6.0 | 4.76 | 0.78 | 4.13 | 3.7 | | .6 | 6 | .01 | | 485 | 3/21 | 1045A
1050A | | 3.6 | 2.54 | 1.14 | 4.00 | 2.9 | | .6 | 4 | 0 | | | 460 | 10/18 | 1100A
1105A | MOON | 4.0 | 3.45 | 0,91 | 4,09 | 3,1 | | .6 | 5 | 0 | FC22 | 486 | 3/27 | 1135A
1140A | | 3.5 | 2.00 | 0.75 | 3.79 | 1.5 | 1 | . 6 | 4 | 0 | | | _461 | 10/25 | 1130A
1135A | | 4.0 | 3.50 | 1.00 | 4,10 | 3.5 | - | .6 | _4 | 0 | | 487 | 4/5 | 120P
125P | •• | 4.0 | 3,45 | 1.30 | 4.15 | 4.5 | | . 6 | 4 | 0 | | | 462 | -11/1 | 220P
227P | ** | 5.0 | 5.30 | 1:11 | 4,21 | 5.9 | | .6 | 5 | _0_ | | 488 | 4/11 | 120P
125P
1215P | | 4.0 | 2.90 | 1.10 | 4.03 | 3.2 | | .6 | 4 | 0 | | | 463 | 11/8 | 1150A
1215P | | 5_0_ | 4.80 | 0.73 | 4.13 | 3.5 | | -6 | 5 | 0 | | 489 | 4/18_ | 1221P
1035A | 1 | 4.0 | 4.00 | 2.15 | 4.29 | 8.6 | | .6 | 4 | 0 | ··- | | 464 | 11/15 | 1222P | | 5 - 5 | 6.20 | 1.26 | 4.29 | 7.8 | -+ | .6 | - 6 | . 0 | | 490_ | 4/25 | 1040A
142P | .,, | 4.0 | 4.70 | 2.75 | 4.41 | 12.9 | ⊣ | .6 | 4 | 0 | · | | _465 | 11/21 | 1135A
140P | ** | 5.0 | 3,80 | 0,68 | 4.00 | 2.6 | - | .6 | 4 | _0 | | 491 | 5/3 | 147P.
1045A | | 5.0 | 5.05 | 2.65 | 4.52 | 13.4 | \vdash | .6 | 5 | 0 | | | _466_ | 11/29 | 145P
1115A | ** | 4.6 | 2.83 | 0.64 | | 1.8 | | .6 | 4 | | | 492 | 5/9 | 1050A | ••• | 4.5 | 4.50 | 2.29 | 4.40 | 10.3 | H | .6 | _5 | 0 | | | _467_ | 12/6 | 1121A
950A | ., | 5.2 | 4.21 | 1.33 | 4.26 | 5.6 | \vdash | .6 | 6_ | 0 | -: | 493 | 5/16. | 1100A
1057A | | 4.0 | 3.80 | 2.00 | 4.28 | 7.6 | - | .6 | 4 | 0 | | | 468- | -12/13- | 957A
1110A | ** | 6.0 | 4.60 | | I — | 6.0 | | .6 | 6 | 0 | -: | 494 | 5/23. | 1103A
1148A | | 4.0 | 3.60 | T | 4.22 | _6.3 | \vdash | .6 | | 0 | •• | | 469 | 12/20 | 1117A .
450P | MODN | 4.7 | 3.72 | 1.05 | | 3.9 | ΙT | .6 | 6 | _0 | | 495 | 5/30 | 1154A
1153A | ** | 4.0 | 3.25 | T | | 4.2 | \vdash | .6 | + | 0 | | | 470 | 12/22 | 515P
1217P | HOLMES
MOON | 82.0 | 166. | 6.39 | | 1060. | | .6 | | +.06 | | 496 | 6/6 | 1158A
1240P | | 4.0 | 3.25 | | 4.12 | 4.8 | + | .6 | | 0- | | | _471 | 12/23 | 12,42P
1000A | MOON . | 87.0 | 185. | 6.32 | | 1170. | 1 | | 10 | 0 | | 497_ | 6/13 | 1244P.
750P | WADDICOR | _2.5 | 1.48 | | 3.73 | 0.87 | ++ | | 1 | 0 | | | 472 | 1/3_ | 1030A
1030A | MOON | 82.0 | 153. | 3.17 | | 484. | | | - | | | 498 | 9/10 | ,810P
1230P | STUNDEN
BOLLINGER | 83.0 | 124. | 5.28 | 6.73 | 1 | | -6 | | | 5€36_ | | A73 | 1/7 | 10.55A
1100A | MOON | 74.0 | 130 | 2,64 | | | \vdash | | 15 | 0 | | 499 | 9/11 | 1250P
925A | STUNDEN
STUNDEN | 83.0 | 110. | 4.55 | 6.31 | 1 | \vdash | -6 | | 0 | | | - 474 | 1/9 | 11.20A
1015A | BEAM. | 76.0 | 118. | 2.44 | | 1 | i i | - 1 | 15 | 0 | | 500 | 9/12 | 1000A | VAN DER GOOT * | 78.0 | 150. | 3.18 | 6.30 | | 11 | .6 | | 0 | | | 475-
476 | 1/18 | 1615A
910A
935A | MOON | 73.0
73.0 | 122. | 2,09 | | 1 | Ħ | | 16 | 0 | | 501 | 9/13 | 1155A
955A | WADD I COR | 85.0 | 167 | 3.54 | 6.75 | | 1 | | | 0 | | | 477 | | 10 2P | | 35.0 | 59.5 | 1,04 | | i | t | -i | | 04 | | 502 | 9/17 | 1012A
1013A | BOLLINGER
STUNDEN
BOLLINGER | 79.0 | 148 | 3.23 | | | | | | , | | | _472 | 1/24 | 1010A
1015A | | 10.0 | 9.70 | | | 11.6 | Π | .6 | 5 | 0 | | 503 | 9/18 | 1050A
1035A
1055A | STUNDEN
BOLL INGER | 78.0 | 132. | 2.85 | 6.41 | • | \sqcap | | | 0 | | | 479 | 2/7 | 1055A
1105A | MOON | 20.0. | 16.1 | 1,34 | | 21,, 6 | | .6 | 9 | 0 | FC22 | 505 | 9/27 | 355P
400P | STUNDEN | 4.0 | 2.84 | | 3.90 | 1.8 | П | .6 | | 0 | | | 480 | ' | 1050A
1100A | | 26.0 | 34.5 | , | 4.55 | 18.7 | | .6 | 9 | 0_ | | | <u></u> | , | | | | | | | | | | | | DISCHARGE MEASUREMENTS OF ___ SAN GABRIEL RIVER | AT F | oothill | Boulevard | |------|---------|-----------| AT Foothill Boulevard During the Year ending September 20, 19. 47. | ND. | DATE | BEGIN | HAGE BY | WIDTH | AREA OF
SECTION
SO. FT. | MEAN
VELUCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH
DD | MEAS.
SEC.
NO. | G. HT.
CHANGE
TOTAL | METER
NO. | |-------|-------|------------------------|--------------------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|------------|----------------------|---------------------------|--------------| | 506 | 10-3 | 1120A
1126A | MOON | 4.0 | 2.85 | 0.81 | 3.99 | 2,3 | | .6 | 4 | 0 | FC22 | | 507 | 10-10 | 1027A
1032A | | 4.0 | 2.85 | 0.84 | 4.00 | 2.4 | | .6 | 4 | 0 | | | 508 | 10-17 | 847A
852A
1130A | MOON • VAN DER GO | T 4.0 | 2.40 | 0.27 | 3.75 | 0.65 | _ | .6 | 4 | 0_ | | | 509 | 10-30 | 1135A | MOON | 4.0 | 2.65 | 0.53 | 3.87 | 1.4 | | .6 | 4 | o | " | | 510 | 11-15 | 1020A
1030A | | 14.0 | 12.3 | 2.98 | 4.78 | 36.6 | | .6 | 7_ | 0 | | | 5,11, | 11-27 | 930A
952A | MOON - ROCKENMEYER | 80.0 | 147. | 3.42 | 6.65 | 503. | | .6 | 13 | 0 | | | 512 | 11-29 | 928A
944A
900A | | 80.0 | 138. | 3,26 | 6,48 | 450, | | .6 | 15 | 0 | | | 513 | 12-4 | 920A | | 80.0 | 143. | 3.08 | 6.50 | 440. | <u></u> | .6 | 15 | 0 | | | 514 | 12-11 | 954A
1015A | MOON - WADDICOR | 80.0 | 128. | 2.93 | 6-38 | 375. | | .6 | 16 | 0 | | | 515 | 12-18 | 1120A
1132A
125P | MOON | 19.0 | 25.1 | 1.47 | 4.86 | 37. | | .6 | 10 | 0 | • | | 516 | 12-28 | 200P
305P | MOON - STEVENS | 90.0 | 326. | 8.90 | 8.88 | 2900. | ļ., | .6 | 12 | 0 | | | 517 | 12-30 | 325P | MOON - LANG | 91.0 | 324. | 8.68 | 8.93 | 2810. | | .6 | 10 | 0 | " | | 518 | 1-3 | 245P
259P
935A | MOON - WADDICOR | 30.0 | 31.2 | 2.21 | 4.85 | 68.9 | | -6 | 11 | 0 | | | 519 | 1-9 | 940A | MOON | 22.0 | 21.6 | 2.30 | 4.71 | 49.8 | | .6 | 11 | 0 | . " | | 520 | 1-16_ | 835A
840A
950A | | 18.0 | 17.8 | 2.18 | 4.61 | 38.8 | | .6 | 7 | 0 | • | | 521 | 1-23 | 1000A | | 18.0 | 15.8 | 2.23 | 4.57 | 35.3 | | .6 | 9 | 0 | | | 522 | 1-30 | 150P
202P
1112A | | 18.0 | 16.0 | 2.07 | 4.52 | .33.1. | | .6 | .9 | 0 | " | | 523 | 2-14. | 1122A | | Two CH | NNELS | | 3.99 | B.7. | | .6 | 9 | 0 | | | 524 | 2-20 | 1115A
1125A | | | | | 4,18 | 14.2 | | .6. | .7. | .0 | " | | 525 | 2-27 | 905A
915A | , | | | | 3.48 | 0.97 | | .5 | 6 | 0 | | | 526 | 3-6 | 1010A
1020A | | | <u>-</u> | | 3,59 | 2.1 | | •6. | 7 | ō | | | 527 | 3-13 | 104P
109P | | 3.0 | 1.20 | 0.63 | 3.37 | 0.63 | | • 5 | 3 | .0 | ". | F. C. Dist. Form 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F | 90-R | | | | | | н | YDRAULIC | DIVISION | | | | | |
---|---|---|---|---|--|---|---|--|---|---|--|--| | Daily d | lischarge, in se | cond-feet of | SAN GAB | RIEL RIVE | R at Foot | hill Boul | evard | | and the man and the same | , for the yea | r ending Septer | nber 30, 19 <u>46</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 20 21 22 23 | 4216040700417749740041761
335333353445 | 5 3 1 9 7 0 3 1 5 1 2 4 2 5 2 2 5 1 7 0 9 2 6 1 8 8 8 7 7 6 9 2 4 8 8 8 6 7 6 4 8 8 8 8 7 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5 5 0 0 6 2 7 6 6 2 7 7 2 6 6 7 7 1 6 5 5 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 | 14
96455664996744
45566696744
4343774686566656666968656666968688888888888888 | 535
200
341
221
221
231
301
250
250
211
1187
1197 | 8 5 5 4 2 7 7 2 9 6 2 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 | 15
9
6544
3651
655
3237
911
918
918
916
101 | 18
19
29
20
17
14
14
15
17
15
17
11
12
11
12
11
11 | 6.7
10 99.7.7
77.7.7
448.7.9.3
883.0.9.3
883.0.9.3
22.3.3
22.4 | 2 8 3 4 6 5 6 1 9 5 0 9 0 3 6 4 8 0 0 1 9 3 6 4 8 0 0 1 9 3 7 6 | 1044
1144
245
225
225
225
232
232
232
232
232
232
23 | 2.4
2.0
2.1
1.7
1.8
2.2
167
2.0
167
3.94
4.02
5.93
5.94
5.94
5.94
5.94
5.94
5.94
6.05
4.05
6.05
6.05
6.05
6.05
6.05
6.05
6.05
6 | | 23
24
25
26
27
28
29
30
31 | 3 8
3 7
4 8 2
5 6 8
5 7 | 4.9.
4.5.7.
5.5.5.
4.3.7.4.1 | 1190
950
936
936
5028
177
15 | 16
11
77
34
55
55
55 | 17
17
16
14
14
12 | 29,7
22,7
20,5
11,9
11,7
14,4
4,4 | 11
12
13
14
16
19
20
19 | 8.2
7.2
5.5
10
4.6
6.2
7.4
7.7
7.4 | 4 1
3 4
3 0
2 7
2 6
3 3 2
4 8 | 222307.416 | 25.03.4.3.1.6.5. | 410
414
414
315
7.4
2.2
3.1
2.1 | | | 1162 | 1641 | 53672 | 6033.7 | 552.8 | 2642 | 295.7 | 392.2 | 1422 | 701 | 66.9 | 7603.5 | | MEAN | 3.75 | 5.47 | 173. | 196. | 19.7 | 8.52 | 9.86 | 12.7 | 4.74 | 2.26 | 2.16 | 256. | | ACRE-
FEET | 230. | 325. | 10,650. | 12.070 | 1,100. | 524. | 587. | 778. | 282. | 139. | 133. | 15,240. | | | Remarks: | | | | | | | | P | TEAR MEA
OR
ERIOD ACRI | | .1
2,060 | F. O. Dist. Form 52 4-44 los angeleş county FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta No. F 190-R | 7 | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept | |----|------------|-------|---------|----------|------------|-------|---------------------------------------|----------------|-------------|------|-------------|------| | 1 | 3.9 | 2.5 | 446 | 1610 | 12 | 23 | 1.5 | ٠,0 | 0 | 0 | 0 | 0 | | 2 | 3.2 | 2.5 | 446 | 83 | 5.8 | 2.3 | 1.0 | 0 | 0 | 0 | 0 | 0 | | 3 | 3.5 | 3.5 | 446 | 61 | 2.8 | 2.6 | 1.1 | 0 | 0 | 0 | 0 | 0 | | ١. | 3.5 | 2.5 | 450 | 54 | 0.5 | 2.4 | 1.0 | o | 0 | 0 | 0 | 0 | | 5 | 3.5 | 2.9 | 450_ | 51 | 0 | 2.6 | 0.6 | 0 | 0 | 0 | 0 | 0 | | 3 | 4 .6 | 2.2 | 425 | 51 | 0 | 0. \$ | Q | Ŏ | Ŏ | 0 | 0 | o o | | 7 | 3.7 | 2.2 | 401 | 50 | 9 1 | 2.1 | 0 1 | Ö | 0 | 0 | 0 | 0 | | 3 | 3 .6 | 3.0 | 401 | 48 | o l | 2.1 | o l | 0 | 0 | 0 | 0 | ŏ | | 3 | 2.3 | 3.7 | 401 | 4.6 | 0 | 1.8 | 0 | ŏ | ŏ | 6 | ŏ | ŏ | | - | 3.5
4.2 | 4.2 | 401 | 46 | 2.7 | 0.3 | ŏ | | | ŏ | 8 | ŏ | | 2 | 2.5 | 12 | 401 | 43 | 4.9 | 0.1 | 0 | ŏ | 8 | ŏ | ŏ | ŏ | | 3 | 22 | 58 | 401 | 42 | 73 | 0.5 | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | | 21 | 35 | 401 | 39 | 8.8 | 0.5 | 01 | ŏ | ŏ | l ŏ | ŏ | ŏ | | 5 | 23 | 23 | 401 | 39 | 10 | ŏ | l ő l | ō | 0 | Ö | Q i | o | | 3 | 1.6 | 11 | 389 | 39 | 12 | 0.3 | 0 | - 0 | 8 | 0 | 9 | 0 | | 7 | 1.8 | 9.1 | . 49 | 38 | 1.5 | 0.3 | 0 | 0 | | 0 | 0 | O | | 3 | 1.7 | 10 | 39 | 38 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | O. | | 3 | 1.8 | 12 | 36 | 38 | 17 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | | Щ. | 3.6 | 216 | 34_ | 38 | 16 | 0.1 | Q | 0 | 0 | 0 | 0 | 0 | | | 1.6 | 63 | 3 3 | 37 | 14 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 1.5 | 27 | 33 | 36 | 14 | 0.1 | 0 | 0 | 0 | 0 | 0 | | | 2 | 12 | 52 | 33 | 35 | 13 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 1.4 | 4.2 | 34 | 32 | 8.0 | 0.3 | 0 | Ö | 0 | 0 | 0 | 0 | | 3 | 1.4 | 2.7 | 101_ | 30 | 3.0
1.2 | 0 | 9 | - 8 | 0 | 8 | 0 | - 6 | | ; | 1.5 | 18 | 254 | 28 | 1.7 | ŏ | 0 | ŏ | 0 | 0 | Ö | 6 | | | 3.5
2.1 | 481 | 202 | 31
38 | 2 4 | 2.1 | 6 1 | 0 | 0 | 0 | ŏ | l ŏ | | á | 2.5 | 466 | 3000 | 34 | £ A | 2.8 | 0 | ŏ | ŏ | ă | l ŏ | ŏ | | 5 | 2.4 | 441 | 2930 | 33 | | 2.8 | 0 1 | ŏ | ŏ | Ĭ | l ŏ | ŏ | | ı | 2.6 | 441 | 2930 | 1 37 | | 1.7 | | ŏ | | ₹ŏ | ا o | | | | ۵.۵ | l' | 2330 | . 23. | | | · · · · · · · · · · · · · · · · · · · | | | · | | | | | 80.8 | | 18269.0 |) | 1931 | | 5.3 | | 0 | - | 0 | | | | | 25119 | | 2863.0 | | 332 | | 0 | | 0 | | 0 | | N | 2.61 | 83.7 | 589 | 92.4 | 6.90 | 1.07 | 0.18 | 0 | 0 | 0 | 0 | 0 | | E | 160 | 4,980 | 36,240 | 5,680 | 383 | 66 | 10. | 0 | 0 | 0 | 0 | 0 | #### STATION E281-R SAN GABRIEL RIVER below Santa Fe Dam - LCCATION: LAT. 34°06'43". LONG. 117°58'07", ON THE LEFT BANK OF STILLING BASIN OUTLET OF SANTA FE DAM. 0.3 MILE NORTH OF ARROW HIGHWAY AND 1.5 MILES NORTH OF BALDWIN PARK. ELEVATION OF GAGE ABOUT 400 FEET. - DRAINAGE AREA: 231 SQUARE MILES. SPILLWAY FLOW FROM SANTA FE DAM WILL BE PASSED TO RIO HONDO. - CHANNEL AND CONTROL: CHANNEL A STILLING BASIN LOCATED IN THE OUTLET CHANNEL IMMEDIATELY BELOW SANTA FE DAM, CONTROL 194,84 FOOT CONCRETE OVERFLOW SECTION TO THE SAN GABRIEL RIVER AND 5 GATED OPENINGS TO THE RIO HONDO DIVERSION CANAL. STATION E281-R RECORDS WATER SURFACE ELEVATION IN THE STILLING BASIN. - DISCHARGE MEASUREMENTS: LOW FLOW MEASUREMENTS MAY BE MADE ON LIP OF BASIN BELOW GAGE HEIGHT 2,5 FEET. HIGH FLOW MEASUREMENTS MAY BE MADE FROM CABLE CAR 1,000 FEET BELOW GAGE. - RECORDER: INSTALLED FEBRUARY 9, 1943, OVER A 6 FT. X 5 FT. CONCRETE STILLING WELL. A STEVENS A-35 RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. - REGULATION: FLOW PARTIALLY REGULATED BY SAN GABRIEL DAMS NO. 1 AND NO. 2 AND MORRIS DAM. AT PRESENT THERE ARE NO GATES IN SANTA FE DAM. - DIVERSION: THERE ARE DIVERSIONS FOR IRRIGATION, POWER DEVELOPMENT AND SPREADING, DISCHARGES OVER THE SPILLWAY OF DAM FLOW TO THE RID HONDO AND ARE NOT RECORDED AT THIS STATION. FIVE GATED OPENINGS ON THE WEST SIDE OF THE STILLING BASIN MAY DIVERT FLOW TO A DIVERSION CANAL TO THE RID HONDO. SUCH DIVERSIONS ARE MEASURED AT STATION F280-R. - RECORDS AVAILABLE: RECORDER RECORDS FEBRUARY 9, 1943 TO SEPTEMBER 30, 1947. FOR MEASUREMENTS PRIOR TO FEBRUARY 9, 1943, SEE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT STAFF GAGE STATION F247-S AT ARROW HIGHWAY. EXTREMES OF DISHARGE: 1845-1946 MAX MIMM 1600 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW MOST OF YEAR. 1846-1947 MAXIMUM 2,590 SECOND-FEET, DECEMBER 31, MINIMUM NO FLOW MOST OF YEAR. 1942-1945 MAXIMUM 6,700 SECOND-FEET, JANUARY 24, 1943-MINIMUM NO FLOW MOST OF EACH YEAR. ACCURACY: GOOD. 403. .6 22 0 321. .6 22 0 337 446. 337. .91 389. 0.82 121 9-18 122 9-23 COOPERATION: RECORDS FURNISHED BY CORPS OF ENGINEERS, U.S. ARMY, AND THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH, WITH THE EXCEPTION OF 16 DISCHARGE MEASUREMENTS FURNISHED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE CORPS OF ENGINEERS, U.S. ARMY, AND THE UNITED STATES GEOLOGICAL SURVEY, | | DISCHARGE | MEABURE | SAN GAB | RIEL RIVE | .R | | | | | | | | | | DISCHARGE | MEABURE | MENTS OF SAN | GABRIE | LRIV | ER | | | | | | | |-----|-------------|--------------|--------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------|------|--------|-------------|--------------|------|---------------|----------------|------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------|--------------------------|---------| | | | below | Santa Fe Dam | | | DUR | Y SHT DAI | EAR ENDING | SEPTE | MBER | 30, 1 | <u>,</u> 46 | | | -A¥-
-HEAR | below | Santa Fe Dam | |
| DUR | ING THE Y | EAR ENDING | BEPTE | HBER | 30, 19_ | 47. | | NO. | DATE | BEQIN
END | HADE BY | WIDTH
FEET | AREA OF
SECTION
BQ. FT. | MEAN
VELOGITY
FT.PER BEG. | GAUGE
HEIGHT
FEET | DISCHARGE
GEO. FT. | RAT- M | E7H- | EAS. E | HANDE | MÉTÉR
NO. | NG. | DATE | END | MADE BY | WIDTH
FEET | AREA OF
BESTION
BO, FT, | MEAN
VELCOITY
ST.PER RED. | BAUGE
HEIGHT
FEET | DISCHARGE
SED. FT. | RAT- | ETH- HI | AW. B.
CO. CHA
TO: | HT. HET | | 102 | 12-22 | | U.S.E.D. | 334. | 433. | 0.91 | 11.30 | 395, | | .6 | 19 | 0 | | 1:23 | 11-21 | | U.S.G.S. | 195 | 110 | .60 | 10.62 | 66.3 | | .6 | 110 | 2 | | 103 | 12-23 | | " | 361. | 1020. | 1.39 | 12.37 | 1420. | | .6 | 21 - | 03 | | 124 | 11-22 | 1154A
1201P | | 17 | 9.6 | 1.40 | 10.32 | 13.4 | | .6 | ه ا ه | FC2 | | 104 | 12-23 | | MOON | 347. | 825. | 1.27 | 12.09 | 1050. | | .6 | 19 | 01 | FC22 | 125 | 11-27 | 220P
245P | ,, | 335 | 536 | 1.01 | | 508 | | | +. | 01 | | 105 | 12-26 | | | 344. | 717. | | 11.90 | | 1 | | 19 | | *** | 126 | 11-29 | 1055A
1122A | | 336 | 430 | 0.92 | | 396 | | T | 7 - | | | 106 | 12-27 | | U.S.G.S. | 194. | 325. | | 11.85 | | 1 | .2 | | | | 127 | 12-3 | 7122. | U.S.G.S. | 195 | 134 | | 10.77 | | | 1 | 2 0 | | | | | | | | | | 11.05 | and the second second | i | | 24 - | | | | | 1145A | MOON | | | 0.92 | | | | | | | | 107 | 1-3 | | U.S.E.D. | 337. | 443, | .92 | | 406. | I | - T | 20 | | | 128 | 12-4 | 1203P | ROCKENMEYER | CHANNE | LS | | 10.79 | *419 | H | .6 | 7 .0 | FC2 | | 801 | 1-14 | | * | 332. | 318. | 75 | | ,238 | H | .6 | 19 | 0 | | 1:29 | 12-5 | | U.S.G.S. | 195 | 145 | 1,04 | 10.80 | 151 | \vdash | 6 3 | 21 0 | _ | | 109 | 2-7 | | MOON | 14. | 7.7 | 1.17 | 10,28 | 9,0 | | .6 | 8 | 0 | FC22 | 130 | 12-6 | 227P | " | 195 | 212 | 1.52 | 11.16 | 322 | - | ناء. | 21 40 | - | | 10 | 2-7 | | U.S.G.S | 194. | 39.3 | .26 | 10.28 | 10.4 | | .6 | 23 | 0 | | 131 | 12-6 | 242P | | CHANNE | LS | | ļ | 405 | | .6 | | FC2 | | 11 | 2-8 | | ** | 194. | 44.6 | .27 | 10.27 | 12.1 | | .6 | 23 - | 01 | | 132 | 12-11 | 1100A
1210F | MOON
WADDICOR | CHANNE | s | | 10.73 | *360 | | .6 7 | 4 0 | F02 | | 12 | 2-9 | | MOON | 17.0 | 10.7 | 1,53 | 10.33 | 16.4 | | .6 | 9 | 0 | | 133 | 12-11 | | U.S.G.S. | 195 | 131 | 0.98 | 10.73 | 129 | | .6 | 1 0 | | | | 2-14 | | ,, | 14.0 | 8.4 | 1.25 | 10.30 | 10.5 | | .6 | 8 | 0 | | 134 | 12-18 | 310P | MOON | 20 | 13 | 1.57 | 10.38 | 20.4 | | .6 | 9 0 | FC2 | | - 1 | 2-15 | | U.S.G.S. | 194. | 42.7 | | 10.25 | | | _ | 22 | _ | | 135 | 1:2-20 | | U.S.G.S. | 195 | 58 5 | 0.30 | | | | .6 | 0 0 | | | 115 | | | | 194. | 31.0 | | 10.18 | 9,8 | 1 1 | | 22 | | · | 136 | 12-28 | 315P
405P | | 225 | 414 | 5.94 | | | | | | T | | | | | | 124. | 31.0 | | | | | | - | | | | | 440P | MOON | | | | | | \vdash | П | | 04 FC2 | | 15A | 3-30 | | MOON | | | | 10.78 | 130. | F | ST. | - | - | FC22 | 137 | 12-30 | 530P | LANG | 224 | 383 | 6.14 | | | | 2-8 | 7. 0 | | | 16 | 3-31 | | | CHANNE | LS | | 10.46 | 37.6 | | -6 | 15 - | -01 | - 11 | 138 | 12-31 | - | U.S.G.S. | 255 | 421 | 5.84 | 13.30 | 2460 | - | 6 4 | 3. +. | 14 | | 17 | 3-31 | | U.S.E.D. | 194. | 75.8 | .37 | 10.43 | 28.0 | | -6- | 21 | ٥ | | | | ļ | INCLUDES F | LOW TO R | O HOND | DIVER | FION | | 11 | + | _ | | | 18. | 4-1 | | U.S.G.S | 194. | 36.8 | :29 | .10.23 | 10.7 | | .5 | 21 - | -01 | | | | | | | | | | | | | | | | 19 | 9-11 | | U.S.E.D. | 334. | 381. | 77 | | 295. | | .6 | 37 | 0 | | | | | | | | | | | | | | | | 20 | 9-16 | | ** | 338 | 509. | .92 | | 468. | | .6 | 22 | 0 | | | | | | | | | | | | | | | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. E281-R_ | | | | | | H | YDRAULIC I | DIVISION | | | | | | |----------|---------------|----------------|---------|-----------|------------|------------|----------|----------|------|--------------|------------------|-------------------------| | oally di | scharge, in s | econd-feet of_ | SAN GAB | RIEL RIVE | R below Sa | nta Fe D | a.a. | | | , for the ye | ar ending Sept | tember 30, 19 <u>14</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 0 | 0 | 0 | 0 | 0 | ō | 5.0 | 0 | | 0 | 0 | 0 | | 2 | 0 | 0 | 0 | 29 | 0 | 0 | 4.4 | 0 | 0 | 0 | 0 | 0 | | 3 | 0 | 0 | 0 | 413 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | 0 | 0 | 0 | 402 | 0 | 0 | l o 1 | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 0 | 0 | 402 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 6 | 0 | 0 | 0 | 384 | 8.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | 0 | 0 | 0 | 310 | 8.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8 | 0 | 0 | 1 0 | 308 | 6.9 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | | 9 | 0 | 0 | 0 | 234 | 10 | 0 | 101 | 0 | 0 | 0 | 0 | 0 | | 10 | 0 | 0 | 0 | 234 | 12 | | 0 | 00 | 0 | 0 | 0 | 12 | | 11 | 0 | o | 0 | 246 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 334 | | 12 | 0 | 0 | 0 | 246 | 13 | 0 | 0 | Q | 0 | 0 | 0 | 340 | | 13 | 0 | 0 | 0 | 242 | 14 | 0 | 0 | ò | 0 | 0 | 0 | 493 | | 14 | 0 | 0 | O O | 238 | 9.5 | 0 | 0 | 0 | 0 | 0 | 0 | 493 | | 15 | 0 | 0 | 0 | 242 | 5.4 | <u> </u> | 0 | <u> </u> | 0 | O O | 0 | 493 | | 16 | 0 | 0 | 0 | 224 | 4.7 | o | 0 | 0 | 0 | ō | 0 | 493 | | 17 | 0 | 0 | 0 | 183 | 1.8 | 0 | 0 | 0 | l o | 0 | 0 | 498 | | 19 | 0 | 0 | 0 | 180 | 0 | 0 | 0 | Ó | 0 | 0 | 0 | 417 | | 20 | 0 | 0 | 0 | 183 | ا و ٥ | Ó | . 0 | o o | Ŏ | 0 | 0 | 365 | | 21 | 0 | 0 | - 8- | 183 | 1.4 | 0 | . 0 | 0 | 0 | 0 | 0 | 323 | | 22 | | 0 | 434 | 110 | 0 4 | ö | 0 | ŏ | 0 | 0 | 0 | 327 | | 23 | 0 | 0 | 1140 | 2.7 | 0 0 | ŏ | 0 | ŏ | 0 | 0 | 0 | 323 | | 24 | ŏ | 0 | 930 | 5.7 | ŏ | ŏ | 0 | ö | 0 | 0 | 0 | 323 | | 25 | Ô | 0 | 910 | ŭ | | ŏ | | ٥ | | 0 | % | 327 | | 26 | 0 | T - 0 | 900 | 0 | 8 | 0 | 0 | 0 | 1 0 | 0 | 8 | 282 | | 27 | ŏ | ŏ | 525 | 0 | ŏ | ŏ | ŏ | ŏ | 0 | 0 | 0 | 3.6 | | 28 | ŏ | 0 | 10 | Ö | ŏ | ŏ | 0 | ŏ | 6 | 6 | ŏ | م ده | | 29 | ŏ | 0 | 1 6 | | | ŏ | 0 | ŏ | ŏ | 0 | ŏ | 0 | | 30 | ŏ | 0 | 0 . | 1 8 | | 35 | 0 | ŏ | 0 | 0 | ŏ | 0 | | 31 | õ | | - ŏ | l ŏ | | 38 | | ŏ | | - ŏ | ŏ | | | | | | | <u> </u> | | | | | | | | | | | 0 | 0 | 48493 | 5178.7 | 131.8 | 73.0 | 9 .4 | 0 | 0 | 0 | 0 | 6 169 6 | | IEAN | | | 1 | | | | | | T | Т. | T | T | | CRE- | 0 | 0 | 156. | 167 | 4.71 | 2.4 | -31 | 0 | | | • - | 206. | | | 0 | 1. 0 | 9,620. | 10,270. | 261. | 145. | 19. | 0 | | 0 | 1 0 | 12.240. | | | Remarks: | | | | | | | | | YEAR ME | | 5.0 | | | | | | | | | | | | PERIOD ACR | E-FEET | 32,560. | F. C. Dist. Porm 52 4-48 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sts. No. E281-R | Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | ау | |----------|------|----------------|----------|----------|--------------|----------|-------------|--------|-------------|------------------|----------|----| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1560 | 402 | 0 | 0 | 1 | | 0 | 0 | 0 | Q | o i | o l | o o | 0 | 8.8 | 411 | 0 | 0 | 2 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 411 | 0 | 0 | 3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 4.21 | 0 | o | 5 | | 8 | - 6 | - 8 | - 6 - | | | - 8 | | - 6 | 426
412 | 8 - | 0 | 6 | | ö | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 0 | 380 | ŏ | ŏ | 7 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 375 | ŏ | ŏ | 8 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | l ŏ l | 370 | l ŏ i | ŏ | 9 | | ŏ | ă l | ŏ l | o l | ŏ | ō | Ö | ō | l ŏ l | 366 | Ŏ | ŏ | 10 | | 0 | ō | Ö | 0 | 0 | o ' | Ō | Ó | 0 | 362 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 362 | 0 | 0 | 12 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 362 | 0 | 0 | 13 | | Ō | 0 | o | 0 | 0 | 0 | o l | 0 | 0 | 362 | 0 | o o | 4 | | 8 | - 8 | 8 | <u> </u> | 0 | <u>&</u> | <u>o</u> | <u>o</u> | 0 | 362 | 3.5 | <u> </u> | 15 | | ŏ | 8 | ö | 0 | 0 | 0 | 0 | 0 | o o | 356
48 | 0 | ò | 17 | | ö | 8 | ŏ | 0 | 0 | ŏ | ŏ | 0 | 0 | 20 | 0 | 0 | 18 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 19 | ŏ | ŏ | 9 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 18 | 152 | ŏ | 20 | | Ö | 0 | Ö | ŏ | Ö | Ō | Ō | Ŏ. | ō | 15 | 50 | ō | 21 | | Ō | o l | 0 | o | 0 | Ó | Ö | 0 | 0 | 15 | 13 | Ö | 22 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 3.5 | 0 | 23 | | 0 | o | o | o l | o | o l | o l | o . | 0 | 16 | 30 | 0 | 24 | | 0 | 0 | 0 | o | <u> </u> | <u>o</u> | | 0 | 0 | 70 | 13 | Q | 25 | | 0 | 0 | 0 | o
O | 0 | o o | 0 | o o | 0 | 259 | 0.6 | 0 | 27 | | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 193
1490 | 388
449 | 0 | 20 | | ŏ | 8 | ŏ | 0 | ŏ | ŏ | ŏ | ١ | | 2550 | 414 | ŏ. | 19 | | ŏ | ŏ | ŏ | 6 | ŏ | ŏ | ŏ | | | 2540 | 398 | ŏ | 30 | | <u>`</u> | ŏ | ŏ | | ŏ | | ŏ | | lŏb | 2540 | | ŏ | 31 | | | 0 | | 0 | | 0 | | 0 | | 15949.0 | | 0 | | | 0 | U | 0 | | 0 | | o | | 1568.8 | 15949. | 19461 | | | | 0 | 0 | 0 | o | • | 0 | 0 | . 0 | 50.6 | 514 | 64.9 | 0 | AN | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3110 | 31630 | 3860 | 0 | ET | | 600 | | EAR MEAL | Y | | | | | | | | Remarks: | | #### STATION F261B-R SAN GABRIEL RIVER at Valley Boulevard - LCCATION: WATER-STAGE RECORDER, LAT. 34°C3'25". LONG. 118°C0'25". ON THE RIGHT (WEST) ABUTMENT ON THE DOWNSTREAM SIDE OF VALLEY BOULEVARD BRIDGE ABOUT 1.8 MILES SOUTHEAST OF EL MONTE. ELEVATION OF ZERO GAGE HEIGHT. 270.69 FEET. - DRAINAGE AREA: 7.5 SQUARE MILES (EXCLUSIVE OF 231 SQUARE MILES ABOVE SANTA FE DAM.) - CHANNEL AND CONTROL: SHIFTING SAND AND GRAVEL. BANKS PROTECTED BY PILING AND WIRE MESH. CHANNEL FORMS CONTROL. - DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BYWADING. HIGH FLOWS MEASURED FROM HIGHWAY BRIDGE. - RECORDER: INSTALLED MARCH 11, 1937 OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE WELL. A HORIZONTAL RATIONAL RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO APRIL 23, 1946. RECORDER REMOVED IN SUMMER OF 1946. - REGULATION: FLOW PARTIALLY REGULATED BY SAN GABRIEL DAMS NO. 1 AND 2, MORRES DAM, SANTA FE DAM. - DIVERSIONS: THERE ARE ALSO SEVERAL DIVERSIONS FOR IRRIGATION, SPREADING AND POWER DEVELOPMENT. RECORDS AVAILABLE: STATION F261-R - MARCH 11, 1937 TO SEPTEMBER 30, 1941. STATION F2618-R - OCTOBER 1, 1941 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXINUM 1470
SECOND-FEET, DECEMBER 23 (ESTIMATED) MINIMUM NO FLOW MOST OF YEAR. MINIMUM NO FLOW MOSI OF TEAR. 1946-1947 MAXIMUM 3000 SECOND-FEET, DECEMBER 30 (ESTIMATED) MINIMUM NO FLOW MOST OF YEAR. 1941-1947 MAXIMUM 9400 SECOND-SEET, ESTIMATED, JANUARY 23, 1943. MINIMUM NO FLOW PART OF SOME YEARS. ACCURACY; POOR. MEAN DAILY FLOWS INTERPOLATED BETWEEN MEASUREMENTS BY COMPARISON WITH SANTA FE DAM OUTFLOWS, AND DISCHARGES OF THE SAN GABRIEL RIVER AT BEVERLY BOULEVARD, RECORDER RECORD NOT RELIABLE DUE TO INFREQUENT COMMUNICATION. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE SAN GABRIEL VALLEY PROTECTIVE ASSOCIATION. REMARKS: STATION ESTABLISHED PRIMARILY TO DETERMINE PERCOLATION LOSSES IN THE MAIN SAN GABRIEL BASIN. WALNUT CREEK DISCHARGE IS NOT INCLUDED IN THIS RECORD. RECORDER RECORDS WERE DISCONTINUED DUE TO EXTREMELY POOR RATING CONDITIONS. | | | | | | | | | | | | | | | H . | |--------|-----------|----------------|---------------------------------------|-------------|---------|------------------|-----------------|-----------------------|---------------|--------|-------------|----------|---|------| | | DIRCHARGE | HEABUREH | KNTB DF | SAN GAE | RIEL R | IVER | | | | | | | | HO. | | | | Valie | y Boulevard | | | OURIN | D THE YE | AR ENDING | # EPTI | EMBER | 30, | 1=116_ | | 194 | | ND. | DATE | PEG(H | NADE BY | WIDTH | AREA DF | HEAN
VELOCITY | GAUGE
HEIGHT | DISCHARGE
MEG. FT. | HAT- | 4ETH- | ingo. | G. HT. | METER
NO. | 195 | | | | 951A | | | MQ. FY. | T. PER BEG. | FEET | 34.0.7.1 | | | NO. | TOTAL | - | 196 | | 174 | 10/4 | 955A | BREWSTER | 0.5 | 0.12 | 0.25 | 1.74 | 0.03 | | | 1 | 0 | FC12 | | | | | 1020A | - | | T | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 193 | | 175 | 10/11 | 1024A | | 0.5 | 0.11 | 0.25 | 1.68 | 0.03 | | , € | 1 | 0 | ₩- | 198 | | 176 | 10/18 | 1011A
1015A | | 1.0 | 0.12 | 0.17 | 1,38 | 0.02 | i | ۱., | 2 | 0 | | | | | 1 | 1002A | | 1 | 1 | 1 | .,,,,, | 1 | T | 1 | 1 | | | 199 | | 177 | 1/3 | 1010A | . '' | 4.0 | 0.80 | 1.10 | | 0.88 | ↓_ | €ــــا | 4 | | ٠. | 200 | | 178 | 1/10 | 930A | ,, | 4.0 | 1.00 | 0.99 | | 0.99 | | Ι.6 | 4 | | | - | | 178 | 1/10- | 953A | | 4.0 | 11.00 | 0.95 | _ | 0.33 | 1- | 1 | 1- | t | 1 | 20 | | 179 | 1/17 | 1002A | | 8.0 | 2.00 | 0.55 | | 1.1 | _ | .6 | 4 | <u> </u> | | 1 | | | 1 . | 1000A | | | 1 | | | ١ | l | ١. | ١. | | | 1 | | 180 | 1/24 | 1010A
1007A | | 8.0 | 2.00 | 0.70 | | 1.4 | ┼ | 6 | 4. | | | | | 181 | 1/31 | 1016A | ** | 8.0 | 2.20 | 0.73 | | 1.6 | | . 6 | 4 | | | 1 | | | | 1002A | ., | | T | | | | Т | | Ι. | | | 1 | | 182 | 2/7 | 1012A | | 8.0 | 1.80 | 0.89 | | 1.6 | ┼ | | 4 | | | 1 | | 183 | 2/14 | 1003A | ** | 8.0 | 1.72 | 0.70 | | 1.2 | 1 | . 6 | 4 | | | 1 | | | 1 | 953A | | *** | 1 | | | | | | | | | ı | | 184 | 2/21 | 1001A | | 8.0 | 1.72 | 0.70 | | 1.2 | ــــ | . 6 | 4 | | | 4 | | 405 | 2/28 | 950A
959A | | 7.0 | 1.48 | 0.74 | | 1.1 | | . 6 | 4 | ļ | | 1 | | . 1.85 | 2/28 | 1000A | | | 1.40 | -0.74 | | 1 | ┼ | | | | | | | 186 | 3/7 | 101GA | WADDICOR | 4.5 | 0.83 | 0.81 | | 0.67 | L_ | .6 | 5 | | FC22 | 1 | | | | 937A | | 1 | 1.09 | 0.86 | | 0.94 | i | ا ا | 4 | ĺ | FC12 | ı | | 187 | 3/14 | 945A
953A | 8REWSTER | 4.0 | 1.09 | 0.00 | | 0.54 | ╆~ | | - | | | 1 | | 1.88 | 3/21 | 1002A | | 6.0 | 1.20 | 0.92 | L | 1.1 | l | 6 | 4 | | | ll . | | | 1 | 830A | | | | | | | Γ | | | | | | | 189 | 3/28_ | 840A | | 8.0 | 1.72 | 0.76 | | 1.3 | <u> </u> | € | 4- | <u></u> | | ıl. | | 190 | 1/4 | 930A
940A | | 8.0 | 2.28 | 0.88 | | 2.0 | 1 | ١., | 4 | | | ŀ | | | T | 955 A | | 1 8.0 | 1 5.40 | J | | | 1 | Τ, | 7 | | | 1 | | . 191 | 4/11 | 1005A | .14 | 4.0 | 1.43 | 1.05 | L | 1.5 | ــــ | | 4 | | ** | ı | | 100 | 1 | 956A | | 5.0 | 1 . 40 | 0.96 | | 1.4 | 1 | Ι, | 5 | | | ıl | | 192 | 4/18 | 1006A
952A | · · · · · · · · · · · · · · · · · · · | 1-3.0 | 1.46_ | 0.96 | | 1.4 | + | | 1 3 | | - | ď | | 193 | 4/25 | 1001A | | 6.0 | 1.65 | 0.91 | L | 1.5 | L | . 6 | 4 | l | | ıl | | 94
95 | 5/2 | 947A
956A | | | | | | | | | | | | |----------|----------------------|---|--|--|--|---|--|---|--|--|---|---|---------| | | | | BREWSTER | 4.0 | 1.23 | 0.98 | | 1.2 | | .6 | 4 | | FC12 | | 90 | 5/9 | 941 A
952A | ** | 4.0 | 1,28 | 0.94 | | 1.2 | | .6 | 4 | | | | 96 | 5/16 | 939A
950A | | 4.0 | 1.32 | 0.76 | | 1.0 | | _6 | 4 | | | | 97 | 5/23 | 951A
959A | | 4.0 | 0.98 | 0.86 | | 0.84 | | 6. | 4 | | | | 98 | 5/31 | 1000A | | 2.0 | 0.62 | 1.34 | | 0.83 | | -6 | 4 | | | | 99 | 6/7 | 944A | | 4.0 | 1.04 | 0.24 | | 0.25 | | .6 | 4 | | | | 00. | 6/13 | 951A | ** | 1.5 | 0.32 | 0.69 | | 0.22 | | .6. | 3 | | <u></u> | | 01 | 6/20 | 948A
952A | ., | 2.0 | 0.22 | 0.18 | | 0.04 | | .6. | 2 | | | | | 97
98
99
00 | 97 5/23
98 5/31
99 6/7
00 6/13 | 96 5/16 950A
97 951A
97 5/23 959A
98 951A
98 5/31 1000A
99 6/7 944A
90 6/13 951A
948A | 96 5/16 950A 97 5/23 951A 98 5/21 1000A 99 6/7 944A 99 6/7 945A 945A 945A 945A | 96 5/16 950A ··· 4.0 97 5/23 959A ··· 4.0 98 5/31 1000A ··· 2.0 99 6/7 944A ··· 4.0 99 6/7 945A ··· 4.0 00 6/13 951A ··· 1.5 | 96 5/16 950A ·· 4.0 1.32
97 5/23 951A ·· 4.0 0.98
98 5/21 1000A ·· 2.0 0.62
99 6/7 944A ·· 4.0 1.04
99 6/7 944A ·· 4.0 1.04
945A ·· 4.0 1.04
945A ·· 4.0 1.04 | 96 5/16 9506 " 4.0 1.32 0.76 97 5/23 9594 " 4.0 0.98 0.66 98 5/31 1000A " 2.0 0.62 1.34 99 6/7 9444 " 4.0 1.04 0.24 00 6/13 9514 " 1.5 0.32 0.69 | 96 5/16 950A ·· 4.0 1.32 0.76 971A 971 4.0 0.98 0.86 97 5/23 9591A ·· 4.0 0.98 0.86 951A 951A 951A 951A 951A 951A 951A 951A | 96 5/16 950A ·· 4.0 1.32 0.76 1.0. 97 5/23 959A ·· 4.0 0.98 0.86 0.84 98 5/31 1000A ·· 2.0 0.62 1.34 0.83 99 6/7 944A ·· 4.0 1.04 0.24 0.25 00 6/13 951A ·· 1.5 0.32 0.69 0.22 | 96 5/16 950A ·· 4.0 1.32 0.76 1.0
97 5/23 953A ·· 4.0 0.98 0.86 0.84
98 5/31 1000A ·· 2.0 0.62 1.34 0.83
99 6/7 944A ·· 4.0 1.04 0.24 0.25
99 6/7 945A ·· 4.0 1.04 0.24 0.25
00 6/13 951A ·· 1.5 0.32 0.69 0.22 | 96 5/16 950A ··· 4.0 1.32 0.76 1.0 6. 97 5/23 953A ··· 4.0 0.98 0.86 0.84 6. 98 5/31 1000A ··· 2.0 0.62 1.34 0.83 6. 99 6/7 944A ··· 4.0 1.04 0.24 0.25 6. 00 6/13 951A ··· 1.5 0.32 0.69 0.22 6. | 96 5/16 950A ··· 4.0 1.32 0.76 1.0 6 4 97 5/23 953A ··· 4.0 0.98 0.86 0.84 .6 4 98 5/31 1000A ··· 2.0 0.62 1.34 0.83 .6 4 99 6/7 944A ··· 4.0 1.04 0.24 0.25 6 4 0.64 0.64 0.64 0.64 0.64 0.64 0.64 | 96 | | | | | SAN GA | 991E1 B | IVED | | | | | | | | | | | , | <u> </u> | , | | , | | | | | | | |------|---------|----------------------|-------------------|---------|-------------------------------|------------------|-----------------|---------------------|----------|-------|------------|--------|-------|-----|-------|----------------------|-----------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|---------|----------|--------------| | | | | MENTA OF | | | | | | | | | | | ND. | DATE | BEGIN | - MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELODITY
FT.FER SEC. | DAUGE
HEIGHT
YEET | DISCHARGE
MEG. FT. | RAT- MI | ETH- ME | D. CHANG | HETER
HD. | | | THE AR | Valle | ay Boulevard | | | DUR | ING THE Y | TAR ENDING | 9 8EPT | ЕМВЕ | R 30, | 19.47 | - | 223 | 4-24 | 945A
950A | ** | 4.0 | 0.64 | 0.55 | | 0.35 | 1. | 6 | | | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BESTION
BQ. FY. | ŘEAN
VELODITY | QAUBE
HEIGHT | DISCHARGE | RAT- | нетн- | HEAS. | B. HT. | METER | 224 | 4-30. | 1115A
1125A | .,, | 3.0 | 0.66 | 0.42 | | 0.28 | | .5 | II. | ** | | | | | BREWSTER - VINES | | 1 | FT.PER BEG. | FEET | SEC. FT. | 1NO | | NO. | TOTAL | HO. | 225 | 5-7 | 1135A
1140A | | 3.5 | 0.65 | 0.42 | | 0.27 | | 6 | | - 44 | | 203 | 12-5 | 910A
920A | | 16.0 | 5.60 | | | 10.7 | | •6 | | | FC12 | 226 | 5-14 | 1110A
1115A | | 1.5 | 0.35 | 0.71 | ļ | 0.25 | _ . | 6 | 3 | | | 204 | 12-12 | 840A
850A | | 18.0 | 16.0 | 2.38 | | 38.1 | \vdash | .6 | 6 | | | 227 | 5-21 | 1035A
1040A | *** | 4.0 | 0.44 | 0.59 | | 0.26 | FLO | ATS | | | | | 12-19 | 950A
956A | | 18.0 | 9.40 | 0.78 | | 7.3
0.39 | | .6 | . <u>5</u> | | - | 228 | 5-29 | 920A
925A | ** | 3.5 | 0.55 | 0,60 | | 0.33 | | • | 1 | | | 206 | 12-27 | 915A
925A | T | | 34.8 | 2.37 | | | | •6 | 7 | | | 229 |
6+5 | 930A
935A
930A | ** | 2.0 | 0.20 | 0.50 | | 0.10 | | - | 4 | | | _207 | 1-3 | 940A
950A | BREWSTER | 10.0 | 2.20 | | | 82. <u>5</u>
2.5 | | .6 | 5 | | | 230 | 6-12 | 935A
935A | -11 | 2.0 | 0.20 | 0.55 | | 0.11 | | - | 2 | | | 208 | 1-9 | 940A
950A | | 9.0 | 1.72 | 1 | | 1,3 | | .6 | 5 | | | 231 | 6-19 | 940A
955A | ~*** | 3.0 | 0.44 | 0.48 | | 0.21 | - | - | 3 | | | 209 | 1-16 | 935A
945A | | 8.0 | 1.48 | 0.74 | | 1.1 | | .6 | 4 | | ••• | 232 | 6-25 | 1000A | -34 | 1.4 | 0.14 | 0.29 | | 0.04 | - | 5 | 2 | FC37_ | | 210 | 1-23 | 930A
940A | | 8.0 | 1.36 | 0.88 | | 1.2 | | .6 | 4 | | | 233 | 6-25 | 1007A
920A | | 1.4 | 0.14 | 0.43 | | 0.06 | - | .5 | 2 | 1.44 | | 211 | 1-30 | 1000A
1010A | *** | 8.0 | 1.44 | 0,83 | | 1.2 | | .6 | 4 | | | 234 | 7-3 | 925A
930A | | 1.4 | 0.14 | 0.50 | | 0.07 | Η. | .6 | 2 | - | | 212 | 2-6 | 948A
959A | ** | 4.0 | 1.17 | 1.03 | | 1.2 | | .6 | 4 | | | 235 | 7-10 | 935A
940A | P | 1.4 | 0.16 | | | 0.05 | 1 1 | | 2 | -97 | | 213 | 2-13 | 955A
1005A | | 8.0 | 1.56 | 0.83 | | 1.3 | | .6 | 4 | | ., | 236 | 7-17 | 945A | ** | 1.4 | 0.15 | 0.33 | | 0.05 | 1-1: | 6 | 2 | ļ.,,_ | | 214 | 2-20 | 926A
936A
140P | BREWSTER-WADDICOR | 12.0 | 2.60 | 0.62 | | 1.6 |], | 6 | 6 | | | | | | | | | | | | | | | | | 215 | 2•26 | 150P
1107A | WADDICOR | 7.0 | 1.20 | 0.81 | | 0.97 | | 6 | 7 | | FC37 | | | | | | | | | | | | | | | 216 | 3-5 | 1117A
1040A | | 7.5 | 1.24 | 0.81 | | 0.95 | | 6 | 8 | | | | | | | | | | | | | | | | | 217 | 3-12 | 1050A | ** | 8.3 | 1.27 | 0.72 | | 0.91 | | 6 | 9 | | - | | | | | | | | | | | | | | | 218 | 3-19 | 1050A
1050A | | 9.5 | 1.27 | 0.60 | | 0.76 | ١. | 6 | 10_ | | | | | | | | | | | | | | | | | | 3-26 | 1058A
927A | | 4.9 | 0.87 | 0.90 | | 0.78 | _ | 6 | 6 | | • | | | | | | | | | | | | | | | 220 | 4-2 | 935A
1100A | | 5.4 | 1.13 | 0.87 | | 0.98 | | 6 | 6 | | - | | | | | | | | | | | | | | | P. a. bi | ist. Form 52 4-46 | | | | FLC
H | LOS ANGELES
OOD CONTRO
FDRAULIC I | OL DISTRICT
DIVISION | : | | | Sta. 1 | NoF26↓B-F | |---|---|--------------|---|---|---|---|---|---|---|-------------|-------------------|-----------------| | Daily | discharge, in se | cond-feet of | SAN GA | BRIEL RIV | ER at Val | ley Boule | vard | | | , for the y | ear ending Septer | nber 30, 19_ 46 | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 4 5 5 6 7 7 8 8 9 10 11 12 13 13 14 15 15 12 20 21 22 23 24 25 26 29 30 0 | * 0 1 0 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 099999990000000000000000000000000000000 | 166666611666111111111111111111111111111 | 100990880089009900000000000000000000000 | 111011011010000000000000000000000000000 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.000 4.00 4.00 4.00 4.00 4.00 4.00 4.0 | | | | | 31 | 0 1 | | 1 1.0 | 1.6 | | 1 .6 | | 8.0 | | 0 | 0 | | | | 0.65 | 0 4 | 1683 | 362 | 37 <i>3</i> | 319 | 46.6 | 31.0 | 5.4 | 0 | 0 | 0 | | MEAN | 0.02 | 0 | 134. | 1.17 | 1.33 | 1.03 | 1.55 | 1.00 | 0.18 | 0 | 0 | 0 | | ACRE- | 1.3 | 0 | 8,270. | 72. | 74. | 63. | 92. | 61. | 11. | 0 | | 0 | | | Remarks: | | | e year -
comparis | | | | between | | OR | RE-FRET 8 | 640. | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 261B-R | remarke, m. s | econd-feet of | VIII V | 1011165 111 | <u> </u> | lley Boul | C7414 | | | , for the yea | r enong septe | mber 30, 19_ 4 | |---------------|---|---------------------------------------|--|--|---|--|---|---|--
--|-----------------------| | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 0 | 0 | 0. S | 1500 | 1.2 | 1.0 | 1.0 | 0.3 | 0.2 | 0.1 | 0 | 0 | | 0 | | | | 12 | | 1.0 | | 0.2 | | | 0 | | | | | 2.5 | 12 | | | | | | | 0 | | | 0 | 10 | 2.3 | 1.2 | | | | | | | 0 | | | | 42 | 3.1 | 12 | | 1.0 | 0.3 | 0.1 | 0.1 | | 0 | | o | | | 1.9 | 12 | | | | 0.1 | | | 0 | | | | | 1.7 | 1.2 | | | | | | | 0 | | | | | 1.5 | 1.2 | 1.0 | | 0.3 | | | Q | 0 | | | | 10 | 1.3 | 12 | | | | | | | 0 | | | 1.0 | 7.0 | 13 | 1.3 | | O .B | | | | | 0 | | | | 7.0 | 1.3 | 1.3 | | | | | | | 0 | | | 1 1 2 | | 1.2 | 1.2 | | | | | | | 0 | | | | 5 4 | 1.2 | 1.3 | | | | | | | 0 | | | | 2 7 | 1.2 | 1.3 | | | | | | | 0 | | Ų | 7.0 | 4 2 | 14 | 1.4 | | 0.5 | | 0.7 | 0.1 | | 0 | | | | 3 2 | 1.1 | | | 0.5 | | 0.2 | 0.1 | | 8 | | | | | 1 4 | 7.5 | | | 0.3 | 0 2 | | | ŏ | | | 50 | 1 5.4 | 1 4 | 1.5 | | | | 0 2 | | | 0 | | | | 0.4 | 1 4 | | | | | | | | 0 | | | | 0.4 | | | | 0.5 | 0.3 | 0.2 | 0.4 | | - 6 | | | | | 1 1 | | | | | | | | ŏ | | | | 0.4 | 1 7 | 1.4 | | | 0.3 | | | | ŏ | | | | | 1 2 | | | | | | | | ŏ | | | 1 2 5 | | 1 2 | | | 0.4 | | 0 1 | | | ŏ | | | | | 1 2 | | | | 0.3 | | | ŏ | ŏ | | | | 1 7 6 | 1 2 | | | | 0.3 | 0.1 | | | ŏ | | | | | 1 2 | 1.0 | | 0.3 | | | | | ŏ | | ă | | 2380 | 1 2 | 1.5 | | 0.3 | 03 | | | | l ŏ | | | | 2400 | 1 2 | | | | 0.3 | | | | l ŏ | | ŏ | ~ .0 | | iã | | | | 0.3 | | ŏ | ŏ | | | | | | | ~ | | | | ~ ~ | | | <u>'</u> | | U | 401.8 | 30123 | 15491 |) J .8 | 27.6 | 19.0 | 9.3 | b. c | 22 | U | 0 | | 0 | 13.4 | 291 | 50.0 | 1.28 | 0.89 | 0.63 | 0.30 | 0.13 | 0.07 | 0 | 0 | | 0 | , | | | 71 | 55 | 38 | 18 | 7.5 | 4.4 | 0 | 0 | | iemarks: | Record | for entir | e year - | estimated | by inter | polating | between | 7 | TEAR MEAT | | 21,940 | | | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 20
0 0 20
0 0 30
0 0 42
0 0 65
0 0 30
0 1.8 20
0 1.8 70
0 15 65
0 7.0 42
0 7.0 42
0 7.0 32
0 7.0 23
0 24
0 10 04
0 15 07
0 15 07
0 15 07
0 15 07
0 12 3
0 13.4 291
0 797 17,880 | 0 0 2.0 1500 0 0 2.0 10 0 0 3.0 2.5 0 0 10 2.3 0 0 42 2.1 0 0 42 2.1 0 0 30 1.7 0 1.8 20 1.5 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.3 0 1.0 7.0 1.2 0 5.0 0.4 1.1 0 7.0 2.3 1.1 0 7.0 2.3 1.1 0 7.0 2.3 1.1 0 7.0 2.3 1.1 0 7.0 2.3 1.1 0 7.0 2.3 1.1 0 7.0 2.3 1.1 0 5.0 0.4 1.1 0 5.0 0.4 1.1 0 85 0.4 1.2 0 3.0 2.0 1.2 0 1.55 1.2 0 3.0 1.55 1.2 0 3.0 2.3 0 2.0 1.2 0 3.0 2.3 0 2.0 1.2 0 3.0 2.3 0 2.0 1.2 0 3.0 2.3 0 2.0 1.2 0 3.0 2.3 0 2.0 1.2 0 3.0 2.3 0 2.0 1.2 0 3.0 2.3 0 2.0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 3.0 2.3 0 2.0 2.4 0 1.2 0 7.0 1.5 0 7. | 0 0 2 0 1500 12 0 0 2 0 10 12 0 0 0 2 0 10 12 0 0 0 30 2 5 12 0 0 0 42 2 1 12 0 0 0 350 17 12 0 18 20 15 12 0 10 13 13 0 10 13 13 0 10 70 13 13 0 10 70 13 13 0 10 70 13 13 0 10 70 13 13 0 10 70 13 13 0 15 61 12 13 0 65 61 12 13 0 70 42 11 14 0 70 2 3 11 14 0 70 2 3 11 15 0 50 0 4 11 15 0 50 0 4 11 15 0 50 0 4 11 15 0 50 0 4 11 15 0 50 0 4 11 16 0 90 0 4 11 14 0 90 1 155 12 10 0 10 0 4 11 15 0 50 0 4 11 14 0 90 0 11 15 0 50 0 1 14 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 14 11 15 0 50 0 12 12 0 15 32 12 11 0 90 155 12 10 0 30 2380 12 0 2400 12 0 2400 12 0 797 17,880 3,070 71 | 0 0 2.0 1500 1.2 1.0 0 0 2.0 10 1.2 1.0 0 0 0 2.0 10 1.2 1.0 0 0 0 2.0 10 1.2 1.0 0 0 0 1.2 1.0 0 0 0 1.2 1.0 0 0 0 1.2 1.0 1.2 1.0 0 0 0 1.2 1.0 1.2 1.0 0 0 0 1.2 1.0 1.7 1.2 1.0 0 0 1.8 20 1.5 1.2 1.0 0 0 1.0 1.0 1.3 1.3 0.9 0 1.0 1.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 7.0 1.3 1.3 1.3 0.9 0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 | 0 0 2 0 1500 12 10 10 10 0 0 0 0 3.0 10 12 10 10 10 10 0 0 0 0 3.0 2.5 12 10 10 10 0 0 0 0 42 2.1 12 10 10 10 0 0 0 0 42 2.1 12 10 0 10 0 0 0 0 3.0 1.7 12 10 0 0 0 0 1.8 20 1.7 12 10 0 0 0 0 1.0 10 10 1.5 12 10 0 0 0 0 1.0 10 10 13 12 0 0 0 0 0 0 0 0 0 1.0 10 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 2.0 1500 1.2 1.0 1.0 0.3 0 0 2.0 10 1.2 1.0 1.0 0.3 0 0 3.0 2.5 1.2 1.0 1.0 0.3 0 0 42 2.1 1.2 1.0 1.0 0.3 0 0 42 2.1 1.2 1.0 1.0 0.3 0 0 65 1.9 1.2 1.0 0.9 0.3 0 1.8 20 1.5 1.2 1.0 0.9 0.3 0 1.8 20 1.5 1.2 1.0 0.9 0.3 0 1.0 1.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. | 0 0 2 0 1500 12 10 10 03 02 00 0 0 3 02 00 0 0 3 02 00 0 0 10 12 10 10 03 02 00 0 0 10 12 10 10 03 02 00 0 0 10 25 12 10 10 10 03 02 00 0 10 25 12 10 10 10 03 02 01 0 0 0 4 11 15 08 05 03 01 0 10 0 10 0 10 13 12 10 0 10 0 10 | 0 0 2.0 1500 1.2 1.0 1.0 0.3 0.2 0.1 0 0 0 2.0 10 1.2 1.0 1.0 0.3 0.2 0.1 0 0 0 3.0 2.5 1.2 1.0 1.0 0.3 0.2 0.1 0 0 0 10 2.3 1.2 1.0 1.0 0.3 0.2 0.1 0 0 0 42 2.1 1.2 1.0 1.0 0.3 0.1 0.1 0 0 0 65 1.9 1.2 1.0 0.9 0.3 0.1 0.1 0 0 1.8 20 1.5 1.2 1.0 0.9 0.3 0.1 0.1 0 1.0 1.0 1.3 1.2 1.0 0.9 0.3 0.1 0.1 0 1.0 1.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 1.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 1.0 7.0 1.3 1.3 0.9 0.8 0.3 0.1 0.1 0 0 1.0 7.0 1.3 1.3 0.9 0.7 0.3 0.1 0.1 0 0 1.0 7.0 1.3 1.3 0.9 0.7 0.3 0.1 0.1 0 0 5.0 1.4 1.2 1.3 0.9 0.6 0.3 0.1 0.1 0 7.0 2.3 1.1 1.4 0.8 0.5 0.3 0.2 0.1 0 7.0 2.3 1.1 1.5 0.8 0.5 0.3 0.2 0.1 0 7.0 2.3 1.1 1.5 0.8 0.5 0.3 0.2 0.1 0 5.0 0.4 1.1 1.6 0.8 0.5 0.3 0.2 0.1 0 0 5.0 0.4 1.1 1.6 0.8 0.5 0.3 0.2 0.1 0 0 5.0 0.4 1.1 1.6 0.8 0.5 0.3 0.2 0.1 0 0 10 0.4 1.1 1.5 0.8 0.4 0.3 0.1 0.1 0 0 15 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5
3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.5 3.2 1.2 1.3 0.8 0.4 0.3 0.1 0.1 0 0 1.3 4 2.9 1 50.0 1.2 1.2 1.0 0.8 0.4 0.3 0.1 0.1 0 0 1.0 1.0 1.2 1.2 1.3 0.8 0.4 0.3 0.3 0 | 0 | #### STATION F263-R SAN GABRIEL RIVER at Beverly Boulevard - LOCATION: WATER-STAGE RECORDER, LAT. 34°00'20", LONG. 118°04'07", ON THE DOWN-STREAM SIDE OF THE BEVERLY BOULEVARD BRIDGE, 0.5 MILE EAST OF PICO. ELE-VATION OF ZERO GAGE HEIGHT, 174.43 FEET. - DRAINAGE AREA: 206.5 SQUARE MILES (EXCLUSIVE OF DRAINAGE AREA ABOVE SANTA FE DAM.) - CHANNEL AND CONTROL: CHANNEL SAND AND SILT. NO ARTIFICIAL CONTROL. - DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 145 FEET ABOVE STATION. - RECORDER: INSTALLED ON FEBRUARY 4, 1937. OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. - REGULATION: FLOW PARTIALLY REGULATED BY SAN GABRIEL DAWS NO. 1 AND NO. 2, MORRIS DAM, SANTA FE DAW, BIG DALTON DAM, PUDDINGSTONE DAW, LIVE OAK DAM, AND THOMPSON CREEK DAW. - DIVERSIONS: THERE ARE SEVERAL DIVERSIONS FOR IRRIGATION, POWER DEVELOPMENT, AND SPREADING. - RECORDS AVAILABLE: FEBRUARY 4, 1937 TO SEPTEMBER 30, 1947. (FOR RECORDS PRIOR TO FEBRUARY 4, 1937. SEE STATION F63-R, SAN GABRIEL RIVER AT WHITTIER BOLLEVARD IN PREVIOUS REPORTS. FOR RECORDS PRIOR TO 1929 SEE STATE DIVISION OF WATER RIGHTS BULLETINS V AND VI.) ### EXTREMES OF DISCHARGE: - MES UF DISAMPAGE. 1945-1946 MAXIMUM 4560 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW PART OF YEAR. - MINIMUM 10 1-3-... 1946-1947 1946-1947 MAXIMUM 3240 SECOND-FEET, DECEMBER 30... MINIMUM NO FLOW PART OF YEAR. ### ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | 1 | DISCHARGE | HEABUREH | ENTE OFS | AN GABE | RIEL RI | IVER | | | | | | _ | 1 | | DISCHARGE | HEARUR | EMENTS OFSAN | GABRII | L RIY | ER | | | | | | | | |-------|-------------------|-------------------------|---------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-------------|--------------------------|--|-----------------|------|-----------|-------------------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------------|------|-------------------|--------|----------------| | | AT Be | verly | Boulevard | | | bur | ING THE Y | CAR ENDING | MEPTE | HBER 2 | 30, 1 9 4 | 16 | | | AT NEAR | Beve | ly Boulevard | | | DUR | NB THE Y | EAR ENDING | BEPTE | HBER | 2 3D, 1 | o.117. | _ | | NO. | DATE | BESIN
END | MADE BY | WIDTH
FEET | AREA OF
BEOTION
BQ. FT. | HEAN
VELUCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | M -TAR | ETH- ME. | AS. S.
C. DHA!
701 | HT.
NGI
TAL | METER
NO. | ND. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FY. | NEAN
VELOCITY
FT.PER SED. | NAUDE
HEIBRT
FEET | DISCHARGE
SEC. FT. | RAT- M | ETH- | MEAB. G
BEC. G | HANGE | METER
NO. | | 482 | 10/18 | 1228P
1240P | BREWSTER | 8.0 | 1.40 | 0.64 | 3.72 | 0.89 | | .6 | 40 | 01 F | 012 | 517 | 10-31 | 1118A
1130A | BREWSTER | 12.0 | 3.64 | 1.10 | 3.18 | 4.0 | | .6 | _6 | 0 | FC12 | | 483 | | 1129A
1138A | | 6.0 | 1,20 | 0.83 | 3.75 | 1.0 | | .6 | 5 (| | | 51,8 | 11-17 | 1104A
1120A | | 16.0 | 4.88 | 1.02 | 3.22 | 5.0 | | .6 | 7 | 0 | .,, | | 484 | 11/1 | 1105A
1115A | BREWSTER
DILLEY | 12.0 | 2.72 | 0.92 | 3.83 | 2.5 | | .6 | 5 0 | <u>, </u> | | 519 | 11-12 | 1110A
1130A | | 56.0 | 21.0 | 1.47 | 3.48 | 30.9 | | .6 | 8 | 0 | | | 485 | 11/8 | 1100A
1114A | BREWSTER | 26.0 | 6.68 | 1.11 | 3.86 | 7.4 | _ . | .6 | 5 0 | , | | 520 | 11-13 | 437A
452A | BLAKELY-KASIMOFF | 61.0 | 73.5 | 2.46 | 3.96 | _181. | | .6 | 17 - | 01 | FC35 | | 486 | 11/15 | 1114A
1129A | | 20.0 | 4.00 | 0.90 | 3.76 | 3.6 | _ | .6 | 5 0 | | | 521 | 11-13 | 355P
415P | BREWSTER - VINES | 92.0 | 123. | 4.48 | 4.55 | 551. | | .6 | | | FC12 | | 4.87 | 11/23 | 1115A
1130A | | 29.0 | 7.70 | 1.06 | 3.86 | 8.2 | | .6 | в |) ·· | | 522 | 11-14 | 225P
245P | -41 - 40 | 90.0 | 93.0 | 2.72 | 4.04 | 253. | | .6 | 10 | 0 | | | 488 | 11/29 | 1105A
1121A | | 42.0 | 13.5 | 1.11 | 3,95 | 15.0 | _ | .6 | в (| o_ | | 523 | 11:15 | 1040A | BREWSTER | .51.0 | 36.1 | 1.94 | 3.58 | 70.2 | | .6 | _7 | . 0 | | | .489. | 12/6 | 1116A
1130A | ., | 57.0 _ | 14.3 | 1.03 | 3.95 | 14.8 | | .6 | 7 | 0 | | 524 | 11-20 | 1 35F
1 55P | BREWSTER + VINES | 90.0 | 101. | 3.09 | 4.15 | 312. | | .6 | 10 | 0 | | | 490 | 12/13 | 1108A
1126A | | 52.0 _ | 13.3 | 1.17 | 3.94 | 15.6 | - | .6 | 6 (| 0 " | | 525 | 11-22 | 952A
1010A | BREWSTER | _54.0 | 35.2 | 1,88 | 3,62 | 66.2 | Ц | .6 | 7 | 0 | * | | 491 | 12/20 | 1126A
1145A | ** | 56.0 | 11.7 | 0.99 | 3.96 | 11.6 | | .6 | 6 0 | 0 | C20 8 | 526 | 11-23 | 500P | KASIMOFF-THOMSEN | TWO CI | ANNELS | | 4.61 | 748. | | .6 | 21 - | 04 | FC47 | | 492 | 12/23 | 240A
320A | COLE
ROCKENMEYER | 311 | 968r | 2.87 | 5.42 | 1050 | | -6 1 | 9 (| | LOAT | 527 | 11-24 | 114P | BREWSTER-JOHNSON | 64.0 | 55.2 | 1.97 | 3.74 | 109. | | .6 | 7 | 0 | FC12 | | 493 | 12/27 | 110P
200P
1115A | BREWSTER | TWO CHA | NNELS | ļ | 5.00 | 857. | \sqcup | .6 1 | | | C12 | 528 | 11-29 | 950A
1005A | BREWSTER | 66.0 | 35.0 | 1.86 | 3.61 | 65.1 | Ш | .6 | 7 | 0 | · | | 494 | 1/3 | 1135A | | 62.0 | 37.6 | 1.87 | 3.75 | 70.3 | | . 6 | 7 1 | 0 . | | 529 | 12-5 | 1036A
1050A | | 70.0_ | 50.0 | 2.04 | 3.77 | 102. | | .6 | 7 | 0 | | | 495 | 1/10 | 1035A
1050A | | 68.0 | 36.4 | 1.96 | 3.72 | 71.2 | Ш | .6 | 8 | <u></u> | | 530 | 12-12 | 10204 | | 62.0 | 31.4 | 2,34 | 3.68 | 73.6 | | .6 | 7 | 0 | | | 496 | 1/17_ | 1115A
1135A | ** | 65.0 | 37.4 | 1.86 | 3.71 | 69.4 | | .6 | 8 | 0 . | | 531 | 12-19 | 1050A | ** | 57.0 | 34.8 | 1.90 | 3,68 | 66.3 | | .6 | 7 | 0 | | | 497 | 1/24 | 1100A
1120A | | 72.0 | 37.2 | 1.95 | 3.70 | 72.5 | | .6 | 8 | 0 . | | 532 | 12-26 | 1202P | BREWSTER - VINES | 94.0 | 123. | 4.03 | 4.51 | 496. | Ш | .6 | 10 | 0 | | | 498 | 1/31 | 1105A
1123A
1110A | | 66.0 | 42.7 | 1.76 | 3.68 | 75.1 | \sqcup | . 6 | 8 | 느 | | 533 | 12-27 | 1014A
1030A | ., ., | 56.0 | 65.4 | 2.31 | 3.99 | 151. | | .6 | 7 | 0 | | | 499 | 2/7 | 1130A
1120A | ** | 61.0 | 38.2 | 2.12 | 3.68 | 80.8 | | . 6 | 7 | 0 . | | 534 | 12-27 | 115F
136F | | 59.0 | 72.6 | 2.58 | 4.01 | 187. | Щ. | .6 | 13 | 0 | FC47 | | 500 | 2/14 | 11408 | | 78.0 | 45.0 | 1.79 | 3.67 | 80.7 | | .6 | 8 | V. | | 535 | 12-29 | 742A
817A | | 240. | 480. | 5.98 | 6.13 | 2870. | | .6 | 22 | 05 | FC19 | | _50.1 | 2/21 | 1058A
1114A
1050A | | 68.0 | 41.5 | 1.93 | 3.69 | 80.1 | | | | <u> </u> | - | 536 | 12-29 | 838A
755A | - | 230. | 477. | 6.08 | 6.10 | 2900. | | .6 | 16 | 0 | | | 502 | 2/28 | 1110A
1115A | | 75.0 | 47.4 | 1,70 | 3.68 | 80.8 | | .6 | | 9 | | 537 | 12-31 | 830A | * | 232. | 445. | 6.80 | 5.93 | 3020. | | .6 | 22 | 04 | | | 503 | 3/7 | 1133A
1046A | ** | 72.0 | 40.8 | 1.82 | 3.67 | 74.3 | \vdash | .6 | 8 | 0_ | - | 538 | 1-3 | 1110A
1130A
1055A | BREWSTER | 76.0_ | 38.4 | 1.95 | 3.20 | 74.8 | | .6 | 8 | 0 | FC12 | | 504 | 3/14 | 1107A
1058A | BREWSTER | 57.0 | 31.6 | 2.00 | 3.60 | 63.1 | \vdash | . 6 | 8 . | | C12 | 539 | 1-9 | 1115A | * | 84.0 | 44.3 | 1.75 | 3,29 | 77.3 | _ | .6 | 9 | 0_ | ļ - — | | 505 | 3/21 | 1116A
940A | | 65.0 | 37.2 | 1.94 | 3.70 | 72.1 | | .6 | 8 | <u>-</u> | | 540 | 1-16 | 1130A | ** | 88.0 | 42.4 | 1.84 | 3.33 | 78.0 | Н | .6 | .11 | 0_ | *** | | 506 | _3/28_ | 1001A | COLE | 62.0 | 44.4 | 2.02 | 3.73 | 89.6 | | .6 | 7 | ٥. | | 541 | 1-23 | 1122A | ** | 74.0 | 43.0 | 1.85 | 3,38 | 79.5 | - | .6 | 8 | 0 | - | | 507 | 3/30 | 1215P
1035A | HOMES | 60.0 | 91.5 | 4.31 | 4.46 | 395. | | 1 | | - 1 | C20 | 542 | 1-30 | 1124A | ** | 60.0 | 38.1 | 2.06 | 3.45 | 78.4 | | .6 | 7 | 0 | *** | | 508 | 4/4 | 1055A
1056A | BREWSTER | 72.0 | 48.8 | 1.99 | 3.68 | 97.3 | \vdash | | - 1 - | - | C12 | 543 | 2-6 | 11204 | - | 58.0 | 38.8 | 1.98 | 3.45 | 76.8 | $\vdash \vdash$ | .6 | 7 | 0 | | | 509 | 4/11 | 1112A
1100A | | 67.0 | 45.0 | 1,90 | 3.66 | 85.4 | H | $\neg \tau$ | | <u>-</u> | - | 544 | 2-13 | 1134A | * | 51.0 | 36.3 | 2.22 | 3.46 | 80.6 | | .6 | 6 | 0 | - | | 510 | 4/18_ | 1118A
1055A | <u> </u> | 78.0 | 43,2 | 1.70 | 3.55 | 73.6 | | | | ٠, | - | 545 | 2-20 | 1115A | BREWSTER-WADDICOR | 70.0 | 37.4 | 2,12 | 3,44 | 79.3 | - | .6 | 8 | 0 | | | 511 | 4/25 | 1113A
1108A | | 69.0 | 37.3 | 1.83 | 3.55 | 68.1 | H | | | 0 | | 546 | 2-26 | 1105A | WADDICOR | 57.0 | 34.8 | 1.92 | 3.40 | 66.7 | \vdash | .6 | 11 | 0 | FC37 | | 512_ | 5/2 | 1124A
1058A | | 72:.0 | 36.4 | 1.57 | 3.54 | 57.2 | \vdash | | 1- | - | | 547_ | 3-5 | 132F | | 70.0 | 50.1 | 1,91 | 3.51 | 95.6 | H | .6 | 10 | 0 | | | 513_ | _5/9 | 1114A
1106A | | 32.0 | 10,0 | 1.30 | 3,23 | 13.0 | ++ | | | - | | 548 | 3-12 | 130F | | 66.5 | 39.9 | 1,70 | 3.37 | 67.9 | \vdash | .6 | 11 | 0 | + | | 514_ | 5/16 | 1124A
1108A | | 46.0 | 13.0 | 1.22 | 3.28 | 15.9 | H | .6 1 | | 0 . | | 549 | 3-19 | 213F | | | ANNELS | _ | 3.15 | 47.0 | ++ | .6
 15 | 0 | | | -515 | 5/23_ | 1132A
1145A | | TWO CHA | 1 | , | 3.31 | 14.1 | H | .6 | | <u> </u> | | 550 | 3-27 | 1150A | | , | | | 3.01 | 30.0 | \vdash | .6 | 14 | 0 | • | | 516 | 5/31 | 1155A | | 10.0 | 3.08 | 1.46 | 3.19 | 4.5 | - | - 0 | - | - 1 | | 551 | 4-2 | 1132A | | - 11 | ** | | _3.00 | 29.6 | \vdash | .6 | 13 | 0_ | | | 10000 | grape. Lacron va. | anne en e person | | | | grage in projection of | and the street of | | w /- | | ne no especial | 4 | , c - Langerory | 552 | 4-10 | 1117A | | *** | | | 2.99 | 33,5 | | .6 | 13 | 0 | | | | | | | | | | | | | | | | | 553 | 4-17 | 1157A | | 22.0 | 6.06 | 1 | 2.71 | 5.8 | \vdash | .6 | 8 | 0 | + | | | | | | | | | | | | | | | | 554 | 4-24 | 1140A | | 14.0 | 6.30 | | 2.72 | 9.2 | | .6 | 7 | 01 | 1 . | | | | | | | | | | | | | | | | 555 | 5-1 | 1115A | | 19.0 | 6.42 | 1,22 | 2.73 | . 7.8 | - | .6 | 7 | 0 | - | | | | | • | | | | | | | | | | | 556 | 5-8 | 1100A | | 12.0 | 2.68 | 0.67 | 2.58 | 1.8 | \vdash | -6 | 6 | _0 | - | | | | | | | | | | | | | | | | 557 | 5-15 | 1125A | | 18.0 | 6.90 | 1.45 | 2.87 | 10.0 | | .6 | 7 | 0_ | | | | | | | | | | | | | | | | | 558 | 5-22 | 1057A | 1798 | 24.0 | 8.92 | 1.30 | 2.83 | 11.6 | - | .6_ | 9 | 0 | | | | | | | | | | | | | | | | | 559 | 5-29 | 1112A | | Two C | ANNELS | | 2,83 | 10.3 | \vdash | | 11 | 0 | 1 | | | | | | | | | | | | | | | - 1 | 560 | 6-5 | 11154 | I | 14.0 | 3.48 | 1.21 | 2.70 | 4.2 | 1 | .6 | 7 | 0 | | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F263-R | Daily 6 | lischarge, in se | econd-feet of | SAN GAB | RIEL RIVE | R at Beye | rly Boule | vard | | | , for the yea | r ending Septe | mber 30, 19 <u>46</u> | |--|---|--|---|---|---|---|--|---|--|---|---|---| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 8.9
5.7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 223341109969044176797
676767 | 1565157
1157
1157
11654
117664
1143
1122 | 88
700
750
700
622
662
652
653
6653
6653 | 72
78
207
128
88
100
80
92
108
116
88
88
80
80
80
80
80
87 | 78
968
8802
755
7750
7724
622
558
444
548
578 | 108
1200
1902
192
984
984
884
875
864
875
8775 | 50
54
54
54
48
544
33
24
13
14
15
20
18
15
15
14
15 | 4.7
3.8
3.83.15
1.5
0.6
0
0
0
0
0 | 000000000000000000000000000000000000000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 000000000000000000000000000000000000000 | | 21
22
23
24
25
26
27
28
29
30
31 | 35390934070
11201011212 | 7.7
7.7
7.7
8.5
11
12
13
14
15 | 46
1170
1660
828
856
856
603
104
84
80 | 728
6738
725
775
775
775
775 | 75
78
92
96
84
88
104
78 | 655556556635
420 | 72
802
655
668
668
68 | 14
12
13
11
10
97,7
69,0
6,0
54,7 | 000000000 | 0000000000 | 0000000000 | 000000000 | | | 329 | 219.6 | 6671 | 2138 | 2620 | 2551 | 2429 | 643.0 | 19.5 | 0 | 0 | 0.7 | | MEAN
ACRE-
FRET | 1.06
65. | 7.32
436. | 215.
13,230. | 69.0
4.240. | 93.6
5,200. | 82.3
5.060. | 81.0
4.820. | 20.7 | 0.65
39. | 0 | . 0
0 | 0.02 | | | Remarks: | | | | | | | | F | TEAR MEA
OR
ERIOD ACRE | | 5
• ,37 0. | F. C. Diet. Form 52 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 263-R | | | | | | H | YDRAULIC | DIVISION | | | | | | |----------------------------------|------------------------------------|--------------------------------------|--|------------------------------|----------------------------|---|---------------------------------------|--|--------------------------------|--------------------------------|------------------|---------------| | ally (| iischarge, in | second-feet of | SAN GAE | BRIEL RIV | ER at Bev | erly Boul | evard | | | , for the year | ending Septe | mber 30, 19_4 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 0 0 | 5 .3
5 .0
5 .6
5 .6
5 .0 | 68
68
72
83
104 | 1200
78
79
77
75 | 81
79
81
81 | 64
66
66
68
79 | 3 3
3 0
3 0
3 2
2 9 | 7 1
2 6
0 5
2 4
2 3 | 10
8.7
7.6
6.2
4.1 | 0 0 0 | 0 0 0 | 0 0 0 | | 8
7
8
9 | 0 0 0 | 4.7
4.7
5.3
6.5
8.7 | 195
80
77
75
75 | 77
75
75
75
74 | 81
79
81
89 | 75
70
70
69
69 | 3 0
3 0
3 2
3 2
3 2 | 1.5
2.0
1.4
4.4 | 3.8
4.7
5.3
5.0 | 2 9
1.7
0 | 0 0 0 | 0 0 | | 11
12
13
14
15 | 0 0 0 | 13
67
345
198
77 | 77
74
75
77
75 | 77
79
79
77
79 | 89
87
83
83 | 69
66
64
62
60 | 29
22
15
11
8.7 | 6.5
4.4
4.4
4.7
8.2 | 2.4
0
0
0 | 0000 | 0 0 0 | 0 0 0 | | 16
17
18
19 | 0 0 0 | 68
68
62
66
201 | 75
74
66
64 | 81
85
87
89
87 | 85
85
83
81 | 60
60
48
45
45 | 8 2
7 .6
8 2
8 2
9 .8 | 8.7
9.2
8.7
10 | 0000 | 0 0 0 | 0000 | 0 0 | | 21
22
23
24
25 | 0 0 0 | 112
68
299
136
85 | 64
64
64
66
138 | 89
83
81
85 | 77
79
77
74
72 | 4 4
4 4
4 5
4 5
4 5 | 11
9.8
9.8
9.8 | 11
12
11
11 | 0
0
0
0 3 | 0 0 0 | 0 0 0 0 | 0 0 0 | | 28
27
28
28
29
30 | 0
0
1.0
4.7
5.3
4.7 | 79
77
70
66
68 | 494
204
1330
2810
2760
2560 | 85
81
101
85
79 | 66
68
66 | 4 4
3 4
3 8
3 6
3 6
3 6
3 4 | 9.8
8.2
10
9.2
8.2
8.2 | 10
11
10
10
10
11
11 | 0 1
0
0 2
0 3
0 | 00000 | 0000 | 0000 | | | 15.7 | 2281.4 | 12192.0 | | 2239.0 | 1720.0 | 531.7 | 217.0 | 58.7 | 4 .6 | 0 | 0 | | EAN | 0.51 | 76.0 | 393 | 117 | 80.0 | 55.5 | 17.7 | 7.00 | 1.96 | 0.15 | 0 | 0 | | CRE | 31 | 4,530 | 24,180 | 7,220 | 4,440 | 3,410 | 1,050 | 430 | 116 | 9.1 | 0 | 0 | | | Remarks: | | | | | | | | | TEAR MEAN
OR
ERIOD ACRE- | 62.7
FEET 45, | 420 | #### STATION F262-R SAN GABRIEL RIVER at Florence Avenue LOCATION: WATER-STAGE RECORDER, LAT. 33°56'20", LONG 118°06'00", ON THE DOWNSTREAM SIDE OF THE FLORENCE AVENUE (FORMERLY EASY STREET) BRIDGE ABOUT 2 MILES EAST OF DOWNEY, ELEVATION OF ZERO GAGE HEIGHT, 110,94 FEET. DRAINAGE AREA: 215 SQUARE MILES (EXCLUSIVE OF AREA ABOVE SANTA FE DAM.) CHANNEL AND CONTROL: SHIFTING SAND BOTTOM BETWEEN EARTH LEVEES. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF FLORENCE AVENUE BRIDGE. RECORDER: INSTALLED ON FEBRUARY 27, 1937 OVER AN 18 INCH DIAMETER, CORRU-GATED IRON PIPE STILLING WELL. THE RECORDER WAS REMOVED ON MARCH 2, 1938 AND WAS REINSTALLED ON APRIL 4, 1938, AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. A SECONDARY STILLING WELL AND RECORDER WERE MAINTAINED ON THE WEST SIDE OF THE CHANNEL. REGULATION: FLOW PARTIALLY REGULATED BY SAN GABRIEL DAMS NO. 1 AND 2, MORRIS DAM, SANTA FE DAM, BIG DALTON DAM, SAN DIMAS DAM, PUDDINGSTONE DIVERSION DAM, PUDDINGSTONE DAM, LIVE OAK DAM, AND THOMPSON CREEK DAM, DIVERSIONS: THERE ARE SEVERAL DIVERSIONS FOR IRRIGATION, POWER DEVELOPMENT AND SPREADING. VARIABLE QUANTITIES OF IRRIGATION WASTE RETURNS ARE RECORDED AT THE STATION. RECORDS AVAILABLE: FEBRUARY '27, 1937, TO SEPTEMBER 30, 1947. RECORDER RECORD LOST FROM AUGUST 19, 1938 TO NOVEMBER 23, 1938 DUE TO THEFT OF RECORDER. FOR EARLIER RECORDS SEE STATION F237-R, SAN GABRIEL RIVER AT TELEGRAPH ROAD. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 4370 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW FOR SEVERAL MONTHS. MINIMUM NO FLOW FOR SEVERAL MONTHS. 1946-1947 MAXIMUM 3640 SECOND-FEET, DECEMBER 31. MINIMUM NO FLOW FOR SEVERAL MONTHS. 1937-1947 MAXIMUM NOT DETERMINED, MARCH 2, 1938. MAXIMUM DISCHARGE OF RECORD, 15,960 SECOND-FEET, FEBRUARY 22, 1944. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OCCASIONALLY INTERPOLATED BETWEEN MEASUREMENTS DUE TO LOSS OF COMMUNICATION. OPERATION: LOCATED AND CONSTRUCTED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, AND OPERATEO IN COOPERATION WITH THE SAN GABRIEL VALLEY PROTECTIVE ASSOCIATION. | | DISCHARS | E MEANURE | MENTS OF | SAN GA | BRIEL | RIVER | | | | | | | | | DIECHARGI | E MEABURE | MENTS OF SAN GABR | EL RIV | ER | | | | | | | | |-----|----------|----------------------|-------------------------|--------------|--------------------------------
---------------------------------|-------------------------|-----------------------|----------------|-------|----------------------|--------------------------|---|------|-----------|-------------------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-------------|----------|--------|---------------------------|-------------| | | AT. | Flor | ence Avenue | | | DUR. | ING THE | EAR ENDING | 9 6 EPT | EMBE. | A 30, | 46 | - | | AT . | Flore | nca Avenue | | | DUR | ING THE Y | EAR ENDING | EPTEMI | ER 30, | 1 1 4. | 7 | | на. | DATE | BESIN | MADE BY | WIDTH | AREA, OF
BESTION
BS. FT. | MEAN
VELUGITY
FT.PER BEG. | BAUBE
HEIBHT
FEET | DISQUARSE
SEG. FT. | RAT- | ETH- | MEAU.
BEQ.
ND. | B. HT
CHANGE
TOTAL | METER
HD. | No. | DATE | BEEIH | HADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELODITY
77,PER SEC. | GAUGE
HEIGHT
FEFT | DINCHARGE F | AT- METH | MEAS. | G. HT.
DHANGE
TOYAL | м | | 367 | 11/29 | 432P
445P | BONAD IMAN | 21.0 | 5.25 | 0.67 | 3.10 | 3.5 | П | . 6 | 6 | . 0 | FC19 | | | | | WES | RECORI | ER STAF | F | | | | | | | 368 | 12/22 | 630A | BONAD IMAN
KAS IMOFF | 173. | 238. | 3,45 | 3.97 | 820. | | . , 6 | 8 | +.04 | | 394 | 11-14 | 1020A
1030A | BONADIMAN - LANG | 16.0 | 4.00 | 1.22 | 3,28 | 4.9 | .6 | 5 | _0_ | FC1 | | 369 | 12/23 | 1102A
1120A | BONAD IMAN
KAS IMOFF | 276. | 615. | 5.96 | 4.96 | 3660, | Ш | .6 | 12 | 12 | | 395 | 11-23 | 441P
500P | | 156.6 | 157. | 2.94 | 4.36 | 461. | 6 | 111 | +.03 | | | 370 | 12/24 | 1055 A | BONADIMAN | 146. | 175. | 3.42 | 3.91 | 773. | Ш | .6 | 9 | ٥ | <u> </u> | 396 | 11-24 | 1112A | BONAD IMAN | 18.0 | 5.55 | 1.23 | 3,31 | 6.8 | 6 | 6 | 0 | | | 371 | 12/27 | 950A
1005A | | 150. | 169. | 4.60 | 3.82 | 780 | | .6 | 11_ | . 0 | | 397 | 12-6 | 1034A
1050A | •• | TWO CH | NNELS | | 3.80 | 120. | _ .6 | 12 | 0 | | | 372 | 1/3 | 332P
342P | | 10.0 | 3.50 | 0.74 | 2.66 | 2.6 | | -6 | .4 | _0 | | 398 | 12-7 | 1100A
1110A | -11 | 9.00 | 6.95 | 0.36 | 3.25 | 2.5 | .6 | 4 | 0 | " | | 173 | 1/10_ | 302P
312P | | 9.00 | 3.00 | 0,79 | 2.70 | 2.4 | | .6 | 4 | 0 | | 399_ | 12-12 | 1031A
1039A | ** | 5.50 | 1.67 | 1.14 | 3.14 | 1.9 | 6 | _5 | | | | 374 | 1/17_ | 154P
205P | | 15.0 | 2.70 | 0.76 | 2.51 | 2.1 | | .6 | 4 | 0 | | 400 | 12-19 | 955A
1000A | - | 4.00 | 0.92 | 0.88 | 3.11 | 0.81 | 6 | 5 | 0_ | ٠- | | 175 | 1/24 | 332P
342P | | 14.0 | 3.10 | 1,06 | 2.76 | 3.3 | \sqcup | .6 | 4 | 0 | | 401 | 12-26 | 936A
946A | ,, | 156.5 | 211. | 3.35 | 4.53 | 706. | .6 | 11 | 02 | | | 76 | 1/31 | 337P
347P | | 13.0 | 5,15 | 0.76 | 2.80 | 3.9 | | .6 | 5 | 0 | | 402 | 12-27 | 1001A
1019A | BONAD IMAN - LANG | TWO CHA | NNELS | | 3.75 | 99,3 | .6 | 10 | 0 | - | | 77 | 2/4 | 926A | | TWO CHA | NNELS | | 3.12 | 49.5 | Ш | .6 | 13 | 0 | - | 403 | 12-29 | 920A
955A | BONADIMAN | 243.0 | 430. | 6.24 | 4.68 | 2570. | .6 | 21 | 0 | - | | 78 | 2/7 | 321P
328P | ** | | L | | 2.91 | 13.5 | | .6 | 9 | 0 | ļ | 404 | 12-29 | 126P
. 158P | | 222.0 | 417. | 6.25 | 4.68 | 2600. | .6 | 20 | 04 | " | | 79 | 2/14 | 422P
428P | | <u></u> | | | 2.96 | 12.7 | | .6 | 9 | 0 | ļ | 405 | 12-31 | 917A
956A
1045A | | 202.0 | 377· | 6.89 | 4.23 | 2600. | .6 | 20 | ±.10 | - | | 80 | 2/21 | 325P
335P
320P | | | ļ | | 2.99 | 11.4 | \vdash | .6 | 9 | 0 | ٠ | 406 | 1-2 | 1058A | *. | 47.0 | 27.2 | 2.87 | 2.29 | 78.2 | .6 | 11 | 0 | ** | | 81 | 2/28 | 334P
314P | | <u> </u> | ļ | | 2.98 | 10.5 | | .6 | 9 | 0 | | 407 | 1-9 | 1032A | * | 34.0 | 13.8 | 1.64 | 2.41 | 22.6 | .6 | 10 | 0 | <u> •-</u> | | 82 | 3/7 | 330P | <u></u> | <u> </u> | | | 2.98 | 6.4 | | .6 | 7 | 0 | | 408 | 1-16 | 1014A
1026A
1018A | ļ | 31.0 | 13.0 | 1.37 | 2.41 | 17.8 | .6 | 9 | 0 | - | | 183 | 3/14_ | 252P
300P | • | 7.00 | 2.25 | 0.40 | 2.89 | 0.9 | | .6 | 3 | 0 | | 409 | 1-23 | 1028A
912A | | 33.0 | 11.4 | 1.42 | 2.39 | 16.2 | .6 | 8 | 0 | - | | 184 | 3/20 | 1137A
1154A | | TWO CHA | NNELS | | 3.05 | 14.7 | | .6 | 12 | 0 | | 410 | 1-30 | 926A
1000A | - | 49.0 | 19.6 | 1.29 | 2.50 | 25.3 | 1.6 | 10 | 0 | ļ | | 85 | 3/21 | 455P
530P | KASIMOFF
BONADIMAN | <u> </u> | <u> </u> | | 3.14 | 27.5 | \sqcup | .6 | 12 | 0 | <u> </u> | 411 | 2-6 | 1020A | | 58.0 | 19.2 | 1.07 | 2.46 | 20.5 | .6 | 12 | 0 | <u> </u> | | 86 | 3/28 | 534P
552P
302P | BONAD HAN
KASIMOFF | | <u> </u> | ļ | 3.13 | 48.1 | | -6 | 10 | _0 | ·· | 412 | 2-13 | 945A
1005A
927A | <u> </u> | 60.0 | 19.7 | 1.18 | 2.50 | 23.2 | .6 | 12 | 0 | | | 387 | 3/30 | 330P | BONADIMAN
KASIMOFF | | ļ | ļ | 3.99 | 875. | | .6 | 12 | 05 | <u></u> | 413 | 2-20 | 942A | | 37.0 | 17.3 | 1.25 | 2.51 | 21.6 | .6 | 11 | 0 | - | | 88 | 3/31_ | 520P
558P | BONADIMAN | | <u> </u> | | 3.16 | 86.8 | | .6 | 18 | 0 | | 414 | 2-27 | 958A
1014A | * | 68.0 | 20.7 | 0.89 | 2.50 | 18-4 | .6 | 12 | .0 | ļ | | 89 | 4/4 | 347P
408P
302P | BONAD IMAN | TWO CHA | NNELS | | 3.07 | 52.3 | | .6 | 15 | 0 | FC19 | 415 | 3-6 | 940A
1000A | - | 67.0 | 21.4 | 0.99 | 2,54 | 21.2 | .6 | 12 | 0 | | | 90 | 4/11 | 320P
949A | | TWO CHA | NELS | | 3.03 | 26.4 | | .6 | 11 | 0 | <u> </u> | 416_ | 3-13 | 1002A | | TWO CH | NNELS | | 2.52 | 18.3 | 6 | 13 | 0 | | | 91 | 4/18 | 1002A | | | | | 2.86 | 18.6 | \sqcup | .6 | 11 | 0 | ·· | 417 | 3-20 | 1002A
1014A
1012A | 71 | 39.0 | 11.8 | 1.02 | 2.49 | 12.0 | .6 | 9 | 0 | | | 12 | 4/25 | 944A
952A | | 20.0 | 8.40 | 1.46 | 2.70 | 12.3 | | .6 | 5 | 0 | ļ., | 418 | 3-27 | 1018A | | 5.0 | 1.02 | 0.88 | 2.33 | 0.90 | .6 | 4 | 0 | ļ. | | 93 | 5/2 | 1002A
1020A | | TWO CHA | NELS | | 2.84 | 10.3 | \sqcup | .6 | 9 | 0 | <u> " </u> | 419 | 4+3 | 931 A
939 A
957 A | - | 6.0 | 1.40 | 0.85 | 2.32 | 1.2 | .6 | 4 | 0 | 1- | | | | | | | | | | | | | | | | 420 | 4-10 | 1012A | | Two C | HANNELS | | 2.42 | 6.2 | .6 | 10 | 0 | ** | | F. C. Die | ri. Form \$4 4-44 | | | | | LOS ANGELE
COD CONTRO
LYDRAULIC | OL DISTRICT | • | | | Sta. 1 | _{No.} F <u>262-R</u> | |----------------------------------|-------------------|--------------------------|--|--|---|---------------------------------------|----------------------------------|---|--------|-------------------------------|-----------------|-------------------------------| | Daily o | lischarge, in se | cond-feet of | SAN GABR | IEL RIVER | at Flore | nce Avenu | 6 | | | , for the year | r anding Septer | mber 30, 19 <u>46</u> | | Day | Oet. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0 0 0 0 | 00000 | 18
18
16
5
0 | b 92
b 49
b 25
f 28
28
70
f 28 | 20
b 36
179
86
18
20
22 | 13
13
16
22
16
16 | 52
60
36
56
52
32 | 10
10
8.6
7.1
5.7
4.3
2.8 | 000000 | 0 0 0 | 0 0 0 | 0 0 0 0 | | 8
9
10 | 0 | 0 0 0 | 000 | 2.5
2.8
2.2 | 18
24
40 | 11
7.0
13 | 4 8
4 0
4 4 | b 1.4
0
0 | 0 0 0 | 0 0 | 0 0 | 0 0 | | 11
12
13
14
15 | 00000 | 0000 | 000 | 0 7 5 3
b - 2 3 | 48
52
36
22
16 | 16
71
0
8.4 | 32
28
20
20 | 000 | 0000 | 0000 | 0000 | 0000 | | 18
17
18
19 | 00000 | 0 0 0 | 0 0 0 | 2 1
2 0
5 1 8
1 6
7 0 | 22
18
28
28
24 | 0
0
7.5
3.2 | 19
19
18
17 | 0000 | 0 0 0 | 0 0 | 0 0 0 | 0 0 0 | | 21
22
23
24
25 | 00000 | 0 | 0
798
1505
794
778 | 7.0
9.2
9.5
13 | 13
16
92
18
24 | 32
22
18
16 | 16
15
14
13
12 | 00000 | 0 0 0 | 0 0 0 | 0 0 0 0 | 0 0 0 | | 25
27
28
29
30
31 | 000000 | 0
0
0
1.6
13 | 844
600 f
52 b
22 b
18 b
13 b | 20
20
11
2.8
9.2
9.2 | 22
20
13 | 13
18
44
40
320
107 | 12
12
11
11
b 11 | 00000 | 0000 | 000000 | 000000 | 00000 | | | 0 | 14.6 | 5481.9 | 182.7 | 8922 | 854.0 | 836 | 49.9 | 0 | 0 | 0 | 0 | | MEAN | 0 | 0.49 | 177. | 5.89 | 31.9 | 27.5 | 27.9 | 1.61 | 0 | 0 | 0 | 0 | | ACRI-
PERT | 0 | 29. | 10,870. | 362, | 1.770. | 1,690. | 1,660. | 99. | 0 | 0_ | 0 | 0 | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRE | | 6.480. | P. C. Dist. Form \$1 4-4 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 282-R | Daily di | scharge, in se | cond-feet of | SAN GAE | RUEL RIVE | R at Flor | ence Aver | nue | | | , for the yes | r ending Septer | mber 30, 19 <u>47</u> | |-----------------------|----------------|------------------------|---|------------------------------|----------------------|------------------------|--------------------------|------------------|-------|-------------------------------|-----------------|-----------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Bept. | | 1
2
3 | 0 0 0 | 6 2
1 0
4 6
0 | 0 0 | 1850
f 78
b 71 | 23
22
22
23 | 9.5
8.0
8.0 | 0
0
2 2
1 7 | 0 | 0 0 | 0 0 | 0 0 0 | 0 0 | | 5 | 0 | 8 | 0
83 | 55 | 23 | 25
22 | 11
59 | - 8 | 0 | 0 | 8 - | - 8 | | 7
8
9 | 000 | 4.5
0 | 13
d 24
d 23
d 21 | 39
31
23
22 | 18
20
25
33 | 12
16
20
12 | 7.3
5.9
5.2
3.8 | 0000 | 90000 | 00000 | 00000 | 0000 | | 11
12
13 | 0000 | 0
0
3 8
2 0 | d 20
19
0 | 22
21
20
19 | 23
27
23
25 | 12
12
16
16 | 1.7 | 0 0 | 0 0 | 0000 | 0000 | 000 | | 15 | 0 | 0 | 1.4 | 19 | 22 | 14 | 0 | 0 | i o | 0 | 0 | 0 | | .16
17
18
19 | 0 0 0 | 0000 | 19
13
0 | 18
18
18
17 | 18
22
22
18 |
12
11
9.5
4.0 | 00 0 0 | 0 0 | 0 0 0 | 0 0 | 0 0 | 0 0 | | 20
21
22
23 | 0
0
0 | 24
7.0
0
129 | + | 17
16
16
16 | 18
23
22
20 | 73
8.0
11
8.0 | 0
0
0 | 0
0
0
0 | 0 0 | 0 0 | 0 0 | 0 0 | | 24
25
26 | 0 | 13 | 66
460 | 17
19
20 | 18
17
20 | 4.5
1.3 | 0 0 | 0 | 0 | 0 | 0 | 0 | | 27
28
29
30 | 0 0 0 3 5 | 0 0 0 | 98
1010
2600
2880
2820 | 21
22
30
b 25
22 | 18
17 | 0 + + 0 | 00000 | 0 0 0 | 0 0 0 | 00000 | 00000 | 0000 | | | 3.5 | | 00453 | 2692.0 | 0. 203 | 2931 | 60.0 | .0 | 0 | 0 | 0 | 0 | | MEAN | 0.11 | 8,25 | 324 | 86.8 | 21.5 | 9.45 | 2.00 | 0 | 0 | 0 | 0 | 0 | | ACRE- | 6.9 | 490 | 19,920 | 5,340 | 1,190 | 581 | 119 | 0 | 0 | 0 | 0 | 0 | | | Remarks: 4 | - 0.05 c | .f.s. or | less. | | | | | | YEAR MEA
OR
PERIOD ACRI | | 650 | ### STATION F42-R SAN GABBRIEL RIVER at Spring Street, Long Beach LOCATION: WATER-STAGE RECORDER, LAT. 33"48'38". LONG. 118"05'25", ON DOWN-STREAM SIDE OF SPRING STREET BRIDGE ABOUT 4 MILES EAST OF SIGNAL HILL, NEAR LONG BEACH. THIS STATION IS NEAR THE LOCATION OF THE STATION OPERATED IN 1924 BY THE STATE DIVISION OF WATERRICHTS, ELEVATION OF ZERO GAGE HEIGHT, 16.69 FEET. DRAINAGE AREA: 215.5 SQUARE MILES (EXCLUSIVE OF AREA ABOVE SANTA FE DAM.) CHANNEL AND CONTRCL: CHANNEL - SAND AND SILT OVER ADOBE WITH EARTH LEVEES PROTECTED BY WIRE MESH. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING; HIGH FLOWS MEASURED FROM CAT-WALK ON UPSTREAM SIDE OF SPRING STREET BRIDGE. RECCRDER: INSTALLED FEBRUARY 6, 1928 OVER A 21 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY SAN GABRIEL DAMS NO. 1 AND NO. 2, MORRIS DAM, SANTA FE DAM, BIG DALTON DAM, SAN DIMAS DAM, PUDDINGSTONE DAM, PUDDINGSTONE DIVERSION DAM, LIVE OAK DAM, AND THOMPSON CREEK DAM. DIVERSIONS: THERE ARE SEVERAL DIVERSIONS FOR IRRIGATION, POWER DEVELOPMENT AND SPREADING. EXTRIEMES OF DISCHARGE: MES OF DISCHMENT. 1945-1946 MAXIMUM 3300 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 2740 SECOND-FEET, JANUARY 1, MINIMUM NO FLOW MOST OF YEAR. MAXIMUM 27,000 SECOND-FEET, ESTIMATED, MARCH 2, 1938. MINIMUM NO FLOW MOST OF EACH YEAR. RECORDS AVAILABLE: FEBRUARY 6, 1928 TO SEPTEMBER 30, 1947. (FOR PERIODS PRIOR TO FEBRUARY 1928 SEE STATE DIVISION OF WATER RIGHTS BULLETINS.) ACCURACY: GOOD. OPERATION: OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, LOCATED BY THE STATE DIVISION OF WATER RIGHTS. | | DIECHARGI | E HEARUREI | MENTS OF | SAN_GAE | BRIEL F | RIVER | | | | | | | | | DISCHARGE | MEABURE | MENTS OF SAN GA | ABRIEL | RIVER | | | | | | | | |-------|-----------|--|-----------------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------|----------------------|---------------------------|--|------|-----------|-------------------------|------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|-------------------------|-----------------------------|----------| | | AT. S | pring \$ | Street, long Bea | <u>ch</u> | | DUR | ING THE Y | rear ending | I SEFTE | :MBE# | R 30, | ,,_46 | Ĺ | | <u>AT</u> | Sprin | a Street, Long (| Beach | | DUR | ING THE Y | EAR ENDING | , BEPTEM | 'EN 30, | 1047 | = | | N¤. | DATE | BIBIN | HADE BY | WIDTH
FEET | AREA OF
BESTIEN
EG. FT. | MEAN
VELODITY
FT.PER SEG. | BAUBE
HEIGHT
FEET | DISCHARGE
BEO. FT. | RAT- ME | 1ETH- 1 | MEAS.
SEO.
NG. | E. HT.
DHANGE
TOTAL | HETER
NO. | NO. | DATE | BESIN
END | HADE BY | WIOTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | BAUSE
HEISHT
FZEY | DINCHARGE
BEC, FY. | RAT- HETS | H- MEAS.
SEC.
NO. | . #. HT.
CHANGE
TOTAL | | | 315 | 12/22 | 252P
310P | BONADIMAN
KASIMOFF | 113.0 | 335. | 3.85 | 8,33 | 1290. | \Box | . 6 | 7 | +02 | FC19 | 335 | 11-21 | 302P
308P
1146A | | 8.00 | _1.37 | 0.67 | 5.67 | 0.92 | .6 | 3_ | o | FC19 | | 316 | 12/23 | 1242P
1255P | BONADIMAN
KASIMOFF | 117.0 | 638. | 4.55 | 9.63 | 2900. | H | .6 | 9 | 04 | ļ z | 336 | 11-24 | 1158A
1202P | | TWO C | HANNELS | i — — | 6.10 | 22.6 | 1 | 11 | 0 | ļ | | _317 | 12/24 | 1259P
1152A | BONAD IMAN | | 429. | 1 | | 718. | + | | | 0 | <u> :-</u> | 337 | 12-7 | 1212P
1101A | ** | 37.0 | 17.6 | 1.28 | 6.03 | 22.6 | .6 | _ | | | | 318 | | 1210P
1100A | | 1 | 287. | 2.82 | 7.65
6.25 | 810. | + | | 9 | 0 | <u>"</u> | 338 | 12-26 | 1112A
1215P | | | CHANNE | 2.70
LS | 7.63
6.36 | 66.5 | .6 | 1 | - | ** | | 319 | 2/4 | 1118A
202P
220P | | TWO CHA | | 1 | 5.93 | 10.7 | | | 12 | 1 | | 340 | 12-27 | 1102A | | 112.0 | | 4.54 | 9.05 | | .6 | 1 | 0 | | | 321 | 2/14 | 347P
357P | | 20.0 | 1 | 1.18 | | 9.9 | | | 6 | 0 | | 341 | 12-31 | 1042A
1112A | | 113.0 | 369. | 6.95 | 9.22 | 2530. | .6 | 12 | .02 | <u>.</u> | | 32.2 | 2/21 | 221P
232P
142P | | TWO CHA | NNELS | <u> </u> | 5.76 | 3.8 | \sqcup | .6 | 8 | <u> </u> | <u> </u> | 342 | 1-2 | 1200N
1228P | | Two C | HANNELS | ş | 7.08 | 107. | -6 | 14 | 0_ | - | | 3 23 | 2/28 | 14 2P
156P
152P | и. | | ļ' | | 5,76 | 4.3 | 1-1- | • | | 0 | " | 343 | 1+9 | 1230F | (| 38.0 | 16.0 | 1,02 | 6.68 | 16.3 | .6 | | 1 | **- | | 324 | 3/7 | 200P | | 5.0 | 0.85 | 0.47 | 5.61 | 0.4 | H | .6 | 3 | 0 | | 344 | 1-16 | 1140A
1137A
1153A | V . | 16.0 | 7.44 | | 6,48 | 9,5 | .6 | 10 | - | - | | 325_ | 3/14 | 140P
324P
333P | KASIMOFF
BONADIMAN | 43.0 | 24.5 | 1.20 | 4.85
5.99 | 29.4 | 十 | .6 | 10 | 0 | FC19 | 345 | 1-23 | 1153A
1047A | | | 22.2 | | 6.73 | | | 12 | | | | 327 | | 944A | BONAD IMAN | 42.0 | | | | 28.4 | 1-1 | | | 0 | | 347 | 2-6 | 1128 ^A | | | HANNELS | 1 | 6.58 | 10.6 | .6 | 11 | 0 | - | | _328_ | 3/30 | 532P
546P | KASIMOFF
BONADIMAN
KASIMOFF | 117.0 | 253. | 3.60 | 7.73 | 911. | \Box | .6 | 11 | .14 | - | 348 | 2-13 | 1122/
1136/
1042/ | | 60.0 | 22.0 | 0.87 | 6.71 | 19.1 | -6 | 12 | 0 | | | 329 | 3/31 | 315P
338P
202P | BONAD IMAN | 60.0 | 68.5 | | 6.48 | 102. | + | | 12 | <u> </u> | ··· | 3,49 | 2-20 | 1100/ | <u>"</u> | 58.0 | | T | 6.68 | 13.2 | | 15 | | - | | . 330 | 4/4 | 212P
142P | BONAD IMAN | 27.0 | 21.4 | | 6.07 | 38.4 | 1 | - | | 0 | <u> </u> | 350 | 2-27 | 1120/ | | 59.0 | 22.4 | 0.91 | 6.62 | 9.9 | .6 | + | | - | | 331 | 4/11 | 152P
1102A | · · · | 1 | | | 5.75 | 5.2 | +-+ | - | 1 | 0 | ļ — | 351 | 3-6 | 1108/
1121/
1129/ | 4 | 17.0 | | | 6.56 | | .6 | - | | - | | 334 | | 1050A | | 9.00 | | | 5.73 | 4.0 | 1 + | .6 | 4 | 0 | | 332 | 3.14 | 1124 | 7 | 1111 | , | -1 | 1 | | | 1 | 1 | | | 334 | 5/2 | /11 152P 22.0 16.0 1.46 5.95 23.3 6.6 0 /18 1112A 10.0 5.70 0.91 5.75 5.2 6.5 0 /25 1102A 9.00 7.15 0.56 5.73 4.0 6.4 0 | ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F12-R | er 30, 19
Sept. | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct. | Day | |--------------------|------|---------|------|------|------------|--------|-------------------|------|------------|----------|----------|-----| | -0 | 0 | 0 | 0 | 0 | 5 4 | 4 .6 | 0 | 0 | 0 | 0 | O | 1 | | 0 | 0 | 0 | 0 | 0 | 41 | 3.2 | 0 | 0 | 0` | 0 | 0 | 2 | | 0 | 0 | 0 | 0 | 0 | 37 | 39 | . 0 | 0 | 0 | 0 | 0 | 3 | | o | 0 | 0 | 0 | 0 | 4 3 | 3.9 | 79 | 0 | 0 | 0 | 0 | 4 | | 0 | 0 | 0 | 0 | 0 | 3.4 | 2.5 | 19 | 0 | . 0 | 0 | 0 | 5 | | 0 | 0 | 0 | 0 | 1.6 | 32 | 1.4 | 13 | 0 | 0 | o o | o | 6 7 | | 0 | 0 | 0 | 0 | 0.7 | 29 | 1.4 | 10 | 0 | 0 | o | 0 | é | | 0 | 0 | 0 | 0 | 0 | 26 | 0.4 | 9.1 | 0 | 0 | 0 | 0 | 9 | | 0 | 0 | 0 | 0 | 0 | 23 | 01 | 10 | 0 | o l | 0 | 0 | 10 | | 0 | 0 - | 0 | 8 | 8 | 20 | ö | 12 | 0 | 0 | -0. | 0 | 1 | | ŏ | ŏ | ŏ | ŏ | 0 | 20 | ŏ | 10 | ő | Ö | ŏ | ŏ | 12 | | ŏ | 8 | ŏ | ő | ŏ | 20 | ŏ | 11 | ő | ő | 6 | ő | 3 | | ŏ | | ŏ | ŏ | ŏ | 18 | ŏ | 8.4 | ŏ | ŏ | 6 | ő | 14 | | ŏ | ŏ | ŏ | ŏ | ŏ | 16 | ŏ | 6.6 | ŏ | 0 | ŏ | ŏ | 15 | | ŏ | 0 | 8 | Ö | 0 | 10 | Õ | 5.9 | ŭ | Ö | ŏ | Ö | 16 | | ō | o l | 0 | Ö | o i | 9.7 | o | 4.6 | ō | l ŏ l | Ιŏ | ŏ | 17 | | 0 | 0 | 0 | 0 | 0 | 7.2 | 0 | | o | 0 | Ö | Ō | 18 | | 0 | 0 | 0 | 0 | 0 | 8 .4 | 0 | 5.0
5.3
5.3 | 0 | 0 | 0 | 0 | 19 | | 0 | 0 | 0 | 0 | 0 | 7.8 | 2 1 | 5.3 | 0 | 0 | 0 | 0 | 20 | | 0 | 0 | 0 | 0 | 0 | 8.4 | 31 | 53 | 0 | 0 | 0 | 0 | 21 | | 0 | o | 0 | 0 | 0 | 10 | 18 | 4.2 | o | 459 | 0 | 0 | 22 | | 0 | 0 | 0 | 0 | 0 | 9.7 | 16 | 7.8 | 0 | 1460 | o | 0 | 23 | | 0 | 0 | ö | 0 | 0 | 7.2 | 14 | 53 | 0 | 738 | 0 | o | 25 | | 0 | 0 | 0 | 0 | | 4.6
1.8 | 18 | 9.1 | | 792 | 0 | 0 | 26 | | ŏ | ŏ | ŏ | ŏ | ŏ | 0.8 | 14 | 6.6 | . 6 | 770
692 | 0 | ŏ | 7 | | ő | . 6 | ŏ | ŏ | ŏ | ŏ | 19 | 5.9 | 0 | 29 | 8 | ő | 28 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 26 | 5.5 | ŏ | 0 | 0 | ŏ | 29 | | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | 259 | | ŏ | ŏ | ŏ | ŏ | 30 | | | ŏ | ō | | ŏ | | 158 | | ŏ | ŏ | <u> </u> | ŏ | 1 | | 0 | 0 | 0 | 0 | 2.3 | 518.8 | 6095 | 275.2 | 0 | 4940 | 0 | 0 | | | | 0 | 0 | 0 | 0.07 | 17.3 | 19,7 | 9.83 | 0 | 159.4 | | 0 | AN | | 0 | 0 | 0 | 0 | 4.6 | 1,029. | 1,209. | 546. | 0 | 9,798. | | 0 | RE- | | | | EAR MEA | | | -, -, -, 1 | -,-02. | J., J., | | 29 1 20. | | Remarks: | _ | F. C. Dist. Form 52 4-48 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. HYDRAULIC DIVISION Sta. No. F 42-R | ау | Oct. | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | May | June | July | Aug. | Sept. |
|-----|----------|------------|-----------|----------|----------|------------|------|-----|------|----------|------|-------| | 1 2 | 0 | 0 | 0 | 2100 | 12 | 6.6 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 312 | 6.0 | 6.0 | 0 | 0 | 0 | 0 | Ŏ | i õ | | 3 | 0 | 0 | 0 | B 66 | 8.6 | 7.6 | o | 0 | 0 | 0 | 0 | 0 | | 5 | ŏ | 0 | 0 | D 66 | 92
10 | 9.7 | 0 | 0 | 0 | 0 |) o | 0 | | 6 | - 6 | 1 - 6 - | - 6 | 0 44 | 10 | 8 .6
21 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | ŏ | l ŏ | 24 | b 34 | 12 | 15 | Ö | 0 | 0 | 0 | 0 | 0 | | 8 | ō | lŏ | l ~o | b 24 | 15 | 12 | ŏ | ŏ | l ŏ | 0 | 0 | 0 | | 9 | 0 | Ō | l ō | 17 | 20 | 16 | ŏ | 0 | ŏ | 8 | 0 | 0 | | 0 | 0 | 0 | Ò | 15 | 30 | 14 | ŏ | Ĭŏ | ŏ | ŏ. | 0 | 0 | | i | 0 | 0 | 0 | 16 | 19 | 10 | ō | Ö | ŏ | 0 | ŏ | - 6 | | 2 | 0 | o | 0 | 17 | 20 | 9.2 | o · | 0 | Ŏ | ŏ | ŏ | ő | | 3 | 0 | 0 | 0 | 20 | 18 | 8.1 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 0 | 0 | 9.7 | 17 | 6.6 | 0 | 0 | 0 | 0 | 0 | Ó | | 6 | - 8 | 0.5 | 8 | 11 | 14 | 7.1 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | ŏ | 0 | 0 | 11 | 16 | 2.5 | 0 | 0 | 0 | 0 | 0 | 0 | | 8 | ŏ | 8 | 0 | 15
13 | 16
15 | 4.0 | 0 | ó | 0 | 0 | 0 | 0 | | 9 | ŏ | 0 | 8 | 13 | 14 | 2.0
0.5 | 0 | o | 0 | 0 | 0 | 0 | | 20 | ŏ | ŏ | l ŏ | 1 17 | 14 | ا ق | ŏ | 0 0 | 0 | 0 | 0 | 0 | | 21 | 0 | 2.4 | Ö | 13 | 13 | 2.0 | ŏ | ŏ | 0 | - 6 | 8- | 0 | | 12 | 0 | O | 0 | 15 | 12 | 5.5 | ŏ | ŏ | ŏ | ŏ | | 8 | | 3 | 0 | 30 | 0 | 11 | 13 | 4 | ŏ | ŏ | ŏ | ŏ | 8 | l ŏ | | 5 | 0 | 4,2 | 0 | 13 | 11 | 4.0 | Ó | ō | o | ŏ | ă | ŏ | | 16 | 0 | | 0_ | 16 | 11 | 2.0 | 0 | . 0 | ŏ | 0 | ŏ | l ă | | 7 | 0 | 0 | 420 | 8.1 | 10 | 0 | 0 | 0 | 0 | 0 | Ö | - 8 | | 8 | ŏ | 0 | 78
735 | 9.2 | 12 | 0 | o i | 0 | 0 | O | 0 | 0 | | 9 | ŏ | 8 | 2330 | 29 | 11 | 0 | o l | 0 | 0 | o | 0 | 0 | | 0 | ŏ | 6 | 2340 | 19 | | ő | 0 | o | 0 | o o | 0 | Ō | | 1 | ŏ | — | 2520 | 16 | | l ŏ ŀ | | 0 | | 0 | 0 | 0 | | | 0 | | | | | | | | | | | | | | | 74.9 | 8447.0 | 3054.0 | 388.8 | 184.0 | 0 | o | 0 | . 0 | 0 | o | | N . | _0 | 2.50 | 272.5 | 98.5 | 13.9 | 5.93 | 0 | 0 | 0 | 0 | 0 | 0 | | E- | 0 | 149 | 16.750 | 6.060 | 771 | 365 | 0 | 0 | 0 | 0 | 0 | 0 | | F | temarks: | + = 0.05 c | .f.s. or | less. | | | | | Y | EAR MEAL | | | ### STATION FAS-R SAN JOSE CREEK at Workman Mill Road LOCATION: WATER-STAGE RECORDER, LAT. 34°01'24", LONG, 118°02'05", ON THE DOWNSTREAM SIDE OF WORKMAN MILL ROAD BRIDGE, ABOUT 3 MILES NORTH OF WHITTIER. THIS STATION IS NEAR THE LOCATION OF THE STATION OPERATED FROM 1923 TO 1929 BY THE STATE DIVISION OF WATER RIGHTS, ELEVATION OF ZERO GAGE MEIGHT, 214.85. DRAINAGE AREA: 85.0 SOUARE MILES. CHANNEL AND CONTROL: CHANNEL - CLAY, SAND AND GRAYEL. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 150 FEET BELOW STATION. RECORDER: INSTALLED JANUARY 2, 1929 OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY THOMPSON CREEK DAM. DIVERSIONS: SMALL DIVERSION FOR SPREADING. (SEE STATION F276-R.) RECORDS AVAILABLE: JANUARY 2, 1929 TO SEPTEMBER 30, 1947. (FOR RECORDS PRIOR TO JANUARY 2, 1929, SEE STATE DIVISION OF WATERRIGHTS BULLETINS. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 1390 SECOND-FEET, DECEMBER 23. MINIMUM 1,2 SECOND-FEET, JUNE 28. MAXIMUM 833 SECOND-FEET, DECEMBER 26. MINIMUM 0.6 SECOND-FOOT, SEPTEMBER 9. 1928-1947 MAXIMUM 13.100 SECOND-FEET, JANUARY 1, 1934-MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: GOOD FOR LOW FLOWS. FAIR FOR HIGH FLOWS DUE TO UNDETERMINED SHIFT. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. DISCHARGE MEASUREMENTS OF SAN JOSE CREEK SAN JOSE CREEK Workman Mill Road Morkman Mill Road AREA OF MEAN GAUGE SECTION VELOCITY HEIGHT SO, FT. FT.PER SEC. FEET RAT- METH- MEAS. Q. HT. BEC. GHANGE NO. TOTAL DISCHARGE NQ. BEGTION VELOCITY HEIGHT DISCHARGE RAT- METH- MEAB. 1285 BREWSTER 9,0 1.39 0.84 4.8 .6 5 0 FC12 692 10-3 1158A 1205P BREWSTER 9.0 3.00 1.23 0.95 3.7 .6 5 0 FC12 636 10/4 .6 5 0 637 10/18 9.0 3.95 1.11 0.86 4.4 .6 5 0 693 10-10 9.0 3,00 0.87 0.95 2.6 BREWSTER 1.27 0.97 2,9 .6 5 0 2.28 638 DILLEY 10.0 4.00 1.08 0.86 4.3 .6 5 D 694 10-17 9.0 1203 1.19 3.1 .6 0 3.05 1.11 0.85 .6 5 2.60 0.93 639 11/15 107F BREWSTER 9.0 3.4 0 695 10-24 1215P 10.0 .6 3.25 0.98 0.86 .6 5 1.05 0.95 2.7 0 640 11/29 9.0 3.2 0 696 10-31 9.0 2.57 .6 5 2.7 .6 5 0 641 12/13 1242P 10.0 3.40 1.00 0.82 3.4 0 697 11-7 10.0 2.68 1.01 0.99 .6 5 <u>-.01</u> " 12/20 10.0 3.40 1.00 0.78 3.4 0 698 11-12 20.0 10.0 1.30 1.34 13.0 .6 5 642 .6 6 + 03 57.8 3.15 2.22 182. 51.7 3.15 2.22 163. .6 7 -.05 643 12/22 805A 52.0 699 11-13 340P 305P BREWSTER - VINES 44.0 .6 7 -.04 2.40 99.0 .6 7 65.2 2.88 2.38 188. 41.3 1.91 -.02 644 12/23 54.0 700 11-14 36.0 ٥ 8.30 1.60 1.03 13.3 .6 5 .6 6 0 8.0 16.0 12.0 7.80 1.03 0.94 645 12/24 410P 701 11-15 BREWSTER .6 6 ٥ 43.0 120. .6 5 -.02 6.40 1.48 0.93 9.5 46.0 2.79 2.01 12.0 702 11-20 646 12/27 110F 12.0 4.80 1.58 0.97 7.6 .6 6, 0 1.88 0.86 6.4 .6 5 0 3.40 647 1/3 100P 703 11-21 350P 140P 10.0 6.00 1.25 0.95 -6 7 0 58.0 3.26 2.58 275. .6 6 -.04 12.0 7.5 704 11-23 84.4 - 648 1,32 .6 6 0 1.02 13.0 .6 6 0 12.0 6.20 0.88 8.2 24.0 10.4 1.25 705 11-24 649 1241P 12.0 5.20 1.42 0.90 7.4 .6 6 0 706 11-29 BREWSTER 3.00 0.83 .6 5 10.0 1.64 4.9 0 650 1220F 1108A 1210 10.8 .6 5 +,03 16.0 8.00 1.35 1.04 707 12-5 12.0 4.40 1.25 0.82 5.5 .6 6 0 651 222P .6 6 +.03 52.2 3.52 184. 652 46.0 2.28 708 12-12 11.0 3.96 1.31 0.80 5.2 0 .6 0 0.89 12.9 18.0 8.50 1.52 653 709 12-19 11.0 4.76 0.82 6.6 .6 6 0 1220 1220F 17.0 1.19 0.85 9.5 .6 0 50.0 2.74 2.09 137. 710 12-26 BREWSTER - VINES 44.0 -.08 1245 1.22 13.0 0.82 7.6 0 711 12-26 81.7 .6. 7 26.0 26.7 3.06 1.64 -.01 100 300 712 12-27 18.0 12.0 6.60 8.4 0 10.8 1.67 1.02 0 1220 0.83 8.9 0 713 12-27 216P KASIMOFF - HAIG 16.0 12.0 2.34 1.11 28.1 .6 9 0 13.0 1.40 .6 7 0.84 8.4 14.0 6.20 1.35 714 1-3 BREWSTER 4.60 1.61 0.90 7.4 .6 6 0 658 12.0 1204P 1216P 20.0 1.20 0.90 7.9 .. 659 14.0 5.68 1.53 0.85 8.7 FC12 6.56 .6 6 Q 405P 416P WADD I CO 20.0 6.56 1.23 0.91 8.1 .6 6 0 14.6 2.08 30.4 FC22 1-16 1230F 21.0 1,20 .6 10 0 3/21 BREWSTER 7,84 1.35 10.6 0 FC12 717 1-23 12.0 5.00 1.46 0.91 7.3 .6 6 0 24.0 0.88 13.0 7.19 1.86 0.98 13.4 -01 718 1225F 11.0 4.75 1.52 0.90 7.2 .6 6 0 COLE 2.00 116. +.02 FC20 719 2-6 12.0 5.00 0.90 8.3 920A HOLMES BREWSTER .6 7 .6 7 4.11 FC12 3/30 60.0 80.7 3.75 2.64 303. 720 2-13 12.0 4.55 1.76 0.90 8.0 0 664 COOL EY BREWSTER 0 COOLEY 32.0 20.8 1.68 1.18 34.9 8 721 2 - 20 BREWSTER - WADD I COR 12.0 4.80 1.67 0.89 8.0 .6 6 0 113P BREWSTER .6 6 .01 22,0 9.46 1.22 0.86 11.5 722 2-26 WADDICOR 12.0 4.32 1.51 0.90 6.5 .6 6 O 105P 1158A 1204P .6 6 0 8.00 1.10 0.83 667 4/11 22.0 8.8 723 3-5 1242P 12.5 8.90 1.82 1.03 16.2 .6 -.01 .6 6 0 1.26 7.16 0.86 9.0. .6 7 668 16.0 724 12.8 5.66 1.45 0.87 8.2 0 1.05 0.87 8.5 .6 7 8.06 3-19 669 4/25 22.0 725 6.77 1.20 0.87 8.1 .6 8 0 115P 0.85 6.5 .6 5 726 3-26 11.7 4.85 1.46 0.89 7.1 .6 7 0 ٠, 5.50 1.18 5/2 14.0 670 105 7.8 .6 7 11.0 4,53 1.54 0.90 7.0 .6 6 0 15.0 7.25 1.08 0:94 727 4-2 .6 8 16.0 7,20 1.07 0.94 7.7 728 4-9 14.0 8.92 1.13 0.93 10.1 .6 n 100P 1237P .6 8 0 0.97 7.6 673 7.20 1.06 5/23 16.0 729 4-17 246F 12.0 5.88 1.33 0.95 7.8 .6 6 ٥ .6 7 0 0.95 7,5 1.48 .6 6 5/31 121P. 13.0 5.06 730 4-24 10.2 4.68 1.02 0.91 4.8 0 674 4.80 675 731 7.7 3.86 0.98 0.94 .6 6 0 6/7 1240F 14.0 _0.75 0.95 3.6 0 4-30 3.8 732 7.0 .6 7 0 676 3.28 0.73 1.01 2.4 6/13 115P 12.0 6.20 0.80 1.13 5.0 5.7 105P 733 5-14 7,5 3.20 1.31 0.86 4.2 .6 6 0 8.0 3.60 0.83 3.0 130F _6**7**7 200P 145P 7.0 3.35 .6 10.0 3.56 0.96 1.06 3.4 734 5-21 1.04 0.91 3.5 0 .6 5 735 5-29 7.5 3.64 0.74 2.7 0 679 155P 0.92 7/5 13.0 5.80 0.81 1.05 4.7 .6 7 Ω 7.7 3.67 0.98 .6 5 0 736 6-5 0.93 3.6 12.0 4.48 0.80 0.99 3.6 n 156P . 680 1154A 1140A 212P 222P 737 7.9 0.92 2.9 .6 6 0 7/18 4.13 0.70 681 1150A 6.0 2.85 1.12 1.00 3.2 .6 4 0 6-12 682 7/25 BREWSTER .7.0 3.05 1.28 1, 06 3.9 .6 4 Q ₹C12 738 6-19 7.5 3.03 0.82 0.92 230P 210P 9.0 2.68 1.12 1.03 3.0 .6 5 0 739 6-25 6.6 2.53 0.95 0.89 2.4 .6 7_ .683 220P 205P .6 5 0 740 7-3 7.5 3.03 0.96 2.9 7.0 3.73 1.04 1.09 3.9 0 FC 19 0.88 200 2.1 .6 5 0 3.0 741 7-10 7.0 2.88 0.73 0.90 7.0 210P 3.7 0 742 7-17 7.7 3,20 0.91 0.92 2.9 .6 5 1212P 1142A 3,17 1.04 2.7 .6 5 3.3 .6 5 +01 FC12 0 687 8/29 1154A 1135A BREWSTER 9.0 0.98 743 7-24 8.4 2,50 1.08 0.93 2,24 1.12 2.5 4 0 .6 5 688 9/5 8,0 0.97 744 7-31 8.7 2.50 1.00 0,90 2.5 0 5 689 9.0 2.85 1.02 1.00 2.9 .6 0 745 8-7 BREWSTE 10.0 2.56 0.94 0.86 2.4 .6 5 0 FC12 5 .6 5 10,0 0.86 2.5 0 2.6 2,64 0.95 690 9/19 9.0 2.80 0.93 0.97 0 746 8-11 •• 5 .6 5 0 0 1.9 9/26 1130A 9.0 2.93 1.26 1.00 3.7 .6 747 8-21 10.0 2.24 0.85 0.87 .6 6 0 748 WADDICO 9.0 2.57 0.97 0.91 2.5 FC37 .6 5 0 .. 1.81 1.00 0.83 1.8 749 9-4 8.2 0.82 1.6 .6 6 0 .. 9,0 1.81 0.88 750 9-11 .. 9.5 2.06 0.82 0.80 1.7 .6 7 0 751 9-18 1.4 6 6 0 10.5 1.82 0.77 0.80 752 9-25 218P ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F48-R | Daily | discharge, in se | cond-feet of | SAN JO | SE CREEK | at Workm | an Mill R | oad | | | , for the yea | r ending Septer | nber 30, 19_ 46 | |----------------------------------|--|---------------------------------|--|--|-----------------------------------|---|--------------------------------------|---|---------------------------------|--|---|---------------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 3.3
3.8
4.0
4.2
4.0 | 4.0
3.8
3.8
3.3
3.3 | 29
29
24
24 | 7 1
6 5
7
1
7 4
7 4 | 6.0
6.5
4.3
b 1.5
1.1 | 8.4
8.1
8.4
8.4 | 17
16
13
12
10 | 6 5 5 5 5 6 6 5 6 6 5 6 6 6 6 6 6 6 6 6 | 6.5
5.2
5.2
5.0
3.3 | 2.7
3.1
3.3
3.8
3.8 | 3.3
3.1
2.4
2.7 | 3.7
2.7
2.2
2.4 | | 6
7
8
9 | 409933
2233 | 3.5
4.0
3.5
3.3
3.3 | 24
27
29
11
20
20
20
20
20
20
20
20
20
20
20
20
20 | 7 1
7 1
7 1
7 4
7 4 | 9.7
9.0
9.0
8.4
8.7 | 8 1
8 4
8 4
7 4
7 4 | 10
9.7
9.4
9.0
9.0 | 6.8
6.8
7.4
7.4
7.6 | 3 5
4 0
2 7
2 0
2 2 | 2.9
2.4
3.1
3.5
3.5 | 2 2 2 3 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.4
2.5
2.4
2.0
2.4 | | 11
12
13
14
15 | 39.053
433 | 31
31
33
33
33 | 3.5
3.5
3.3 | 7.8
7.8
7.8
7.8
7.8
7.8 | 5 4
8 4
7 8
. 7 6
8 1 | 8.1
8.4
9.7
8.4
9.7 | 8 .7
8 .7
8 .4
8 .4
9 .4 | 7.8
7.4
7.4
7.6
7.4 | 2.4
2.9
2.9
2.0
2.4 | 4.0
3.5
3.8
3.5
3.6 | 2 2
2 4
2 7
3 1
3 1
2 9 | 29
29,4
35,5
24 | | 16
17
18
19
20 | 3.5
4.0
3.5
3.5
3.1 | 3 3
3 3
3 3
3 1
2 7 | 3 1
3 1
3 3
3 3
3 4 | 8 1
7 9
8 1
8 7
8 4 | 9.1
7.6
8.4
9.0
8.1 | 9.0
9.0
9.4
9.7
17 | 8.7
8.1
8.7
8.4
7.8 | 7.6
8.1
8.7
3.1
7.8 | 3.5
3.8
4.0
3.1
3.3 | 3.3
3.1
3.5
3.5
3.5 | 3 1
2.7
2.7
3 1 | 2 9
3 3
2 9
2 7 | | 21
22
23
24
25 | 3 1
3 5
3 3
3 3 | 2.7
2.7
2.4
2.4
2.7 | 29
264
366
b 19
12 | 8.1
7.8
9.1
7.8
7.4 | 91
96
90
90 | 11
8 1
7 .8
7 .8
7 .4 | 8 .1
7 .4
8 .4
9 .0
5 .4 | 7.4
7.4
7.1
7.4
7.6 | 4.7
3.5
2.7
2.2
2.0 | 3.1
3.3
2.9
2.7
3.1 | 3 3
3 3
3 1
2 9
2 9 | 2.9
3.4
2.7
2.9 | | 26
27
28
29
30
31 | 3.5
3.5
3.6
3.5
4.0
3.6 | 2.4
2.7
2.9
2.9
2.9 | 9.7
9.4
9.7
9.0
8.4
7.4 | 7685353
6653
663 | 9.0
9.0
8.6 | 7.8
8.1
9.7
9.0
193
b 43 | 7.8
7.1
6.5
6.3
6.3 | 7.4
7.8
3.4
8.4
7.4 | 2.0
2.7
1.6
2.4
2.0 | 4 2
3 5
3 1
2 7
3 1
3 1 | 2 9
3 .6
3 .5
3 .1
3 .3 | 88888
66666 | | التسا | 1093 | 94.1 | 6236 | 231.2 | 276.8 | 4099 | 274.7 | 228.6 | 95.5 | 101.6 | 90.4 | d 2 .6 | | MEAN | 3.52 | 3.14 | 26.6 | 7.46 | 9.89 | 15.8 | 9.16 | 7.37 | 3.18 | 3.28 | 2.92 | 2.75 | | ACRE- | 217. | 187. | 1,630. | 459. | 549. | 972. | 545. | 453. | 189. | 202. | 179. | 164. | | • | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRI | | 750. | F. C. Dist. Form 82 4-48 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Sta. No. F 48-R | | | | | | | YDRAULIC | | | | | | | |----------|-----------------|--------------|------------|------------|--------------|------------|------------|-------------------|------------|------------|-----------------|------------| | lly d | ischarge, in se | cond-feet of | SAN JOS | E CREEK a | | | 1 | | <u> </u> | | r ending Septer | | | ay | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 | 4 .0 | 2.7 | 5.2 | 10 | 7.1 | 8.1 | 7.1 | 4.0 | 2.4 | 3.3 | 0. S | 2.2 | | 2 | 4 .5 | 2.7 | 50 | 8.7 | 7.1 | 8.7 | 7.1 | 3.5 | 2.7 | 3.3 | 2.7 | 2.0 | | 3 | 3.8 | 2.4 | 5.5 | 7.1 | 7.4 | 9.0 | 7.1 | 3.5 | 3.3 | 2.9 | 2.0 | 1.8
1.8 | | 4 | 3.8 | 22 | 6.3 | 7.1 | 7.8 | 9.4 | 7.8 | 2.9 | 2.9 | 2.2 | 2.0 | 1.6 | | 5 | 3.3 | 2.2 | 6.3 | 7.4 | 8 1 | 12 | 6.8
7.8 | 33 | 3.1 | 2.0 | 2.4 | 12 | | 6 | 2.9 | 2.4 | 9.3 | 7.4 | 8 .4
8 .4 | 9.7 | 8.7 | 2.7 | 2.9 | 2.2 | 2.7 | 1.2 | | 8 | 2.4 | 2.2 | 6.5
6.0 | 7.4
7.8 | 8 .4
8 .4 | 9.4 | 9.0 | 3.8 | 3.5 | 2.4 | 2.7 | 1.2 | | 9 | 2.7
2.9 | 2.7
1.8 | 6.8 | 7.8 | 9.0 | 9.0 | 9.4 | 3.5 | 3.5 | 1.8 | 3.3 | 1.4 | | ě | 2.4 | 1.8 | 7.1 | 7.8 | 8.7 | 8.7 | 8.7 | 5 1 | | 1.6 | 2 .4 | 1 .6 | | 1 | 2.2 | 2.0 | 6.8 | 7.8 | 8.1 | 8.4 | 7.8 | 5 <u>1</u>
4.0 | 2.9 | 1.8 | 2 .4 | 12 | | 2 | 22 | 27 | 6.3 | 7.8 | 8.1 | 8.1 | 7.1 | 3.5 | 2.9 | 1.6 | 2.2 | 1.6 | | 3 | 2.4 | 178 | 5.2 | 7.8 | 8.1 | 8.1 | 6.5 | 3.5 | 3.3 | 1.6 | 2.7 | 1.4 | | 4 | 2.7 | 60 | 5.5 | 7.8 | 8.1 | 8.1 | 6.0 | 3.5 | 3.1 | 1.6 | 2.7 | 1.2 | | 5 | 2.7 | 11 | 6.3 | 7.8 | 8.1 | 8.1 | - 6 Q | 3.5 | 3.1
2.2 | 22 | 2.7 | 1.4 | | 6 | 2.7 | 8.1 | 6.8 | 7.8 | 8.1 | 8.1 | 6.0 | 33 | 2.9 | 2.9 | 2.2 | 1.8 | | 8 | 3.3 | 9.0 | 6.8 | 7.8
7.4 | 8.4
8.4 | 8.1
8.1 | 5.0 | 2.4 | 3.3 | 2.7 | 2.4 | 1.8 | | 9 | 2.7 | 8.7
8.7 | 7.4
7.1 | 7.4 | 8.4 | 8.1 | 5.2 | 2 2 | 2.7 | 29 | 2.2 | 1 .6 | | 0 | 29 | 51 | 63 | 7.4 | 81 | 7.8 | 4.7 | 2 2
3 3 | 2.0 | 2.2 | 2.2 | 1 .6 | | n† | 31 | 9.9 | 6.3 | 71 | 8.1 | 8.1 | 4.7 | 3.1 | 2.4 | 2.0 | 2.0 | 1.6 | | 2 | 33 | 6.0 | 6.0 | 7.1 | 7.8 | 7.8 | 4.7 | 2.9 | 2.4 | 2.2 | 1.8 | 1.4 | | 3 | 3.3 | 131 | 6.0 | 7.1 | 7.4 | 7.4 | 4.7 | 2.7 | 1.8 | 2.4 | 1.6 | 1.6
1.2 | | 4 | 3 3 | 17 | 6.3 | 7.4 | 7.8 | 6.8 | 4.2 | 2.2 | 2.0 | 2.4 | 2 .0
2 .9 | 1 4 | | 5 | 3.8 | 9.4 | 138 | 7.1 | 7.1 | 6.8 | 4.5 | 2.0 | 2.4 | 2.2 | 2.4 | 1 .4 | | 8 | 3 3
3 5 | 7.8 | 250 | 7.1
7.1 | 6.8
7.1 | 6.8
7.1 | 4.0 | 2.4 | 2.4 | 1.8 | 2.7 | 1.6 | | 8 | 31 | 6 3
5 5 | 22 | 7.1
9.0 | 7.4 | 7.4 | 3.8 | 2.4 | 2.4 | 1.8 | 2.2 | 1.6 | | 9 | 31 | 5.0 | 15 | 8.4 | , | 7.4 | 4.5 | 2.4 | 2.7 | 2.2 | 2.2 | 1.6 | | 0 | 2 6 | 5.2 | 12 | 71 | | 71 | 4.2 | 3.1 | 2.9 | 2.7 | 2.4 | 1.6 | | 1 | 2.9 | | 11 | 7.1 | | 7.1 | | 2.4 | | 2.4 | 2.4 | | | | 94.6 | | 621.1 | | 221.8 | | 1 3 3 .8 | | 8.28 | | 73.6 | | | | J + .0 | 589.7 | 0 - 1 · · | 2369 | ~ | 2542 | | 96.1 | | 70.8 | | 45.8 | | ın | 3.05 | 19.7 | 20.0 | 7.64 | 7.92 | 8.20 | 6.13 | 3.10 | 2.76 | 2.28 | 2.37 | 1.53 | | 8-
5T | 188 | 1.170 | 1,230 | 470 | 440 | 504 | 365 | 191 | 164 | 140 | 146 | 91 | | <u> </u> | Remarks: | -17:- | | | | | | | 1 | YEAR MEA | | | | | | | | | | | | | P | ERIOD ACRE | FEET 5 | 100 | ### STATION U4-R SANTA ANITA CREEK above Santa Anita Dam LOCATION: WATER-STAGE RECORDER, LAT. 30"11'30", LONG. 118°01'00". IN SW 1/4 NE 1/4 SEC. 10. T 1 N. R. 11 W. AT HEAD OF HERMITS FALLS, I MILE UPSTREAM FROM BIG SANTA ANITA DAM, AND 4 MILES NORTHEAST OF SIERRA MADRE, ALTITUDE OF GAGE. ABOUT 1.475 FEET ABOVE MEAN SEA LEVEL. DRAINAGE AREA: 10.5 SQUARE MILES. RECORDS AVAILABLE: JULY, 1916 TO SEPTEMBER, 1947. AVERAGE DISCHARGE: 30 YEARS, 6.46 SECOND-FEET. EXTREMES: DMES: 1945-1946 1945-1946 MAXIMUM 460 SECOND-FEET, DECEMBER 23. (GAGE HEIGHT, 4.86 FEET). MINIMUM DAILY 0.5 SECOND-FOOT, AUGUST 18, 19. SEPTEMBER 13-15. MAXIMAM 346 SECOND-FEET, NOVEMBER 20 (GAGE HEIGHT, 4.32 FEET). MINIMAM DAILY 0.5 SECOND-FOOT, SEPTEMBER 2-7, 13-16, 26-28. REMARKS: RECORDS GOOD. NO DIVERSIONS ABOVE STATION. OPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY. WITH THE EXCEPTION OF 37 MEASUREMENTS MADE BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DIECHARGI | E MEABURE | MENTE OF SANTA | AŅĪŢĄ CI | REEK | | | | | | | | NO. | DATE | SEGIN
END | HADE BY | WIDTH | AREA OF
SEUTION
EQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUDE
HEIGHT
FEET | DIEGHARDE
SEC, FT. | RATE SI | ETH. HI | EAS. G | HANGE
TOTAL | HETER
NO. | |------|---------------|--------------|----------------|----------|--------------------|------------------|-----------|------------|---------|---------|------------------------------|-------|-------|--------|--------------|--|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------------|---------|--------|----------------|--------------| | | - | above | Santa Anita Da | m | | овя | ING THE Y | CAR ENDING | SEPTEM | BER 3 | o, 19.¥6 . | | 1009 | 3-20 | | * | 9.0 | 8.1 | .69 | .76 | 5.6 | | .6 1 | 5 | 0 | | | NS. | DATZ | BESIN | MADE BY | WIDTH | AREA OF | MEAN
VELOCITY | SAUGE | DISCHARGE | MAT- ME | B. MEA | E. G. HT.
CHANGE
TOTAL | HETER | 1010 | 3-28 | | | 11, | 8.4 | .74 | .75 | 6.2 | | : § | 1 | 0 | | | | | END | 1 | FEET | SECTION
SQ. FT. | FT.PER SEC. | FEET | SEC. FT. | MG D | 7 70 | TOTAL | NO. | 1011 | 4-3 | | ,, | 14. | 14.8 | 1.18 | 1,15 | 17.5 | | ž 1 | 4 - | 01 | | | 985 | 10-3 | | U.S.G.S. | 5.5 | 2;73 | .29 | 37 | 78 | | 5 12 | 2 0 1 | | 1012 | 4-12 | | | 13 | 8.5 | 1.05 | .85 | 8.9 | Li | 8 1 | ı | 0 | | | 986 | 10-11 | | | 5.7 | 3.34 | .43 | 43 | 1.43 | | 12 | ا ه ا | | 1013 | 4-19 | | 100 | 10.7 | 7.7 | .79 | .78 | 6.1 | | 2 1 | | 0 | | | 987 | 10-19 | | | 5.6 | 3.21 | .45 | 43 | 1.46 | . | 6 . | | | 1014 | 4-25 | | ,, | 11.1 | 7.5 | .73 | 72 | 5.5 | | 8 | _ا ه | 0 | | | 988 | 10-26 | | · # | 5.5 | 3.15 | .35 | -40 | 1.10 | | 5 12 | ا ه ا | | 1015 | 5-2 | | • | 10.8 | 7.0 | .65 | .68 | 4.55 | | . ĝ | 1 | 0 | | | 989 | 11-1 | | | 5.6 | _3.70 | .48 | -47 | 1.79 | ما | i. 12 | | | 1016 | 5-9 | | H | 10.4 | 5.8 | .74 | .66 | 4,31 | П | .6 1 | 11 | 0 | | | 990 | 11-7 | | | . 5.5 | 3.55 | 48 | 48 | .1.70. | - 4 | i 14 | ا ها | | 1017 | 5-17 | | | 10.3 | 5.7 | .70 | .65 | 3.98 | П | .6 1 | .2 | 0 | | | 991 | 11-16 | ļ | | 6.7 | 3.82 | .41 | .46 | 1.58 | | 1.6 | | | 1018_ | | | | 10. | 5.5 | .69 | [| 3.81 | 1 | .6 1 | | | | | 992 | 11-21 | | ļ | 5.0 | 2.96 | .50 | ,44 | 1.48 | | 115 | 0 | | 1019 | 1 | | - | 9.6 | 4.54 | -67 | | | Ιï | .6 1 | | | | | 993 | 11-28 | | | 4.9 | 2.88 | .48_ | .44 | 1.38 | _ . | Цu | | | | 6-7 | | | 9.3 | 4.80 | .54 | .57 | | | .6 1 | | 0 | | | 994 | 12-4 | | | 4.9 | 2.88 | .48 | .44 | 1.38 | 6 | 11 | 0 | | 1020. | 6-11 | | | 3.5 | 1.72 | | | | 11 | .6. | - | 0 | | | 995 | 12-12 | | | 4.8 | 2.88 | .50 | .45 | 1.43 | | 10 | 0 | | 1021_ | T | i | |] | | | | | 1 1 | | - 1 | 0 | | | 996 | 12-20 | | - | 4.8 | 2,92 | .50 | .44 | 1,45 | | 10 | 0 | | İ | 6-18 | | | 3.3 | 1.59 | 1 | -51 | |
\dagger | .6 | | | | | 997 | 12-28 | | <u>.</u> | 1 | 8.8_ | .84 | .83 | 7.4 | | 22 | 0 | | 1023_ | 6-25 | | | 3.4 | 1.57. | | | | $\dagger \dagger$ | .6. | | | | | 998 | 1-5 | | | 10.6 | 7.5 | .75 | .69 | 5.6 | 1 1.6 | i I | 1 1 | | 1024 | 7-5 | | † · · · | 1 | | 1.10 | [| 1 | † † | .6 | | 0 | | | 999 | 1-10 | | | 10.5 | 9.7 | .46 | .64 | 4.42 | 100 | 9 | 1 1 | | 1025 | 1 | | | 3.7_ | | 87 | 47_ | | † | .6. | - 1 | .0 | | | 1000 | 1-17 | 1 | | 10. | 6.1 | .58 | .61 | 3.56 | | | 0 | | 1026 | 7-16 | | | 3.5. | 1 | | | | \vdash | ļ | 7 | l l | | | 1001 | 1-24 | | | 10.2 | 5.7 | .52 | .59 | | : | | | | 1027 | 7 • 24 | | | 3.7 | 1.39 | | 44 | | 1-1 | .6 | | | | | 1002 | 1-31 | | ** | 9.0 | 4.76 | 50 | 57 | | | | | | 1028 | 7-31 | | | 3,6 | 1.36 | | "" | [| + | .6 | | | | | 1003 | 2-7 | | | 7.0 | 7.2 | 52 | | 3.72 | 1 1.6 | il | | | 1029 | B-9 | | 11 | 3.2 | 1.28 | 0.75 | | 1 | + | 6 | 7 | 0 | | | | 2-14 | | | | | | | | : | 14 | | | 1030 | B•16 | | | 3.1 | 104 | .63 | .37_ | 66 | + | 6 | 6 | 0 - | | | 1005 | 2-21 | <u> </u> | | 6.4 | 6.9 | .44 | .59 | | | | a | ** | 1031 | 8-22 | | <u>"</u> | 3.1 | 1.06 | .68. | 36 | -72 | +- | .6 | 6_ | 0- | | | | | - | † | 8.2 | .5.6 | -59 | .58 | .3.33 | | 11 | i 1 | | 1032 | B-30 | | - | 2.2 | .85 | .98 | 37 | 83 | ++ | 6 | 7 | 0_ | | | 1006 | 2 - 28 | † | <u>_</u> | 8.2 | 5.2 | 55 | 56 | 2.86 | | 10 | - 1 | | 1033 | þ-6 | ļ | | 2.2 | 88_ | -86 | 36 | .76 | 1 | 6- | 7 | 0 | | | 1007 | 3-7 | - | | 8.0 | 510 | 0.59 | 0.55 | | | 6 12 | | | 1.034 | 9-19 | | <u> </u> | 3.3 | 1.30 | -51 | .36 | .66 | +- | 6 | 7 | 0 | | | 1008 | 13-14 | ļ | J | 6.2 | 4.08 | | .59 | 3.13 | L. J. | 12 | 5. 0 | + | 1035 | h-26 | l | • | 2.0 | .88 | -68 | .34 | -60 | | 6 | a | 0 | | 1074 1075 1076 1077... 4-16 7.4 4.29 0.93 0.68 7.5 3.92 0.92 0.65 4.2 2.54 1.65 0.65 4.9 2.38 1.22 0.60 2.15 1.32 0.59 2.84 4.7 2.23 1.08 0.59 2.4 2.91 6 9 0 | | DISCHARGE | MEASUREN | ENTS OF SANTA AN | ITA CRI | EEK | | | | | | | | ľ | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA DF
SECTION
20, FT. | MEAN
VELODITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | TAN TAR | HEAS,
BEC. | G. RT.
CHANGE
TOTAL | METER
NO. | |-------|-----------|-------------------------|--|------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|------------|--------|--------|--------------|-------|-------|------------------------|----------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------|---------------|---------------------------|--------------| | | NEAR. | above ! | Santa Anita Dam | | | DUR | NG THE Y | EAR ENDING | SEPTE | 48ER | 30, 19 | . 47 . | Ì | 1082 | 5-15 | 1015A
1022A | ., | 4.8 | 2.39 | 1.10 | 0.60 | 2.63 | .5 | 5 | ٥ | | | NG. | DATE | #EGIN
END | MADE BY | WIDTH | AREA OF
BEGTION
BO. FT. | MEAN
VELOCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHANGE
SEC. FT. | RAT- ME | тм. м | EAS. G | HANGE | HETER
NO. | 1083 | 5-21 | 950A | U.S.G.S. | 4.2 | 2,17 | 1.25 | 0.57 | 2.72 | .6 | 8 | 0 | | | 1036 | 10-3 | | U.S.G.S. | 3.6 | 1.58 | 0.99 | 0.46 | 1.56 | | ٦, | | 0 | | 1084 | 5-22 | 957A | MOON | 4.8 | 2,20 | 1.04 | 0.57 | 2.3 | . 5 | 5_ | 0 | FC22 | | 1037 | 10-10 | | and the second s | 2,1 | 0,99 | | 0.42 | 1,12 | | Ĭ. | | a . | - 1 | 1085 | 5-28 | 122P | | 4.8 | 2.23 | 1.03 | | 2.3 | 5 | | 0 | | | 1038 | 10-17 | | | 2.4 | 1.40 | | 0.47 | 1.76 | | - i | | 0 | | 1086 | 6-4 | 925P | U.S.G.S.
MOON | 4.2 | 2.16 | ļ | | 2.83 | - 6 | ! | 0 | ECOO | | 1039 | 10-24 | | | 2.5 | 1.36 | 0.96 | 0,43 | 1.30 | | 6, | . 7 | +.01 | | 1087 | | 932P
1005A
1013A | SHIPLEY | 3.7 | 2.23 | 1.22 | 0.57 | 2.45 | 6 | 6 | 0 | FC22 | | 1040 | 10-31 | | ** | 1.9 | 1.02 | 1,41 | 0.47 | 1.44 | _ . | 6 | 6 | 0 | - 1 | 1089 | | 1045A
1052A | | 4.8 | 1 | | 0.54 | 1.93 | 5 | | 0 | | | 1041 | 11-6 | | ** | 1.9 | 0.88 | 1.38 | 0.46 | 1.21 | | 6 | 6 | 0 | | 1090 | 6-18 | L | U.S.G.S. | 4.2 | 1.97 | 0.99 | 0.52 | 1.96 | 6. | 8_ | 0 | | | 1042 | 11-21 | | " | 13.5 | 21.8 | 1.33 | 1-44 | 29.1 | 5- | 8 | | 0 | | 1091 | 6-25 | 1235P
1245P | MOON | 4.0 | 1.58 | 1.33 | 0.52 | 2,1 | 5_ | | ۵ | FC22 | | 1043 | | | | 13 | 15.3 | 0,99 | | 15.1 | 1 1 | - 1 | - 1 | 0 | | 1092 | 7-1 | 953A | u.s.g.s. | 4.1 | 1.62 | 0.99 | 0.50 | 1.60 | 6 | 8 | 0 | | | 1044 | | | •• | 5.1
4.0 | 3.87
2.67 | 1.96 | | 7.6
5.0 | l 1 | 6 | 8 | 0 | | 1093 | 7-9 | 1003A | MOON | 3.8 | 1.40 | | 0.45 | 1.2 | .5 | +- | 0 | FC22 | | 1046 | · · | | " | 5.2 | 2.72 | 1.62 | | 4,41 | | 6 | | 0 | | 1094 | 7-15 | 855 ^A | U.S.G.S. | 3.8 | 1.38 | | 0.45 | 1.17 | - 6. | 7 | Q | | | 1047 | | | ** | 4.5 | 2.42 | 1.77 | 0.65 | 4.29 | 1 1 | 6 | 9 | 0 | | 1095. | 7-24 | 905A | MOON
U.S.G.S. | 3.9 | 1.34 | 0.82 | 0.43 | 0.85 | .6 | 8 | 0 | FC22 | | 1048 | 1-2 | , | ,, | 17 | 20.3 | 1.17 | 1.28 | 23.8 | | 6
-8 | 17 | ۵ | | 1096 | 8•7 | 945A
955A | MOON | 3.7 | 1.19 | | .38 | 0.84 | 5 | | | FC22 | | 1049 | 1-8 | 1045A
1100A
810A | MOON | 11.5_ | 11.2 | 1.37 | 1.05 | 15.4 | 1 | 6 | 11 | 0 F | C22 | 1098 | 8-11. | | u.s.g.s. | 3.7 | i | 0,73 | 0.41 | 1.01 | 6 | | 0 | | | 1.050 | 1-10 | 822A
820A | | 11.5 | 11.1 | 1.27 | 1.01 | 14.1 | - | 6_ | u | 0 F | C22 | 1099 | 8-21 | 844A
854A | MOON
VAN DER GOOT | 4,0 | | | 0.40 | 1.0 | 5 | 8 | 0 | FC22 | | 1051 | 1-13 | 835A
910A | <u> </u> | 11.0 | 10.4 | 1.21 | | 12.6 | 1 | - 1 | 11 | - 1 | C22 | 1100 | 8-25 | 1010A | U.S.G.S. | 3.6 | 1.18 | 0.70 | 0.39 | 0.83 | . 5
. 6 | 7_ | +.01 | | | 1052 | 1-15 | 922A | | 11.0 | 10.0 | | 0.95 | 1 | 1 1 | - 1 | 11 | - 1 | C22 | 1101 | 9-3 | 020A | STUNDEN | 3.5 | 1.03 | 0.58 | 0.35 | 0.60 | 5 | 7 | 0 | FC36 | | 1053 | 1-15 | 815A | U.S.G.S. | 6.0 | 5.4 | 1.91 | 0.95 | 10.3 | 1 | 6 | | | | 1102 | 9-8 | 757A | U.S.G.S. | 3.4 | 1.17 | 0.59 | 0.37 | 0.69 | 6. | | 0 | | | 1054 | 1-17 | 850A
905A | moure | 11.0 | 9.6 | 1.00 | 0.92 | 9.6 | 1 | 6 | - 1 | Į. | C22 | 1103 | 9-18_ | 812A | STUNDEN | 4.0 | 1.47 | 0.75 | 0.44 | 1.1 | . 5 | Ti Ti | | FC40 | | 1056 | 1-22 | 934A
947A | | 9,6 | 8.5 | | 0.86 | 9.2 | 1 | 6 | l i | - 1 | | 1104 | 9-22 | ļ | U.S.G.S. | 3.5 | 1.23 | 0.64 | 0.39 | 0.79 | 6 | 7 | 0 | ļ | | 1057 | 1-24 | 835A
850A | | 9.6 | 8,4 | 0.93 | 0.84 | 7.8 | <u> </u> | 6 | 11 | 0 | | | | | | | | | | | | | | | | 1058 | 1-27 | 900A
915A
910A | ** | 9,6 | 8.0 | 0.95 | 0,82 | 7.6 | | 6 | 11 | 0 | - | | | | | | | | | | | | | | | 1059 | 1-29 | 925A | ** | 9.7 | 8.7 | 1.10 | 0.89 | 9.6 | <u> </u> | 6 | 11 | 0 | | | | | | | | | | | | | | | | 1060 | 1-29 | 1005A | U.S.G.S. | 5.5 | 5.2 | 2.08 | 0.89 | 10.8 | r - r | 6 | | 0 | | | | | | | | | | | | | | | | 1061 | | 1020A | MOON | 9.7 | 8.0 | 0.90 | 0.79 | 7.2 | | 5 1 | | | C22 | | | | | | | | | | | | | | | 1062 | 2-10 | 1 000A | U.S.G.S. | 5.0 | 4.2 | 1.50 | | 6.3 | T 1 | | | 0 5 | - | | | | | | | | | | | | | | | 1063 | 2-13 | 909A | MOON | 9.6 | 7.4 | 0.88 | | 6.5 | | 6 1
6 1 | | | C22 | | | | | | | | | | | | | | | 1064 | 2-19 | 9194 | U.S.G.S. | 9.6
4.6 | 2.84 | 1.74 | 0.76 | 6.0
4.94 | | 6 | 1 | 0 | | | | | | | | | | | | | | | | 1066 | 2-26 | 120P
130P | MOON | 9.3 | 6.5 | | 0.73 | 4.8 | 1 | 6 | | | C22 | | | | | | | | | | | | | | | 1067 | | 100P
110P | ** | 7.6 | 4.68 | 1.03 | 0.73 | 4.8 | | | | 0 | | | | | | | | | | | | | | | | 1068 | 3-12 | | U.S.G.S. | 4.1 | 2.61 | 1,63 | 0.70 | 4.26 | 1 1 | | 7 | 0 | | | | | | | | | | | | | | | | 1069 | 3-12 | 1050A
L100A
1100A | MOON | 7.5 | 4.41 | 0.93 | 0.70 | 4.1 | ' | 3 | 8 | Q F | C22 | | | | | | | | | | | | | | ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U4-R | ay | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |-----------------------
--------------------------------------|---------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|---------------------------------|---|---------------------------------|---------------------------------|--------------------------------------| | 1
2
3
4
5 | 0.8
0.8
0.8
0.9 | 1.8
1.6
1.3
1.2
1.3 | 1.6
1.6
1.5
1.5 | 5.5
5.6
5.5
5.7 | 2.4
2.4
11
6.1
4.5 | 2.8
2.8
2.7
2.7 | 30
23
18
15 | 4.8
4.6
4.5
4.5
4.3 | 8.9
8.9
8.6
8.6
8.6
8.6
8.6 | 1.7
1.8
1.8
1.8 | 0.7
0.7
0.7
0.7 | 0.8
0.8
0.7
0.7 | | 6
7
8
8 | 1.1
1.2
1.8
1.6 | 1.6
1.7
1.5
1.4
1.4 | 1.6
1.6
1.5
1.4 | 5.0
4.8
4.6
4.5
4.5 | 3.7
3.7
3.6
3.4 | 2 9
2 9
2 7
2 7
2 7 | 12
12
11
10
9,5 | 4 3
4 1
4 1
4 3
4 3 | 2 3
2 4
2 4
2 3
2 0 | 1.8
1.6
1.5
1.3
1.3 | 0,8
1,0
1,0
0,9
0,8 | 0.7
0.7
0.8
0.8
0.7 | | 1
2
3
4
5 | 1.5
1.5
1.4
1.4 | 1 4
1 5
1 5
1 5
1 5 | 1 .4
1 .4
1 .4
1 .4
1 .4 | 4 3
4 1
3 9
3 9
3 7 | 3 .4
3 .2
3 .2
3 .1
3 .2 | 2.7
2.7
4.2
3.1
2.7 | 9.0
8.7
8.1
8.1
7.6 | 4 3
4 1
4 1
3 9
3 9 | 2.0
1.9
1.9
1.9 | 1.0
1.0
1.0
1.0 | 0.7
0.7
0.7
0.7
0.8 | 0.7
0.5
0.5
0.5 | | 6
7
8
9 | 1 .4
1 .4
1 .5
1 .4
1 .4 | 1 &
1 &
1 5
1 &
1 5 | 1 4
1 4
1 4
1 4
1 4 | 3.6
3.6
3.4
3.4 | 3.4
3.2
3.2
3.2
3.4 | 2.6
2.4
2.4
7.9
5.7 | 7.1
6.6
6.4
6.2
5.9 | 3.9
3.7
3.9
3.9
3.9 | 1.8
1.8
1.7
1.7 | 1.0
1.0
1.1
1.2
1.2 | 0.7
0.6
0.5
0.5
0.6 | 0.6
0.7
0.7
0.6
0.6 | | 1
2
3
4
5 | 1 3
1 4
1 5
1 3
1 2 | 1.5
1.6
1.5 | 47
133
138
28
17 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3 .4
3 .4
3 .2
3 .2 | 4 .8
4 .3
4 .1
3 .9
3 .7 | 5 9
5 5 5
5 2
5 2 | 3.9
3.7
3.7
3.6
3.6 | 1.8
1.9
1.8
1.7 | 1.0
1.0
1.0
1.0 | 0.7
0.7
0.7
0.7 | 0 .6
0 .7
0 .7
0 .7
0 .6 | | 6
7
8
9 | 1 1
1 3
1 7
2 7 | 1.4
1.4
1.5
1.6 | 11
8.4
7.3
6.6
6.2 | 2.8
2.7
2.7
2.7
2.6 | 3 1
2.8
2.8 | 3.6
3.4
4.8
6.2
119 | 5 2
5 0
5 0
5 0
4 .8 | 3.6
3.6
3.6
3.2
2.9 | 1 .6
1 .6
1 .8
1 .8
1 .8 | 1 .0
0 .8
0 .8
0 .8 | 0.7
0.7
0.8
0.8
0.8 | 0.6
0.6
0.6
0.5
0.7 | | <u>. I</u> | 2.0 | 4 5 .0 | 437.6 | 2.4 | 102.4 | 2749 | 2795 | 2.8 | 60.5 | 36.2 | 22.6 | 19.8 | | AN | 1.37 | 1.50 | 14.1 | 3.89 | 3.66 | 8.87 | 9.32 | 3.93 | 2,02 | 1.17 | .73 | 66 | | E- | 84. | 89. | 868. | 239. | 203. | 545. | 554. | 241. | 120. | 72. | 45. | 39. | | | Remarks: | | | | | | | | | CEAR MEA
OR
ERIOD ACRE | | .100. | F. C. Disc. Form 52 8-44 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Ste. No. U 4-R | | | | | | H | TYDRAULIC: | DIVISION | | | | | | |--|---|---|---|--|--|--|---|--|---|--|---|---| | ally di | scharge, in se | cond-feet of | SANTA A | NITA CREE | K above S | anta Anii | a Dam | | | , for the yea | r ending Septem | ber 30, 19 <u>4</u> 7 | | Day | Oct. | Nov. | Dec. | Jan | Peb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 7 8 9 9 10 11 12 12 13 14 15 16 17 17 18 19 20 22 23 24 24 25 26 |
5000
2000
11.88
15.50
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11 | 1.4.2.1.2.2.1.2.2.0.1.2.2.0.0.0.0.0.0.0.0.0 | 8 1 3 8 6 8 9 1 1 4 4 6 6 5 9 7 5 5 2 0 0 8 4 6 6 5 9 1 5 5 5 5 5 5 5 5 5 5 5 5 5 6 4 4 5 5 5 1 2 4 4 5 5 5 1 2 5 1 2 5 | 28
252
20
118
116
115
112
112
111
119
99.5
99.5
99.5
99.5
87.7
99.5
87.7
99.5 | 7.6388644428666666666666666666666666666666 | 4.8
4.8
4.8
4.6
4.6
4.6
4.5
4.5
4.5
4.5
3.9
3.7
4.5
3.9
3.7
3.7
3.7
3.7 | 4 9 9 9 1 1 1 9 7 9 4 4 1 1 1 9 9 9 9 9 4 4 4 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 87, 44,44,46,467,77,7,48,89; 44,717,91,44,40,4 | 2 6 6 6 6 4 3 3 3 4 4 3 0 9 9 8 8 8 8 0 0 9 8 8 8 9 9 9 1 1 8 8 8 0 1 1 8 8 1 1 1 1 1 1 1 1 1 1 | 15
14
13
12
11
11
11
11
11
11
11
11
11
11
11
11 | 0.7
0.9 9 0.8 7.7
0.7 7.7 8.0 9.9 9.8 8.0 8.8 9.0 9.0 9.0 9.0 8.8 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 | 0.6.5
0.5.5
0.5.5
0.5.7
0.7.7
0.7.5
0.5.7
0.7.5
0.5.7
0.7.7
0.7.7
0.7.7
0.7.7 | | 26
27
28
29
30
31 | 2.0
2.2
1.7
1.6
1.5 | 13
11
95
90 | 124
100
69
51
40
33 | 7 &
1 4
9 .5
8 .7
8 .1 | 1681 | 3 9
7 1
5 2
4 6
4 3 | 3.6
3.6
3.6
3.2 | 2.7
2.6
2.6
2.7
2.7 | 1.9
1.9
1.8
1.7 | 0.8
0.7
0.7
0.7
0.7 | 1.0
1.0
0.9
0.8
0.7 | 0.6
0.5
0.5
0.5
0.6 | | MEAN | 1.53 | 462.7 | 19.9 | 397.5
12.8 | 4 00 | 137.5 | 2 50 | 79.6 | 2.08 | | 0.42 | 189 | | ACRS- | | 15.4 | | | 6.00 | 4-44 | 3.57 | 2.57 | | 1.05 | 0.83 | 0.63 | | FRUT | 94
Remarks: | 918 | 1,230 | 788 | 333 | 273 | 212 | 158 | 124
P | 65
Year Mean
on Acad
Meanon Acad | | 37 | #### STATION F280E-R SANTA ANITA WASH at Foothill Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°09'03", LONG. 118°01'37", ON THE DOWNSTREAM SIDE ON LEFT (EAST) END OF FOOTHILL BOULEVARD BRIDGE, ABOUT I MILE NORTH OF RACADIA, AND APPROXIMATELY 0,2 MILE BELOW THE CONFLUENCE OF SANTA ANITA CREEK AND LITTLE SANTA ANITA CREEK. THE FORMER STATION FEGOR. WAS ABOUT 0,4 MULE UPSTREAM FROM FOOTHILL BOULEVARD. ELEVATION OF ZERO GAGE HEIGHT, 519.70 FEET. DRAINAGE AREA: 17.2 SQUARE MILES. CHANNEL AND CONTRCL: CHANNEL - SAND, GRAVEL AND BOULDERS. BANKS PROTECTED WITH WIRE AND ROCK. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF FOOTHILL BOULEVARD BRIDGE. RECCRDER: INSTALLED APRIL 22, 1938 OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY BIG SANTA ANITA DAM AND SIERRA MADRE DAM. DIVERSIONS: ABOUT 2 SECOND-FEET DIVERTED FOR IRRIGATION AT MOUTH OF SANTA ANITA CANYON. THE CITY OF SIERRA MADRE DIVERTS WATER FROM LITTLE SANTA ANITA CANYON. FLOW OCCASIONALLY DIVERTED FOR SPREADING FROM LITTLE SANTA ANITA CREEK AT SIERRA MADRE SPREADING GROUNDS. RECORDS AVAILABLE: APRIL 22, 1938 TO SEPTEMBER 30, 1947. FOR TO APRIL, 1938. SEE STATIONS F21-R, F119-R. AND F26C-R. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 350 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 289 SECOND-FEET, DECEMBER 29. MINIMUM NO FLOW MOST OF YEAR. 1936-1947 (STATIONS F260-R AND F260 B-R) MAXIMUM NOT DETERMINED. MAXIMUM NOT DETERMINED. MAXIMUM OUTLOW FROM SANTA ANITA DAM. 5,070 SECOND-FEET, MARCH 2, 1938. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: POOR DUE TO SLUICING AT SANTA ANITA DAM CAUSING EXCESSIVE CHANNEL BOTTOM SHIFTS. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABURES | IXHT9 OF | ANTA A | | | | | | | | | | | | | MENTO OFSANTA A | | | | | | | | | | |------------------------|-----------|----------------------|---|--------|-------------------------------|----------------------------------|-------------------------|------------------------|-------------|--------|-------|------------------------|--------------|-----|-------|----------------
--|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------------|----------|-----------------|--------------| | - | HÊÁR | Footh | li Boulevard | | | DURIN | о тие уе | AR ENDING | REPTE | MBER : | 30, 1 | -46 | | | Æ | Enot | hill Boulevard | | | DUR | ING THE Y | EAR EHDINE | BEPTE) | SBER 30 | . 19 <u>4</u> | 1. | | ĸo. | DATE | BEG:N
END | MADE BY | WIDTH | AREA OF
SECTION
20. FT. | MEAN
VELOCITY
FT. PER SEC. | MAUDE
HEIBHT
FEET | DIEGHARIEK
SEC- FT. | RAT-
IHB | METH M | EAS. | B. HT. CHANGE
TOTAL | METER
NO. | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | MEDTION
BEDTION
ED. FT. | MÉAN
YELGOITY
FT.PER BED. | GAUGE
REIGHT
FEET | DISCHARGE
SEC. FT. | RAT- ME | TH. MEAR | B. HT
DHANGS | HETER
NO. | | 112 | 12/22 | 130P
145P | MOON - HOLMES | 36.0 | 33.9 | 6.61 | 7.98 | 224 . | | .6 | 7 | - 04 | FC22 | 427 | 11-12 | 235P
240P | MOON - ROCKENMEYER | 8.0 | 2.40 | 1.29 | 2.33 | 3.1 | Π. | 3 4 | 0 | FC22 | | | 12/22 | 735P
740P | | 34.0 | 40.6 | 6.62 | 6.70 | | | .6 | 6 | 0 | | 428 | 11-13 | 853A
859A | | | 18.7 | 3.21 | | 60.1 | 1 | 1 | +.02 | } | | | Ţ | 905A
915A | | 19.0 | 20.7 | 2.44 | | | | .6.1 | 0 | , | | 429 | 11-14 | 235A
255A | KASIMOFF - OTIS | | 44.1 | 2.95 | | 130. | 1 | 9 | i | FC47_ | | | 12/24 | 845A | MOON | 12.5 | 7.13 | | [| | | | 8 | 0 | ••• | 430 | 11-14 | 816A
825A | MOON - ROCKENMEYER | | 35.1 | 3.59 | | 126. | | 9 | 1 | FC22 | | | 12/26 | 855A
900A | MOON | | 4.70 | 1.17. | 2.59 | 5.5 | | | 6 | 0 | | 431 | 11-14 | 224P
228P | ** ** | 13.0 | 7.00 | | | 13.0 | | 6 6 | | | | 1 16
117 | 12/27 | 907A
805A
812A | | 10.0 | 3,85 | 1.30 | 2.64 | 5.0 | | - | 6 | 0 | | 432 | 11-10 | 119P
125P | , | TWO CH | | 1.00 | 4.04 | 79.0 | | 5_ 12 | 1 | T., | | | | 845A | | | | 1.08 | 2.43 | 1.8 | | | 6 | 0 | | 433 | 11-21 | 700A
714A | MOON | | 35.9 | 3,98 | 4.24 | 143. | 1 1 | 5 9 | İ | - 44 | | 118 | 3/20 | 850A
510P
520P | | 8.0 | 1.67
5.30 | 1.32 | 2.52 | 8.3 | | | 6 | 0 | ٠, | 434 | 11-23 | 910A
920A | ,, | | 15.6 | 3.03 | 3.92 | 46.9 | | 5 6 | 0 | | | 119 | 3721 | 927A
937A | enting a second a second entitles of the second | 9.0 | 1 | 1,16 | | | wad | - 61 | 7 | | | 1 | 11-23 | 340P
350P | The setting of the property of the setting s | | | 2.82 | | 37.8 | TT | | -0 | | | 120 | | 655A | MOON - ROCKENMEYER | | 12.8 | 3,73 | 3.17 | | | 6 | 6 | | | 436 | 11-26 | 805A
812A | | 14.0 | | 2,11 | | 18.8 | \vdash \vdash | | 0 | ** | | 421 | 3/30 | 705A
242P | MOCH - ROCKERNETER | | 17.1 | 4,55 | | | | | 7 | 0 | | 437 | 11-29 | 153P
200P | STUNDEN | 12.5 | 6.48 | | T | 10.0 | Ι. | 6 7 | +.08 | FC36 | | 422 | 3/30 | 247P
1225P | | 15.0 | 14.5 | 2,74 | | 39.8 | | | 8 | 0 | | 438 | 12-5 | 924A
929A | Moon | 5.0 | _1.30 | | | 0.94 | | 6 5 | | FC22 | | 423 | | 1235P
500P | | | 5.26 | 1.52 | 2.67 | | | | , | 0 | 36 | 439 | 12-25 | 255P
302P | 4, | 12.0 | 6.20 | i | | 11.7 | | 5 6 | | | | 424 | 4/3 | 520P
605P | STUNDEN | 8.6 | T | | 3.30 | 51.6 | | .6 | | , | | 440 | 12-25 | 1838P | MOON - STEVENS | | Ι, | 2.87 | | 77.1 | | 8 | T | - | | 425 | | 620P
810A | | 25.0 | 20.4 | 2,53 | Π | | | .6 | ٦ | 0 | 22 | 441 | 12-26 | 255P
305P | | 29.0 | 42;2 | 5.47 | 4.30 | 231. | | | +.02 | - | | 426 | 4/5 | 822A | MOON | 17.0 | 16.9 | 2:66 | 3.28 | 45.0 | + | | -3- | | | 442 | 12-27 | 940A
952A | | İ | 42.4 | 5.21 | | 221. | 1 1 | 5 11 | | - | | | | | | | | | | | | | | | | 443 | 1-3 | 830A
840A | MOON | 19.0 | 1 | 3,36 | | 18.7 | | | | T., | | | | | | | | | | | | | | | | 444 | 1-6 | 1230P
1235P | " | 14.0 |] | 3,55 | 1 | 13.7 | | 4 | | - | | | | | | | | | | | | | | | | 445 | -8 | 810A
815A | | 11.0 | 2.28 | l | 6.28 | 8.6 | TT | ATS 4 | | | | | | | | | | | | | | | | | | 446 | 1-13 | 925A
930A | •• | 11.0 | Ţ | 3.19 | 7.10 | 7.4 | | 3 4 | | FC22 | | | , | | | | | | | | | | | | | 447 | 1-15 | 815A
820A | -94 | 7.0 | 2.05 | | 6.88 | 6.7 | | 5 4 | | - | | | | | | | | | | | | | | | | 448 | 1-17 | 930A
935A | | 8.5 | ! | 3.09 | 7.49 | 5.0 | 1-1 | | 0 | - | | | | | | | | | | | | | | | | 449 | 1-20 | 805A
812A | | 11.0 | | 2.60 | 6.57 | 3.9 | | 5 6 | 0 | | | | | | | | | | | | | | | | | 450 | 1-22 | 820A
825A | | | | 2.91 | 1 | 3.2 | 1 | 5 4 | | | | | | | | | | | | | | | | | • | 451 | 1-24 | 800A
805A | | | ANNELS | 1 | 7.60 | 2.2 | T | 5 4 | 0 | | | | | | | | | | | | | | | | | 452 | 1-27 | 820A
823A | | 3.0 | 1 | 2.92 | | 1,9 | | 5 3 | 1 | -11 | | | | | | | | | | | | | | | | 453 | 2-11 | 850A
900A | * · | 14-0 | | 2.77 | | 6.6 | | 7 | | ٠. | | | | | | | | | | | | | | | | 454 | 2-13 | 1130A
1140A | ., | | 1.78 | 1 | 1 | 5.8 | | 5 6 | | T., | ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F260B-R | ау | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |-----------|----------|------|-------|---|-------|----------|--------|-----|------|----------|---|-------| | 1 | 0 | 0 | 0 | 0 | 0 | Ü | 37 | 0 | ن | 0 | 0 | 0 | | 2 | 0 | -0 | 0 | o | 0 | U | 27 | Ü | Ò | ō | l ŏ l | 0 | | 3 | 0 | o | 0 | o | 0 | Ü | 1.5 | 0 | Ü | 0 | 0 | 0 | | 4 | 0 | o | 0 | 0 | 3.7 | Ü | 27 | O | U | 0 | 0 | 0 | | 5 | 0 | 0 | 0 | 0 | a 1.8 | <u> </u> | 22 | U | . 0 | | <u> </u> | 0 | | 8 | 0 | 0 | 0 | Ö | a 1.5 | | 1.7 | O | Ü | 0 | 0 1 | 0 | | 7 | 0 | Ö | 0 | ŏ | 1.6 | Ü | ا ب | O | O | 0 | 0 | 0 | | 8 | ő | Ö | | ŏ | 1.8 | Ü | 0 | ō | Q | 0 | o l | 0 | | 8 | ŏ | ő | ŏ | ő. | 1.8 | 5 | U | o | 0 | 0 | 0 | 0 | | 1 | | | | - · · · · · · · · · · · · · · · · · · · | a 1.5 | | 9 | 0 | 0 | <u> </u> | <u> </u> | Q | | 2 | ŏ | ŏ | l ŏ í | ŏ | a 1.8 | 3 | o
o | 0 | 0 | 0 | 0 | 0 | | 3 | ŏ | ŏ | ŏ | ŏ | a 1.0 | J | 3 | ŏ | 0 | 0 | 0 | 0 | | 4 | ŏ | ŏ | l ŏ l | ŏ | 0.0 | Ü | 5 | ő | | 0 | 0 | | | 5 | ŏ | ŏ | lŏl | ŭ | ŏ | Ü | ő | ő | 0 | 1 6 | ŏ | 0 | | 6 | ŏ | Ö | ō | - | 0 | | 3 | Ö | 0 | 0 | 0 | 0 | | 7 | ō | ō | 0 | ō | ō | Ü | 8 1 | ŏ | ŏ | 0 | | ő | | 8 | ō i | ō | · ŏ | o . | o | ō | ŏ | ő | ŏ | ő | 0 | ő | | 9 | ō | ō | 0 1 | و ن | o | b 1.6 | ŭ | ŏ | ő | ŏ | ŏ | ŏ | | 20 | o i | 0 | 0 1 | 4.3 | 0 | 2.3 | Ű | ŭ | ŏ | ŏ | ŏ | ŏ | | 11 | 0 | 0 | 31 | 4.3 | 0 | - 4 | Ü | Ö | ō | O | ō | ō | | 22 | 0 | 0 | 182 | 4.3 | 0 | 0 | ن | ŏ | ŏ | l o | ŏ | ŏ | | 13 | 0 | 0 | 169 | 4 .6 | 0 | 0.0 | ŏ | ŭ | ŏ | ŏ | Ö | ŏ | | 14 | 0 | 0 | 27 | 2.1 | U | 6 | ŭ l | ō | ō | l o | ŏ | ō | | 25 | 0 | 00 | 12 | 0 | 0 | 3 | | ō | | _ o | _ ōl | ā | | 8 | 0 | 0 | 9.2 | 0 | ŏ | 9 | 0 | 0 | 0 | 0 | O | Ö | | 7 | 0 | 0 | 5.6 | O | Q | 0 | U | O | Ó | 0 | 0 1 | Ó | | 28 | 0 | 0 | 41 | 0 | ٥ | 00 | 0 | 0 | 0 | 0 | 0 | O | | 9 | o | ō | 0 | 0 | | - 2 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 7.5 | 0 | 0 | U | 0 | 0 | 0 | | 1 | 0 | | 0 | U | | 6.1 | | Ü | | 1 0 | 0 1 | | | | 0 | 0 | 4399 | 205 | 19.1 | 144.7 | 121.7 | 0 | 0 | O | 0 | 0 | | AN | 0 | | 14.2 | 0.66 | 0.68 | 4.67 | 4.06 | 0 | 0 | 0 | 0 | 0 | | 1%-
57 | 0 | 0 | 873. | 41. | 38. | 287. | 241. | 0 | 0 | 0 | 0 | 0 | | | Remarks: | | 019. | 41. | 30. | :- | -74. | | | YEAR MEA | | | F. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 260 8-R | | | | | | | YDRAULIC | | | | | | | |---|--|---|--|---|--
----------|---|---|------|-------------------------------|------|--------------| | ally o | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | mber 30, 19_ | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 18 17 18 18 17 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1.6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72
100
100
100
100
00
00
00
00
00
00
00
00 | 21
18
115
114
11
11
10
9 4 9
7 7 4
7 6 7
5 5 8
4 6 2
3 3 6
3 2 7
2 2 2
2 2 9
1 5
0 0 | 00000000000000000000000000000000000000 | | 0 | 0 | | | | | | | 1 .8 | 486.9 | 535.6 | 2112 | 192 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | AN | ·0.058 | 16.2 | 17.3 | 6.81 | 0.69 | 0 | 0 | 0 | 0 | 1 0 | l o | 0 | | RE. | 3.6 | 966 | 1,060 | 419 | 38 | 0 | 0 | 0 | 0 | 0 | ١ ٥ | 0 | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRI | | 2,490 | ### STATION F928-R SANTA CLARA RIVER AT Highway #99 LOCATION: WATER-STAGE RECORDER, LAT. 34°25'35". LONG. 118°35'08". ON THE DOWNSTREAM SIDE OF THE U.S. HIGHWAY 99 BRIDGE ABOUT 3 MILES WEST OF SAUGUS. ELEVATION OF ZERG GAGE HEIGHT. 1038.24 FEET. THE FORMER STATION F92-R WAS ABOUT 1000 FEET DOWNSTREAM. DRAINAGE AREA: 355 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL, NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF U.S. HIGHWAY 99 BRIDGE. RECORDER: INSTALLED JANUARY 18, 1930 AT STATION F92-R. REMOVED SEPTEMBER 21, 1938. INSTALLED AT STATION F928-R SEPTEMBER 30, 1938 OVER A 24 INCH CORRUGATED IRON PIPE STILLING WELL. AN AU CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: PARTIALLY REGULATED BY BOUQUET CANYON AND DRY CANYON RESERVOIRS. FLOWS OCCASIONALLY ORIGINATE FROM LOS ANGELES CITY AQUEDUCT BLOWOFF AT SANTA CLARA RIVER CROSSING. DIVERSIONS: SOME FLOW DIVERTED FOR IRRIGATION NEAR LANG. RECORDS AVAILABLE: AT STATION F92-R - RECORDER RECORDS AVAILABLE FROM JANUARY 18, 1930 TO MARCH 28, 1938. SOME WEEKLY STREAM WEASUREWENTS WERE TAKEN PRIOR TO JANUARY 18, 1930 AND SUBSEQUENT TO MARCH 28, 1938. AT STATION F92B.R - RECORDER RECORDS AVAILABLE FROM OCTOBER 1, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 500 SECOND-FEET, MARCH 30. MINIMUM 0,4 SECOND-FEOT VARIOUS DAYS. 1946-1947 MAXIMUM 1620 SECOND-FEET, DECEMBER 26. MINIMUM 1 SECOND-FOOT, OCTOBER 11. 1930-1947 (STATIONS F92-R AND F92B-R) MAXIMUM 24,000 SECOND-FEET, ESTIMATED, MARCH 2, 1938MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR FOR LOW FLOWS, POOR FOR HIGH FLOWS DUE TO OCCASIONAL LOSS OF COMMUNICATION AND EXTREME AND UNDETERMINED CONTROL SHIFT. LOW FLOW CHANNEL DURING 1947 HAD NO COMMUNICATION WITH GAGE, FLOWS INTERPOLATED BETWEEN MEASUREMENTS, OPERATION: LOCATED AND CONSTRUCTED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | DISCHARGE | MEABUREM | ENTS OF | ANTA CL | ARA RI | VER | | | | | NO. | DATE | REBIN
END | HADE BY | WIDTH | AREA OF
MEGTION
MO, FT. | MEAN
VELOUITY
FT. PER BEG. | DAUGE
HEIGHT
FEET | DISCHARGE
SEC. FY. | RAT- | ETH- M | EAS. D | HT. | HETER | |-------|-----------|----------------|-----------------|---------|-------------------------------|----------------------------------|----------------|-----------------------|---|----------------|------|-------|----------------|-----------------|-------|-------------------------------|----------------------------------|-------------------------|-----------------------|--------------------|--------|--------|-----|---------------| | | HĀĀ. | Lighway | / No. 99 | | | DURIN | G THE YE | AR ENDING | вертениен за, 1 9.146 | | | 0 /01 | 230P | | 12.5 | 4.42 | 2.24 | 5,58 | 9.9 | | 6 | 9 | 0 | | | | , | | , | | | | | | | | 377 | 3/21 | 900A | | -14.0 | 6.60 | 2.45 | 5.70 | 16.2 | \Box | .6 | | 0 | | | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BEGTION
BQ. FT. | MEAN
VELDEITY
FT. PER SEC. | HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METH- MEAB G. KT.
CHANNE
ND. TOTAL | METER
NO- | 378 | 3/28 | 910A
710A | | | | | | | | | \neg | 0 | | | 348 | 10/4 | 1115A
1125A | TURNER | 10.0 | 4.12 | 0.97 | 5.29 | 4.0 | .6 6 0 | FC43 | 379 | 3/30 | 722A
540P | TURNER - WRIGHT | 57.0 | 61.0 | 4.90 | 6.31 | 299. | | | 1 | 0 | | | 349 | 10/11 | 1050A
1100A | ,, | 8.5 | 4.24 | 1. 27 | 5,34 | 5.4 | .6 5 0 | | 380 | 3/30 | 550P
12,15P | | 55.0 | 43.8 | .4.'34 | 6.12 | 190. | \vdash | | 9 | 0 | | | 350 | 10/18 | 320P
325P | | 10.0 | 3.76 | | 5.28 | 3.9 | .6 5 0 | | 381_ | 3/31 | 1225P
310P | TURNER | 29.0 | 13.7 | 2.74 | 5.80 | 37.5 | \vdash | .6 | \neg | | | | 351 | 10/25 | 1100A
1110A | | 10.0 | 4.82 | | 5.36 | 4.4 | 6 6 0 | | 382 | 4/3 | 330P
125P | | 796 | | LS | 5.63 | 13.5 | H | -+ | | 0 | | | 352 | 11/1 | 1053A
1103A | TURNER - PALMER | 7.3 | 2.50 | · | 5.39 | 4.3 | .5 8 0 | | 383 | 4/11 | 140P
925A | u . | | " | | 5.68 | 12.2 | \vdash | | | 0 | | | | | 130P | TURNER - HUGHES | | | | | | | | 384 | 4/19 | 945A
250P | | | <u> </u> | | 5.55 | 13.6 | \vdash | \neg | - | 0 | | | 353 | 11/9 | 140P
945A | | 7.3 | 2.44 | | 5.39 | 4.4 | 130 | | .385 | 4/25 | 310P
235P | · | | | | 5.49 | 5.6 | | .5 | 14 | 0 | | | 354 | 11/15 | 955A
1055A | TURNER | 7.5 | 2,75 | Ī | 5.43 | 5.4 | .5 8 0 | | 386 | 5/2 | 250P | | | | | 5.43 | 5.8 | \vdash | .5 | 12 | 0 | | | 355 | 11/21 | 1105A
215P | | 7.6 | 2.84 | | 5.45 | 5.8 | .5 9 0 | - | 387 | 5/8/ | 300P
312P | | 11.0 | 4.38 | 1.87 | 5.65 | 8.2 | \sqcup | .6 | 11 | 0 | . | | 356 | 11/29 | 225P | | 12.0 | 7.51 | 1.18 | 5.54 | 8.9 | .6 7 0 | : | 388 | 5/9 | 125P
135P | | 10.5 | 4.31 | 1.90 | 5.52 | 8.2 | | .6 | 10 | 0 . | <u></u> | | 357 | 12/6 | 1235P | ** | 10.0 | 7.95 | ı.iı | 5.57 | 8.8 | 6 6 0 | ļ | 389 | 5/16 | 215P
225P | | 10.2 | 4.08 | 1.59 | 5.33 | 6.5 | | .6 | 10 | 0 | | | 358 | 12/13 | 130P
1250P | •• | 9.2 | 4.81 | 1.60 | 5.68 | 8.2 | 6 10 0 | | 390_ | 5/23 | 818A
825A | LUCE | 7.2 | 3,35 | 2.03 | 5.31 | 6.8 | | .6 | 7 | 0 | FC39 | | 359 | 12/20 | 100P | | 8.1 | 4.91 | 1.51 | 5.72 | 7.4 | .6 9 0 | <u></u> | 391 | 5/29 | 830A
835A | | 7,3 | 3.35 | 1.83 | 5.27 | 6.1 | | .6 | 7 | 0 | | | 360 | 12/22 | 1025A | | THRE | E CHANN | ELS | 6.69 | 285. | .6 1402 | | 392 | 6/6 | 905A
912A | | 7.0 | 3.08 | 1.62 | 5.26 | 5.0 | | .6 | 6 | 0 | | | 361 | 12/23 | 1245P
110P | TURNER - PALMER | 62.0 | 41.6 | 3.73 | 6.60 | 155. | .6 13 0 | | 303 | 6/13 | 1258A
105A | | 7.0 | 2.80 | | 5,24 | 4.5 | П | .6 | 7 | 0 | | | 362 | 12/27 | 1005A
1015A | TURNER | THRE | E CHANN | ELS | 6.08 | .11.7 | .6 9 0 | | 394 | 6/19 | 730A
742A | LUCE | 6.5 | | 1,43 | 5,23 | 3.5 | | .6 | 7 | 0 | FC39 | | 363 | 1/3 | 240P
255P | | TWO | CHANNEL | S. | 6.11 | 14.7 | .6 12 0_ | | 395 | 6/27 | 400P
405P | | 6.6 | | 1.39 | 5.17 | 3.2 | | T | | 0 | | | 364 | 1/10 | 340P
355P | | | ., | | 6.12 | 13.0 | .6 12 0 | | 396 | 7/5 | 908A
915A | | 6.5 | 1 | 1.42 | 5.18 | 3.7 | | .6 | 1 | 0 | | | 365 | 1/16 | 335P
345P | ,, | | | | 6.06 | 16.1 | .6 10 0 | | 397 | 7/11 | 1045A | ļ., | .6.0 | | 1.12 | 5.12 | 2.1 | | .6 | | 0 | | | 366 | 1/24 | 305P
320P | | | ., | | 6.06 | 16,8 | .6 9 0 | | | T | 1050A
950A | | | T | 1 | | | | | | | FC43 | | 367 | 1,28 | 330P
340P | | 16.0 | 8.31 | 1.78 | 6.22 | 14.8 | .6 9 0 | | 398 | 7/17 | 1000A
847A | | 6.7 | Ī | 1.20 | 5.13 | 2.5 | | | | | | | 368 | 1/31 | 250P
305P | | | CHANNEL | | 6.00 | 14.2 | .6 12 0 | | 399 | 7/24 | 852A
820A | LUCE | 6.5 | | 1,00 | 5.18 | 3.0 | 1-1 | | | | FC39 | | | | 345P | TURNER - PALMER | I | | | | | | † — | 400 | 8/1 | 825A
800A | | 4.0 | | 0.78 | 5.06 | 1.1 | H | .6 | 5 | 0 | - | | 369 | 2/3 | 320P | | 35.0 | | 3.96 | 6.09 | 89.8 | 6 11 0 | | 401 | 8/8 | 805A
805A | | 3.5 | 0.89 | 0.78 | 5.02 | 0.70 | 1- | -6 | 4- | 0 | | | 370 | 2/6 | 330P
245P | TURNER | 30.0 | 9.53 | 1.85 | 5.83 | 17.6 | .6 8 0 | FC43 | 402 | 8/15 | 810A
1220P | 0 | 3.7 | 1.28 | 0.62 | 5.02 | 0.80 | + | .6 | 4 | 0 | | | _371 | 2/.14 | 255P
945A | TURNER | 31.0 | 9.17 | 1.64 | 5.80 | 15.6 | | | 403 | B/22 | 1225P
1230P | ·· | 3.5 | 1.31 | 0.61 | 5.01 | 0.80 | + | .6 | 5 | 0 | | | _372 | 2/21 | 955A
315P | 11 | 20.0 | 8.86 | 1.73 | 5.84 | | .6 10 0 | <u> </u> | 404 | 8/29 | 1235P | | 3.5 | 1.20 | 0.33 | 5.01 | 0.40 | \vdash | .6 | 5 | 0 | | | _373 | 3/1 | 330P
255P | | | CHANNE | | | 12.8 | .6 12 | ļ. | 405 | 9/4 | 1000A
1006A | | 4.5 | 1.32 | 0.83 | 5.02 | 1.1 | \sqcup | .6 | 6 | 0 | <u> </u> | | _374_ | 3/7 | 305P
255P | | 8.0 | 4.32 | 2.57 | 5.64 | 11.1 | .6 8 0 | | 406 | 9/13 | 910A
915A | | 6.0 | 1.22 | 0.57 | 5.02 | 0.70 | | .5 | 6 | 0 | | | 375_ | 3/14 | 305P | · | 8.5 | 4.83 | 1.72 | 5.55. | 8.3 | .6 9 0 | " | 407 | 9/20 | 950A
955A | | 7.0 | 1.59 | 0.88 | 5.20 | 1.4 | $\perp \downarrow$ | .5 | 6 | 0 | - | | 376 | 3/19 | 1015A | TURNER- PALMER | 15.0 | 9.31 | 2.81 | 5.93 | 26.2 | .6 8 0 | ļ., | 408 | 9/26 | 1005A | | 6.3 | 1.41 | 0.78 | 5.15 | 1.1 | | .5 | 5 | 0 | <u> </u> | | | | | | | | | | | | | | , | , | | | | | | • | | | • | | • | | | DIBÜHARUH | E MEASURE | HENTE OF SANT | A_CLARA | RIVER | | nr | | | | | _ | на. | DATE | SKEIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER BEG. | BAUBE
HEIBHT
FEET | | RAT- M | ETH. ME | EAS. B. HT.
EC. DHANGE
ED. TOTAL | HEYER
ND. | |-----|-----------|-------------------------
-----------------|---------|--------------------|-------------|-----------|------------|---------|--------------|-------------------|----------|------|------|----------------|----------|---------------|-------------------------------|---------------------------------|-------------------------|------|----------|---------|--|--| | | HEAR | Hig | hway 99 | | | рия | IND THE Y | EAR ENDING | #EPTE | RSUP | 30, 19.3 | 7_ | 436 | 3-7 | 1105A
1115A | н | 22.0 | 18.2 | 2.94 | | 53.4 | . | .6 | 8 | - | | HO. | DAYE | BESIN | HADE BY | WIDTH | AREA OF
DECTION | MEAN | BAUSE | DISCHARGE | RAT- ME | TH- HE | AR. B.
D. DHAN | HT. HETT | 437 | 3-14 | 130P
140P | | 11.0 | 7.45 | 1.53 | | 11.4 | _ . | .6 | 6 | | | | | 830A | | PEET | 90. FT. | FT.PER SEO. | TEET | SEG. FT. | 3HQ 6 | ID N | D. TOT | KL HD | 438 | 3-21 | 420P
430P | | 9.3 | 5.83 | 1.54 | | 9.0 | 4 | 6 | 6 | - | | 409 | 10-4 | 835A
200P | TURNER | 6.0 | 1.22 | 1.07 | l | 1.3 | 1 | 4 | | FC43 | 439 | 3-28 | 1140A
1145A | ** | 11.0 | 6.41 | 2.09 | | 13.4 | _ . | 6 | 6 | <u>.</u> | | 410 | 10-11 | 207P
430P | LUCE | 6.5 | 1.37 | 0.71 | 5,11 | 1.0 | | 5 6 | 3 0 | FC39 | 440 | 4-3 | 945A
955A | ** | 9,5 | 5.83 | 2.06 | | 12.0 | <u> </u> | 6 | 6 | - | | 411 | 10+16 | 435P
920A | • | 6.0 | 1.27 | 1,10 | 5.18 | 1.4 | . | 3 1 | 5 0 | FC41 | 441_ | 4-11 | 1235P
1240P | | 8.0 | 3.82 | 2.43 | | 9.3 | <u></u> | 6 | 4 | | | 412 | 10-24 | 925A
135P | *** | 6.5 | 1.71 | 1.17 | 5.19 | 2.0 | 1.0 | 5 1 | 5 0 | FC39 | 442 | 4-17 | 245P
250P | ** | 6.2 | 3.25 | 1.91 | | 6.2 | _ . | 6 | 6 | | | 413 | 10-30 | 140P
225P | - | 6.5 | 1.61 | 1.02 | 5.15 | 1.6 | | <u> </u> | 5 0 | | 443 | 4-24 | 420P
425P | ** | 7.0 | 2.98 | 1.88 | | 5.6 | _ . | 6 | 6 | ., | | 414 | 11-7 | 230P | • | 6.0 | 1.79 | 1.46 | 5.12 | _2.6 | | 5 6 | 0 | | 444 | 5-2 | 445P
455P | | 7.0 | 3.18 | 1.76 | | 5.6 | | 6 | 5 | | | 415 | 11-12 | 1140A
1130P | - | Two C | ANNELS | | 5.42 | 7,1 | | 1 | 3 0 | | 445_ | 5-8 | 125P
135P | 14 | 6.8_ | 3,03 | 1.52 | | 4.6 | | 6 | 7 | - | | 416 | 11-12 | 1140P
1120A | LUCE - WRIGHT | | | | 5,56 | 11.7 | | 3 9 | 0 | - " | 446 | 5-14 | 910A
915A | •• | 7.5 | 3,27 | 1.50 | | 4.9 | _]. | 6 | 7 | | | 417 | 11-13 | 1138A
315P | | | | | 6.67 | 271. | | 3 17 | 70 | 2 " | 447 | 5-23 | 1115A
1125A | TURNER | 10.5 | 4.03 | 1.17 | | 4.7 | _]. | 6 | 7 | FC439 | | 418 | 11-13 | 330P | | - | ** | | 6.36 | 138. | 6 | 10 | 0 | <u>"</u> | 448 | 5-29 | 955A
1000A | LUCE | 9.0 | 3.56 | 1.38 | | 4.9 | | 6 | 6 | FC39 | | 419 | 11-14 | 1125A
925A | ** ** | 25.0 | 10.5 | 1.53 | 5.82 | 16.1 | | 5 1 1 | 0 | 4 | 449 | 6-5 | 500P | | 6.0 | 2.19 | 1.87 | | 4.1 | Π. | 6 | 6 | | | 420 | 11-20 | 933A
125P | | 33.0 | 19.1 | 2.80 | 5.95 | 53.5 | .6 | 5 5 | +.6 | | 450 | 6-12 | 850A
900A | | 6.8 | 2.73 | | | 4.8 | | | 7 | FC41 | | 421 | 11-21 | 130P | LUCE | 6.5 | 2.89 | 1.59 | 5.50 | 4.6 | | ; <u> </u> 6 | 0 | ** | 451 | 6-19 | 700A
707A | ,, | 6.2 | 2.21 | 2.04 | - | 4.5 | ٦. | .6 | 6 | FC39 | | 422 | 11-29 | 255P
125P | LUCE - LUNDWALL | TWO CH | NNELS | | 5.54 | 6.2 | . 6 | | 0 | | 452 | 6+26 | 1230P
1235P | | 5.2 | 1.95 | 1.59 | | 3.1 | 1. | .6 | 5 | | | 423 | 12-5 | 135P | LUCE | - + | | | 5.43 | 5.4 | .6 | 10 | 0 | ٠. | 453 | 7-3 | 840A
845A | | 5,5 | 2.14 | 2.15 | | 4.6 | | | 5 | | | 424 | 12-13 | 146P
155P | * | | | | 5.42 | 6.8 | .6 | 9 | 0 | | 454 | 7-9 | 410
415P | | 3.0 | 1.48 | | | 2.9 | | | 4 | | | 425 | 12-18 | 1200N
1210P | | | | | 5.44 | 10.7 | | ء ا | ما | | 455 | 7-17 | 1015A
1020A | " | 3.0 | 1.49 | | | 2.1 | | | 5 | | | 426 | 12-26 | 955A
1005A | LUCE - WRIGHT | 38.0 | 42.0 | 4,14 | 6.60 | 174. | .6 | | | | 456 | 7-23 | 1050A
1100A | 72 | 8.5 | 2.79 | | | 2.7 | | | 8 | | | 427 | 12-27 | 900A
910A | | 37.0 | 21.6 | 3.06 | 6.30 | 66.1 | .6 | 10 | | | 457 | 7-23 | 210P | TURNER | 6,6 | 1.84 | | | 2.2 | | | 7 | FC43 | | 428 | 12-31 | 242P
258P | LUCE | 36.0 | 20.5 | 2.89 | 6.26 | _59.3 | .6 | 11 | 0 | | 457 | B-7 | 900A
905A | LUCE | 2,5 | 1.59 | | | 2.6 | | | 5 | FC39 | | 429 | 1-9 | 1200P
1225P | " | 36.5 | 21,4 | 3.26 | 6.26 | 69.7 | | 10 | | | | 8-13 | 125P
130P | " | 2.5 | 1.73 | | | 2.5 | + | | 4 | | | 430 | 1-15 | 1145A
1200N | •• | 33.5 | 22.3 | 3.28 | 5.94 | 73.0 | .6 | 10 | | ., | 459 | | 250P | | 3,0 | 1.66 | | | 2.3 | | _t | 5 | - | | 431 | 1-24 | 1042A
1050A | •• | 24.0 | 21.8 | 3.28 | | 71.6 | | 5 1 | | | 460 | 8-21 | 300P | | | 1 | | | 2.3 | - | T) | 4 | - | | 432 | 1-30 | 1050A
1000A
1010A | • | 16.5 | 9.14 | | | 18.1 | | { | _ | | 461 | 8-28 | 1240P
650A | | 3,5 | 2.11 | | | | | | | | | 433 | 2-14 | 115P
125P | * | 16.8 | 9.70 | 2.25 | | 21.8 | | 5 ! | 9 | FC39 | 462 | 9-4 | 655A
1005A | <u>.</u> | 3.0 | 2.16 | | | 2.5 | | | 4 | | | 434 | 2-20 | 1235P
1245P | | 23.0 | 19.0 | 2,77 | | 52.7 | | 5 1: | 2 | | 463 | 9-10 | 1010A
1000A | * | 7.5 | 2.70 | 1.08 | | 2.1 | | | 4 | | | 435 | 2-26 | 515P
525P | | 12.5 | 18.4 | 3.27 | | 56.4 | | 3 | , | | 464 | 9-18 | 1010A | | 3,0 | 2.13 | | | | _ | | | | | | | | | , | | | | | | | | | 465 | 9-25 | 1150A | | 2.5 | 1.66 | 1.08 | | 1.8 | | 6 | 5 | <u> </u> | | y. C. Die | L Perm IS (-44 | | | | FLO | LOS ANGELES
OOD CONTRO
YDRAULIC I | OL DISTRICT | | | | Sta. P | No. F928-R | |----------------------------------|--|---|--|--|--|---|--|--|---|---|--|---| | Daily d | ischarge, in se | cond-feet of | SANTA CL | ARA RIVER | at Highw | ay #99 | | | | , for the year | r ending Septen | nber 30, 19 <u>46</u> | | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5
8
7 | 4 A
4 A
3 8
3 8
3 5
4 9
4 7
4 A | 4 A
4 J
3 .8
4 J
4 A
4 7
4 7
4 7 | 8 3
8 3
8 3
8 7
8 7
7 9 | 14
14
15
15
14
14
14 | 14
13
47
27
19
17
17 | 13
13
13
12
12
12 | 26
17
13
13
12
11
11
11
b 11 | 399699655
5555555555 | 4.8
4.6
4.8
4.6
4.4
4.4
4.2 | 3.0
3.4
3.4
3.4
3.0
8.8
2.8 | 1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.6
0.8
0.9
1.0
1.0
1.0
0.8 | | 10
11
12
13
14
15 | 4 1
4 4
4 9
4 9
4 A
4 7
4 A | 4 A
4 7
4 7
4 7
4 7
4 9
5 5
5 5 | 75
75
79
83
87
83 | 13
13
14
14
15 | 16
16
16
, 16
16
16
17 | 10
10
9.8
10
89
89 | b 12
f 12
12
12
13
15 | 5.6
8.0
7.4
8.0
8.0
7.7 | 4 .4
3 .8
4 .0
4 .4
4 .4 | 23 24 24 23 23 | 0.8
0.8
0.8
0.7
0.8
0.8 | 0.9
0.6
0.6
0.6
1.0 | | 18
17
18
19
20 | 4.7
4.9
4.7
4.4
4.1 | 5555599 | 7.5
7.5
7.5
7.1
7.5 | 16
16
16
16 | 17
16
16
15
15 | 89
92
92
19
11 | 17
17
17
16
11
92 | 7.4
6.5
6.2
7.1
7.4
6.8 | 433343
5 | 2 3
2 7
2 9
2 8
2 4 | 0.7
0.7
0.7
0.7 | 1 2
0 9
0 8
0 7 | | 22
23
24
25
26 | 4 1
3 5
3 8
4 1
3 8 | 6 3
6 3
6 7
6 7 | 158
105
532
522
516 | 17
17
17
17 | 15
15
15
14 | 10
10
10
9.8
9.5 | 83
71
65
56
56 | 6 &
6 5 9
5 9
5 9 | 4 .6
4 .6
5 .0
3 .0
3 .2 | 2.7
2.8
2.5
2.4 | 0.7
0.7
0.6
0.6 | 0.4
0.4
0.6
0.8
1.2 | | 27
28
29
30
31 | 4 1
4 1
4 9
5 2
4 9 | 7 1
7 1
8 3
8 3 | b12
d12
d13
d13
d14 | d 15
f 15
15
14
14 | 14 | 92
12
13
194
54 | 625
559
5 | 4 .8
4 .6
5 .0
5 .0
5 .0 | 3.6
3.4
3.2
3.0 | 2.4
2.4
2.5
2.3
1.6 | 0.5
0.4
0.4
0.4
0.5 | 1 2
1 9
1 2
1 2 | | | 1351 | 165.5 | 6502 | 464 | 478 | 5 63.4 | 345.5 | 193.5 | 123.7 | 007 | 21.7 | £6.5 | | MEAN | 4.36 | 5.52 | 21.0 | 15.0 | 17.1 | 18.2 | 11.5. | 6.24 | 4.12 | 2.60 | 0.7 | 0.9 | | PEET | 268. | 328. | 1,290. | 920. | 948. | 1,120. | 685. | 384. | 245. | 160. | 43.0
N 8. | 53.1
90 | | | Remarks: | | | | | | | | - | OR | | 6 440 | LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 92 B-R | 1 2 | | | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |----------|------|------------|---------------|--------|------------|----------|------------|------------|------|------|------|-------| | 2 | 1.3 | 1.4 | 5.9 | 59 | 19 | 55 | 12 | 5.6 | 4.6 | 4.2 | 2.2 | 2.4 | | | 1.0 | 1.4 | 5.6 | 59 | 1.9 | 55 | 12 | 5.6 | 4.4 | 4.4 | 2.3 | 2.5 | | 3 | 12 | 1.6 | 5.3 | 57 | 19 | 55 | 12 | 5.4 | 4.3 | 4.6 | 2.4 | 2.5 | | 4 | 12 | 19 | 5.3 | 57 | 19 | 5.4 | 12 | 5.3 | 4.2 | 4.3 | 2.4 | 2.5 | | 5 | 1.0 | 2.1 | . 5. <u>3</u> | 59 | 20 | 54 | 11 | 5.1 | 4 1 | 4.0 | 2.5 | 2.5 | | 6 | 1.4 | 2.4 | 13 | 60 | 20 | 5.4 | 11 | 4.9 | 4.2 | 3.7 | 2.5 | 2.4 | | 7 | 1.8 | 3.0 | 11 | 62 | 20 | 52 | 11 | 4.8 | 4.3 | 3.4 | 2.6 | 2.3 | | 8 | 2.4 | 4 .0 | 10 | 65 | 20 | 11 | 10 | 4.6 | 4.4 | 3.1 | 2.5 | 2.3 | | 9 | 2.3 | 4.4 | 9.8 | 62 | 21 | 11 | 10 | 4.6 | 4.5 | 2.9 | 2.6 | 2.2 | | 10 | 1.6 | 3 ,0 | 8.6 | 68 | 21 | 11 | 9.6 | 4.7 | 4 .6 | 9.5 | 2.5 | 21 | | 11 | 1.0 | 3.4 | 7.7 | 70 | 21 | 11 | 9.3 | 4.7 | 4.7 | 2.7 | 2.5 | 21 | | 12 | 12 | 6.6 | 7.1 | 7.4 | 21 | 11
| 8.8 | 4.8 | 4.8 | 2.6 | 2.5 | 2.1 | | 13
14 | 1.4 | 94 | 8.0 | 74 | 22 | 11 | 8.3 | 4.8 | 4.8 | 2.5 | 2.5 | 8.8 | | 15 | 1.2 | 15 | 11 | 74 | 27 | 11 | 7.8 | 4.9 | 4.7 | 2.4 | 2.5 | 2.2 | | 16 | 1.2 | 4.4 | 10 | 7.3 | 39 | 11 | 7.2 | 4.9 | 4.7 | 2.3 | 2.5 | 2.2 | | 17 | 1.0 | 2.9 | 11 | 73 | 39 | 11 | 6.7 | 4.9 | 4.6 | 2.2 | 2.4 | 2.3 | | 18 | 1.4 | 2.8 | 10 | 73 | 39 | 10 | 6.2 | 4.9 | 4.6 | 2.1 | 2.4 | 2.3 | | 19 | 1.4 | 2.7 | 10 | 73 | 39 | 10 | 6.1 | 4.8 | 4.5 | 2.2 | 2.4 | 2.3 | | 20 | 1.4 | 29 | 11 | 72 | 4 4
5 3 | 9.7 | 6.0 | 4.8
4.8 | 4.5 | 2.3 | 2.3 | 22 | | 21 | 14 | | 13 | 72 | 53 | | 5.9 | 4.7 | 41 | 2.4 | | | | 22 | 2.0 | 5.0
4.2 | 13 | 72 | 54 | 9.0 | 5.8 | 4 .7 | 3 9 | | 2.3 | 0.5 | | 23 | 1 9 | 52 | 15 | 72 | 55 | 9.0 | 5.8
5.7 | 4.7 | 3.7 | 2.6 | 23 | 2.0 | | 24 | 1.6 | 9.2 | 20 | 72 | 55 | 9.0 | | 4.7 | 3.5 | 2.5 | 23 | 18 | | 25 | 1 % | 77 | 51 | 71 | 56 | 9.0 | 5.6 | 4.7 | 3.3 | 2.5 | 23 | 1.8 | | 26 | 1.5 | 7.4 | 371 | 71 | 56 | 9.0 | 5.6 | 4.8 | 3.1 | 2.5 | 23 | 1.8 | | 27 | 1.8 | 73 | 67 | 71 | 56 | 9.0 | 5.6 | 4.8 | 3 3 | 2.4 | 23 | 18 | | 28 | 1 9 | 6.8 | 62 | 57 | 56 | 13 | 5 6 | 4 9 | 3.5 | 2.4 | 23 | 13 | | 29 | 1.5 | 62 | 62 | 18 | | 13 | 5.6 | 4.9 | 3.7 | 23 | 23 | 1.9 | | 30 | 1.6 | 62 | 62 | 18 | | 13 | 5.6 | 4.8 | 4.0 | 2.2 | 23 | 19 | | 31 | 1.4 | | 59_ | 18 | | 13
13 | | 4.7 | 7.0 | ZŽ | 2.4 | | | - | 462 | | 971.6 | | 983.0 | | 2394 | | 1259 | | 744 | | | | | 299.7 | | 1948.0 | | 6321 | | 1514 | | 881 | | 64.5 | | IAN | 1.49 | 9.99 | 31.3 | 62.8 | 35.1 | 20.4 | 7.98 | 4.88 | 4.20 | 2.84 | 2.40 | 2.15 | | RE- | 92 | 594 | 1,930 | 3,860 | 1,950 | 1,250 | 475 | 298 | 250 | 175 | 148 | 2128 | #### STATION F278-R SAWPIT CREEK below Sawpit Dam LOCATION: MATER-STAGE RECORDER, LAT. 34°10'32", LONG. 117°59'18", ON THE RIGHT (NORTH) SIDE OF THE STREAM, ABOUT 500 FEET DOMMSTREAM FROM SAMPIT DAM, AND ABOUT 2,5 MILES NORTH OF MONROVIA. ELEVATION OF GAGE ABOUT 1,225 FEET. DRAINAGE AREA: 3.3 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL + SAND AND GRAVEL. A BROAD-CRESTED WEIR FORMS THE CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOT BRIDGE AT THE STATION. RECORDER: INSTALLED FEBRUARY 6, 1942. REMOVED AUGUST 31, AND INSTALLED IN THE NEW LOCATION ON SEPTEMBER 4, 1943. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW REGULATED BY SAMPIT DAM. STATION F278-R MEASURES OUTLET DISCHARGE, SPILLWAY DISCHARGE ENTERS SAMPIT CREEK BELOW THE STATION. DIVERSIONS: CITY OF MONROVIA DIVERTS FLOW ABOVE SAWPIT DAM. RECORDS AVAILABLE: FEBRUARY 6, 1942 TO SEPTEMBER 30, 1947. OUTFLOW RECORDS FROM SAWPIT DAM ARE AVAILABLE COMMENCING OCTOBER 1, 1931. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 36 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 25 SECONO-FEET, DECEMBER 26. MINIMUM NO FLOW MOST OF YEAR. 1942-1947 MAXIMUM 265 SECOND-FEET, MARCH 2, 1938. BASED ON DAM OPERATION RECORDS AND INCLUDING SPILLWAY FLOW. SPILLWAY FLOW BY-PASSED STATION. MAXIMUM QUILET DISCHARGE FROM SAMPIT DAM, 284 SECOND-FEET, JANUARY 23, 1943. MINIMUM NO FLOW VARIOUS PERIODS EACH YEAR. ACCLRACY GOOD. SOME LOW FLOW RECORDS ARE LOST DUE TO UNDERFLOW AT STATION. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, | | DISCHARGE | MEABUREH | ENTS OF | SAWP | IT CRE | EK | | | | | | | | | DISCHARGE | E MEASURE | MENTS OF SAWPIT (| CREEK | | | | | | | | _ | | |-------|-----------|----------------|--------------------|---------------|-------------------------------|----------------------------------|-------------------------|-----------------------|----------|---------|-------------------|-------------|--------------|-----|-----------|-------------------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------------|--------|------------------|-------|--| | | HEAR. | Bel | ow Sawpit Dam | | | OURIN | G THE YE | AR ENDING | MEPTE | EMBER S | 30, 19 | 46 . | | | NEAR | elow S | Sawpit Dam | | | DUR | ING THE Y | EAR ENDING | В ЕРТЕ) | MBER : | 30, 19_ | 47. | | | ND. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
BECTION
BQ. FT. | MEAN
VELOCITY
FT. PER SEC. | BAUDE
HEIGHT
FEET | DISCHARDE
BEG. FT. | RAT- | METH-MI | IEAS. DI
NO. 1 | HANGE | HETER
NO- | NO. | DATE | DEGIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- ME | TH- ME | AS. 9.
0. CHA | NOE) | HETER
NO. | | _101 | 11/29 | 1022A
1025A | MOON | 1.0 | 0.07 | 5.00 | 0.08 | 0.32 | F | LOATS | 1 | 0 | | 109 | 10-14 | 712A
718A | MOON | 3.0 | 1.84 | 7.39 | 1,20 | 13,6 | | . 6 | 5 (|) F | FC22 | | 102 | 12/6 | 930A
935A | ,, | 2.1 | 0.99 | 0.52 | 0.12 | 0.54 | ļ_ | .6 | 4 | 0 | FC22 | 110 | 10-14 | 815A
821A
840A | | 3.0 | 1.84 | 7.28 | 1.20 | 13.4 | ∐. | .6 | 5 (| | | | _103 | 12/24 | 230P
236P | | 1.5 | 0.67 | 6.57 | 0.55 | 4.4 | <u> </u> | .6 | 3 | 0 | | 111 | 10-14 | 845A | | 3.0 | 1.84 | 7,23 | 1.20 | 13.3 | | .6 | 5 (|) | * | | 104 | 12/27 | 1115A
1136A | | 3.0 | 1.37 | 0.95 | 0.24 | 1.3 | <u> </u> | .5 | 4 | 0 | | 112 | 10-14 | 1117A
1124A
1246P | | 4.0 | 2.38 | 7.14 | 1.38 | 17.0 | ١. | .6 | 5 (| | * | | 105 | 3/30 | 620A
625A | MOON - ROCKENMEYER | 3.0 | 1.08 | 0.59 | 0.16 | 0.64 | <u> </u> | .6 | 3 + | .03 | | 113 | 10-14 | 1252P | | 4,0 | 2,38 | 7,06 | 1.38 | 16.8 | | .6 | 5 (| | | | 106 | 3/30 | 100P
109P | | 6.5 | 4.40 | 5.95 | 1.71 | 16.2 | ļi | PISOT 6 | 6 - | .02 | | 114 | 10-14 | 115P
242P | • | 13,0 | 7,40 | 2,23 | 1,37 | 16,5 | . | 6 1 | 10 0 | 1 | - | | _107 | 4/5 | 1045A
1050A | MOON | 3.0 | 1.42 | 0.92 | 0.23 | 1.3 | <u> </u> | .6 | 4 | 0 | FC22 | 115 | 10-14 | 247P
314P | | 1.5 | 0.75 | 7,60 | 0,64 | 5,7 | <u>.</u> | 6 | 3 (| , | • | | _108_ | 4/9 | 410P
412P | | 2.0 | 0.61. | 0.99 | 0.09 | 0.60 | <u> </u> | -6 | 2 | 0 | | 116 | 10-14 | 325P
427P | | 10.5 | 4.59 | 1.22 | 0.64 | 5.6 | | .6 | 9 (| , | | | | | | | | | | | | | | | | | 117 | 10-14 | 432P | * | 2.0 | 1,43 | 7,06 | 1.03 | 10.1 | Ц, | .6 | 4 0 | | " | | | | | | | | | | | | | | | | 118 | 10-17 | | MOON-VAN DER GOOT | 1,5 | 0,60 | 7,17 | 0,54 | 4,3 | <u> </u> | .6 | 3 (| | - | | | | | | | | | | | | | | | | 119 | 11-22 | | MOON | 2,4 | 1,40 | 1,71 | 0.35 | 2,4 | <u></u> , | .6 | 3 (| | | | | | | | | | | | | | | | | | 120 | 11-29 | 1250P | STUNDEN | 2,4 | 0.88 | 0.77 | 0.08 | 0.68 | | .5 | 5 . 0 | E | C36 | | | | | | | | | | | | | | | | 121 | 12-27 | 320P | MOON - STEVENS | 4.0 | 2,40 | 6.38 | 1.47 | 15.3 | <u> </u> | 6 | 5 0 | | TUBE | | | | | | | | | | | | | | | | 122 | 12-27 | 344P
416P | | 4,0 | 2.40 | 7.46 | 1.47 | 17.9 | ╽. | 6 | 5 0 | F | C22 | | | | | | | | | | | | | | | | 123 | 1-2 | 420P
934A | MOON | 1.7 | 1.00 | 7,20 | 0,77 | 7.2 | <u> </u> | 6 | 3 0 | | <u>. </u> | | | | | | | | | | | | | | | | 124 | 2-11 | 939A | | 2,5 | 1,63 | 7,23 | 1.11 | 11.8 | <u>.</u> | 6 | 5 C | | | | P. C. Dist. | Form 52 4-46 | | | | FLC | LOS ANGELES
OOD CONTRO
YDRAULIC I | L DISTRICT | | | | Sta. P | _{to} F278-R | |---|----------------|--|---------------------------------------|--|--|---|--|-----|------|---------------|-----------------|------------------------| | Daily di | scharge, in se | cond-feet of | SAWP | T CREEK I | oelow Saw | pit Dam | | _ | | , for the yea | r ending Septen | nber 80, 19 _46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | Мау | June | July | Aug. | Slept | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 30 | | 00000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 9.99.4.19.92.4.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | | | | | | | 31 | 0 | 0 ,4 | 0 ,5
0 ,4 | 0 | | 16
7.4 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 2.3 | 38.8 | 2.2 | 0.5 | 23.4 | 181 | 0 | 0 | 0 | 0 | 0 | | MEAN | 0 | 0.08 | 1.25 | 0.07 | 0.02 | 0.75 | 0.60 | 0 | 0 | 0 | 0 | 0 | | ACRE-
FEET | 0 | 4.6 | 77. | 4.4 | 1.0 | 46. | 36. | 0 | 0 | <u> </u> | 0 | 0 | | | Remarks: | | | | | | | | , | TEAR MEA | | .23 | ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 278-R | рау | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |------|----------|------|------|------|-------|------|--------------|-----|--------|----------|--------|-------| | 1 | 0 | 0 | 01 | 8.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō | | 2 | 0 | 0 | 0 | 71 | 0 | 0 | 0 | 0 | 0 | . 0 | ٥ | 0 | | 3 . | 0 | 0 | 0 | 6.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | 0 | 0 | 0 | 6.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 0 | 0 | 0 - | 4.9 | 8 | 8 | - | - 6 | 8- ··· | 1 8 | | 0 | | 7 | ŏ | ŏ | l ŏ | ŏ | ŏ | Ιŏ | l ŏ | ŏ | ŏ | l ŏ | Ιŏ | ĭŏ | | é l | ŏ | ۱ŏ | ŏ | ĺŏ | Ιŏ | ŏ | ŏ | Ιō | l ŏ | Ŏ | ŏ | Ιŏ | | š | ŏ | ۱ŏ | ŏ | ۱ŏ | ۱ŏ | ŏ | ō | Ιŏ | l ŏ | Ŏ | ŏ | Ō | | ıo l | ŏ | lō | l ŏ | ō | 3.9 | Ó | ō | 0 | l ō | ō | Ó | 0 | | 1 | 0. | 0 | 0 | Ö | 7.5 | 0 | 0 | 0 | ō | Ō | 0 | 0 | | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | 7.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 72 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | O | 0 | | 6 | 4.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | 4.4 | 0 | 0 | 0 | .0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8 | 3.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | S. 0 | 1.0 | 0 | 0 | 0 | 0
| 6 | ő | 0 | 0 | ő | | | 1 | 0 | 5.3 | ŏ | ŏ | ŏ | ŏ | ŏ | - ŏ | 0 | 6 | 0 | 0 | | 2 | ŏ | 2.5 | ŏ | ŏ | ŏ | ŏ | iŏi | ŏ | ŏ | ŏ | ŏ | ŏ | | 3 | ŏ | 51 | Ιŏ | ŏ | l ŏ . | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | ŏ | | 4 | ŏ | 3.9 | ŏ | ŏ | ŏ | Ŏ. | i o i | ŏ | ŏ | Ö | ŏ | ŏ | | 5 | ŏ | 2.5 | 3.5 | ŏ | ŏ | . ŏ | . ŏ | ŏ | Ιŏ | ŏ | ō | ō | | В | 0 | 1.7 | 18 | 0 | 0 | 0 | 0 | Ō | 0 | Ō | 0 | 0 | | 7 | Ó | 1.6 | 17 | o i | 0 | 0 | o l | 0 | l o | 0 | 0 | 0 | | 3 | 0 | 0.6 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9 | 0 | 0.3 | 7.4 | 0 | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | o e | 0.2 | 5.0 | 0 | | 0 | 0 | 0 | 0 | o | o | 0 | | 1 | 0 | | 4 .8 | 0 | | 0 | | 0 | | 0 | 0 | | | | 27.7 | | 67 B | | 114 | | 0 | | 0 | | 0 | | | | | 24.7 | | 342 | | 0 | | 0 | ., | 0 | | 0 | | N | 0.89 | 0.82 | 2.19 | 1.10 | 0.41 | . 0 | 0 | 0 | 0 | _ Q | 0 | 0 | | E | 55 | 49 | 134 | 68 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Remarks: | | | | | | | | - | YEAR MEA | N 0.45 | | #### STATION US-R SAWPIT CREEK below Monrovia Canyon LOCATION: WATER-STAGE RECORDER AND BROAD-CRESTED WEIR CONTROL, LAT. 34°10'25". LONG, 117°59'20". IN NE 1/4 SW 1/4 SEC. 13, T. 1 N., R, 11 W., 0,1 MILE DOWNSTREAM FROM MONROVIA CREEK. ALTITUDE OF GAGE ABOUT 1,100 FEET. DRAINAGE AREA: 5.3 SQUARE HILES. RECORDS AVAILABLE: NOVEMBER, 1916 TO SEPTEMBER 1947. AVERAGE DISCHARGE: 29 YEARS (1917-1946). 1.36 SECOND-FEET: INCLUDING DIVERSION BY MONROVIA PIPE LINE. 29 YEARS. 2.86 SECOND-FEET. 30 YEARS (1917-1947). 1.33 SECOND-FEET; INCLUDING DIVERSION BY MONROVIA PIPE LINE. 30 YEARS. 2.85 SECOND-FEET. EXTREMES OF DISCHARGE: EMES OF DISCHARGE: 1945-1946 MAXIMUM DISCHARGE 125 SECOND-FEET, DECEMBER 23. (GAGE HEIGHT 2,23 FEET). NO FLOW DURING SEVERAL PERIODS. 1946-1947 MAXIMUM DISCHARGE, 46 SECOND-FEET, DECEMBER 26 (GAGE HEIGHT, 1,39 FEET). NO FLOW DURING SEVERAL PERIODS. 1916-1947 MAXIMUM DISCHARGE, ABOUT 2,000 SECOND-FEET, APRIL 7 1926, ESTIMATED FROM FLOW OF ROGERS CREEK. NO FLOW DURING PARTS OF MOST YEARS. REMARKS: RECORDS FAIR. REGULATION AT SAWPIT DAM ABOVE STATION AND DIVERSIONS BY CITY OF MONROVIA. COOPERATION: RECORDS FURNISHED BY THE UNITED STATES GEOLOGICAL SURVEY. NINE MEASUREMENTS FURNISHED BY LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. DISCHARGE MEASUREMENTS OF ... SAWPIT CREEK DISCHARGE MEASUREMENTS OF _____SAWPLE CREEK below Monrovia Canyon below Monrovia Canyon AREA OF MEAN GAUGE SECTION VELOCITY NEIGHT EQ. FT. FT.PER SEC. FEET AREA OF MEAN GAUGE SECTION VELOCITY HEIGHT EQ. FT. FT.PER SEG. FEET RAT- METH- MEAS. G. HT. SEC. CHANGE NO. TOTAL .5 .6 7 0 FC22 MOON WADD I COR 789 11-7 U.S.G.S. EST 0.005 825 10-14 2.44 4.06 1040A 6.8 0.69 9.9 790 11-23 1.07 1.34 1.43 و او اعد u.s.G.s. 2.19 1.91 0.49 4.5 826 10-17 3.4 4.18 .6 8 0 .28 11-27 .6 9 0 .6 2 0_ 791 4.5 1.09 1.17 _.26 1.27 827... 10-31 -.03 0.006 .4 .6 12 0 11-14 3,2 1.74 1.07 0.33 1.86 792 12-4 6.0 2.02 1.32 828 .6 7 .65 .23 12-6 .5 3 0 FC22 829 11-14 1.53 0.68 0.24 1.04 793 MOON 1.2 3.26 .22 1.01 .6 7 +.01 .31 .5 4 0 7.0 2.38 3.03 0.62 7.2 .6 7 0 794 12-12 1.2. _10 .29 -.01 .029 830 11-21 .795... 12-27 3.6 2.27 1.05 .33 2,38 831 11-25 2.47 1.41 0.43 3.48 796... 1.5 3.9 1.26 ._16 .87 -6 7 0 832 11-29 125P STUNDEN 0.49 1.38 0.22 0.68 .12 1.33 .04 .6 3 0 FC22 797 1-10 1.0 .16 833 12-4 2.0 0.65 .48 0.09 0.31 .6 4 0 1.0 ,15 1.00 .04 .15 834 12-5 0.15 1.20 0.08 0.18 .798 1-10 FC22 .5 5 0 835 12-11 799 1-17_ 2.5 .60 .22 -01 .13 0.57 0.34 0.06 0.19 .08 .5 1 0 FC22 800 1-24 MOON 1.0 .05 1.60 .05 836_ 12-18 0.35 0.37 0.02 .04 6 0 0.30 0.27 0.01 0.082 837 12-23 --.01 .6 5 0 838_ 1-2 6.1 1.23 0.60 7.5 .6 12 0 .6 10 0 1-15 0.14 0.22 -.02 0.081 839 ..03 .19 .6 6 0 840 1-29 -.05 0.008 VOL .26 .27 .00 . 5 4 0 841 2-10 0.16 0.07 -.03 0.011 .5 .5 3 0 1.0 0.41 0.39 0.04 0.16 2-27 1.5 .25 .00 .088 842 9-4 .5 2 0 FC36 .5 3 0 0.5 0.10 0.08 -.03 0.008 -16 .16. -,02 .025 843 9-8 .5 6 0 3-13 .08 .32 -.02 .026 EST. 809 3-19 -.03 .004 .6 2 810 3-20 .12 1.00 .01 .12 0 5 4 0 -20 _60 .01 .12 6 13 0 812 3-31 13. 6.2 1.58 0.65 9.8 813 4-3 7.0 2.62 1.00 .6 13 0 .40 21,60 3.5 -61 -69 -11 .42 .5 7 0 814 4-12 .5 2 0 FC22 4-18 MOON 1.0 -14 1.71 -08 .24 U.S.G.S. 2.6 .28 .07 .5 5 0 816 4-19 .71 .20 .5 5 0 1.6 .21 .04 .18 817 4-24 .86 5 4 0 1.2 .19 1.05 .03 .20 5-1 .5 2 MOON 1.3 .10 .70 .03 .07 0 5-3 819 u.s.g.s. 1.5 .12 .02 .068 .5 4 .0 5-9 •57 820 .5 4 0 1.3 .12_ ,01 .055 .46 821 5-16 EST. .01 .02 5-22 -.02 .02 EST. 5-29 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. U5-R | ay | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | |---------------|----------|------|------------|------------|--------------|--------------|------|------|---------------|----------|--------------|-------| | 1 | 0 | 0 | 1.3 | 0.8 | 0.1 | 0 | 6.3 | S. 0 | O . | 0 | 0 | 0 | | 2 | ō | Ó | 1.3 | 9.0 | 0.1 | 0 | 4.7 | υz | ō | (o | Q | 0 | | 3 | ò | 0 | 13 | 0.8 | 1.6 | 0 | 2.8 | 0.1 | o o | 0 |) 0 | 0 | | 4 | 0 | 0 | 1.4 | 0.9 | 1.0 | 0.1 | 2.6 | 0.1 | 0 | 0 | 0 | 0 | | 5 | 0 | 0 | 1.7 | 8,0 | 0.4 | 8 - | 1.7 | 01 | | 0 | g | ŏ | | 6 | 0 | 0.1 | 1.3 | 0.8 | 0.2 | 0 | 1.4 | 0.1 | ŏ | 0 | ŏ | l ŏ | | 7 | 0 | S 0 | 1.0 | 0.6 | S. 0
S. 0 | ŏ | 1.3 | 0.1 | ŏ | 6 | l ŏ | l ŏ | | 8 9 | 0 | 0 | 1.0 | 0.6 | 01 | ŏ | 11 | 0.1 | ŏ | l ŏ | ŏ | ŏ | | 0 | ٥.
٥ | 0 | 0.1 | 0.2 | 0.1 | ŏ | ō.5 | 0.1 | ŏ | l ŏ | ŏ | l ŏ | | i | 8 | Ö | 8 7 | 0.3 | \$.0 | ठ | 0.6 | ŏ-i | - · · · · · · | †- · ō · | 0 | 0 | | 12 | ŏ | ıŏ | l ŏ l | 0.5 | ο̃ε | ŏ | 0.5 | 0.1 | ŏ | Ō | ō | Ó | | 13 | ŏ | ŏ | ŏ | o z | 0.1 | 0 | 0.4 | 0.1 | 0 | 0 | 0 | 0 | | 4 | ŏ | ŏ | l ŏ l | 01 | 0.2 | 0.1 | 0.4 | 0.1 | 0 | 0 | 0 | Ò | | 15 | ŏ | 0.1 | o | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 0 | 0 | 0 | 0 | | 16 | Ō | 0.1 | 0 | 0.1 | 0.1 | 0 | 0.3 | 0.1 | 0 | 0 | Ō | O | | 17 | ō | 0 | 0 | 0.1 | 0.1 | 0 | 03 | 0.1 | o | 0 | 0 | 0 | | 18 | 0 | 0 | 0 | o.e | 0.2 | 0 | 0.2 | 0 | ō | 0 | 0 | 0 | | 19 | 0 | 0 | 0 | 0.3 | 0.1 | 0 | 0.2 | 0 | Ö | 0 | 0 | 0 | | 20 | 0 | 0 | 0 | <u>0 2</u> | 0.1 | 0.1 | 0.2 | 0 0 | | | - | - ŏ | | 21 | 0 | 0.3 | 8.5 | 0.2 | 0.1 | 01 | 0.2 | ŏ | ŏ | 6 | ŏ | lő | | 22 | 0 | 1.3 | 1.3 | S. 0 | 0.1
0.1 | 01 | 02 | ŏ | ŏ | ŏ | ŏ | ŏ | | 24 | 0 | 1.4 | 42 | 0.2
0.2 | 01 | 01 | 0.2 | ŏ | ő | l ŏ | ŏ | lŏ | | 25 | 0 | 1.4 | 8 2
5 5 | 0.2 | 01 | 0.1 | 0.2 | ŏ | . ŏ | ŏ | ŏ | | | 26 | 0 | 13 | 3.3 | 01 | 0.1 | 0.2 | 0.2 | ō | ō | Ō | ō | 8 | | 27 | ŏ | 13 | ž 3 | 01 | 01 | 01 | οã | 0 | õ | 0 | 0 | 0 | | 88 | ŏ | 13 | 1.5 | 01 | 01 | 0.2 | 0.2 | ŏ | Ó | 0 | 0 | 0 | | 29 | õ | 13 | liol | 0.1 | _ | 0.1 | 0.2 | 0 | 0 | 0 | 0 | 0 | | 10 | 0.3 | 1.3 | 1.0 | 01 | | 19 | 2.0 | 0 | 0 | 0 | o o | 0 | | 1 | 0.2 | | 0.8 | 0.1 | | 1.1 | | 0 : | | - 0 | 0 | | | | 0.5 | | 923 | | 62 | | 29.6 | | 0 | | 0 | | | | ٠.5 | 12.8 | | 102 | | 31.5 | | 1.9 | | 0 | | 0 | | AN | 0.02 | . 43 | 2.98 | 33 | .22 | 1.02 | . 99 | .06 | Q | 0 | 0 | 0 | | RE | 1.0 | 25. | 183. | 20. | 12. | 62. | 59. | 3.8 | o | 0 | 0 | 0 | | - | Remarks: | | | | | | | | | YEAR MEA | N 51 | | F. C. Dir. Form 52 8-44 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No_ U 5-R | | | | | | H | YDRAULIC | DIVISION | | | | | | |----------------------------------|--|----------------------------------|----------------------------------|--|--|----------|----------|-------|-------------|--------------------------------------|---------------------------------|--| | Dally d | ischarge, in se | cond-feet of. | SAWPIT C | REEK belo | w Monrovi | a Canyon | | | | , for the yes | r ending Septem | her 80, 19 <u>217</u> | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0
0
0
0
0 | 0 0 0 | 0.6
0.6
0.4
0.3 | 8.5
7.5
7.2
7.0
5.7 | 0.01
0.01
0.01
0.01 | 0 1 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 0 | 0.5
0.9
1.0
0.5
0.1 | 0
0
0
0
0
0
0
0
0 | | 6
7
8
9 | 0000 | 0
0
0 &
0.01
0.01 | 0 4
0 0 3 3 Q Q | 0.2
0.1
0.02
0.02 | 0.01
0.01
0.01
0.3
3.2 | 00000 | 0 0 0 | 0 0 0 | 0
0
0 | 0 0 0 | 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 11
12
13
14
15 | 0
0
6 .8
7 .6 | 0.01
0.8
3.0
1.2
0.1 | 0 Q
0 Q
1 L
1 C
0 D | 00000
00000
000000 | 6.6
0.1
0.06
0.06 | 00000 | 0000 | 00000 | 0000 | 00000 | 00000 | 00000 | | 16
17
18
19
20 | 4 .4
4 .3
3 .8
0 .1
0 .0 2 | 0.01
0.01
0.01
0.01 | 01
01
01
01 | 20.0
20.0
20.0
20.0
20.0
20.0 | 0,06
0,00
0,00
0,00
0,00
0,00
0,00
0,00 | 00000 | 00000 | 0 0 0 | 0000 | 00000 | 00000 | 0000 | | 21
22
23
24
25 | 0 0 0
0 0
0 0 | 7.0
3.3
5.0
4.0
3.5 | 00006 | \$0.0
\$0.0
\$0.0
\$0.0 | 0002 | 00000 | 00000 | 0 0 0 | 0000 | 0000 | 0000 | 00000 | | 26
27
28
29
30
31 | 0
0
0
0
0
0
0
0
0
0 | 2 2
2 2
1 3
1 0
0 7 | 24
19
11
82
72
64 | 0.02
0.02
0.2
0.01
0.01
0.01 | 000 | 00000 | 00000 | 00000 | 0000 | 0 0 0 0 | 00000 | 0 0 0 0 | | | 2751 | 4657 | 873 | 3691 | 1098 | 0.2 | 0 | 0_ | 0 | 0 | 3 .0 | 0 i 2 | | MEAN | 0.887 | 1.55 | 2.82 | 1.19 | 0.392 | 0.01 | 0 | 0 | 0 | 0 | 0.10 | 0.004 | | Part | 55 | 92 | 173 | 73 | 22 | 0.4 | 0 | 0 | 0 | 0 | 6.0 | 0.2 | | | Remarks; | | | | | | | | | YHAR MEAN
OR ACLE
PRESION ACLE | 0.582
FEET 422 | | #### STATION F185-R SEPULVEDA CREEK at Charnock Road LOCATION: WATER-STAGE RECORDER, LAT. 34°00'48", LONG. 118°25'29", ON THE LEFT (EAST) WING WALL OF THE DOWNSTREAM SIDE OF THE CHARNOCK ROAD BRIDGE. ABOUT 1200 FEET WEST OF SAWTELLE BOULEVARD AND APPROXIMATELY 2 MILES NORTHWEST OF CULVER CITY. ELEVATION OF ZERO GAGE HEIGHT, 79.12 FEET ABOVE MEAN
SEA LEVEL. DRAINAGE AREA: 25.7 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND ADDBE. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREVENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBRIDGE 100 FEET BELOW THE STATION. RECORDER: INSTALLED SEPTEMBER 15, 1932; REMOVED MARCH 3, 1937, DUE TO BRIDGE CONSTRUCTION; REINSTALLED AUGUST 11, 1937. REMOVED MARCH 3, 1938 DUE TO STILLING WELL BEING WASHED OUT. REINSTALLED JULY 7, 1938, OVER 20 INCH CORRUGATED IRON PIPE STILLING WELL, AN H.C.F. RECORDER WAS IN OPERATION FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION AND/CR DIVERSIONS: STONE CANYON RESERVOIR, SOUTHERN CALIFORNIA WATER COMPANY SPILLS FLOW UP TO 5,0 SECOND-FEET INTO SEPULVEDA CREEK ABOVE CHARNOCK ROAD FOR SHORT PERIODS NEARLY EACH DAY. RECORDS AVAILABLE: DISCHARGE MEASUREMENTS ONLY, JANUARY 1, 1932 TO SEPTEMBER 14. 1932. RECORDER RECORDS SEPTEMBER 15, 1932 TO MARCH 3, 1937, AUGUST 11, 1937 TO MARCH 2, 1938, AND JULY 7, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARCE: 1945-1946 MAXIMUM 1900 SECOND-FEET, DECEMBER 22. MINIMUM NO FLOW AT VARIOUS TIMES. 1946-1947 MAXIMUM 2100 SECOND-FEET, NOVEMBER 13. MINIMUM NO FLOW AT VARIOUS TIMES. 1932-1947 MAXIMUM 3,100 SECOND-FEET, ESTIMATED, MARCH 2, 1938. MINIMUM NO FLOW AT TIMES EACH YEAR, ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABURE! | MENTS OF | SEPUL | VEDA C | REEK | | | | | | | | NO. | DATE | BEGIN
END | MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELOCITY
FT.PER BED. | GAUDE
HEIGHT
FÆET | DISCHARGE
SEC. FT. | RAT- | | EAS. | S. HT.
CHANGE
TOTAL | METER
NO. | |-------|-----------|-------------------------|----------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-------|----------------------|---------------------------|----------------|-------|-------|-------------------------|------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------------------|------|------|---------------------------|--------------| | | AT. Ch | arnock | Road | | | DUR | ING THE Y | YEAR ENDING | 3 SEPT | EMBER | 30, | 48 | | _609_ | 3/21 | 1017A
1022A | | 2.2 | 0.42 | 1.74 | 4.77 | 0.73 | | . 6 | 4 | 0 | | | NO. | DATE | BEGIN
END | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELODITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | мети- | MEAS.
BEG.
NO. | B. HT.
CHANGE
TOTAL | METER
NG. | 610 | 3/28 | 1008A
1020A
533A | BOLLINGER | 9.1 | 5.44 | | 5.66 | 8.6 | \vdash | .6 | | 07 | ** | | 583 | 10/3 | 1205P
1210P | BOLL INGER | 3.5 | 1.27 | 0.61 | 5.16 | 0.78 | | .6 | 5 | 0 | FC6 | -611 | 3/30_ | 546A | ECKERT
ECKERT | 34.0 | 36.4 | 3.16 | | 115. | \vdash | 6 | | 16 | · | | | 10/10 | 1122A
1127A | 14 | 4.0 | 1.65 |] | | 0.68 | | . 6 | 5 | 0 | | 612 | 3/31 | 1121A
630A | BOLL INGER | 4.5 | 1.58 | | | 0.65 | \vdash | .6 | 6 | 0 | <u> </u> | | 585 | 10/18 | 953A
1000A | ** | 4.0 | 1.62 | 0.46 | 5.07 | 0.74 | | . 6 | 6 | 0 | | 613 | 4/2 | 1026A | BOLLINGER | 11.5 | 4.80
0.39 | 0.85 | | 0.33 | | .6 | | 02 | | | 586 | 10/25 | 1033A
1038A | ** | 4.0 | 1.94 | 0.67 | 5.28 | 1.3 | | .6 | 4 | 01 | | 614 | 4/4 | 1030A
1022A
1027A | ., | 2.5 | 0.39 | 1.43 | | 1.3 | \vdash | - :+ | - | +. 05 | | | 587 | 11/1 | 1034A
1042A | | 4.2 | 2.31 | 0.38 | 5.24 | 0.88 | | .6 | 6 | 01 | | 615 | 5/2 | 1022A
1028A | | 3.0 | 1.38 | 1.09 | 1 | 1.5 | H | | | +.02 | | | 588 | 11/8 | 1105A
1110A | | 4.2 | 1.78 | 0.41 | 5.03 | 0.73 | | .6 | 4 | 0 | • | 617 | 5/9 | 947A
953A | | 4.0 | 1.66 | 0.96 | | 1.6 | | -+ | _ | -,02 | | | 589 | 11/15 | 1055A
1102A | 11 | 4.5 | 2.50 | 0.40 | 5.06 | 1.0 | | . 6 | 5 | 0 | | 618 | 5/23 | 1135A
1138A | | 4.0 | 1.50 | 1.40 | i – | 2.1 | | 5 | | +.01 | | | 590 | 11/21 | 1110A
1115A | | 4.0 | 1.79 | 0.47 | 5.13 | 0.85 | | . 6 | 4 | 0 | | 619 | 5/31 | 1100A | | 3.0 | 1,17 | 1.22 | | 1.4 | П | .5 | - | +.01 | | | . 591 | 11/29 | 1110A
1116A
1145A | •• | 5.0 | 4.41 | 0.59 | 5.47 | 2.6 | | 6 | 5 | 03 | •• | 620 | 6/6 | 215P
221P | | 3.5 | 0.85 | 0.71 | 5.17 | 0.65 | | .5 | 4 | 0 | | | _ 592 | 12/7 | 1152A | ., | 5.5 | 3.00 | 0.67 | 5.42 | 2.0 | | . 6 | 5 | 0 | | 621 | 6/20 | 1140A
1148A | | 2.5 | 1.12 | 0.71 | 5.11 | 0 .7 5 | | .5 | 5 | 0 | | | 593 | 12/13 | 1122A
1009A | | 4.5 | 2.31 | 0.65 | 5.27 | 1.5 | | .6 | 5 | + 02 | | 622 | 6/27 | 1054A
1059A | | 3.0 | 1.14 | 0.60 | 5.11 | 0.69 | | .5 | 4 | 0 | | | 594 | 12/20 | 1014A
540A | BOLLINGER | 4.0 | 2.39 | 0.72 | 5,35 | 1.7 | \vdash | .6 | 4 | 0 | ** | 623 | 7/3 | 1205P
1210P | HAIG | 0.6 | 0.18 | 0.11 | 4.78 | 0.02 | | .5 | 2 | 0 | FC35 | | 595 | 12/22 | 608 A | ECKERT | 36.5 | 92.6 | 4.06 | 7.49 | 376. | | . 6 | | +.71 | | 624 | 7/10 | 1005A
1010A | 11 | 1.0 | 0.40 | 0.50 | 4.90 | 0.20 | Ш | .5 | 3 | 0 | | | 596_ | 12/23 | 1020A
1113A | BOLL INGER | 12.0 | 11.5 | 2.11 | | 24.3 | 1-1 | .6 | 8 | 03 | " - | 625 | 7/17 | 1037A
1040A | | 1.0 | 0.56 | 1.54 | 5.10 | 0.86 | \sqcup | .5 | 2 | 0 | | | 597 | 12/27 | 1118A
1130A | •• | 2.3 | 0.41 | 1.22 | | 0.50 | \vdash | .6 | 3 | 0 | | 626 | 7/25 | 1048A
1053A | BOLLINGER | 3.3 | 1.11 | 0.76 | 5.15 | 0-84 | Ш | .5 | 5 | 0 | FC6 | | 598 | 1/3 | 1136A
1045A | | 3.0 | 0.64 | <u> </u> | 5.18 | 0.91 | \vdash | .6 | 4 | | | _627_ | 8/1 | 757A
802A | | 2.0 | 0.38 | 1.03 | 5.08 | 0.39 | $\perp \downarrow$ | -5 | 3 | 0 | | | 599 | 1/10 | 1050A
122P | | 3.4 | 0.68 | | 5.26 | 0.86 | \vdash | -6 | | 04 | | 628 | 8/8 | 522A
528A | BOLL INGER | 6.0 | 2.70 | 1.18 | 5.66 | 3.2 | \sqcup | .5 | 7 | 0 | FC6 | | 600 | 1/17 | 127P | | 2.2 | 0.27 | | | 0.29 | +++ | 6 | 3 | | | 629 | 8/8 | 550A
555A
940 A | | 5.2 | 1.23 | 0.89 | 5.24 | 1.1 | \vdash | .5 | 5 | 0 | | | 601 | 2/7 | 1235P
103P | | 3.0 | 0.70 | 1.08 | | 0.76 | \vdash | 5 | _4 | 01 | | 630 | 8/14 | 945A
915A | <u> </u> | 2.8 | 0.79 | 1.02 | 5.12 | 0.81 | | .5 | 4 | | | | 602 | 2/14 | 108P
120P | | 4.2 | 1.46 | | | 1.4 | Н | - 6 | _4_ | 0 | | 631 | 8/21 | 922A
851A | <u> </u> | 3.7 | 1.22 | 0.77 | 5.15 | 0.94 | + | .5 | 5 | ۰ | | | 603 | 2/21 | 126P
106P | | _3.2 | 0.83 | | | 1.0 | \Box | .5 | _4_ | - | | 632 | 8/29 | 854A | | 1.4 | 0.17 | 0.53 | 5.02 | 0.09 | H | .5 | 2 | 01 | " | | 604 | 2/28 | 1045A | BOLL INGER | 2.8 | 0.68 | | l | 0.76
0.87 | \Box | 5 | .5
4 | 0 | FC6 | 633 | 9/5 | 1026A
945A | ** | 2.0 | 0.30 | 0.63 | 5.07 | 0.19 | +- | .5 | 3 | 02 | •• | | 605 | 3/14 | 1051A
806A
812A | BOLL INGER
ECKERT | 9.2 | 5.76 | | | 9.1 | \Box | | 8 | 04 | | 634 | 9/12 | 950A | •• | 4.0 | 1.18 | 0.61 | 5.26 | 0.72 | \vdash | .5 | 5 | 0 | <u></u> | | 607 | 3/19 | 216P
225P | BOLL INGER | 11.0 | 7.42 | | | 8.3 | | .6 | 9 | 04 | ., | 635 | | 1150A
1250P | | 2.3 | 0.54 | T | 5.16 | 0.40 | + | - | 3 | 0 | | | 608 | | 234P
242P | | 11.0 | 6,65 | 1 | 1 | 6.9 | | .6 | 9 | +.01 | ., | 636 | 9/26 | 1256P | | 3.0 | 0.65 | 0.66 | 5.20 | 0.43 | 1 | .5 | 4 | | | | | | | EMENTS OF SEPULY | COA COS | :cv | | | | | | | | ı | | | 1 | T | | AREA GF | HEAN | BAUEE | | _ | | AB. B.) | | |------|---------|--------------|---------------------|---------|--------------------|------------------|-----------|-----------------------|--------------|-------------|-------|--------|--------------|------|--------|-------------------------|------------|---------------|---------------------|-------------------------|----------------|-----------------------|----------|--------|----------------------------------|--------------| | | DISCHAR | BE HEABUR | EMENTS OF SEPULV | EUA_LKI | EA | | | | | | | | | ND. | DATE | DE#1M | MADE BY | WIDTH
FEET | MEDITION
MO. FT. | VELOCITY
FT.PER SEG. | HEIENT
FEET | DISCHARSE
SEC. FT. | RAT- M | | AS. II. H
G. CHANI
D. TOTA | E | | | AT | Ch | arnock Road | | | | ING THE Y | EAR ENDING | BEPT | MSER | 30, 1 | •_47 | | 657 | 2-20 | 226P
233P
235P | | 3.00 | 0.79 | 1.52 | 5.26 | 1.2 | _ . | 5 | 40: | - | | H0. | DATE | PEGIN | MADE BY | WIDTH | AREA DF
BEOTION | MEAN
VELORITY | HALME | DISCHARGE
SEC. FT. | RAT- N | | EAB. | CHANGE | METER
NO. | 658 | 2-27 | 240P
258P | | 3.00 | 0.99 | 1.41 | 5.27 | 1.4 | 1. | 5 | 40 | <u> </u> | | | | 1018 | | | BQ. FT. | FY.PER SEC. | | | + | | T i | TOTAL | - | 659 | 3-6 | 305P
300P | ,, | 3,30 | 1.54 | 1,17 | 5.24 | 1.8 | _ . | 5 | 50 | | | 637 | 10-1 | 1026 | | 5.00 | 4.30 | 0.61 | 5.67 | 2.6 | | 6 | 5 | 02 F | C6 | 660 | 3-13 | 306P | * | 3.30 | 1,24 | 0.89 | 5.24 | 1.1 | _ . | 5 | 40 | | | 635 | 10-10 | 1021 | | 2.50 | 0.47 | 0.62 | 5.12 | 0.29 | | 5 | 2 - | .01 | * | 661 | 3-27 | 100P
109P | | 7.50 | 8.97 | 1.33 | 5.74 | 11.9 | _ . | 5 | 7 0 | | | 6.39 | 10-17 | 1028 | A | 1.90 | 0.37 | 1.13 | 5.14 | 0.42 | ١. | 5 | 3 + | .01 | - | 662 | 4-10 | 953A
956A | ., | 2,80 | 0.78 | 1.20 | 5.12 | 0.93 | ١. | 5 | 3 0 | | | 640 | 10-24 | 1117 | 4 " | 2.00 | 0.55 | 1.04 | 5.16 | 0.57 | _ . | 5 | .3 | -01 | • | 663 | 4-18 | 1125A
1135A | | 3.00 | 0.96 | 2.08 | 5.16 | 2.0 | ١. | 5 | 4 0 | .,, | | 641 | 10-31 | 116 | " | 2.00 | 0.71 | 1.41 | 5,14 | 1.0 | ١. | 5 | 3 - | .01 | | | | 1107P
1112P | | 2,80 | 1.98 | 0.91 | 5.18 | 1.8 | | 6 | 4 +.0 | | | 642 | 11-7 | 1048 | | 1.80 | 0.51 | 1.06 | 5.04 | 0.54 | | 5 | 3 | .01 | . | | 5-1 | 307P | _ | | | | | | $^{+}$ | | | 1 | | 643 | 11-12 | 747 | | 4010 | 87.8 | 3.62 | 7.41 | 318. | | 6 | 9 7 | .04 | | .665 | 5-8 | 315P
1050A | | 3-00 | 1.49 | 1,28 | 5.16 | 1.9 | _ | \neg | | - | | £44 | 11-12 | 1213 | | 7.50 | 11.4 | 1.32 | 5.98 | 15.1 | 1. | 6 | 6 - | 02 | | 666 | 5-15 | 1056A
126P | * | 2,80 | 1.23 | 1.46 | 5.16 | 1.8 | _ | | 4 0 | <u>"</u> | | | 1 | 1057 | 4 | 36.0
| 54.2 | 2.32 | 6.89 | 126- | | $\neg \top$ | | | | 667 | 6-5 | 132P
930A | | 5,00 | 2.03 | 0.74 | 5.21 | 1.5 | | _ | 4 0 | | | | 11-13 | 1220 | | | | | | | | | | | . | 668 | 7-10 | 935A
310P | * | 2.00 | 0,25 | 0.64 | 5.11 | 0.16 | + | 5 | 3 0 | | | | 11-14 | 1226
1008 | V . | 7.50 | 8.80 | 1.36 | 5.93 | 12.0 | | 6 | - | | . | 669 | 7-17 | 313P | | 2.70 | 1.13 | 0.97 | 5.21 | 1.1 | <u>.</u> | 5 | 3 0 | * | | 647 | 11-20 | 915 | 1 | 33.5 | 31.4 | 2.73 | 6.59 | 85.9 | _ | \neg | | 05 | | 670 | 7-30 | 945A
948A | MOON | 1.20 | 0.24 | 1.17 | 5.18 | 0.28 | | 5 | 3 0 | FC22 | | 648 | 11-23 | 1105 | | 41.0 | 111. | 5.44 | 8.30 | 604. | | -+ | - | .20 | | 671 | 8-6 | 1050A
1053A | | 1.00 | 0.60 | 1.60 | 5.22 | 0.96 | _ . | 5 | 2 0 | | | 649 | 11-27 | 1108 | | 4.00 | 1,15 | 0.96 | 5.31 | 1.1 | _ <u> </u> . | 6 | 4 | 0 | | 672 | 8-13 | 1014A
1017A | | 1.50 | 1.02 | 1.57 | 5,25 | 1.6 | _ . | 5 | 2 0 | | | 650 | 12-5 | 1055 | ٠. | 3.30 | 1.02 | 0.73 | 5.15 | 0.74 | ŀ | 5 | 4 | 0 | - | 673 | 8-21 | 1240P | BOLL INGER | 2.40 | 0.97 | 1.34 | 5.27 | 1.3 | . | 5 | 3 -10 | FC6 | | 651 | 12-27 | 1146 | A BOLLINGER - PAULL | 10.0 | 7.58 | 1.35 | 5.70 | 10.2 | _ . | 6 | 7 | 0 | • | 674 | 8-28 | 1250P
1025A
1030A | | 3.00 | 0.89 | 0.91 | 5.22 | 0.81 | Τ. | 5 | 3 0 | | | 652 | 1-2 | | BOLLINGER | 2.50 | 0.41 | 0.93 | 4.98 | 0.38 | _]. | 5 | 3 | 0 | | 675 | 9-4 | 950A
953A | | 2.50 | 0.85 | 0.80 | 5.22 | 0.68 | 1 | 5 | 3 0 | | | 653 | 1-9 | 243
248 | | 4.00 | 0.80 | 1.37 | 4.95 | 1.1 | _[. | 5 | 4 | 0 | | | | 114P | , | | | | | | | | 3 0 | † – | | 654 | 1-16 | 310 | | 2.20 | 0.82 | _1.71 | 4.82 | 1.4 | Π. | 5 | 3 | 0 | . | | 9-18 | 118P
935A | | 2.50 | 1.10 | 1.91 | 5,28 | 2.1 | _ | \neg | 1 | | | | 1-23 | 1481 | | 3,40 | 0.99 | 1.36 | 4.85 | 1.4 | | | | | | 677 | 9 • 25 | 940A | · | 2.50 | 0.67 | 0.72 | 5.16 | 0.48 | | 5 | 1 0 | | | | 2-6 | 320
326 | > | 2.00 | 0,40 | 1.72 | 5.00 | 0.69 | | 一十 | + | | | | | | | | | | | | | | | | SEPULVEDA CREEK at Charnock Road Daily discharge, in sec ond-feet of_ Day Oct Nov. Dec. Jan. Feb. Mar. Apr. Мау June July Aug. Sept 0.5 0.5 0.6 1.1 0 4 4 3 3 2 3 4 4 6 0 5 5 1 5 5 1 5 7 1 5 9 0 1 5 7 2 9 0 1 1 5 7 3 9 0 1 1 5 5 1 2 9 0 2 2 0 2 2 0 0 390 264284257693638306740437 722132354443343411322112221 1 2 3 3 4 4 5 8 9 10 111 12 13 14 15 18 19 20 22 23 24 25 27 28 29 9 31 108030 0097799875569994029339907 0075569994029339907 33256666677778485887690077676765 1 4 2 9 5 5 5 1 8 7 1 8 4 4 8 4 4 0 + + 183556112078807260 8.8 81.7 9455 163.7 1131 271 22.6 8.08€ 12.3 755. 224. 3.77 5.85 325. 202 0.65 524 1.75 104, 30.5 1,880. ACRE-PEF 162. 324 1,05 64. 20.0 40. 0,90 54. 0.65 0.73 45. 5.15 YEAR MEAN 5.15 OR PERIOD ACRE-FEET 3,740. LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No._F185~R_ 211 0.70 42. F. C. Diet. Form 52 4-46 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 185-R | Daily d | lischarge, in s | econd-feet of | SEPULVED | A CREEK | at Charno | ck Road | | | | , for the yea | r ending Septer | nber 30, 19 <u>47</u> | |---|--|---|---|---|---|---|---|---|---|---|---|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 71
07
00
00
00
10
10
00
10
00
00
00
00
00
00 | 05
05
05
05
05
07
0.6
1.0
0.6
70
234
116
1.0
0.9
3.5
165 | 00.00.00.00.00.00.00.00.00.00.00.00.00. | 0 5 4 0 0 5 6 0 0 8 0 1 1 1 2 2 2 0 0 5 1 1 4 4 1 1 4 6 1 1 2 7 2 8 1 1 1 2 2 8 1 1 1 1 2 2 8 1 1 1 1 1 | 0 8 1 0 8 1 0 7 0 8 8 1 0 7 0 8 8 1 0 9 1 0 9 1 0 9 1 1 1 0 0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 0 a 1 a 1 | 0.6
0.8
0.9
0.7
0.9
0.9
1.1
0.9
1.1
1.2
1.4
1.4
1.4
1.3
1.8 | 1 A 1 6 1 6 1 A 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 | 1 2 1 3 1 1 1 1 1 1 2 0 0 8 0 6 6 0 6 6 0 6 0 6 0 5 0 5 0 3 0 0 1 0 0 1 0 0 2 0 2 0 2 | 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 | 0.6
0.6
0.7
0.9
0.9
1.0
1.1
1.5
1.6
2.2
1.4
0.9
1.0
1.1
1.5
1.0
0.9 | 0 9 0 8 0 8 0 0 6 0 0 7 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 5 0 0 5 0 5 | | 24
25 | 0 £
0 £
0 7 | 8.0
d | 73
328 | 0.7 | 5.5 | 0.9 | 1.5 | 12 | 03 | 0.6
0.6 | 1.0 | 0.5 | | 26
27
28
29
30
31 | 0.7
5.0
0.5
0.5
0.5 | 0.7
1.6
0.7 | 20
f 35
a 0.9
a 0.8
a 0.7 | 0.7
0.8
0.5
3.7
0.5
0.3
0.6 | 2.0
a 1.0
a 1.0 | 10
15
46
0.8
0.7
0.6 | 1 A
1 3
1 2
1 9
1 7 | 1 1
1 4
1 2
1 0
1 0
1 2 | 0 2
0 2
0 2
0 2
0 2 | 0 &
0 &
0 &
0 .4
0 .5
0 .5 | 0 9
1 0
0 9
1 0
0 9
0 8 | 0.5
0.5
0.6
0.6 | | | 1031 | 10592 | 5,12.0 | 66.5 | 1273 | 1109 | 37.0 | 45.4 | 153 | 16.6 | 32.0 | 214 | | MEAN | 3.33 | 35.3 | 16.5 | 2.15 | 4.55 | 3.58 | 1.23 | 1.46 | 0.51 | 0.54 | 1.03 | 0.71 | | FEET | 204 | 2.100 | 1,020 | 132 | 252 | 220 | 73 | 90 | 30 | 33 | 63 | 42 | | | Remarks: | | | | | | | | | TEAR MEA | | .88 | | | | 1 | | | | | | | F | OR
ERIOD ACRI | -Feet_4.2 | 60 | ### STATION FAS-R SYCAMORE UPPER STORM DRAIN above Solway Street LOCATION: WATER-STAGE RECORDER, LAT. 34"09'24", LONG. 118"13"17", ON THE RIGHT (NORTH) SIDE OF CONCRETE DRAIN, APPROXIMATELY 80 FEET ABOVE SOLWAY STREET AND ABOUT 3 MILES NORTHEAST OF SCENDALF. ELEVATION OF GAGE ABOUT 700 FEET. DRAINAGE AREA: 2.7 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - RECTANGULAR CONCRETE, 8 FEET WIDE AND 8 FEET DEEP. INVERT IS 0,1 FOOT BELOW BOTTOM OF VERTICAL SIDE WALLS. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBFIDGE ABOUT 80 FEET BELOW STATION. RECORDER: INSTALLED JANUARY 30, 1928 IN A 3 FT. X 4 FT. CONCRETE HOUSE AND STILLING WELL COMBINED, RECORDER REINSTALLED OCTOBER 1, 1935. SEEVENS TYPE L RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATIONS: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: FROM JAMUARY 30, 1928 TO APRIL 6, 1932 AND FROM OCTOBER 1, 1935 TO SEPTEMBER 30, 1940. NOT PUBLISHED FROM OCTOBER 1, 1936 TO SEPTEMBER 30, 1938. BUT RECORDS ARE AVAILABLE AT #FFICE OF THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT'S MYDRAULIC DIVISION. RECORDS PUBLISHED FROM OCTOBER 1, 1938 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 89 SECOND-FEET, FEBRUARY 3. MINIMUM NO FLOW AT VARIOUS TIMES. 1946-1947 MAXIMUM 175 SECOND-FEET, DECEMBER 25, MINIMUM NO FLOW-AT VARIOUS TIMES. 1928-1946 MAXIMAM NOT DETERMINED, MARCH 2, 1938-MAXIMAM DISCHARGE OF RECORD, 340 SECOND-FEET, FEBRUÁRY 22, 1944. MINIMAM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. DISCHARGE MEASUREMENTS OF SYCAMORE UPPER STORM DRAIN above Solway Street DURING THE YEAR ENDING BEPTEMBER SO, 1946 205F 208F 208F 320P 322P 105P 110P 1254P 233P 233P 233P 100P 102P 125P BISCHARGE RAT- METH MESS B. HT. METER SEC. CHANGE NO. TOTAL NO. 1.6 0.09 1.00 0 FC35 45 3/21 0.09 URF ., 0 46 4/11 1.6 0.10 1.00 0.10 47 4/18 1.5 0.08 1.75 0.14 0 <u>''</u> _48 4/25 1.2 0.06 2.00 0.12 0 5/9 0.05 0.80 0.04 0 49 0.60 ٥ 5/23 0.60 0.04 0.75 0.03 .5 0 0.80 0.04 1.00 0.04 5/31 _51_ F. C. Dist. Form 53 4-45 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta No. FA3-R | | ending Septemb | | | | way Stree | | | | | | charge, in sec | | |------|-------------------|-------------------|------------------|------|-----------|------|------|---------|-----------|--------|----------------|----| | Bept | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct | ay | | + | + | + | + | 0.04 | 0.2 | 01 | 0.05 | 0.05 | 0 | 0 | 0 | 1 | | + | Ť | +
+ | + | 0.04 | o a | 0.1 | 0.05 | 0.05 | 0 | 0 | 0 | 2 | | ‡ | + | 1 | + | 0.04 | 0.2 | 0.1 | 3.7 | 0.05 | 0 | 0 | 0.03 | 3 | | | + | | + | 0.04 | 0.2 | 0.1 | 0.1 | 0.05 | 0.02 | 0 | 0.02 | 4 | | + | + | + | + | 0.04 | 0.2 | 0.1 | 0.1 | 0.05 | 0 | 0 | 0.01 | 5 | | + | + | + | + | 0.04 | 0.3 | 0.1 | 0.1 | 0.05 | 0.01 | 0.07 | 0.01 | 8 | | + | + | + 1 | + | 0.04 | 0.1 | 0.1 | 0.1 | 0.05 | 0.01 | 0 | 0.01 | 7 | | + | + | + [| + | 0.04 | 0.1 | 0.1 | 0.1 | 0.05 | 0.01 | 0 | 0.01 | 8 | | + | + | + 1 | | 0.04 | 0 1 | 01 | 01 | 0.05 | 0.01 | 0 | 0.01 | | | -‡- | + | | + + | 0.04 | 0.1 | 01 | 01 | 0.05 | 0 | 0 | 0.01 | 1 | | ‡ | + | + | Ŧ | 0.04 | 01 | 01 | 01 | 0.05 | \$0.0 | 0 | 0.01 | 2 | | 4 | † | : I | + | 0.04 | 01 | 0 2 | 01 | 0.05 | 0.01 | 0 | 0.01 | 3 | | + | 7 | + | + | 0.04 | 0 1 | 01 | 01 | 0.05 | 0.01 | ŏ | 0.01 | 4 | | ÷ | - i | ÷ | ÷ | 0.04 | 01 | 01 | 0 2 | 0.05 | 0.01 | 0 | 0.01 | 5 | | + | + | + | - - - | 0.04 | 01 | 01 | 0.1 | 0.05 | 0.01 | 0.01 | 0.01 | 8 | | + | I 1 | + | ÷ | 0.04 | 0 1 | 01 | 01 | 0.05 | 0.01 | 9.51 | ŏ | 7 | | ÷ | II | · ∔ 📗 | ÷ | 0.04 | 01 | o z | 0.06 | 0.05 | ŏ | ŏ | ŏ | 8 | | - Ŧ | - i | | + | 0.04 | 0.1 | 0.6 | 0.06 | 0.05 | ă | ŏ | ŏ | 9 | | ÷ | + 1 | + | + | 0.04 | 01 | 0.1 | 0.06 | 0.05 | 0.01 | 0.01 | 0.01 | 20 | | + | + 1 | + | + | 0.04 | 01 | 0.1 | 0.06 | 0.05 | 0.9 | 0 | 0.01 | 21 | | + | + | + | + | 0.04 | 01 | 0.06 | 0.1 | 0.05 | 3.6 | ō | 0 | 2 | | + | + | + | + | 0.04 | 0.1 | 0.06 | 0.1 | 0.05 | 2.1 | 0 | 0 | :3 | | + | + | + 1 | + | 0.04 | ·0 1 | 0.06 | 01 | 0.05 | 0.2 | 0. | 0 | 14 | | + | + | + | + | 0.04 | 0.1 | 0.06 | 0.1 | 0.05 | 01 | 0 | 0.01 | 25 | | + | + | + | + | 0.04 | 0.1 | 0.06 | 0.1 | 0.05 | 0.1 | 0 | 0.01 | 8 | | + | + | | + | 0.04 | 0 1 | 0.1 | 0 T | 0.05 | 0.1 | 0 | 0.01 | 7 | | + | + | + | + | 0.04 | 0.06 | 0.2 | 0.1 | 0.05 | 0.06 | 0 | 0.01 | 8 | | + | + | + | + | 0.04 | 0.06 | 0.2 | | 0.05 | 0.06 | 0.06 | 0.08 | 8 | | . + | + [| + } | + | 0.04 | 0 0 6 | 2.4 | | 0.05 | 0.06 | 0.01 | 0.03 | 0 | | | + [| + | | 0.04 | 1 | 0.3 | | 0.05 | 0.06 | | 0 | 11 | | | + | | + | | 3.58 | | 624 | | 7.47 | | 0.33 | | | + | | + | | 124 | | 6.3 | | 1.55 | | 016 | | | | + | + | + | + | 0.04 | 0.12 | 0.20 | 0.22 | 0.05 | 0.24 | + | 0.01 | N | | + | + | + | + | 2.5 | 7.1 | 12. | 13. | 3.1 | 15. | 0.3 | 0.6 | E. | | | | EAR MEAN | 7 | | | | | · less. | c.f.s. or | = 0.05 | Remarks: + | _ | | | гинт 5 | OR
ERIOD ACRE- | | | | | | | | | | | P. Q. Dist. Form 53 4-46 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION 8ts. No. F 113-R | +
+
0
0
0
0 | 8 +
8 +
8 +
f +
O1 | V 0.5
 0.5
 0.4
 0.4 | V 0.1 | y + | V + | 0 | * | | | | |----------------------------|---|----------------------------------|---|--|-----------------|------------------|-----|----------|-----|-----| | 0
0
0
0
0 | 8 +
8 +
5 +
0.1 | 0.5
0.4
0.4 | | 1 1 | 1 2 | 0 | | | | | | 0 0 0 0 0 0 | 8 +
f + | 0.4 | ÷ | + | | | , + | + | + | + | | 0 0 | 0.1 | 0.4 | + | | + | 0 | + | + | + | + | | 0 | 0.1 | | | + | + | 0 | · • | + | + | + | | 0 + | | | + | + + | + + | 1 - 8 | + | + | + | + + | | 0 | | 0.2 | 1 7 | ; | | 0 | 1 . | 1 | 1 : | 1 : | | | `+ | 0.2 | + | + | 11 🗜 | 0 | + | + | • | ; | | | + | 0.2 | 0.4 | + | + | 0 | + | + | + | + | | | + | 0.2 | 0.1 | + | + | 0 | + | + | + | + | | 0.2 | + | 0.2 | 0.1 | + | + | 0 | † † | + | + | + | | | 1 : | | | : | | | * | † † | 1 | + | | 0.5 | | | i I | | 1.1 | | 1 | 1 : | I | 1 : | | | + | | + | ↓ | II I | lŏ | 1 + | 1 1 | 1 | Ī . | | 0.4 | + | 0.2 | + | + | + | + | + | + | + | + | | | + | | + | t 1 | + | 1 + | + | + | + | + | | | + | | + | | \ | + | + | + | + | + | | | | | 1 | | + | + | , | • | T . | | | | | | | | 11 : | * - | · | | | + | | | + | + | 1 | 0 1 | f # | | ; | 1 7 | 1 | : | | | 1 | | + | + - | | + | | | + | + | | Ω2 | | + | + | + | + | + | + | + | + | + | | | | ++ | + | +* | + | - | + | + | + | + | | | | 1 1 | 1 | 11 ' | 11 | 1 | 1 | | 1 : | | | 1 - | | | ¥ + | | : | 1 ' | 1 | 1 | 1 : | * | | - . | | | | | | | + | i . | | 1 7 | | A + | ₩ 0.6 | 101 | | 11 + | * * | + | + | 1 + | + | + | | | 7 V O.6 | ▼ 01 | | <u>+ </u> | | J | | <u> </u> | + | | | 5 | 38.6 | | 8.0 | | + | | + | | + | | | 14.7 | | 6.1 | | 0.5 | | + | | * | | + | | 02 0.49 | 1.25 | 0.20 | 0.03 | 0.02 | L. + | - | | | + | | | 0 . 29 | 77 | 12 | 1.6 | 1.0 | + | | + | • | + . | + | | | 4 3 0 4 0 4 0 4 0 0 4 0 0 1 0 1 1 0 0 2 0 1 1 1 0 0 2 0 1 1 1 0 1 1 1 1 | 4 3 | 0 2 0 4 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 | 0 2 0 0 4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 + 0 1 + 0 1 | 43 | 1 | 1 | 1 | 1 | #### STATION F44-R SYCAMORE LOWER STORM DRAIN at Adams Square LOCATION: WATER-STAGE RECORDER, LAT. 34°08'02". LONG. 118°14'30". IN MAN-HOLE IN YARD OF UNION OIL COMPANY SERVICE STATION AT SOUTHWEST CORNER OF ADAMS STREET AND CHEVY CHASE DRIVE, ON THE LEFT (SOUTH) SIDE OF THE DRAIN, ABOUT 30 FEET WEST OF WEST CURS OF ADAMS STREET ABOUT 1 MILE SOUTHEAST OF GLENDALE. ELEVATION OF GAGE ABOUT 495 FEET. DRAINAGE AREA: 6.2 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - CLOSED RECTANGULAR CONCRETE DRAIN, 9 FEET WIDE AND 10 FEET DEEP. INVERT 15 0,1 FOQT BELOW BOTTOM OF VERTICAL SIDE WALLS. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM FOOTBRIDGE IN OPEN CHANNEL BELOW STATION. RECORDER: INSTALLED DECEMBER 15, 1928. UNDERGROUND IN A 3 FT. X 4 FT. CON-CRETE HOUSE AND STILLING WELL COMBINED. AN M.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE. DIVERSIONS: NONE. RECORDS AVAILABLE: DECEMBER 15, 1927 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: MAXIMUM 552 SECOND-FEET, FEBRUARY 3. MINIMUM NO FLOW AT VARIOUS TIMES. 1946-1947 MAXIMUM 370 SECOND-FEET, DECEMBER 25 MINIMUM NO FLOW AT VARIOUS TIMES. MINIMUM NO FLOW AT VARIOUS TIMES. 1927-1947 MAXIMUM 2,800 SECOND-FEET, ESTIMATED MARCH 2, 1938. MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, #### SYCAMORE LOWER STORM DRAIN DISCHARGE MEASUREMENTS OF ____ Adams Square DURING THE YEAR ENDING REPTEMBER 30, 19.46 | HO. | DATE | BESIN | HADE BY | WISTH | AREA OF | MEAN | GAUDE | DISCHARGE | RAT- | METH- |
MEAS. | G. HT. | HETER
NO. | |-----|-------|-------|----------|-------|---------|--------------|-------|-----------|----------|-------|-------|--------|--------------| | | | END | | FEET | MQ. FT. | FT. PER BEG. | PEET | BEG. FT. | ING | - 00 | NO. | TOTAL | NO. | | | | 1031A | | | | | | | | | | | FC42 | | 74 | 10/29 | 1037A | DEVORE | 9.0 | 1.41 | 3.55 | 0.22 | 5.0 | | LOAT | 4 | _0_ | FLOA" | | | | 1010A | 1 | - 1 | 1 | | | 1 | | | | ı | i | | .75 | 11/29 | 1014A | HAIG | 4.0 | 0.34 | 1.00 | .0.09 | 0.34 | <u> </u> | • • | 4. | - | | | | 1 | 250P | 1 | | 1 | | Į | 1 | | | i | i | | | 76 | 2/7 | 253P | 11 | 2.0 | 0.10 | 1.20 | 0.05 | 0.12 | L | ٠. | 4 | -0- | <u> </u> | | | | 405P | | - 1 | j | 1 | | | | | | | ł | | 77 | 2/25 | 410P | | 2.0. | 0.06 | 0.93 | 0.04 | 0.05 | | ٠. | 4 | -0- | - | | | 1 | 238P | | 1 | | | | | | | . 1 | | | | 78 | 3/21 | 240e | | 2.2 | 0.11 | 1.18 | 0.06 | 0.13 | | •• | 4 | 0 | | | | 1 . | 135P |] | 1 | | | | | | | | | ı | | 79 | 4/18 | 138P | | 3.0 | 0.12 | 1.08 | 0.06 | 0.13 | | 1.6 | 3 | 0 | | | | | 110P | | | | | | | | | i. I | _ | İ | | 80 | 4/25 | 115P | | 4.0 | 0.20 | 1.20 | 0.06 | 0.24 | | RF | 4 | 0 | FC35 | | | 1 | 249P | | Í | | l i | | 1 | | | ١. ا | | ĺ | | 81 | 5/9 | 250P | | 0.80 | 0.06 | 0.66 | .0.03 | 0.04 | | LOAT | 2 | 0 | | | | 1 | 125P | | 1 | | l | | | | URF | | 0 | FOOT | | 82 | 5/23 | 128P | L'' | 0.80 | 0.04 | 0.75 | 0.04 | 0.03 | | 0.4 | 2 | -0 | FC35 | | | l | 250P | ١ | | ١ | اییا | | | | | | ٥ | ٠. | | B3 | 6/6 | 255P | <u> </u> | 2.0 | 0.24 | 1,12 | 0.07 | 0.27 | | | 4 | U | <u> </u> | | | | 320P | | | | ا ا | | | | | ا د | _ | | | 84 | 6/20 | 323P | •• | 0.60 | 0.02 | 1.00 | 0.02 | 0.02 | | | 2 | 0 | | DIBECHARGE MEABUREMENTS OF ______SYCAMORE LOWER STORM DRAIN Adams Square | NO. | OATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELOCITY
FT.PER SEQ. | BAUDE
HEIGHT
FRET | DISCHARGE
SEC. FT. | RAT. | | MEAS.
SEG.
NO. | B. HT.
CHANGE
TOTAL | HETER
NO. | |-----|------|--------------|----------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|------|------|----------------------|---------------------------|--------------| | 85 | 1-16 | 155P
200P | WADDICOR | 2.3 | 0.12 | 1.17 | 0.04 | 0.14 | Ī. | LOAT | S 5 | ۵ | | | 86 | 1-23 | 205P
210P | | 2.0 | 0.14 | 1.36 | 0.05 | 0.19 | | | 4 | 0 | | | 87 | 1-30 | 225P
228P | | 3.3 | 0.24 | 1.25 | 0.07 | 0.30 | | | 4 | 0 | | | 88 | 3-20 | 305P
310P | BLAKELY | 9.0 | 2.34 | 5.30 | 0.32 | 12.4 | | | 1 | 0 | | F. C. Dist. Porm 52 4-46 # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION sta. No., F44-R .. | Daily o | discharge, in se | cond-feet of | SYCAMORE | LOWER ST | ORM DRAIN | at Adams | Square | | | , for the yea | r ending Septer | nber 30, 19, 46 | |---|--|--|--|----------|--|--|--|--|---|--|--|---| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мву | June | July | Aug. | Sept. | | 1 2 3 3 4 5 5 6 7 7 8 8 8 9 10 11 12 13 13 14 14 15 16 17 7 18 18 19 20 22 23 24 25 25 27 28 30 30 11 | 001
001
001
001
001
001
001
001
001
001 | 0.01
0.01
0.01
0.01
1.4
0.01
0.01
0.01
0 | 0.05
0.04
0.05
0.00
0.00
0.00
0.00
0.00 | | 01 050 411111111111155555
510000000000000000000 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 17.7.7.4.9.7.4.4.9.4.4.4.9.9.9.4.4.9.9.9.9 | 00000000000000000000000000000000000000 | 0 0 3 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 | 0 01
0 02
0 02
0 02
0 02
0 02
0 02
0 02 | 0 02
0 02
0 02
0 02
0 02
0 02
0 02
0 02 | 0 0 3
0 0 3
0 0 3
0 0 3
0 0 3
0 0 5
0 0 0 5
0 0 0 2
0 1
0 0 | | | 5.2 | 2.67 | 96.4 | 1.75 | 651 | 75.7 | 162 | 4.58 | 1 .8 1 | 0.49 | 226 | 0.56 | | MEAN | 0.17 | 0.96 | 3,11 | 0.06 | 2,33 | 2,44 | 0.54 | 0.15 | 0.06 | 0 02 | 0.07 | 0.02 | | ACRE- | 10. | 5.7 | 191. | 3.5 | 129. | 150. | 32. | 9.1 | 3.6 | 1.0 | 4.5 | 1,1 | | <u> </u> | Remarks: | | | | ······································ | | | | У | EAR MEAN | NO. | 75 | | | | | | | | | | | P | ERIOD ACRE | -FEET5 | 40. | | F. C. Dist. Form 52 4-48 | | | | | los angeli
OOD CONTR
TYDRAULIC | OL DISTRICT | • | | | Sta | . _{No.} F 1111-F | |---|---------------------------------------|---|--|---|--|---|--|---|---------------------------------------|---------------------------------------|---------------------------------------| | Daily discharge, in | second-feet of | SYCAMOR | E LOWER S | TORM_DRAI | N at Adam | s Square | | | , for the ye | ar ending Sept | ember 30, 19 <u>4</u> 7 | | Day Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 4 1 1 4 1 1 4 1 1 5 1 5 1 5 1 7 7 1 1 1 1 1 1 1 1 1 1 | + + + + + + + + + + + + + + + + + + + | 0.4
0.4
0.4
0.3
8.9
0.2
0.2
0.2
0.2
0.1
+
+
+
0.0
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2 | 2 3
0 7
0 0 6
0 0 5
0 0 5
0 0 4
0 0 3
0 0 3
0 0 2
0 0 2
0 0 4
0 0 4
0 0 3
0 0 2
0 0 4
0 0 4
0 0 3
0 0 2
0 0 4
0 0 4
0 0 5
0 0 0 6
0 0 0 6
0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 | a 0 1
f 0 23
2 6
0 1
0 0 1
0 0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 | 0 5
0 2
f 15
a 0 1
a 0 1
a 0 1
a +
a +
a +
a +
a +
a +
a +
a +
a +
a + | 0.2
0.3
0.3
0.3
0.4
0.1
0.1
0.1 | + | * * * * * * * * * * * * * * * * * * * | + + + + + + + + + + + + + + + + + + + | , , , , , , , , , , , , , , , , , , , | | 30 +
31 + | 0 .4
0 .4 | 4 3
4 3
3.7 | a 0.4
f 0.3 | | 0.4 | + | <u>.</u> | + | * | ÷ | - | | 7 .8 | 1711 | 145.9 | 17.9 | 12.1 | 15.0 | 2.3 | 1.1 | + | + | + | 0.4 | | MEAN 0.25 | 5.70 | 4.71 | 0.58 | 0.43 | 0.48 | 0.08 | 0.04 | + | | | 0.01 | | ACRE- | 339 | 289 | 36 | 24 | 30 | 4.6 | 2.2 | + | + | + | 0.8 | | Remarks: | + = 0.05 | c.f.s. or | less. | | | | | | YEAR MEA
OR
PERIOD ACR | | 7 <u>41</u> | ### STATION F276-R THOMPSON CREEK SPREADING GROUNDS INTAKE at Thompson Creek Dam LOCATION: WATER-STAGE RECORDER, LAT. 34°C8'22", LONG. 117°42'37". ON THE LEFT (EAST) SIDE AND AT THE DOWNSTREAM SIDE OF THE 3 FT. X 3 FT. DIVERSION OUTLET THROUGH THOMPSON CREEK DAM. ELEVATION OF GAGE ABOUT 1,625 FEET. . DRAINAGE AREA: 3.7 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - 3 FT. X 3 FT. CONCRETE, COVERED OUTLET WITH A TRANSITION INTO A 5 FT. DIAMETER SEMI-CIRCULAR FLUME, CONTROL - TRANSITION INTO SEMI-CIRCULAR FLUME. DISCHARGE MEASUREVENTS: ALL FLOWS MEASURED BY WADING. RECORDER: INSTALLED JANUARY 14, 1941 OVER A 24 INCH DIAMETER CORRUGATED IRON PIPE. A HORIZONTAL RATIONAL RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION AND/CR
DIVERSIONS: INFLOW TO THOMPSON CREEK DAW FROM COBAL AND PALMER CANYONS CAN BE DIRECTED THROUGH A 3 FT. X 3FT. OUTLET TUNNEL TO THOMPSON CREEK SPREADING GROUNDS. FLOW THROUGH THE TUNNEL CAN BE CONTROLLED BY TWO SLOE GATES OF THAT ANY FLOW IN EXCESS OF THE CAPACITY OF GATE OPENING IS PASSED OVER A SPILLWAY BACK TO THE RESERVOIR. RECORDS AVAILABLE: JANUARY 14, 1941 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: 1945-1946 MAXIMUM 15 SECOND-FEET, DECEMBER 23. MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM & MINIMUM - SEE REMARKS. 1940-1947 MAXIMUM 21 SECOND-FEET, FEBRUARY 24, 1943. MINIMUM NO FLOW MOST OF EACH YEAR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. REMARKS: NO FLOW ENTIRE YEAR. AT. Thompson Creek Dam DURING THE YEAR ENDING MEPTEMBER 30, 19 46 | NO. | DATE | BERIN | | WIDTH | AREA OF | MEAN | DAUDE | DISCHARGE | RAT- | | HEAR. | | METER | |-----|-------|-------|----------|-------|--------------------|--------------|----------------|-----------|------|----|-------|-------|-------| | | 52.1 | END | HADE BY | FECT | BECTION
BG. FT. | TT. PER SEC. | HEIBHT
FEET | SEC- FT. | IND | OD | NG. | TOTAL | ND. | | | | 1020A | | | | | | | | | | | | | _56 | 12/23 | 1030A | BREWSTER | 5.0 | 3.37 | 1.99 | 0.79 | 6.7 | | .6 | 5 | - ,02 | FC12 | F. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F276-R | Daily di | scharge, in se | cond-feet of | THOMPSON | CREEK S | PREADING | GROUNDS I | NTAKE at | Thompson | Creek Cam | _, for the yes | r ending Septen | iber 30, 19_4 6 | |---|----------------|------------------|---------------------------------------|-----------------------|---|---|---|---|-----------|----------------|-----------------|---| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1 2 3 4 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 -22 22 23 24 25 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0 | 000000000000000000000000000000000000000 | | | | 0 | | 26
27
28
29
30 | 0 0 0 0 0 | 0
0
0
0 | 000000 | 0
0
0
0
0 | 0 | 00000 | 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 | 00000 | 00000 | 0
0
0
0 | | | 0 | 0 | 2.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | MEAN | 0 | Q | 0,08 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | . 0 | | FEET | 0 | 0 | 4.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 00 | 0 | YEAR MEAN 0.007 OR PERIOD ACRE-FEET 4.8 #### STATION F32B-R THOMPSON CREEK below Thompson Creek Cam LOCATION: WATER-STAGE RECORDER, LAT. 34°08'22", LONG. 117°42'32", ON THE LEFT BANK ABOUT 50 FEET BELOW THOMPSON CREEK DAM TUNNEL OUTLET AND ABOUT 2.5 MILES NORTH OF CLAREMONT. ELEVATION OF ZERO GAGE HEIGHT, ABOUT 1,590 FEET. DRAINAGE AREA: 3.7 SQUARE MILES. CHANNEL AND CONTROL: ALL FLOWS MEASURED BY WADING. RECCRDER: INSTALLED DECEMBER 21, 1943 OVER AN 18 INCH CORRUGATED IRON PIPE STILLING WELL. A HORIZONTAL RATIONAL RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION AND/OR DIVERSION: INFLOW TO THOMPSON CREEK DAM FROM COBAL AND PALMER CANYONS CAN BE DIRECTED THROUGH A 3 FT. X 3 FT. OUTLET TUNNEL TO THOMPSON CREEK SPREADING GROUNDS, TEOW THROUGH THE DIVERSION TUNNEL CAN BE CONTROLLED BY TWO SLIDE GATES SO THAT ANY FLOW IN EXCESS OF THE CAPACITY OF GATE OPENINGS IS PASSED OVER A SPILLWAY BACK TOTHE RESERVOIR. FLOW THROUGH THE 24 INCH OUTLET VALVE PASSES THE STATION. DISCHARGES OVER THE SPILLWAY OF THE DAM WOULD NOT BE RECORDED AT THIS STATION. RECORDS AVAILABLE: RECORDER RECORDS DECEMBER 21, 1943 TO SEPTEMBER 30, 1947. FOR MEASUREMENTS PRICE TO DECEMBER 21, 1943. SEE STATION F32-S. FROM MARCH, 1928 SEE RECORDS BASED ON DAM OUTFLOW. EXTREMES OF DISCHARGE 1944-1947 NO FLOW FOR PERIOD OF RECORD. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT FOR MEASURING OUTFLOW FROM THOMPSON CREEK DAM. REMARKS: NO FLOW FORTHESE TWO SEASONS. F. C. Dist. Form 52 4-46 Remarks: #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F328-R YEAR MEAN_ OR PERIOD ACRE-FEET_ | Daily di | scharge, in se | cond-feet of | THOMPS | N CREEK | below Tho | mpson Cre | ek Dam | | | , for the yea | r ending Septen | nber 30, 19 <u>46</u> | |----------------------------------|----------------|--------------|--------|---------|-----------|-----------|--------|-------|-------|---------------|-----------------|-----------------------| | Day | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Жау | June | July | Aug. | Bept. | | 1
2
3
4
5 | 00000 | 0 0 0 | 00000 | 0 0 0 | 0 0 0 0 | 00000 | 0000 | 0 0 0 | 0000 | 0 0 0 | 0000 | 0 0 0 0 | | 6
7
8
9 | 00000 | 00000 | 00000 | 00000 | 0000 | 00000 | 00000 | 0 0 0 | 0000 | 0 0 0 | 0000 | 0 0 | | 11
12
13
14
15 | 00000 | 0000 | 00000 | 00000 | 00000 | 0000 | 00000 | 0000 | 0000 | 0000 | 00000 | 0 0 0 0 | | 16
17
18
19
20 | 00000 | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0 0 0 | 0000 | 00000 | 0 0 0 | | 21
22
23
24
25 | 00000 | 0 0 0 | 00000 | 00000 | 0000 | 0000 | 00000 | 00000 | 0000 | 0000 | 00000 | 00000 | | 26
27
28
29
30
31 | 0000 | 0 0 0 | 00000 | 0 0 0 0 | 0 | 00000 | 0000 | 00000 | 0 0 0 | 0 0 0 | 00000 | 0000 | | · | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | MEAN | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ACRE- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | ٥ | 0 | 0 | 0 | #### STATION FEN-R TOPANGA CREEK above Mouth of Canyon LCCATION: WATER-STAGE RECORDER, LAT. 34°03'52", LONG. 118°35'12", ON THE RIGHT (WEST) DOWNSTREAM ABUTMENT OF THE CONCRETE BRIDGE 2 MILES NORTH OF TOPAMCA BEACH AND ABOUT 6 MILES NORTHWEST OF SANTA MONICA, ELEVATION OF ZERO GAGE HEIGHT, 285,60 FEET. DRAINAGE AREA: 18 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - ROCK AND GRAVEL. NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR ABOVE STATION. RECORDER: INSTALLED JANUARY 1, 1930 AT STATION F54-R. REMOVED JUNE 4, 1940. INSTALLED JUNE 5, 1940 AT STATION F54/B-R. REMOVED DECEMBER 9, 1941. REINSTALLED DECEMBER 9, 1941 AT THE APPROXIMATE FORMER LOCATION IN A CONCRETE HOUSE AND WELL CONSTRUCTED IN THE ABUTMENT OF THE CONCRETE BRIDGE. AN H-C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: NONE, DIVERSIONS: NONE. RECORDS AVAILABLE: JANUARY 1, 1930 TO SEPTEMBER 30, 1947. EXTREMES OF DISCHARGE: MES OF DISCHARGE: 1945-1946 MAXIMUM 905 SECOND-FEET, DECEMBER 23, MINIMUM 0,02 SECOND-FOOT SEVERAL DAYS, 1946-1947 MAXIMUM 567 SECOND-FEET, NOVEMBER 20, MINIMUM 0,03 SECOND-FOOT, VARIOUS TIMES. MAXIMUM 9,300 SECOND-FEET, ESTIMATED, MARCH 2, 1938-MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY, WATER RESOURCES BRANCH. | | DISCHARGE MEASUREMENTS OF TOPANGA CREEK |------|---|----------------------|--------------------------------|-------|--------------------|---------------------------------|-------------------------|-----------------------|-----------|-------|------------------|----------------|------------|-------|-------------------------|----------------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|---------|---------------------------|----|--------------| | | DISCHARGE | E HEABURE | MENTO OF | TOPA | NGA CR | EEK | | | /- | | · where | | NO. | DATE | BEQIN END | HADE BY | WIDTH
FEET | AREA OF
BECTION
BC. FT. | MEAN
VELUDITY
FT.PER FEG. | GAUSE
HEIGHT
FEET | DISCHARGE
SEC, FT. | RAT- ME | ETH- NEAS.
SEC.
NO. | | METER
ND. | | | | above | mouth of Canyon | | | рия | NO THE | YEAR ENDING | AEPTEMA | ER 30 | , 19 14 8 | | 566 | 3/30 | 717A
728A | BOLL INGER
ECKERT | 32.0 | 27.6 | 4.28 | 3.70 | 118. | | ,6 7 | 04 | FC6 | | NO. | DATE | PERIM | MADE BY | WIDTH | AREA OF
SECTION | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARDE
SEC. FT. | RAT- METH | MEAS. | S. HT | HETER | 567 | 3/30 | 1244P
1253P
1259P | BOLLINGER
ECKERT
BOLLINGER | 27.0 | 22.5 | 3,02 | 3,44 | 68.0 | | .6 14 | 0 | <u></u> | | | | I30P | | | | | | † | | 1 | | NO. | 568_ | 3/30 | 109P
225P | ECKERT
ECKERT | 27.0 | 20.2 | 2.98 | 3.43 | 60.3 | | .6 15 | 0 | ļ | | 543 | 11/8 | 135P | BOLL INGER | 2.0 | 0.18 | | | ŀ | FLOAT | 1 | | - | 569 | 3/31 | 241P
803A | BOLLINGER | 11.3 | 8.08 | 2.67 | 3.07 | 21.6 | | .6 8 | 0 | •• | | 544 | _12/7 | 153P
103P | •• | 2.0 | 0.25 | | 1 | | | 3_ | 10 | ł | 570 | 4/2 | 813A
414P | BOLL INGER | 11.6 | 5.85 | 1.30 | 2.84 | 7.6 | | .6 11 | 0 | ļ.: | | 545 | 12/20 | 108P
810A | BOLL INGER | 2,0 | 0.25 | | | -0.11 | | 1 - | 1 | + | 571 | 4/4 | 422P
303P | ļ ·· | 11.0 | 3.13 | 0.89 | 2.75 | 2.8 | | .5 8 | 0 | ļ | | 546 | 12/22 | 110P | ECKERT
BOLL INGER
ECKERT | 45.0 | 100 | 4.74 | 1 | ļ | ' ' | | | EC6 | 572 | 4/11 | 308P
126P | | 4.7 | 1.28 | | 2.65 | 1.0 | | .5 4 | 0_ | | | .547 | 12/22 | 120P | BOLL INGER | 27.5 | 45.0
24.2 | 2.99 | 3.52 | | | 9 | 02 | - | 573 | 4/25 | 131P
130P | | 4.0 | 0.86 | | 2.65 | 0.48 | | .5 5 | 0 | - | | 548 | 12/23 | 228P | | 5.5 | 1.61 | | 2.63 | 1.7 | .6 | 1 | 02 | 1 | 574 | 5/2 | 135P
1253P | | 4.0 | 1.16 | | 2.62 | 0.46 | - - | .5 4 | 0 | | | 550 | 1/2 | 217P
222P | | 3.3 | 0.88 | 0.66 | | | | 4 | 0 | 1 |
575 | 5/9 | 1258P
202P | | 2.7 | 0.44 | | 2.70 | 0.24 | | .5 4 | 0 | | | 551 | 1/3 | 140P
145P | | 3.2 | 0.82 | 0.56 | 1 | 0.46 | | 4 | 0 | | 576 | 5/.16 | 207P
128P | | 1.7 | 0.30 | 1.07 | 2.67 | 0.15 | | CAT 2 | 0 | | | 552 | 1/10 | 150P
156P | | 2.5 | 0.54 | | | 0.42 | 1 | 3 | 0 | | . 577 | 6/27 | 132P
340P
345P | HAIG | 0.8 | 0.16 | 1 | 2.54 | 0.12 | | .5 2 | | FC35 | | 553 | 1/17_ | 325P
328P | | 2.7 | 0.52 | 0.46 | 2.54 | 0.24 | .5 | 3 | 0 | ļ | 578
579 | 8/8 | 132P
135P | BOLLINGER | 1.3 | 0.11 | 0.45 | 2.52 | 0.05 | | LOAT 2 | 1 | - | | _554 | 1/31 | 1232P
1238P | •• | 3.0 | 0.63 | 0.44 | 2.66 | 0,28 | 5 | 4 | 0_ | | 580 | 8/21 | 121P
125P | | 1.0 | 0.05 | | 2.53 | 0.02 | | 2 | 0 | | | 555 | 2/3 | 312P
326P | | 27.5 | 25.4 | 2.59 | 3.43 | 65.8 | .6 | 13 | 03 | ļ | 581 | 9/19 | 153P | | 1,4 | 0.07 | 0.43 | 2.53 | 0.03 | | 2 | 0 | | | 556 | 2/4 | 144P
151P | | 6.0 | 2.81 | 1.03 | 2.82 | 2.9 | .5 | 6 | 0 | ļ. <u>.</u> | | 7 | 1 | | 7 | 1 | 1 | 1 | T | 1 | | 1 | | | 557 | 2/7 | 945A
950A
339P | | 4.7 | 1.40 | 0.60 | 2.76 | 0.86 | .5 | 6 | 0 | <u> </u> | | | | | | | | | | | | | | | 558 | 2/21 | 345P
309P | u . | 4.0 | 1.22 | 0.34 | 2.71 | 0.42 | .5 | 4 | 0 | | | | | | | | | | | | | | | | 559 | 2/28 | 315P
156P | | 4.0 | 1, 12 | 0.29 | 2.70 | 0.32 | .5 | 5 | 0_ | ·· | 1 | | | | | | | | | | | | | | 560 | 3/14 | 203P
947A | " BOLL INGER | 4.0 | 1.09 | 0.22 | 2.70 | 0.24 | .5 | 4 | _0_ | " | 4 | | | | | | | | | | | | | | 561 | 3/19 | 952A
342P | ECKERT | 7.5 | 3.42 | 1.17 | 2.86 | 4.0 | .6 | 1 | 01 | - | | | | | | | | | | | | | | | 562 | 3/20 | 352P
407P | BOLL INGER | 10.2 | 4.67 | 1.46 | | 6.8 | | 8 | 0 | ··- | 1 | | | | | | | | | | | | | | 563 | _3/20_ | 416P
358P | •• | 10.3 | 4.67 | 1.46 | 2.90 | 6.8 | | 9 | 0 | | 1 | | | | | | | | | | | | | | .564 | 3/21 | 403P
235P | | 6.5 | 1.75 | | | 1.3 | | 5 | 0 | † | 1 | | | | | | | | | | | | | | 565 | 3/28 | 242P | •• | 5.6 | 1.98 | 0.96 | 2.77 | 1.9 | .5 | 6 | 0 | - | 1 | | | | | | | | | | | | | | | DISCHARGE | MEASUREM | ENTE OF TOPANGA | CREEK | | | | | | | | · | ND. | DATE | BEGIN | HADE BY | WIDTH | AREA OF
MECTION | HEAN
VELOCITY | BAUGE
HEIGHT | | RAT- METH- | | | HETER
NO. | |------|--|----------------|--|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------|----------------------|---------------------------|----------|-----|--------|----------------|---------------------------------------|-------|--------------------|------------------|-----------------|----------|--------------|-----|----------|--------------| | | | | mouth of Canyon | | | | | | | | 47 | - | | | 1255P |
 | YELT | ag. FT. | FT.PER SEG. | FEET | MLD, PT. | 100 | NG. | TOTAL | | | | ************************************** | F E. J. J. J. | | | | | ING THE T | EAR ENDING | BEPTEMBE | .R 30, 1 | 19 | . 60 | 04 | 1-9 | _110P | 11 | 5.2 | 1.22 | 0.90_ | 2.89 | 1.1 | 5 | 6 | <u>o</u> | | | NO. | DATE | SND CND | MADE BY | WIDTH | AREA DF
SECTION
EQ. FT. | MEAN
VELDOITY
FT.PER BEG. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAY- METH- | MEAS.
SEC.
NO, | B. HT.
CHANGE
TOTAL | METER 60 | 05 | 1-16 | 1118A
1246P | | 3.0 | 0.69 | 1.07 | 2.85 | 0.74 | - 5 | 4 | 0 | | | | | 1122A | VAN DER GOOT | | | | | | - | | | | 06 | 1-23 | 1253P | | 3.0 | 0.59 | 1.07 | 2.82 | 0.63 | .5 | 4 | 0 | | | 582 | 10+3 | 1127A
140P | BOLL INGER | 0.50 | | | 2.54 | 0.05 | FLOAT | | 0 | 60 | 07 | 1 - 30 | 1148A | | 2.9 | 0.77 | 1.17 | 2.86 | 0.89 | .5 | 4 | 0 | | | 583 | 10-10 | 143P
243P | BOLL INGER | 1.0 | 0.05 | 0,60 | 2.52 | 0.03 | | 2 | 0 | | 80 | 2-6 | 213P
220P | | 2.8 | 0.54 | 0.78 | 2.80 | 0.42 | .5 | 4 | 0 | | | 584 | 10-17 | 247P | BOLLINGER | 1.6 | 0.15 | 0.33 | 2,58 | 0.05 | | 3 | | 60 | 09 | 2-10 | 1255P
102P | | 2.8 | 0.81 | 1.36 | 2.89 | 1.1 | .5 | 4 | 0 | | | 585 | 10-31 | 215P | | 1.7 | 0.11 | 0.36 | 2.57 | 0.04 | | 3 | 0 | 6 | 10 | 2-13 | 1257P
102P | | 2.6 | 0.55 | 1.07 | 2.82 | 0.59 | .5 | 4 | 0 | ** | | 586 | 11-7 | 145P | | 1.7 | 0.19 | 0.37 | 2.59 | 0.07 | | 3 | 0 | 6 | 11 | 2-20 | 1217P
1223P | ,, | 2.5 | 0.50 | 0.90 | 2.79 | 0.45 | ,5 | 4 | 0 | | | _587 | 11-12 | 1100A
1105A | BOLLINGER - PAULL | 6.5 | 2,25 | 0,62 | 2.69 | 1.4 | .6 | 5 | 0 F | C6 | 12 | 2-27 | 120P
126P | * | 2.5 | 0.46 | 0.87 | 2.76 | 0.40 | .5 | 4 | 0 | • | | 588 | 11-13 | 112P
120P | | 16.0 | 22.7 | 2.44 | 3.36 | 55.2 | .6 | 9 | 0 | .] | 13 | 3-6 | 1140A
1145A | ,, | 2.4 | 0.51 | 0.80 | 2,73 | 0.41 | .5 | 4 | 0 | | | 589 | 11-14 | 250P
258P | 71 | 7.5 | 3.60 | 1,22 | 2.74 | 4.4 | .6 | 6 | 0 | . | 14 | 3-13 | 130P
136P | ., | 2.4 | 0.38 | | 2.70 | 0.28 | .5 | 4 | 0 | | | 590 | 11-15 | 153P
158P | BOLLINGER | 4.2 | 0.96 | 0.46 | 2.63 | 0.44 | | . 5 | 0 | | 15 | 3-20 | 136P
141P | | 2,5 | 0.36 | | 2.72 | 0.16 | .5 | 3 | 0 | | | _591 | 11-20 | 1220P
1228P | BOLLINGER - PAULL | 22.0 | 29.0 | 2.44 | 3.49 | 71.0 | .6 | 12 | 0 | | | | 215P | | | 1 | | | | .5 | 4 | 0 | | | 592 | 11-20 | 350P
400P | | 22.5 | 17.1 | 1.80 | 3.23 | 30.8 | .6 | 13 | 0 | . | 16 | 3-27 | 220P | , | 2.4 | 0.39 | | 2,67 | 0.38 | | _ | | | | 593 | 11-21 | 253P
300P | BOLLINGER | 6.0 | 2.09 | 1.53 | 2.80 | 3.2 | .6 | 6 | 0 | " | 17 | 4-3 | 205 P | | 2.6 | 0.42 | | 2.70 | 0,29 | .5 | 4 | _0 | | | 594 | 11-23 | 1203P
1213P | BOLLINGER - PAULL | 32.0 | 38.3 | 3,68 | 3.76 | 141. | .6 | 6 | 0 | . 6 | 18 | 4-10 | 130P
204P | | 2.2 | 0.27 | 1.26 | 2.72 | 0.34 | FLOA | † | 0 | | | 595 | 11-24 | 150P
157P | BOLL INGER | 8.3 | 1 | 1.65 | 1 | 6.1 | .6 | 7 | 0 | . 6 | 19 | 4-18 | 209P
225P | | 2,0 | 0.16 | 1.00 | 2.65 | 0.16 | - | 3 | 0 | | | | | 200P | » | 4.0 | | | | 0.96 | .6 | 5 | | 6 | 20 | 5-1 | 230P | · · · · · · · · · · · · · · · · · · · | 2.0 | 0.12 | 0.75 | 2.63 | 0.09 | | 3 | 0 | | | 596 | 11-27 | 207P
156P | | | | 1,00 | 2,79 | | | | | | 21 | -5-15 | 134P
202P | | 2.0 | 0.12 | 0.58 | 2.64 | 0.07 | | 3 | 0 | | | 597 | 12-5 | 201P
133P | ······································ | 3,0 | | 0.83 | 2.77 | 0.38 | .5 | 4 | 0 | <u>.</u> | 22 | 5-29 | _207P | | 2.1 | 0.16 | 0.75 | 2.65 | 0.12 | | 4 | 0 | | | 598 | 12-12 | 139P
244P | | 3.2 | 0.59 | 0.53 | 2.74 | 0.31 | .5 | 4 | 0 | 6 | 23 | 6-12 | 313P
316P | <u> </u> | 1.9 | 0.12 | 0.66 | 2.65 | 0.08 | | 3 | 0 | | | 599 | 12-19 | 249P | | 2.8 | 0.44 | 0.48 | 2.72 | 0.21 | .5 | 3 | 0 | | 24 | 7-10 | 353P
356P | | 0.9 | 0.05 | 0.80 | 2.63 | 0.04 | ** | 2 | 0 | | | _600 | 12-26 | 1115A
235P | BOLLINGER - PAULL | 22.0 | 12.6 | 2.46 | 3.26 | 30.9 | .6 | 9 | 0 | 6 | 25 | 9-24 | 240P
244P | ,, | 1.3 | 0.05 | 0.60 | 2.69 | ò.03 | - | 2 | 0 | | | 601 | 12-27 | 246P
-222P | | 20.7. | 12.9 | 2.08 | 3.20 | 26.8 | .6 | 12 | 0 | | | | | | • | | | 1. | . 1 | ' | | 1 | | | 602 | 12-29 | 230P | BOLL INGER | 8.7 | 4.49 | 1.56 | 2,96 | 7.0 | .6 | 7 | 0 | | | | | | | | | | | | | | | | 603 | 1-2 | 1130A
1135A | | 7.0 | 2.19 | 1.05 | 2.87 | 2.3 | .6 | 5 | 0 | - | | | | | | | | | | | | | | | P. C. Dist. | Form 52 4-46 | | | | FLO | LOS ANGELE
COD CONTRO
YDRAULIC I | OL DISTRICT | : | | | Sta. N | 70. F54-R | |---|--|---|--|---|---|--
---|---------------------------------------|---|---|--|-------------------------| | Daily dis | scharge, in sc | cond-feet of | IOPANO | A CREEK a | bove Mou | th of Can | yon | | | , for the yea | r ending Septem | iber 30, 19 . 46 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar, | Apr. | May | June | July | Aug. | Sept. | | 1 C C C C C C C C C C C C C C C C C C C | 00000000000000000000000000000000000000 | d 01
011
011
011
011
011
011
011
011
011 | d 011
011
011
022
011
011
011
011
011
011 | 0 6 6 5 5 5 1 5 4 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 | 0 3 4 2 7 3 . 5 9 0 . 6 6 0 6 0 6 6 0 6 | 00000000000000000000000000000000000000 | 8 6 2 8 9 7 7 9 9 3 9 1 1 5 3 9 1 1 4 9 8 8 8 8 6 8 5 5 5 8 5 5 5 8 5 5 5 5 8 5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 2 0 2 0 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 | d
011
011
012
00355
0055
0055
0044
00044
00033
00033
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
00030
0 | d 000022 | | 30 31 d | 01 | 1 02
1 02 | 13
11
09 | b 03
b 03
f 03 | | 104 | 0 3
0 4 | 0 2
0 2
d 0 2 | 102
102 | 01 | 0.02 | 0.03
d 0.03 | | 9210 | | l | | 1 03 | | 2.6 | | d 02 | | id U.1 | g 003 | | | | 3.1 | 3.2 | 4123 | 25 <i>9</i> | 44.9 | 1512 | 42.7 | 8.4 | 6 .0 | 3.4 | 1.3 | 0.85 | | MEAN | 0.10 | 0.11 | 13.3 | 0.84 | 1.60 | 4,88 | 1.42 | 0.27 | 0.20 | 0.11 | 0.04 | 0.03 | | ACRE-
FEET | 6.1 | 6.3 | 818. | 51. | 89. | 300. | 84.7 | 16.7 | 12.0 | 6.7 | 2.58 | 1.69 | | F | Remarks: | | | | | | | | | TEAR MEA | | 390. | | | | | TODANCA | COCER | | | | | | | | ! | | | | , , | | | | | 1 | | | | |------|-----------|----------------|-------------------|-------|--------------------|---------------------------------|-------------------------|-----------------------|--------|---|--------------|----------|------|----------------|----------|-------|-------------------------------|---------------------------------|-------------------------|------|-----------|------|---------------------------|--------------| | | DISCHARGE | MEASUREM | ENTS OF TOPANGA | CKEEK | | | | | | | | NO. | DATE | END | MADE BY | WIDTH | AREA DF
BECTION
BQ. FT. | MEAN
VELOCITY
FT.PER BEG. | DAUDE
HEIGHT
PEET | | AT- METH- | BEC. | G. HT.
CHANGE
TOTAL | METER
NO. | | | *** | above | mouth of Canyon | | | DUR | INS THE Y | EAR ENDING | - | , sa. 19 47 | _ | | | 1255P | | | | | | | \neg | | | | | | | | | | | | | | | | | .604 | 1-9 | 110P
1112A | | 5.2 | 1.22 | 0.90 | 2.89 | 1.1 | -5 | -6 | _0 | | | NO. | DATE | BEGIN | MADE BY | WIDTH | SECTION
SQ. FT. | MEAN
VELGOITY
FT.PER BEG. | BAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | | MEAS. U. HT
BEC. CHANES
NO. TOTAL | | 605 | 1-16 | 1118A
1246P | | 3.0 | 0.69 | 1.07 | 2.85 | 0.74 | .5 | 4 | 0 | | | | | 1122A | | | | | | | | | | 606 | 1-23 | 1253P | | 3.0 | 0.59 | 1.07 | 2.82 | 0.63 | .5 | 4 | 0 | | | 582 | 10-3 | 1127A | BOLLINGER | 0.50 | 0.06 | 0.83 | 2,54 | 0.05 | FLOATS | 1 0 | l | 607 | 1-30 | 1143A
1148A | | 2.9 | 0.77 | 1.17 | 2.86 | 0.89 | .5 | 4 | 0 | | | 583 | 10-10 | 143P | BOLLINGER | 1.0 | 0.05 | 0.60 | 2.52 | 0.03 | " | 2 0 | | 608 | 2•6 | 213P
220P | ., | 2.8 | 0.54 | 0.78 | 2.80 | 0.42 | .5 | 4 | 0 | | | 584 | 10-17 | 243P
247P | BOLLINGER | 1.6 | 0.15 | 0.33 | 2.58 | 0.05 | | 3 0 | | | | 1255P | , | ., | 1 | | | 1.1 | .5 | 4 | 0 | | | 585 | 10-31 | 210P
215P | ** | 1.7 | 0.11 | 0.36 | 2.57 | 0.04 | | 3 0 | | 609 | 2-10 | 102P
1257P | <u> </u> | 2.8 | 0.81 | | 2.89 | | - | | | | | | | 140P | | | | | | | | 3 0 | | 610 | 2-13 | 102P
1217P | | 2.6 | 0.55 | 1.07 | 2,82 | 0.59 | .5 | 4 | 0 | | | 586 | 11-7 | 145P | | 1.7 | 0.19 | 0.37 | 2.59 | 0.07 | | -3 0 | | 611 | 2-20 | 1223P | | 2.5 | 0.50 | 0.90 | 2.79 | 0.45 | .5 | 4 | 0 | | | _587 | 11-12 | _1105A | BOLLINGER - PAULL | 6.5 | 2.25 | 0.62 | 2.69 | 1.4 | 1.6 | 5 0 | FC6 | 612 | 2-27 | 120P
126P | | 2.5 | 0.46 | 0.87 | 2.76 | 0.40 | .5 | 4 | 0 | | | 588 | 11-13 | 120P | | 16.0 | 22.7 | 2,44 | 3.36 | 55.2 | -6 | 9 0 | " | 613 | 3-6 | 1140A
1145A | | 2.4 | 0.51 | 0.80 | 2.73 | 0.41 | .5 | 4 | 0 | | | 589 | 11-14 | 250P
258P | 4, 17 | 7.5 | 3.60 | 1.22 | 2.74 | 4.4 | .6 | 6 0 | | | | 130P | | | | | | 0.00 | ٠, | | • | | | 590 | 11-15 | 153P
158P | BOLLINGER | 4.2 | 0.96 | 0.46 | 2,53 | 0.44 | .5 | 5 0 | | 614 | 3-13 | 136P | · | 2.4 | 0.38 | | 2.70 | 0.28 | .5 | | 0 | | | _ | | 1220P | | | | 1 | | | | | ,, | 615 | 3-20 | 141P
215P | | 2.5 | 0.36 | 0.44 | 2.72 | 0.16 | .5 | 3 | 0 | •• | | 591 | _11-20 | 1228P
350P | BOLLINGER - PAULL | 22.0 | 29.0 | 2.44 | 3.49 | 71.0 | | | + | 616 | 3-27 | 220P | | 2.4 | 0.39 | 0.97 | 2.67 | 0.38 | .5 | 4 | 0 | | | 592 | 11-20 | 400P
253P | | 22.5 | 17.1 | 1.80 | 3.23 | 30.8 | .6 | 13 0 | | 617 | 4-3 | 205 P | 11 | 2.6 | 0.42 | 0.69 | 2.70 | 0.29 | .5 | 4 | 0 | | | 593 | 11-21 | 300P | BOLL INGER | 6.0 | 2.09 | 1,53 | 2.80 | 3.2 | .6 | 6 0 | - " | 618 | 4-10 | 123P
130P | | 2,2 | 0,27 | 1.26 | 2.72 | 0.34 | FLOAT | 5 3 | 0 | | | 594 | 11-23 | 1213P | BOLLINGER . PAULL | 32.0 | 38.3 | 3,68 | 3.76 | 141. | .6 | 6 0 | | | | 204P | | 2.0 | 0.16 | 1.00 | 2.65 | 0.16 | | 3 | 0 | | | 595 | 11-24 | 150P | BOLL INGER | 8.3 | 3.70 | 1.65 | 2.87 | 6.1 | .6 | 7 0 | | 619 | 4-18 | 209P
225P | | | | | | | +- | | | | | | 11-27 | 200P
207P | ** | 4.0 | 0.96 | 1.00 | 2,79 | 0.96 | .6 | 5 0 | ., | 620 | 5-1 | 230P | * | 2.0 | 0.12 | 0.75 | 2,63 | 0.09 | - "- | 3 | 0 | | | 596 | | 156P | | | 1 | · | | | | | | 621 | 5-15 | 134P | | 2.0 | 0,12 | 0.58 | 2.64 | 0.07 | | 3 | 0 | | | 597 | 12-5 | 201P | | 3.0 | 0.46 | 0,83 | 2.77 | 0.38 | .5 | 4 0 | <u> </u> | 622_ | 5-29 | 202P
207P | " | 2.1 | 0.16 | 0.75 | 2.65 | 0.12 | | 4 | 0 | | | 598 | 12-12 | 139P
244P | | 3.2 | 0.59 | 0.53 | 2,74 | 0.31 | .5 | 4 0 | | 623 | 6-12 | 313P
316P | | 1.9 | 0.12 | 0.66 | 2.65 | 0.08 | | 3 | 0 | | | 599 | 12-19 | 249P | • | 2.8 | 0.44 | 0.48 | 2.72 | 0.21 | .5 | 3 0 | | 624 | 7-10 | 353P
356P | ,, | 0.9 | 0.05 | 0.80 | 2.63 | 0.04 | ,, | 2 | 0 | | | 600 | 12-26 | 1107A | BOLLINGER - PAULL | 22.0 | 12.6 | 2.46 | 3.26 | 30.9 | .6 | 9 0 | - | | | 240P | | | 1 | | | | - | - | 0 | | | | 12-27 | 235P | 11 16 | 20.7 | 12.9 | 2.08 | 3.20 | 26.8 | .6 | 12 0 | | 625 | 9-24 | 244P | | 1.3 | 0.05 | 0.60 | 2.69 | 0.03 | | 2 | <u> </u> | | | 601 | | .246P
.222P | | | | | 1 | | E . | 1 | | 1 | | | | | | | | | | | | | | 602 | 12-29 | 230P | BOLLINGER | 8.7 | 4,49 | 1.56 | 2.96 | 7.0 | 6 | | - | 1 | | | | | | | | | | | | | | 603 | 1-2 | 1135A | | 7.0 | 2.19 | 1.05 | 2,87 | 2.3 | .6 | 5 0 | | Į | | | | | | | | | | | | | | F. C. Dist. | Form 52 4-48 | | | | | LOS ANGELE
OOD CONTRO
YDRAULIC | OL DISTRICT | r | | | Sta. N | ro. F54-R | |--|---------------|---|--|---|---|---|---|---|---------------------------------------|---
--|--------------------------------------| | Daily dia | charge, in so | cond-feet of | TOPANI | A CREEK 2 | bove Mou | th of Can | yon | | | , for the year | r ending Septem | iber 30, 19 _116 | | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept | | 1 C 2 1 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 12 22 23 24 25 26 27 28 | | d 01
01
01
01
01
01
01
01
01
01
01
01
01
0 | d 01
011
011
02
01
01
01
01
01
01
01
01
01
01
01
01
01 | 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0 5 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8 2 8 9 7 7 9 9 3 9 4 1 5 3 9 1 4 6 9 6 6 6 6 6 5 5 5 6 6 5 5 6 6 5 5 6 | 0 1 4 6 6 6 5 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | 4 011
011 011
0 055
0 055
0 055
0 004
0 004
0 004
0 007
0 00 | 000000000000000000000000000000000000 | | 29
30
31 d | 0 1
0 1 | 4 0 Z | 13 | b 03
b 03
f 03 | | 104
26 | 0 3
0 4 | 4 00 00 00 00 00 00 00 00 00 00 00 00 00 | 1 0 2
d 0 2 | 01
01
01 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.03 | | | 3 1 | 3.2 | 4123 | 25.9 | 449 | 1512 | 42.7 | 8.4 | 6 ,0 | 3.4 | 13 | 0.85 | | MEAN | 0.10 | 0.11 | 13.3 | 0.84 | 1.60 | 4.88 | 1.42 | 0.27 | 0.20 | 0.11 | 0.04 | 0.03 | | ACRE- | 6.1 | 6.3 | 818. | 51. | 89. | 300 | 84.7 | 16.7 | 12.0 | 6.7 | 2.58
v 1.93 | 1.69 | | н | emarks: | | | | | | | | | CEAR MEAN
OR
SPRIOD ACRE | | 390. | F. C. Dist. Form 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 54-R | | | | | | H | YDRAULIC I | DIVISION | | | | | | |---|--|--|--|--|--|---|---|--|---|---|--|---| | Daily | discharge, in | second-feet of | TOPANGA | CREEK a | bove Mout | h of Cany | 0.0 | | | , for the yea | r ending Septe | mber 30, 19 <u>47</u> | | Day | Oct. | Nov. | Dec. | Jen. | Feb. | Mar | Apr. | Мву | June | July | Aug. | Sept. | | 1 2 2 3 4 5 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 0.05
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03 | 0.04
0.03
0.03
0.06
0.06
0.07
0.07
0.08
0.08
0.08
0.03
7.8
0.3
a 0.2
a 0.2
a 0.2
a 0.2
a 0.2
a 0.2
a 0.2
a 0.3 | 0.5
0.4
0.4
0.4
0.3
3.5
1.7
0.5
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 | 3 & 4
2 4 4
1 1 7 5
1 1 5 5
1 1 5 3
1 1 1 1 1 1 1 3
1 1 3 6
0 0 6 6
0 0 6 6
0 0 6 6
0 0 6
0 0 6 | 0.6
0.5
0.4
0.4
0.4
0.4
1.1.5
0.6
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5 | 0.4
0.3
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5 | 1 1 6 6 7 7 8 6 7 9 8 7 9 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 1
0 1
0 0 5
0 0 05
0 1
0 0 2
0 0 2
0 0 0 5
0 1
0 1
0 1
0 1
0 2
0 2
0 0 1
0 1
0 1
0 2
0 2
0 0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 | 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 | 0.1
0.1
0.1
0.0
0.5
0.05
0.05
0.05
0.05 | b 0 0 4
0 3
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 3 | b 0 0 3
1 0 0 3
0 0 | | 26
27
28
29
30
31 | 0.02
0.04
0.04
0.04
0.04
0.04 | 1.5
0.9
0.5
0.5
0.5 | 555
32
111
71
5.8
4.7 | 01
01
01
11
09
06 | 0.5
0.4
0.4 | 02
05
89
28
17
17 | 01
01
01
01 | 01
01
01
01
01
01 | 0 1
0 1
0 1
0 1
0 1 | 0.04
0.04
0.04
0.04
0.04
b 0.04 | 0.03
0.03
0.03
0.03
0.03
b 0.03 | 0.03
0.04
0.04
0.04
0.05 | | MEAN | 0.04 | 7.23 | 5.98 | 1.20 | 0.54 | 0,82 | 0.29 | 0.13 | 0.11 | 0.05 | 0.04 | 0.03 | | ACRE- | 2.2 | 430 | 368 | 74 | 30 | 51 | 17 | 7.7 | 6.3 | 3.2 | 2.2 | 1.9 | | | Remarks: | | | | | | | | |
YEAR MEA
OR
PERIOD ACRE | и 1.3
-геет 99 | | #### STATION F252-R VERDUGO CHANNEL at Estelle Avenue ``` LOCATION: WATER-STAGE RECORDER, LAT. 34°09'23", LONG. 118°16'23", ON THE RIGHT (NORTH) SIDE OF CHANNEL AT ESTELLE AVENUE, 800 FEET EAST OF SAN FERNANDO ROAD, AND ABOUT 2 MILES NORTHWEST OF GLENDALE. ELEVA- TION OF ZERO GAGE HEIGHT, 464.78 FEET ABOVE MEAN SEA LEVEL. ``` DRAINAGE AREA: 22.4 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - RECTANGULAR CONCRETE, 87 FEET WIDE BY 11 FEET DEEP TO BOTTOM OF INVERT. INVERT IS 1 FOOT BELOW BOTTOM OF VERTICAL SIDE WALLS. CHANNEL FORMS CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM CABLE CAR 40 FEET ABOVE STATION. RECORDER: INSTALLED DECEMBER 2, 1935 OVER A 20 INCH X 30 INCH CONCRETE WALL. AN H.C.F. CONTINUOUS RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY VERDUGO AND OTHER DEBRIS BASINS. DIVERSIONS: SEVERAL DIVERSIONS FOR DOMESTIC WATER SUPPLY AND IRRIGATION. RECORDS AVAILABLE: DECEMBER 2, 1935 TO SEPTEMBER 30, 1947. FOR EARLIER RECORDS SEE STATIONS F9-R, VERDUGO AT GLEN OAKS BOULEVARD, AND F244-R, VERDUGO AT DON CARLOS STREET. EXTREMES OF DISCHARGE: MES OF DISMISSION. 1945-1946 MAXIMUM \$16 SECOND-FEET, DECEMBER 22, MINIMUM 0,1 SECOND-FOOT, AUGUST 1 AND 2. MINIONAL C. 1946-1947 MAXIMUM 1860 SECOND-FEET, DECEMBER 25. MINIMUM NO FLOW PART OF YEAR. MINIMUM NO FLOW AT VARIOUS TIMES. MINIMUM 0,400 SECOND-FEET, ESTIMATED, MARCH 2, 1938-MINIMUM NO FLOW AT VARIOUS TIMES. ACCURACY: FAIR. OPERATION: LOCATED AND CONSTRUCTED BY CORPS OF ENGINEERS, U.S. ARMY, AND OPERATED BY LOS ANGELES COUNTY FLOOD CONTROL DISTRICT IN COOPERATION WITH CORPS OF ENGINEERS, U.S. ARMY. | | DISCHARDE | MEABUREN | VI | ERDUGO | CHANNE | L | | | | | | | | |-------|------------|-----------------------|-------------------|---------------|-------------------------------|----------------------------------|-------------------------|-----------------------|-------------|-------------|----------------------|---------------------------|---------------| | | AT
HEAR | <u> </u> | Estelle Avenue | | | DURIN | O THE YE | AR ENDING | BEPT | EHBES | 30, | 19. 46 | | | NO. | PATE | BEGIN
END | , MYDE BA | WIOTH | AREA OF
BECTION
EQ. FT. | MEAN
VELUCITY
FT. PER SEC. | BAUGE
HEIGHT
FEEY | DISCHARGE
SEC. FT. | RAT- | SETH- | MEAS.
SEC.
NO. | G. HT.
CHANGE
TOTAL | METER
NO. | | 96 | 10/3 | 316P
321P | BOLL INGER | 4.0 | 0.24 | 2.42 | 0.12 | 0.58 | . 5 | URF. | 4 | G | FLOAT | | 97 | 10/25 | 1130A
1139A | DEVORE | 4.0 | 0.20 | 2.45 | 0.12 | 0.49 | ٠ | URF. | 6 | 0 | | | 98 | 11/8 | 1205P
1208P | HAIG | 5.0 | 0.53 | 3.40 | 0.12 | 1.8 | 9 | URF. | 6 | | FC35
FLOAT | | 99 | 11/23 | 1100A
1102A | | 4.0 | 0.26 | 3,04 | 0.12 | 0.79 | 9 | URF. | 4. | 0 | FLOAT | | 100_ | 11/29 | 1116A
1120A | | 5.5 | 0.55 | 2.91 | 0.10 | 1.6 | _ 5 | URF. | 4 | 0 | ** | | _101 | 1/10 | 232P
238P | | 4.0 | 0.28 | 3.57 | 0.14 | 1.0 | | .5 | .4 | 0 | FC35 | | _102 | 1/24 | 1145A
1148A | ••. | 4.0 | 0.28 | 2.61 | 0.13 | 0.73 | s | URF. | .4_ | 0 | FLOAT | | _103_ | 2/21 | 128P
132P | | 4.0 | 0.26 | 3.08 | 0.14 | 0.80 | | .5. | 4 | 0 | FC35_ | | 104 | 2/25 | 120P
123P | | 4.0 | 0.26 | 3.08 | 0.14 | 0.80 | S | URF. | 4 | 0 | FLOAT | | _165_ | -3/7 | 820A
825A | | 4_0 | 0.32 | 3.75 | 0.15 | 1.2 | | .5 | 4 | . 0 | FC35_ | | _106_ | 3/21 | 110P
114P | | 4.0 | 0.30 | 2.86 | 0.13 | 0.86 | | .5 | 4 | 0 | •• | | _107 | 4/11 | 230P
232P
1145A | | 3.5 | 0.26 | 2.73 | 0.12 | 0.71 | S | URF. | 4 | 0 | ··· | | 108 | 4/18 | 1150A | •• | 4.0 | 0,26 | 3.31 | 0.14 | 0.86 | S | URF. | 4 | 0 | •• | | 109 | 4/25 | 1146A
1148A | | 4.0 | 0.26 | 2.73 | 0.13 | 0.71 | S | URF | 4 | 0 | •• | | 1-10- | 5/9 | 146P
150P | • • | 4.5 | 0.37 | 2.62 | 0.16 | 0.97 | 5 | URF. | 4 | 0 | •• | | 111_ | 5/16 | 1205P
1210P | | 4.0 | 0.38 | 3.68 | 0.15 | 1.4 | s | URF | 4 | 0 | | | 112_ | -6/13 | 127P
135P | BROWN | 4.5 | 0.38 | 1.95 | 0.12 | 0.74 | s | URF | 7 | 0 | FC24 | | 113 | 6/20 | 150P
154P | HAIG | 4.0 | 0.26 | 3.12 | 0.13 | 0.81 | | URF | 4 | 0_ | FC35 | | 114_ | 6/27 | 234P
238P
130P | | 4.0 | 0.26 | 2.90 | 0.13 | 0.79 | . 5 | URF | 4 | <u>0</u> | <u></u> | | 115_ | 7/11 | 134P | •• | 4.0 | 0.24 | 3,08 | 0.13 | 0.74 | S | URF | 2 | 0 | •• | | 116_ | 8/1 | 1216P
200P | ** | 1.0 | 0.10 | 1.00 | 0.08 | 0.10 | | ,5 | 4 | 0 | | | 117_ | 9/4 | 205P | WADDICOR | 4.0 | 0.30 | 2.76 | 0,13 | 0.83 | s | URF | 4 | 0 | FLOAT | | 118 | 9/26 | 423P
428P | BOLLINGER | 5.2 | 0.24 | 2.74 | 0.13 | 0.66 | S | URF | 4 | 0 | ••• | | | DISCHARG | | MENTS OF VERDU | GO CHAN | INEL | | | YEAR ENGING | I SEP | TEMBE | :R 30, | , , _e _47 | | | жр. | DATE | BEGIN
END | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT-
ING | метн-
00 | MEAS.
BEG.
ND. | E. HT.
CHANGE
TOTAL | METER
NO. | | -119 | 11-12 | 1 157A
1204P | WADDICOR - OCAMPO | 27.0 | 6.57 | 9.48 | 0.50 | 62.3 | Ļ. | .6 | 7. | . 0 | FC37 | | 120 | 3-20 | 405P
410P | BLAKELY | 15.0 | 3.00 | 6.73 | 0.34 | 20.2 | FL | OAT | 1_1_ | 0 | - | E.C. DIR. FORM M.4-16 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F252-R - | Daily | lischarge, in sec | ond-feet of | VERDU | GO CHANNE | L at Este | elle Aveni | te | | | , for the year | ending Septen | nber 30, 19 _116 | |----------------------------------|--|--|--|--|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|--|--|--------------------------------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Жау | June | July | Aug. | Sept. | | 1
2
3
4
5 | 0.6
0.6
0.6
0.6 | 0.8
0.8
0.8
1.1 | 1 1
1 1
1 1
0 .8
0 .8 | 0.6
0.8
1.1
0.8
1.7 | 1.1
0.8
82
4.2
1.7 | 1.7
1.4
1.4
1.4
1.4 | 1 .4
5 .3
2 .1
2 .5
1 .7 | 1.7
1.4
1.4
1.4
1.4 | 1.7
1.1
1.1
1.1 | 1.7
1.4
1.4
1.4
1.4 | 0 3
0 3
0 6
0 8
0 6 | 2 5
2 1
1 7
1 7
1 7 | | 6
7
8
9 | 0.6
0.6
0.6
0.6 | 1.1
0.8
0.8
0.8
0.8 | 0.8
1.1
1.1
1.1 | 1 1
1 7
1 4
1 4
1 2 | 1 1
1 1
1 1
1 1
1 4 | 1.4
1.1
0.8
1.1 | 5 .4
2 .1
1 .4
1 .1
1 .1 | 1.7
1.7
2.1
2.1
2.1 | 1 1
1 1
1 1
1 1 | 1 4
1 4
1 4
1 4
1 4 | 1 1
1 1
1 4
1 1
1 1 | 1 .7
1 .7
1 .7
1 .7
1 .7 | | 11
12
13
14
15 | 8. C
3. C
9. C
9. C | 0.8
0.8
0.8
0.8 | 0.8
1.1
1.1
1.1
0.8 | 1 1
0 8
0 8
0 8
1 1 | 1 1
1 1
1 1
1 1
2 2 | 0.8
0.8
2.3
1.1
1.4 | 1 1
1 4
1 7
1 7 | 1.7
1.4
1.7
1.7 | 11111111 | 1 1
1 1
1 1
1 1 | 0.8
0.8
1.1
1.4
1.4 | 1.7
1.7
1.7
1.7 | | 18
17
18
19
20 | 1.0
1.0
1.0
1.1 | 1 1
1 1
1 1
1 1
0 8 | 0.8
0.8
1.1
1.1 | 1 4
1 1
1 1
1 4
1 1 | 25
21
14
14
14 | 1.4
1.7
2.6
3.7 | 1 .7
1 .4
1 .4
1 .4
1 .4 | 1 A
1 A
1 7
1 7
1 7 | 1 1
1 1
1 1
1 1 | 1 1
1 1
1 1
1 1 | 1 1
1 4
1 7
1 7 | 1.7
1.7
1.7
1.7 | | 21
22
23
24
25 | 1 1
1 1
1 1
1 1
0 .8 | 9. 0
8. 0
8. 0
8. 0 | 97
135
66
1.7
1.4 | 0.8
0.8
0.8
1.4
1.4 | 1 A
1 A
1 A
1 A
1 A | 1 A
1 A
1 7
1 7 | 1.7
1.7
1.4
1.4
1.4 | 1.7
1.4
1.4
1.1 | 1.4
1.4
1.4
1.4 | 1.4
1.4
1.4
1.4 | 1.4
1.1
0.8
0.8
1.1 | 1 .7
1 .7
1 .7
1 .7 | | 26
27
28
29
30
31 | 1 1
0 .8
1 1
3 .8
3 .5
1 .4 | 0.8
0.6
0.6
0.8
0.8
0.8 | 1 4
1 7
1 7
1 4
1 1
0 8 | 1 1
1 1
1 4
1 4
1 4
1 1 | 1 .4
1 .4
1 .4 | 1.4
1.4
1.1
1.6
7.2 | 1.4
1.4
1.7
1.7 | 1 1
1 1
1 1
1 1
1 1 | 1 A
1 A
1 7
1 7
1 7 | 1 A
1 A
1 7
1 7
1 A
0 A | 1 1
1 1
2 1
2 1
2 1
2 1 | 1.4
1.7
1.7
1.4 | | | 32.0 | 25.7 | 3291 | 352 | 1222 | 162.8 | 53.6 | 4 5 .8 | 37.5 | 4 0 .6 | 35.7 | 51.0 | | MEAN | 1.03 | 0.86 | 10.6 | 1.14 | 4.36 | 5.43 | 1.79 | 1.48 | 1.25 | 1.31 | 1.15 | 1.7 | | ACRE-
FEET | 63. | 51. | 653. | 70. | 242. | 323. | 106. | 91. | 74. | 81. | ~ ~ ~ | 101. | | | Remarks: | | | | | | | | | EAR MEAN
OR
ERIOD ACRE | | 930. | ul frem 52 4-46 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 252-R | ay | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |-----|------------|---------------|-----------|--------------|------------|------------|----------------|-----|------|----------------|------|-------| | 1 | 22 | 0 | + | b 0.2 | 0.1 | 0.1 | + | 0 | 0 | 1 0 | 0 | 0 | | 2 | 1.2 | 0 | + | 101 | 0.1 | 0.1 | + | 0 | 0 | 0 | 0 | 0 | | 3 | 2.2 | 0 | + | 0.1 | 0.1 | 0.2 | 0.2 | 0 | 0 | 0 | 0 | Ó | | ۱. | 1 .0 | 0 | + | 01 | 01 | 0.2 | 0.2 | O. | o o | , o | 0 | Ó | | 5 | 1.0_ | 0 | + | 0.1 | 0.1 | 3.5
0.2 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | | В | 1 .0 | 0 | 40 | 0.2 | 0.1 | | 0.1 | + | 0 | 0 | 0 | 0 | | 7 | 1 .0 | + | 5 O G | 0.2 | 0.1 | 0.1 | + | +_ | 0 | * | 0 | 0 | | В | 1 .0 | 6.5 | b 02 | 102 | 0.1 | ŌТ | + | 0 | 0 | 0 | į o | 0 | | 9 | 1 .0 | 0.2 | p 0 1 | b 0.2 | 4.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1.0 | 0.2 | b 0.1 | 0.2 | 0.2 | 0.1 | - † | | 0 | 8 | 0 | 0 | | 1 2 | 1.0 | 14 | 0.1 | | 0.1 | 0.1 | | 0 | 0 | |
Ö | 0 | | 3 | 0.7 | 111 | + | 0.2
0.2 | 0 2
0 2 | 0.1 | 0 | | | 0 | 0 | 0 | | • | 0.7 | f1 1 2 | + | | S.0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 | 1.0 | f 50
b 0.3 | †
+ | 2 O | 01 | 0.1 | o ⁺ | ő | ŏ | % | ŏ | ŏ | | 8 | 1.2
7.1 | b 0.3 | + | 0.2 | 0.1 | 0.1 | 0 | ŏ | ŏ | 8 | 8 | ŏ | | , | | b 0.1 | , , | 01 | 0.6 | 01 | ŏ | ŏ | ŏ | 0 | 0 | 0 | | έl | 1.0 | | 0.1 | 01 | 0 - | 0.8 | ŏ | ő | ő | 0 | 0 | 6 | | 9 | 1 0
1 0 | 0.1 | 0.1 | 0 2 | 0.1 | 0.7 | ŏ | ŏ | ŏ | l ŏ | ŏ | ő | | 0 | 1.0 | 103 | 0.1 | 20 | 0.1 | 2.1 | Ö | ŏ | ŏ | 0 | l ¥ | ŏ | | 1 | 1.0 | b 0.1 | 01 | 0.2 | 0.2 | 1.6 | Ö | ō | Ö | † - | 0 | ŏ | | 2 | 1.0 | 1 5 4 | 0.1 | 01 | ŏĩ | δž | , , | ŏ | ŏ | 0 | Ιŏ | ŏ | | 3 | 1.0 | 40 | ŏ3 | ŏ ī | 01 | 01 | 0 | ŏ | Ŏ | Ō | lõ | ŏ | | 4 | οž | b oz | 0.9 | 0.5 | 01 | 01 | ŏ | ŏ | ō | Ō | ĺŏ | ŏ | | 5 | ¥ | b 0.1 | 234 | 0.3 | 0.1 | 0.1 | ŏ | o | L ŏ | 0 | l ō | Ŏ | | 8 | 0 | 0.1 | 122 | 0.2 | 0.2 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | 1.0 | + - | 31 | 0.2 | 0.1 | 0.8 | 0 | + | 0 | 0 | 0 | 0 | | 8 | ōž | | ъ 0.7 | 12 | 0.1 | 9.4 | Ó | 0 | 0 | 0 | 0 | 0 | | 9 | 0 1 | + | b 0.6 | 0.2 | | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | ÓЛ | + | b 0.5 | 0.1 | | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | + | | b 0.3 | 0.1 | | ١ | | 0 | i | <u> </u> | 0 | | | | 52.7 | | 439.6 | | 79 | | 0 .6 | _ | + | | + | _ | | _ | | 438.2 | · | 173 | | 21.7 | | 0.1 | | + | | 0 | | AN | 1.75 | 14.6 | 14.2 | 0.56 | 0.28 | 0.70 | + | + | + | <u> </u> | + | 0 | | E- | 105 | 869 | 872 | 34 | 16 | 43 | 1.2 | 0.2 | + | + | + | 0 | | | Remarks: | + = 0.05 0 | e.f.s. or | less. | | | | | | YEAR MEA | | 68 | #### STATION F47-R WALNUT CREEK at Covina Boulevard LOCATION: WATER-STAGE RECORDER, LAT. 34°03'58", LONG, 117°59'00". ON THE DOWNSTREAM SIDE OF COVINA BOULEVARD BRIDGE, ABOUT 2 MILES SOUTHWEST OF BALDWIN PARK. ELEVATION OF ZERD GAGE HEIGHT, 309,18 FEET. THIS STATION IS NEAR THE LOCATION OF THE STATION OPERATED FROM 1923 TO 1928 BY THE STATE DIVISION OF WATER RIGHTS. DRAINAGE AREA: 102,0 SQUARE MILES. CHANNEL AND CONTROL: CHANNEL - SAND AND GRAVEL, NO ARTIFICIAL CONTROL. DISCHARGE MEASUREMENTS: LOW FLOWS MEASURED BY WADING. HIGH FLOWS MEASURED FROM UPSTREAM SIDE OF COVINA BOULEVARD BRIDGE. RECORDER: INSTALLED DECEMBER 15, 1928 OVER AN 18 INCH DIAMETER CORRUGATED IRON PIPE STILLING WELL. AN H.C.F. RECORDER WAS IN SERVICE FROM OCTOBER 1, 1945 TO SEPTEMBER 30, 1947. REGULATION: FLOW PARTIALLY REGULATED BY BIG DALTON DAM, SAN DIMAS DAM, PUDDINGSTONE DIVERSION DAM, PUDDINGSTONE DAM, AND LIVE OAK DAM. IRRIGATION COMPANIES AT TIMES SPREAD SAN GABRIEL RIVER WATER FROM THE COVING AND AUG DIVERSIONS: SOME WATER DIVERTED FOR IRRIGATION. RECORDS AVAILABLE: DECEMBER 15, 1928 TO SEPTEMBER 30, 1947. (FOR RECORDS PRIOR TO DECEMBER 15, 1928. SEE STATE DIVISION OF WATER RIGHTS BULLETINS.) EXTREMES OF DISCHARGE: MES OF DISCHARGE: 1945-1946 MAXIMUM 2430 SECOND-FEET, DECEMBER 23, MINIMUM NO FLOW MOST OF YEAR. 1946-1947 MAXIMUM 610 SECOND-FEET, NOVEMBER 23, MINIMUM NO FLOW MOST OF YEAR, 1928-1947 MAXIMUM 61060 SECOND-FEET, JANUARY 1, 1934 MINIMUM NO FLOW MOST OF EACH YEAR. OPERATION: LOCATED, CONSTRUCTED AND OPERATED BY THE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT. | | DISCHARGE | MEABURE | IENTS DF | WALNU | T CREE | κ | | | | | | | | |-----|-----------|----------------|-------------------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|------|------------|---------------------|---------------------------|-------| | | NEAR | Cav | ina Boulevard | | | DURIN | O THE YE | AR ENDING | BEPT | EMBE | R 30, | 10_1E | ı | | жc. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEG. | BAUGE
HEIBHT
FEET | DISCHARGE
SEC. FT. | RAT- | METR
OD | MEAS
SEC.
NO. | S. HT.
CHANGE
TOTAL | METER | | 229 | 12/23 | 420P
435P | BREWSTER | 26.0 | 9.70 | 1.31 | 2.88 | 12.7 | | .6 | 6 | 01 | FC12 | | 230 | 1/10 | 115P
127P | | 20.0 | 5.20 | 0.77 | 2.72 | 4.0 | | .6 | 5 | ٥ | | | 231 | 2/3 | 320P
340P | | 98.0 | 79.4 | 3.94 | 3.83 | 313. | L | ,6 | 10 | 10 | | | 232 | 2/4 | 105P | •• | 10.0 | 3.40 | 0.85 | 2.94 | 2.9 | | .6 | 5 | 0 | ٠. | | 233 | 3/14 | 144P
152P | | 6.0 | 1,17 | 1.11 | 2.82 | 1.3 | | .6 | 4 | 01 | | | 234 | 3/19 | 928A
940A | 1.0 | 22.0 | 6.70 | 1.00 | 2.99 | 6.7 | L | .6 | 5 | +.02 | | | 235 | 3/20 | 300P
306P | WADDICOR - HOLMES | 13.0 | 5.13 | 1.57 | 2.99 | 8.0 | _ | .6 | 6 | .0 | FC22 | | 236 | 3/21 | 215P
220P | BREWSTER | 2.0 | 0.30 | 0.53 | 2.84 | 0.16 | L | .6 | 2 | 01 | FC12 | | 237 | 3/28 | 120P
135P | | 21.0 | 4.36 | 0.73 | 2.95 | 3.2 | L | .6 | 6 | 0 | •• | | 238 | 3/30 | 733A
748A | COLE - HOLMES | 66.0 | 36.7 | 2.67 | 3.40 | 98.0 | | .6 | 11 | 0 | FC20 | | 239 | 3/30 | 1100A
1115A | BREWSTER - COOLEY | 64.0 | 43.3 | 3.26 | 3.50 | 141. | | .6 | 7 | 0 | FC12 | | 240 | 3/30 | 1210P
1230P | | 96.0 | 88.4 | 4.12 | 3.79 | 364. | | .6 | 11 | +.06 | | | | DISCHARGE | MEABURE | MENTS OF | ALNUT CR | EEK | | | | | | | | | | |-----|-----------|----------------|--------------|----------|-------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------|-------|----------------------|---------------------------|--------------| | | ATT | Covi | na Boulevar | d | | | bur | ING THE Y | EAR ENDING | 3 SEP | тенві | R 30, | 19 47 | | | ND. | DATE | BEGIN | NADE BY | Wit | | ARKA OF
MECYION
EQ. FT. | MEAN
VELOCITY
FT.PER BEG. | BAUGE
HEIBHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH- | MEAS.
SED.
ND, | G, HT.
CHANGE
TOTAL | HEYER
HD. | | 241 | 11-12 | 1032A
1043A | BREWSTER | 32 | 0 | 17.0 | 1.88 | 3.14 | 31.9 | | .6 | 5 | 01 | FC12 | | 242 | 11-13 | 250P
305P | BREWSTER - V | INES 64 | 1.0 | 50.1 | 2.93 | 3.55 | 147. | | .6 | 7 | 02 | | | 243 | 11-14 | 1258P
110P | | 42 | 0.0 | 15.9 | 1.55 | 3,14 | 24.6 | | .6 | 6 | 08 | ** | | 244 | 11-20 | 1230P | | | 4.0 | 40.9 | 2.74 | 3.41 | 112. | | -6 | 7 | 02 | | | 245 | 11-23 | 105P
125P | BREWSTER | | 3.0 | 98.1 | 4.17 | 3.96 | 409. | | .6 | 10 | 06 | | | 246 | 12-26 | 1100A
1110A | | 10 | 0.0 | 5.20 | 1.94 | 3.03 | 10.1 | | .6 | 5 | 04 | - | | 247 | 12-27 | 352P | KASIMOFF - H | IAIG TY | io Ci | ANNELS | | 3,31 | 88.2 | | .5 | 16 | 06 | FC47 | | F. | C. | Dirt. | Porm | 52 | 4-44 | | |----|----|-------|------|----|------|--| | | | | | | | | # LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. __ F47-R | Daily d | lischarge, in se | econd-feet of | WALNUT | CREEK at | Covina B | oulevard_ | | | | , for the yea | r ending Septe | mber 30, 19 | |----------------------------|------------------|---------------|---------------------|--------------------------------------|--------------|---------------------------------|-------|-------------------|-------|-------------------------------|----------------|-------------| | Day | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 1
2
3 | 000 | 0 | 0 | 0 | 0
0
38 | 3 .0
3 .1
5 .1 | 000 | 0 0 | 0 0 | 0 0 | 0 | 0 0 | | 5 | 0 | 0 | 0 | 0 | 0.S d | 3.7
6.0 | 0 | 0 | 0 | 0 | 0 | 0 | | 8
9 | 0 0 0 | 0000 | 0 0 0 | 0
0
0
0.6
2.8 | 0 0 0 | 3 1
0
0
0
0 | 00000 | 0 0 0 0 | 0 0 0 | 0 0 0 | 0000 | 0 0 0 | | 11
12
13
14
15 | 0 0 0 | 0 0 0 | 0 0 0 | 4 .8
4 .8
4 .8
4 .2
3 .3 | 00000 | 5.0
4.6
4.0
2.4 | 0000 | 00000 | 0000 | 0000 | 0000 | 0 0 0 | | 16
17
18
19
20 | 0 0 0 | 0000 | 0 0 0 | 0000 | 0000 | 1 2
2 1
1 0
4 5
4 7 | 0000 | 00000 | 0 0 0 | 0 0 0 | 00000 | 00000 | | 21
22
23
24
25 | 0000 | 0000 | 173
620
352 b | 00000 | 0000 | 1 2
0
0
0 5
1 6 | 0000 | 0 2
0 2
0 0 | 0000 | 0 0 0 | 0000 | 00000 | | 26
27
28
29
30 | 0 0 0 0 | 0 0 0 | 00000 | 000000 | 0 0 2 | 1.0
0
2.0
1.9
112 | 0000 | 00000 | 0000 | 0 0 0 | 00000 | 0 0 0 | | | 0 | 0 1 | 1145 | 253 | 402 | 175.5 | 0 | 0.4 | 0 | 0 | 0 | 0 | | 1EAN | 0 | 0 | 36.9 | 0.82 | 1.44 | 5.66 | Q. | 0.01 | 0 | 0 | 0 | ١ ، | | CRE-
FEET | 0 | 0 | 2,270. | 50. | 80. | 348. | 0 | 0.8 | 0 | 0 | 0 . | 0 | | | Remarks: | | | | | | | | | YEAR MEA
OR
PERIOD ACRE | | 80
.750. | F. G. Dist. Form 52 4-44 ### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No. F 17-R | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Aug. | July | June | May | Apr. | Mar. | Feb. | Jan. | Dec. | Nov. | Oct | Day | |--|------|---|------|----------|------|----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | - | | | <u> </u> | 0 | 0 | | - | | | | + | | 3 | | | | | | | | | | | | | | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | 4 | | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | 2.9 | | | L 0 _ | | 0 | | | 8 0 62 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 8 0 0 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 8 0 0 0 11.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | 3.0 | 0 | | 0 | | | 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | 1.3 | | | | | | 2 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 3 | | | | | | | | | | | ŏ | | | 4 0 26 0 3.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | ñ | | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | | | | | | | | | | | 4 | | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | | | | o l | | l o i | 0 | 0 | 0 | | | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 8 0 0 0 58 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | o l | | 0 | | | | | 0 | | | | | | | | | | | Ŏ | | | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | ŏ | | | | | 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | - 0 | | | 3 | | | | | | | | | | | | | | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 5 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | o i | | | | o l | o l | ō | | 0 | | | 7 | 0 | . 0 | | | | | | | | | | | | 8 0 0 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 | | | | | | | | | | 0 3291 1110 14.8 2.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | 0 | | | | | | | 0 3291 1110 09 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | 0 3291 1110 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ŏ l | | | | | | | | | 0 | | | | 3291 14.8 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | <u> </u> | | <u> </u> | | <u> </u> | <u>V</u> | | <u> </u> | | | 0 11.0 3.58 0.48 0.03 0.09 0 0 0 0 0 | 0 | | o | | 0 | | 0.9 | | 111.0 | | 0 | | | 0 11.0 3.28 0.48 0.03 0.09 0 0 0 0 0 | | 0 | | 0 | | 2.9 | | 14.8 | | 3291 | | | | 6 653 220 29 1.8 5.8 0 0 0 0 0 | 0 | _ o _ l | 0 | 0 | ۰ | 0.09 | 0.03 | 0.48 | 3.58 | 11.0 | 0 | .1. | | | 0 | 0 | 0 | 0 | 0 | 5.8 | 1.8 | 29 | 220 | 653 | 0 | E- | | | | 0 | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | #### STAFF GAGING STATIONS | | | | MENTE OF | | O DITC | Н | | | | Fi | 16-S_ | | | DIBCHARG | E MEABURE | HENTE OF ARROY | ם חוזם | Н | | | | | | F116-\$ | š . | |------|---|-------------------------|---------------|---------------|-------------------------------|---------------------------------|---------------------------------------|-----------------------|-----------|---------------------|---------------------------|--------------|-----|----------|-------------------------|---|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------------|-------|---------------------------------------|----------------| | | *************************************** | below | Headgate | | | DUR | ио тне у | EAR ENDING | BEPTEME | ER 30 | . 19 46 | | ŀ | NEAR_ | below | Headgate | | | DUR | ING THE | YEAR ENDIN | G SEPTI | EMBER | 30, 19.47 | 7 | | NO. | DATE | BEGIN
END | MAGE BY | WIDTH
FEET | AREA OF
SECTION
BO. FT. | MEAN
VELOCITY
FT.PER SEG. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- METN | MEAS
SEC.
NO. | G. HT.
CHANGE
TOTAL | METER
NO. | NO. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | MEAN
VELOCITY
FT.PER BEG. | GAUGE
HEISHT
FEET | DISCHARGE
SEC. FT. | RAT- H | ETH- | HEAS. G. H
SEC. CHANG
NO. TOTAL | AT. METER | | 476 | 10/4 | 1240P
1250P | BREWSTER | 7.5 | 12.7 | 1.76 | | 22.4 | 6 | 4. | | FC12 | 528 | 10-3 | 1115A | BREWSTER | | ļ | | ļ <u> </u> | | L L | | | 1 | | 477 | 10/11 | 1230P
1240P | | 7.5 | 12.8 | 1.75 | · · · · · · · · · · · · · · · · · · · | 22.4 | 6 | 4 | L | | 529 | 10-10 | 1120A
1130A | | 7.5 | 17.2. | 1.51 | | 25.9 | ļ. ļ | .6. | 4 | FC12 | | 478 | 10/18 | 1205P
_1215P | | 7.5 | 12.8 | 1.86 | | 23.8 | 6 | 4 | ļ | | 530 | 10-17. | 1110A
1120A
1125A | | 7.5 | 17.1 | 1.30 | | 22.2 | | .6 | 4 | | | 479 | 10/25 | 1230P
1240P
1149A | · | 7.5 | 13.7 | 1.75 | | 24.0 | 6 | 4 | | | 591 | 10-24 | 1135A | | 7.5 | 15.0 | 1.78 | ļ <u></u> | 26.7 | ļ. ļ. | .6 | 4 | | | 480 | 11/1 | 1158A
1145A | | 7.5 | 11.8 | 1.73 | · | 20.4 | 6 | 4 | ļ | •• | 532 | 10-31 | 1220P | ** | 7.5 | 12.2 | 1.80 | ļ | 22.0 | | .6 | 4 | | | 481 | .11/8. | 1155A
1210P | | 7.5 | 12.4 | 1.69 | | 21.0 | .6 | 4 | | | 533 | 11-7 | 1215P | | 7.5 | 12.2 | 1.85 | | 22.6 | ļ. ļ. | 6 | 4 | | | 482 | _11/15_ | 1220P
1205P | <u> </u> | 7.5 | 6,60 | 2.05 | | 13.5 | .6 | 4 | | ** | 534 | 11-15 | 1025A | TO | | | ļ <u>.</u> | | 0 | | | | | | 483 | 11/23 | 1215P | | 7.5 | 8.65 | 2.01 | | 17.4 | .6 | 4 | | ** | 551 | 3-20 | 1130A
123P | INCL. NO FLOW | | | | | هـ | L | | <u> </u> | + | | 484 | 11/29 | 1156A
1203A | | 7.5 | 11.2 | 1,78 | | 19.9 | .6 | 4 | ļ | | 552 | 3-27 | 130P
230P | VAN DER GOOT | 7.5 | 10.2 | 1.77 | | 18.1 | - - | .a. | 5 | FC37 | | 485 | 12/6 | 1215P
1204P | | 7.5 | 11.6 | 1.62 | | 18.8 | 6 | 4 | <u> </u> | _:· | 553 | 4-2 | 240P
110P | WADD1COR | 7.7 | 7.73 | 1.89 | <u> </u> | 14.6 | | 6. | 5 | <u> </u> | | 480 | 12/13 | 1214P
1225P | | 7.5 | 11.6 | 1.55 | | 18.0 | -6. | 4 | ļ | | 554 | 4-10 | 120P
135P | | 7.5 | 5.57 | _1_92 | | 10.7 | - - | .6 | 8 | | | 487 | 12/20 | 1235P | <u></u> | 7.5 | _11.1_ | 1.49 | | 16.5 | | 4 | | | 555 | 4-17 | 145P | | 7.5 | 10.2 | 1.65 | - | 16.8 | · | 6 | 8 | ** | | .488 | 12/27 | 1125A | то | | | | | Δ | | - | | | 556 | 4-24 | 135P | _ " | 7.5 | 9.70 | 1,88 | | 18.2 | | 6 | 8 | | | -504 | 4/18 | 1150A
1145A | INCL. NO FLOW | ļ | | | | 0 | | ļ | | | 557 | 5-1 | 118P
1130A | WADDICOR-MELLEN | 7.5 | 14.2 | 1.50 | | 21.4 | | 6 | 8 | ** | | 505 | 4/25_ | 1155A | BREWSTER | 7.5 | 13.2 | 1.24 | | 16.4 | . 6 | 4 | | | 558 | 5-8 | 1140A
1142A | WADDICOR | 7 • 5. | 9.49 | 1.82 | ļ | 17.3 | | 6 | 8 | | | -506 | 5/2 | 1155A
1155A | | 7.5 | 8.85 | 1.59 | | 14.1. | | 4. | ļ | | 559 | 5-15 | 1152A
1115A | ** | 7.5 | 9.85 | 1.81 | | 17.8 | | 16. I | .a | | | .507 | 5/9 | 1155A
1205P | **. | 7.5 | 9.00 | 1.92 | | 17.3 | -6 | .4. | | " | 560 | 5-22 | 1125A
1125A | ** | 7.5 | 11.6 | 1,64 | - | 19.0 | <u> </u> | .6 | 8 | +" | | -508 | - 5/16 | 1215P | <u> </u> | 7.5 | 8.25 | 2.21 | | 18.2 | . 6. | 4. | ļ | . ·· | 561 | 5-29 | 1135A
1140A | | 75 | 6.24 | 1.96 | <u> </u> | 12.2 | - | .6 | 8 | | | -509 | 5/23 | 1206P
1240P | | | | | | 0 | | | | | 562 | 6-5 | 1150A
1150A | | 7.5 | 8.34 | 2.04 | | 17.0 | 1 | .6 | 8 | | | -510 | -5/31 | 1250P | | 7.5 | 11.2 | 2.03 | ··· | 22.7 | .6 | 4. | ļ | | 563 | 6-12 | 1200N
1150A | * | 7.5 | 9.13 | 2.05 | ļ <u>.</u> | 18.7 | - | .6 | 8 | ** | | -511 | 6/7 | 1130A
1145A | | 7.5 | .10.5 | 2,34 | ement of the fo | 24.6 | .6 | 4 | ļ | | 564 | 6-19 | 1200N
1120A | - | 7.5 | 7.74 | 2.04 | | 15 _* 8 | - | .6 | 8 | | | 512 | 6/13 | 1155A
1136A | L | 7.5 | 11.2 | 2.22 | | 24.9 | .6 | 4 | ļ | ** | 565 | 6-26 | 1130A
1125A | | 7.5 | 8.40 | 1.87 | | 15.7 | H | 6 | 8 | " | | 513 | 6/20 | 1148A
1145A | BREWSTER | 7.5 | 12.8 | 1.92 | | 24.6 | 6 | 4 | | FC12 | 566 | 7-3 | 1135A
1150A | n | 7.5 | 9.81 | 1.75 | | 17.2 | | .6 | 8 | ** | | _514 | 6/27 | 1155A | l | 7.5 | 12.0 | 1.92 | | 23.0 | .6 | 4 | | | 567 | 7-10 | 1200N
1145A | | 7.5 | 11.7 | .1.50 | ļ | 17.6 | | .6 | 8 | | | _515 | 7/5 | 1140A | | 7.5 | 9.75 | 2.19 | | 21.4 | .6 | 4 | | | 568 | 7-17 | 1155A | | 7.5 | 13.2 | 1.52 | | 20.1 | - | 6 | 8 | - | | -516 | 7/11 | 1130A | | 7.5 | 9.75 | 2.33 | | 22.7 | .6 | 4 | ļ | _** | 569 | Z-1Z. | 1158A
1100A | BREWSTER | 7.0 | 16.6 | 1.23 | ļ | 20.5 | ļ., | 6 | 4. | FC12 | | 517 | 7/18 | 1115A
1120A | | 7.5 | 9.75 | 2.05 | | 20.0 | 6. | .4. | | | 570 | 7-24 | 1110A
1110A | WADD1COR | 7.5 | 11.6 | 1.52 | | 17.6 | | 6 | 8 | FC37 | | -518 | 7/25 | 1130A
1130A | *** | 7.5 | 935 | 2.05 | | 19.2 | 6 | 4. | ļi | | 571 | 7-31 | 1120A
1105A | | 7.5 | 11.7 | 1.48 | | 1.7.3 | - - | 6 | 8 | " | | 519 | 8/1 | 1136A | ., | 7.5 | 9.00 | 2.11 | | 19.0 | .6 | 4 | | •• | 572 | 8-7 | 1115A
1112A | BREWSTER | 6.0 | 11.8 | 1,57 | | 18.5 | H | 6 | 3 | FC12 | | 520 | 8/8 | 1150A | BONAD IMAN | 7.5 | 8.70 | 2.25 | | 19.6 | . ,6 | 7 | | FC 19 | 573 | 8-14 | 1124A | | 6.0 | 13.2 | 1,56 | - | 20.6 | | 6 | 3 | -"- | | -521 | 8/15 | 140A | | 7.5 | 10.4 | 2.12 | | 22.1 | | .4. | | •• | 574 | 8-21 | 1116A
1140A | | 6.0 | 13.2 | 1,50 | | 19.8 | | 6 | 3 | | | 522 | 8/22 | 1120A
1130A | 14 | 7.5 | 9.52 | 2.19 | | 20.8 | .6 | 5 | - | | 575 | 8-28 | 1150A | WADDICOR | 7.5 | 8.24 | 1.70 | ļ | 14.0 | | .6 | 8 | FC37 | | 523 | 8/29 | 1120A
1130A | BREWSTER | 7.5 | 9.75 | 2.06 | | 20 .1 | .6 | 4 | | FC12 | 576 | 9-4 | 1040A | | 7.5 | 11.2 | 1.56 | ļ | 17.5 | | 6 | 8 | | | 524 | 8/5 | 1105A
1115A | | 7.5 | 9.75 | 2.04 | | 19.9 | 6 | 4 | | ····· | 577 | 9-11 | 1110A | | 7.5 | 11.3 | 1.50 | | 16.9 | - | .6 | .8 | | | 525 | 9/12 | 1105A
 | | 7.5 | 9.00 | 2.11 | | 19.0 | | 4 | ļ ļ | ··· | 578 | 9-18. | 1120A
1130A
1110A | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 7.5 | 11.4 | 1.46 | | 16.7 | 1 | | 8 | | | 526 | 9/19 | 1040A
1050A | | 7.5 | 13.5 | 1.53 | | 20.6 | .6 | 4 | | ** | 579 | 9-25 | 1120A | # | 7.5 | 11.5 | 1.24 | ļ | 14.2 | | .6 | 8 | ** | | _527 | 9/26 | 1050A
1100A | | 7.5 | 13.5 | 1.54 | | 20.8 | .6 | 4 | | | ĺ | | | | | | | | | | | | | | | DISCHARGE | MEABUREM | ENTS OF | ARROY | O SECC |) | | | | F5 | 8-S_ | | | DISCHARDE | MEASURE | MENTE OF | . BANTA | DITCH | | | | | FB | 7-S | | |-------|--------------|----------------------|-----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-----------------|--|---------------|-----|-----------|-------------------------|-----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|----------------------|---------------------------|--------------| | | H <u>eta</u> | | Avenue 26 | | | DUR | ING THE Y | EAR ENDING | BEPTEM | BER 31 | 9, 1,46 | - | | HEAR | | Head of Pipe L: | ne | | | ING THE YE | AR ENDING | ВЕРТЕНЯ | ER 30, |
19.46 | | | NO. | DATE | BEGIN | MADI BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAR
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FEET | DISGHARGE
SEC. FT. | RAT- MET | HEAD
SECONO. | B. G. HT.
CHANGE
TOTAL | METER
NO, | NO. | DATE | #EGIN
END | MADE BY | WIDTH
FERT | AREA OF
SECTION
SQ. FY. | MEAN
VELOCITY
FT.PER SEC. | GAUBE
HÉIGHT
FEET | DISDHARGE
BEC. FT. | RAT HETH | MEAR.
MEC.
ND, | G. HY.
CHANGE
TOTAL | METER
NO. | | .115 | 10/4 | 423P
428P | BOLL INGER | 4.2 | 0.77 | 1.13 | | 0.87 | f | . 4 | | FC6 | 451 | 10/4 | 1210P
1220P | BREWSTER | 4.5 | 8.35 | 2.71 | | 22.6 | .6 | 4 | | FC12 | | 116 | 11/23 | 920A
923A | HAIG | 3.5 | 0.65 | 1.12 | | 0.73 | _ 45 | 14 | 1 | FC35 | 452 | 10/11 | 1206P
1215P | | 4.5 | 7.00 | 3.26 | | 22.8 | 6_ | 4_ | | | | 117 | 11/29 | 950A
953A | ** | 4.0 | 0.96 | 1.77 | | 1.7_ | FLOAT | <u>s 4</u> | J | | 453 | 10/18 | 1130A
1140A | | 4.5 | 7.55 | 2.54 | | 19.2 | | 4 | | | | _118_ | _12/6 | 445P
450P | 11 | 4.0 | 0.55 | 0.89 | | 0.49 | SURF | ACE 4 | | FC35 | 454 | 10/25 | 1205P
1215P | ļ | 4.5 | 6.55 | 3.63 | | 23.8 | .6 | 4 | | <u></u> | | 119 | 12/13 | 244P
250P | | 3.0 | 0.48 | 1.15 | | 0.55 | .: | 5 4 | - | | 455 | 11/1 | 1125A
1135A | | 4.5 | 6.10 | 3.70 | | 22.6 | 6 | 4 | | | | 120 | 1/3 | 315P
320P
145P | * | 4.0 | 0.60 | 2.50 | <u> </u> | 1.5 | | 54 | · | <u></u> | 456 | 11/8 | 1125A
1135A
1144A | ···· | 4.5 | 8.35 | 3,04 | | 25.4 | 6- | 4 | | ** | | 121 | 1/24 | 150P
300P | | 4.0 | 0.80 | 1.23 | | 0.98 | | 5 4 | 4 | | 457 | 11/15 | _1156A | | 4.5 | 7.45 | 3.07 | | 22.9 | . 6 | 4 | | | | 122 | 1/31 | 305P
318P | | 4.5 | 1.04 | 1,15 | - | 1.2 | | 5 5 | 5 | | 458 | 1.1/23 | 1145A
1155A
1132A | | 4.5 | 7.40 | 3.14 | | 23.2 | 6 | 4 | | ** | | 123 | 2/21 | 323P | | 3.6 | 0.62 | 1.66 | | 1.0 | | 5 4 | | ••• | 459 | 11/29 | 1141A
1140A | | 4.5 | 4.90 | 3,55 | | 17.4 | . 6 | 4 | | | | -124 | 3/7 | 1120A
305P | | 4.0 | 0.84 | į | | 1.1 | - 1 | 1_4 | | | 460 | 12/6 | 1150A
1135A | | 4.5 | 5.35 | 3.76 | | 20.1 | .6. | 4_ | | ** | | 1:25 | 3/21 | 310P
200P | ••• | 4.0 | 0.70 | | | 1.1 | | 5 5 | | | 461 | 12/13 | 1145A
1204P | | 4.5 | 5.80 | 3,38 | | 19.6 | .6 | 4 | - | | | 126 | 3/28 | 210P
930A | | 5.0 | 1.50 | ĺ | | 5.6 | T-1 | 5 4 | | | 462 | 12/20 | 1214P | | 4.5 | 15.0 | 1.57 | | 23.6 | . 6 | 4 | | | | 127 | 4/4 | 935A
405P | | 4,0 | 0.92 | | | 2.4 | | 6 4 | | | 463 | 12/27 | _1100A | | | | | | _ 0 | - | \vdash | | | | 128 | 4/11 | 41 OP | | 4.0 | 0.72 | 2.22 | <u> </u> | 1.6 | | 5 4 | | - | 473 | 3/7 | 1148A
1116A | INCL. NO FLOW | | | | | | | + | | | | 129 | 4/18 | 145P
135P | | 4.0 | 11.10 | ĺ | | 2.6 | | 5 4 | | | 474 | 3/14 | 1126A
1128A | BREWSTER | 4.5 | 6.26 | 2,57 | | 16.1 | .6 | 4 | | FC12 | | _130 | 4/25 | 140P
410P | | 4.0 | 1.00 | 2.00 | - | 2.0 | | 5 4 | | | 475 | 3/21 | 1137A
1020A | | 4.5 | 1.03 | 0.75 | - | 0.77 | .6 | 4 | -+ | | | 131 | 5/2 | 415P
316P | , 11 | 4.0 | 1.22 | 2.30 | <u> </u> | 2.2 | | 5 4 | | | 476 | 3/28 | 1030A | | 4.5 | 1.20 | 2.00 | | 2.4 | 6 | 4. | | | | 132 | 5/9 | 320P | | 4.0 | 1.06 | | | | | Ť | | | 477 | 4/4 | 1115A | " | | | | | 0 | | † | | | | 133 | 5/16 | 125P | _ | 4.0 | 0.44 | 1.57 | | 1.0 | | 5 4 | | | 478 | 4/11 | 1124A | | | | | | . 0 | | ļ | | | | 134 | 5/23 | 150P
240P | | | | | | | | | T | - | 479 | 4/18 | 1140A
1125A | | 4.5 | 2.02 | | 1 1 | 8.4 | -6 | 1 . | | FC1·2 | | 135 | 5/31 | 245P
225P | HAIG | 3.0 | 0.83 | 1 | | 0.82 | 1 | - 1 | 7 | FC35 | 480 | 4/25 | 1135A | BREWSTER | 4.5 | 4.42 | 2.67 | | 11.8 | .6 | 1 | | 1012 | | 136 | 6/6 | 230P
340P | | 3.5 | 0.77 | | - | 0.81 | | | - | | 481 | 5/2 | 1136A | | 4.5 | 9.52 | 2.94 | - | 28.0 | .6 | 1 | | | | 137 | 6/20 | 345P
420P | | 3.0 | 0.80 | | | 0.80 | | | 4 | | 482 | 5/9 | 1134A
1135A | | 4.5 | 6.10 | 3.74 | 1 1 | 22.8 | .6 | 1 | | | | 138 | 6/27 | 305P
310P | | 4.0 | 0.83 | | | 1.1 | | | 4 | ·- | 483 | 5/16 | 1140A | | 4.5 | 7.45 | 3.66 | | 27.3 | .6 | | | | | 139 | 7/5 | 330P
335P | | 4.0 | 0.82 | | | 0.95 | | | 4 | | 484 | 5/23 | 1150A | | 4.5 | 6.10 | 3.67 | | 22.4 | | 4 | | | | 140 | 7/11
7/18 | 34 5P
350P | | 4.0 | 0.72 | | | 0.84 | | | 4 | | 485 | 5/31 | 1058A | -1 | 4.5 | 6.21 | 4.13 | | 25.6 | .6 | | | | | 141_ | 7/25 | 405P | | 4.0 | 0.78 | | | 0.88 | | | 5 | | 486 | 6/7 | 1109A
1125A | ·] | 4.5 | 6.20 | 3.77 | , | 23.4 | .6 | | | | | 142 | 8/1 | 240P
245P | ,, | 4.0 | 0.78 | | | 0.89 | | \neg | 4 | | 487 | 6/20 | 1117A | | 4.5 | 6.55 | 3.27 | 1 . | 21.4 | ,6 | 1 | | | | 144 | 8/8 | 1125A
1130Á | | 3,5 | 0.8 | 3 0.98 | | 0.8 | | 5 | | | 489 | 6/27 | 1125A | | 4.5 | 6, 10 | 3.28 | | 20.0 | .6 | 4 | | | | 145_ | 9/4 | 100P | | 2.4 | 0.4 | | T | 0.45 | П | .6 | 4 | FC37 | 490 | 7/5 | 1110A | | 4.5 | 6.39 | 3.44 | | 22.0 | .6 | 4_ | | | | | , | , | , | | , | , ,,,,,, | 1 | , | | | | | 491 | 7/11 | 1100A | i | 4.5 | 6.42 | 3,08 | | 19,8 | .6 | ļ | | | | | | | | | | | | | | | | | 492 | 7/18 | 1040A | · [| 4.5 | 9.40 | 2,19 | | 20.6 | ه 🗀 | 4 | | | | | DIRCHARGE | MEABURE | MENTS OF ARROYO | SECO | | | | | | F.58 | -S | | 493 | 7/25 | 1050A | | 4.5 | 9.16 | 2.01 | | 18,4 | .6 | 4_ | | | | | AT
NEAR- | Avenue | - 26 | | | | | | | | | , | 494 | 8/1 | 1105A | | 4.5 | 5,82 | 3.36 | | 19.6 | .6 | 4 | ļ | | | | | A TENUE | 2.20 | | | | IND THE | YEAR ENDING | SCPTE | MBER 3 | 30, 19.4 <i>4</i> | - | 495 | 8/8 | 1110A
1116A | | 4.5 | 9.14 | 2.39 | | 21.8 | 6 | 4. | ļ | FC 19 | | NO. | DATE | BEGIN
END | MADE BY | WIDTH | SECTION
SQ. FY. | MEAN
VELOCITY
FY.PER SEC. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FY. | RAT- MI | TH- ME | AB. G. HT
C. DHANGE
D. TOTAL | METER
NO. | 496 | 8/15 | 10504 | | 4.5 | 5.40 | 3.30 | | 17.8 | 6 | 4 | ļ | | | 146 | 10-24 | 105P | WADDICOR | 2.0 | Ī | | | 0.20 | П | | , | FC37 | 497 | 8/22 | 11004 | * ** | 4.5 | 5.35 | 3.54 | 1 | 18.9 | .6 | 4 | | ··- | | 147 | 12-12 | 121P
126P | ĺ | 4.5 | 1.37 | 1 | T | 1.3 | li | 6 | | | 498 | 8/29 | | BREWSTER | 4.5 | 6.21 | 3.03 | 4 | 18.8 | .6 | 4 | | FC1'2 | | 148 | 2-13 | 135P | | 7.0 | 2.15 | 1 | | 2,5 | 1 1 | 6 . | | .,, | 499 | 9/5 | 1040 | " | 4.5 | 6.10 | 3,10 |) | 18.9 | .6 | 4 | | <u></u> | | 149 | 2-27 | 255P
257P | | 7.0 | 1.40 | | | 1.6 | í ! | 5 2 | 1 | FC35 | 500 | 9/12 | 1045/ | <u> </u> | 4.5 | 6.43 | 3.0 | 5 | 19.6 | | 4_ | - | | | 150 | 3-21 | 1020A
1025A | | 9.7 | 2.97 | 1 | | 5.6 | | 6 5 | 1 | | 501 | 9/19 | 1015/
1025/ | · ! | 4.5 | 5.89 | 2.87 | - | 16.9 | | 4 | ļ | | | 151 | 3-27 | 252P
256P | ** | 5.5 | 1.29 | 1 | | 0.92 | i i | 5 5 | | | 502 | 9/26 | 1030/ | | 4.5 | 6.86 | 2.73 | Ц | 18.7 | .6 | 4 | - | | | .152 | 4-3 | 212P
217P | *** | 6.0 | 1.01 | 1 | | 1,2 | 1 | 5 5 | | | 1 | | | | | | | | | | | | | | 153 | 4-17 | 325P
327P | | 6.5 | 1.07 | 1 | | 1.0 | | 5 4 | | | | | | | | | | | | | | | | | 154 | 5-i | 230P
232P | BLAKELY | 5.0 | 0.84 | 1.19 | | 1.0 | | 5 3 | | | | | | | | | | | | | | | | | | 5-15 | 248P
_251P | 19 | 4.0 | 1.00 | 1 | | 1.2 | 1 | 5 4 | | | 1 | | | | | | | | | | | | | | | 5-21 | 215P
225P | STUNDEN | 4.0 | 0.80 | ł | | 0.74 | | 5 4 | - 1 | FC 36 | 1 | | | | | | | | | | | | | | 157 | 6-2 | 221P
225P | 1 | 4,2 | 1 | i | <u> </u> | 0.98 | | - 1 | <u>. </u> | FC35 | 1 | | | | | | | | | | | | | | 158 | 6-12 | 259P
301P | | 3.8 | i.36 | | <u> </u> | 0.96 | | 5 3 | <u>. </u> | | 1 | | | | | | | | | | | | | | 159 | 7-10 | 947A
955A | | 4.3 | 1.23 | 0.89 | <u> </u> | 1.1 | | 5 5 | <u>; </u> | | | | | | | | | | | | | | | | 160 | 7-17 | 302P
307P | | 3.8 | 0.83 | 0.87 | | 0.72 | <u> </u> | 5 5 | 5 | _ | | | | | | | | | | | | | | | | | | MENTS OF BANTA | | | | | | | | | | | | | | RENTE OF BIG ROC | | | | | | | | | | |------------|--------------|-------------------------|--------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-------------------|------------------------|----------|--------|-------------|-------|------|-----------|------------------------|------------------|---------|-------------------------------|---------------------------------|-------------------------|-------------|-----------|---------------|---------------------------|--| | | | meat C | T | WIDTH | | | | DIECHARGE | , | | | | метея | | | a DOVE | | WIDTH | | MEAN
VELOCITY
FT.PER SEC. | | | | | | | | ×0. | DATE | 1050A | MADE BY | PERT | AREA OF
SECTION
EQ. FT. | HEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FRET | SEG. FT. | | DO N | Ï | TOTAL | NO. | HO. | DATE | 145P | YE TOLK | FEET | 1 | | HEIGHT
FEXT | | NAT- METH | | M. HY.
DHANGE
YOTAL | | | 503 | 10-3 | 1100A
1100A | BREWSTER | 4,5 | 7.99 | | | 19.6 | | | 4 | | FC12 | 107 | 10-10 | 150P | LUCE | 10.5 | 4.25 | 1.15 | | 5.9 | - 6 | 6 | | FC3 | | 504 | 10-10 | 1110A
1045A | | 4,5 | 6,21 | 3.01 | | 18.7 | | | 4 | | | 108 | 10-31 | 140P
215P | | 8.0 | 4.18 | 1178 | | 22.3 | .6 | 8 | | | | :05 | 10-17 | 1055A
1105A
1115A | 71 | 4.5 | 9.70 | 1.54 | | 13.6 | | | 4 | | | 109 | 12-19 | 225P
1010A
1020A | * | 14.5 | 16.4 | 3.93 | _ | 64.7 | .6 | 8 | | † | | 506 | | 1145A
1155A | | | | | | 11.8 | | | 4 | | | 111 | 1-16 | 145P
200P | | | 15.4 | 3.63 | | 55.9 | .6 | 9 | | | | 507
508 | 10-31 | 1135A
1145A | 19 | 4.5 | 4.41 | 2.68 | | 11.8 | | | 4 | | | 112 | 1-31 | 1150A
1200N | 44 | | 12.0 | 4.11 | | 49.3 | .6 | 10 | | ٠. | | 509 | 11-15 | 1010A | то | 7.5 | 4.04 | 1.77 | | 0 | | | | | | 113 | 2+6 | 130P
135P | * | 19.0 | | 2,75 | | 36.0 | .6 | 9 | | ١., | | 527 | 3-20 | 100P | INCL NO FLOW | | | | | 0 | | Ï | | | | 114 | 2-21 | 225P
235P | ** | | 11.3 | 3.08 | |
34.8 | .6 | 7 | | ١., | | 528_ | 3-27 | 205P
215P | WADDICOR
VAN DER GOOT | 4.5 | 7.79 | 2,38 | | 18.5 | | .6 | 5 | | FC37 | 115 | 3-13 | 1005A
1015A | | 17.5 | 1 | 3.14 | | 27.0 | .6 | 7 | | •• | | 529 | 4-2 | 210P
220P | WADDIGOR | 4.5 | 5.71 | 2.63 | | 15.0 | 1 1 | | 5 | | ., | 116 | 3-20 | 130P
140P | | 19.0 | 10.9 | 21.67 | | 29.1 | .6 | 8 | | | | 530 | 4-10 | 155P
205P | -144 | 4.5 | 4.17 | 2.20 | | 9,2 | | .6 | 5 | | . ** | 117 | 4-4 | 335P
345P | ** | 18.2 | 9.47 | 2.47 | | 23.4 | .6 | 7 | | | | 531 | 4-17 | 210P
220P | •• | 4.5 | 5.55 | 2.45 | | 13.6 | | .6 | 5 | | | 118_ | 4-16 | 215P
225P | 44 | 12.0 | 9.10 | 1.44 | | 13.1 | .6 | 6 | | ٠. | | 532 | 4-24 | 155P
205P | •н | 4.5 | 4.50 | 2.37 | | 10.6 | | .6 | 5 | | • | 119 | 5-1 | 230P
240P | 11 | 12.2 | 7,43 | 1.33 | | 9,9 | .6 | 6 | | | | 533 | 5-1 | 132P | *** | 4.5 | 5.08 | 2,38 | | 12.1 | <u> </u> | .6 | 5 | | | 120 | 5-15 | 1015A
1020A | ., | 14.0 | 8,30 | 1.17 | | 9.7 | .6 | 7. | | | | 534 | 5-8 | 130P
140P | * | 4.5 | 5.40 | 2.76 | ļ | 14.9 | | .6 | 5 | | | 121 | 6•5 | 1005A
1015A | | 13.5 | 7.76 | 1.17 | | 9.1 | .6 | 7 | | ٠. | | 535 | 5-15 | 155P | | 4.5 | 6.25 | 2.91 | ļ | 18.2 | H | .6 | 5 | | ٠ | 1:22 | 7-10 | 255P
305P | | 10.0 | 6.26 | 0.86 | ļ | 5,4 | .6 | 5 | | | | 536 | 5-22 | 115P
125P
120P | *** | 4.5 | 5.66 | 2.63 | | 14.9 | | 6 | 5 | | ** | 123 | 8-14 | 300P
315P | • • | 11.0 | 6.01 | 0.88 | | 5.3 | .6 | 6 | | | | 537 | 5-29 | 130P | - 144 | 4.5 | 5.11 | 2.66 | ļ | 13.6 | | 6 | 5 | | | 124 | 9-11 | 310P
320P | -44 | 11.5 | 6.22 | 0.85 | ļ | 5.3 | .6 | 6 | | ļ. <u>.</u> | | 538 | 6-5 | 125P | - 25 | 4.5 | 4.30 | 2,09 | | 9.0 | | | 5 | | | | | | | | | | • | | | | | | | 539 | 6-12 | 150P | | 4.5 | 5.41 | 2.49 | | 13.5 | | _ | 5 | | | | | | | | | | | | | | | | | 540 | 6-19 | 200P | ** | 4.5 | 4.67 | 2.42 | | 11.3 | l-ŀ | .6 | 5 | | | | DISCHARGE | MEASURE | HENTS OF | BIG R | OCK CR | EEK | | | | Fı | 83-S | į | | 541 | 6-26 | 120P | - 11 | 4.5 | 5.63 | 2.88 | ļ | 16.2 | H | | 5 | | - | | AT HEAR_ | | Paimdale - Vict | orvill | e Road | DUR | 3HT DK | EAR ENDING | BEPTEMB | ER 20, | 46 | _ | | 542 | 7-3 | 150P
130P | | 4.5 | 5.09 | 3.01 | - | 15.3 | ├╌ | | 5 | | | | 1 | SKEIN | | WIDTH | ARTA EF | HEAN | PAUDE | DISCHARGE | | MEAS. | а. нт. | | | 543 | 7-10 | 140P | · | 4.5 | 5.28 | l . | | 16.1 | H | $\neg T$ | 5 | | | ND. | DATE | 255P | NADE BY | PEET | AREA DF
SECTION
SQ. FT. | HEAN
VELOGITY
FT.PER SEG. | RAUBE
HEIBHT
FEET | ato. FT. | NAT- METH | SEG.
NO. | D. HT.
CHANDE
TOTAL | 7 | | 544 | 7-17 | 130P | BREWSTER | 4.5 | İ | 2.59 | | 12.6 | | 6 | 4 | | FC12 | 29 | 12/24 | 305P | TURNER | 8.0 | 4.55 | 3.03 | ļ | 13.8 | .6 | 5 | | FC4 | | 45 | 7-17 | 140P | WADDICOR | 4.5 | | 2.57 | | 12.4 | H | .6 | 5 | | FC37 | 30 | 1/30 | 330P
335P
335P | | 2.0 | 0.33 | 0.94 | | 0.31 | . 5 | 2 | | ╁ | | 47 | 7-24 | 115P
130P
140P | •н | 4.5 | | 2.16 | | 10.6 | H | | 5 | | | 31_ | 3/20 | | ** | 7.5 | 5.66 | 2.60 | Į. | 14.7 | .6 | $\overline{}$ | | - | | 48 | 8-7 | 1040A
1050A | BREWSTER | 4.5 | 4.86 | 2.43 | | 11.8 | П | | , | | FC12 | 32 | 4/9 | 420P | | 10.0 | 2.04 | 1.27 | | 2.6 | | 4 | | ╁ | | 549 | 8-14 | 1030A
1040A | | 4.5 | 4.30 | 1 | | 11.4 | l | 6 | | | | _33 | 5/3 | 100P | ** | 17.0 | 7.69 | 2.46 | ļ | 18.9 | .6 | 6 | | <u> </u> | | 50 | 8-21 | 1047A
1056A | | 4.5 | 1 | 2.77 | | 13.0 | П | 6 | | | | | | | | | | | | | | | | | | 551 | 8-28 | 110P
120P | WADDICOR | 4.5 | i | 2.52 | | 13.3 | | 6 | 5 | | FC37 | | | | | | | | | | | | _ | | | 592 | 9-4 | 1050A
1100A | ·# | 4.5 | i | 2.57 | | 12.6 | | 6 | 5_ | | -198 | | DIBENARUI | HEASURE | HENTE OFBIG_RO | OCK CRE | EK | | | | | 183- | S | | | 553_ | 9-11 | 100P | | 4.5 | 4.45 | 2.34 | | 10.4 | | 6 | 5 | | | | NEAR. | Palmd | ale - Victorvil | ie Road | | DU | IND THE | EAR ENDING | BEPTEME | ER 30, | ,, 47 | - | | 554 | 9-18 | 115P
125P | | 4.5 | 4.88 | 2.33 | | 11.4 | | 6. | 5 | | - 18 | HO. | DATE | REDIN | HADE BY | WIDTH | AREA OF
BEGTION
30. FT. | MEAN
VELODITY
FT.PER BEG. | BAUDE
HEIBHT
FEET | DIBCHARDE | HAT- METH | MEAS. | g. HT. | н | | 555 | 9-25 | 120P
130P | | 4.5 | 4.84 | 2.26 | ļ | 10.9 | | 6 | 5 | | -41 | ļ | | 350P | | FEET | 10. FT. | FT.PER BEO. | FEET | 8EC. F7. | 00 ENI | NO. | YOTAL | - | | | | | | | | | | | | | | | | 34 | 12-19 | 355P
1050A | | 2.0 | 0.20 | į | | 0.10 | . 6 | 2 | | FC | | | | | | | | | | | | | | | | 35 | 1-3 | 1100A
215P | *** | 14.5 | | 2.90 | | 25.1 | -6 | | | + • | | | DIBOHAROE | HEABURE | MENT8 OF | BIGR | OCK CR | EEK | | | | F | 143- | <u>-s</u> | | 36 | 2+6 | 225P
350P | | 15.0 | 9,57 | 1 | | 25.3 | -6 | 1 | | +: | | | | | above Pallette | Creek | | DUR | ING THE | EAR ENDIN | 9EPT | EHRES | 30, 1 | <u>. 46</u> | | 37 | 2-21 | 400P | *** | 13.5 | 8,71 | 3,18 | | 27.7 | .6 | 1 | | | | | 1 | | Ι | | 4954 77 | MEAN | TANTE | DIEDHARBE | 1 | | EAS. 9 | l. HT. | HETER | 38 | 3-13 | 1125A
245P
252P | | 9.0 | 4.88 | 1.98 | | 10.0
8.0 | .6 | 1 1 | | ١. | | NG. | DATE | ÉND | MADE BY | WIDTH
FEET | SECTION
SQ. FT. | MEAN
VELODITY
FT.PER SEG. | WAUSE
HEISHT
FEET | 9ED. 7T. | 1×B | DO 1 | HD. 0 | HANSE | NO. | 40 | 4-16 | 305P | | 3.0 | 7.04 | | | NO FLOW | 1.0 | +- | | T | | . 95 | 10/15 | | TURNER
HUGHES | 10.0 | 4,64 | 1,64 | | 7.6 | \vdash | | 5 | | FC43 | | + 7 10 | | | , | 1 | • | - | | | | | + | | 96 | 11/16 | | TURNER | 10.0 | 4.46 | 1.43 | | 6.4 | H | | 6 | | | | | | | | | | | | | | | | | 97 | . 12/12 | | | 10.0 | 4.04 | 1.41 | | 5.7 | \vdash | T i | 5 | | " | | | | | | | | | | | | | | | 98_ | 1/30 | 240P
250P
145P | •• | 17.0 | 8,61 | 1 | ļ | 13.8 | \vdash | | 9 | | | | | | | | | | | | | | | | | 99 | 2/25 | | | 17.0 | 10.4 | 1.77 | - | 18.4 | \vdash | | 9 | | | | | | | | | | | | | | | | | 100 | 3/20 | 200F | | 19.5 | 9.29 | 1.78 | | 16.5 | $\left \cdot \right $ | -6 | 8 | | | | | | | | | | | | | | | | | 101 | 4/9 | 235P | | 23.0 | 16.7 | 2.73 | | 45.6 | H | | 9 | | - : | | | • | | | | | | | | | | | | | 5/3 | 1030A | ** | 23.0 | 16.2 | 2.78 | T | 45.0 | \vdash | .6 | 8 | | FC39 | | | | | | | | | | | | | | | 102 | 1 | | LUCE | 15.0 | 9.50 | 2.06 | 1 | 19.6 | - | •6 | 0 | | . 039 | | | | | | | | | | | | | | | 102
103 | 6/12 | 435P | | 1 | ļ | l | 1 | 1 | 1 | . | _ | | ! | ٠. | | | | | | | | | | | | | | | 6/12
7/10 | 435F | •• | 10.0 | 4.43 | | | 8.6 | Н | .6 | 6 | | | , | | | | | | | | | | | | | | 103_ | 1 | 435P | | 10.0 | 5.13
4.11 | 1.15 | ļ | 8.6
5.9
6.5 | | | 7 | | | | | | | | | | | | | | | | | | DISCHARGE | MEABUREN | ENTS OFBURS | ANK WES | STERN S | STORM | DRAIN | | | F28 | 5-5 | | HD. | DATE | BESIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | WEAN
VELODITY
FT-PER BEG. | BAUBE
HEIBHY
FEET | DISCHARSE
SEO, FT. | RAT- | 12TH- | EAS. B | HANSE | HETER
HD. | |--------|-------------------|-----------------|-----------------|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------------------|-------------|--|--------------|----------|--------------------|-----------------------|--------------------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|--------------|--------|--------|--------------| | | AT
NEAR. | | Riverside Drive | | | | IND THE Y | EAR ENDING | 3 EPTEM 3 | KR 20. | , <u>,46</u> | _ | | | 338P | - | | | | | | | 1 | | - STAL | | | | ****** | | 1 | | | | | | | an 10, | | | 73 | 4/25 | 343P | BOLLINGER | 3.2 | 0.73 | 1.25 | 10.68 | ì | 1 | | '5 | | FC6 | | ND. | DATE | BEGIN
END | MADE BY | WINTH | AREA DF
SECTION
EQ. FT. | MEAN
VELOSITY
FT.PER BEG. | GAUSE
HEIBRY
FEET | DISCHARGE
SEC. FT. | RAT- METH | HEAD. | S. HT. | METER
HD. | 74 | 5/2 | 412P | | 2.6 | 0.69 | 1.16 | | 0.80 | H | .6 | 3 | | | | | | 1220P | HAIG | | ĺ | | | | | 1 | 1 | | .75 | 5/6 | 1.148A | | 4.3 | 1.22 | 0.66 | 10.64 | 0,80 | 1 | ,5 | 6 | - | 44 | | | 12/10 | 1225P
405P | BOLLINGER | 30.0 | 3.90 | 1 | | | FLOAT | 1 | - | | 76 | 5/16 | 350P
355P | ** | 2.0 | 0.47 | 0.96 | 10.64 | 0.45 | | .5 | 3 | | ** | | 2_ | 1/23_ | 418P
1250P | HAIG | 34.5 | 3.60 | 1.44 | | 5.2 | - !" | 7 | | | 77_ | 5/23 | 415P
419P | | 2.7 | 0.43 | 1.21 | 10.62 | 0.52 | | .5 | 3 | | 120 | | 3- | 6/6 | 1 QQP | | 34.0 | 5.31 | 0.88 | | 4.7 | -5 | 8 | | FC35 | 78 | 5/31 | 423P
428P | | 2.2 | 0.42 | 0.52 | 10.58 | 0.22 | | .5 | 3 | | | | _4 | 6/27_ | 830A
840A | ,, | 21.0 | 5.83 | 0.60 | | 3.4 | .5 | 12 | | ** | | | 420P | ** | 1.5 | 0.24 | 0,50 | 10,52 | 0.12 | П | .5 | 2 | | | | - 5 | 7/11 | 950A
1008A | | 20.0 | 6.97 | 0.76 | | 5.3 | .5 | 12 | | | 79 | 6/13 | 335P | | | | 0.17 | 10.52 | | | | 2 | | FC35 | | | 7/25 | 1000A | | 37.0 | 8.02 | 0.97 | | 7.8 | .5 | 14 | | | - 80 | 7/10 | .340P. | HAIG | 0.50 | 0.12 | 0.17 | 10.52 | 0.02 | 4 | .5 | - | | 1035 | | 7 | 8/8 | 910A
920A | ** | 19:5 | 5.05 | | | 3.2 | | 11 | 1053A | | [| 1 | | | | .5 | 1 | | | | | | | | | | | | | | | | | | 8 | 8/.22 | 1102A
1058A | | 19.5 | 5.64 | | | 4.9 | | 1 | | FC6 | | DIECNAROE | MEABURE | MENTS OFCOLD CRE | EK | | | | | | F8 | ı-s | | | | 9 | 9/4 | 1108A | | 23.0 | 6.93 | 0.59 | | 4.1 | .6 | | | FC37 | | MAT. C | rater | Camp | | | | | | | | | \- T | | | 10 | 9/20 | 11434 | BOLLINGER | 18.0 | 5.81 | 0.79 | | 4.6 | .6 | 9 | <u> </u> | FC6 | | HEAR. | | Camp | | | DUR | ING THE Y | TAR ENDING | S SEPT | XMB ER | 30, 1 | •41 | | | | | | | | | | | | | | | | жБ, | PATE | BERIM | HADE BY | WIDTH | AREA OF | MEAN
VELDOITY
FT.PER BED. | EAUGE
HEIGHT
FEET | DISCHARGE
SEC. F7. | RAT- | KETH- M | EAS. S | . нт. | METER
NO. | | | | | | | | | | | | | | | | <u> </u> | 1112A | | FEET |
eq. FT. | FT.PER SEC. | FEET | 8EC. F7. | INS | Eb | MG. | TOTAL | HO. | | | n.en | uese | BURBANK W | ESTERN | STORM | DRAIN | | | | F | 285- | s | 81 | 11-20 | 1122A | WADDICOR - OCAMPO | 10.0 | 11.0 | 2.34 | | 25.7 | | .6 | 6 | F | C37 | | | | | | | | | | | | | | | . 82 | 11-21 | 500P
507P | BOLLINGER | 6.0 | 1.36 | 1.18 | | 1.6 | Ш | .5 | 4 | F | -C6 | | | nê⊼ Ri | versid | e Drive | | | DUR | ING THE Y | EAR ENDING | BEPTEMB | ER 30, | 19.47 | - | 83 | 11-24 | 1114A
1121A | | 8.0 | 2.41 | 1.24 | | 3.0 | | .6 | 8 | | ••• | | | | BEGIN | | | AREA OF | MEAN | BADRE | | | MFAF | a | 1 | 84 | 11-27 | 502P
_507P | ••• | 3,6 | | 0.83 | | 0,45 | | .5 | 4 | | | | NO, | DATE | END | MADE BY | FEET | BESTION
BQ. FT. | MEAN
VELODITY
FT.PER BEG. | SAUSE
HEISHT
FEET | DISCHARGE
SEC. FT. | RAT- HETH | BED.
ND. | TOTAL | HETER
NS. | 85 | 12-5 | 415P
422P | | 3.2 | | | | | \Box | . 1 | 4 | | ** | | 11 | 3-28 | 1145A
1150A | BLAKELY | 22.0 | 6.60 | 3.14 | | 20.7 | FLOA | TS | | | il | | 1040A | | 1 | 0.58 | | | 0.47 | | .5 | | -+ | | | 12 | 6-12 | 136P
142P | ** | | 4.15 | | | 3.5 | | | | FC35 | .86 | 12-6 | 1050A
454P | WADDICOR - QCAMPO | 10.0 | 2.4 | 1.00 | | 2.4 | \vdash | .6 | 5 | F | C37 | | | | 1240P | | | | | | | l i | 7 | | " | .87 | 12-12 | 500P
441P | BOLLINGER | 3.3 | 0.57 | 0.68 | | 0.39 | \vdash | .5 | 3 | | C6 | | 13 | 6-19 | 1246P
307P | ** . | | 4.92 | l | | 4.0 | -5 | | - | | 88 | 12-19 | 446P | - ** | 3.0 | 0.53 | 1.02 | | 0.54 | \sqcup | .5 | 3 | | | | . 14 | 7-2 | 313P
110P | BOLLINGER | 17.0 | 4.00 | 0.87 | | 3.5 | -6 | | | FC6 | 89 | 12-29 | 1246P
1254P | 1911 | 9.5 | 3.96 | 0.78 | | 3.1 | | .6 | 6 | | | | _15 | 7-17 | 116P | BLAKELY | 18.0 | 5.00 | 0.86 | | 4.3 | 5 | Ž. | | FC35 | 90 | 1-2 | 955A
1001A | •• | 6.0 | 1.89 | 1.46 | | 2.2 | | .6 | 5 | - | • | | _16_ | 7-31 | 146P | ** | 21.0 | 5.06 | 0.89 | | 4.5 | | 6 | ļ | | 91 | 1-9 | 942A
949A | | 5.3 | 1.46 | 0.96 | | 1.4 | П | .5 | 5 | | | | _17 | 8-13 | 150P
200P | TURNER | 18.0 | 5.22 | 0.77 | | 4.0 | .5 | 6 | <u> </u> | FC43 | i | 1-16 | 1011A
1017A | | 5.0 | 1.36 | | | 1.3 | | T | 5 | | | | _18 | 9-4 | 1140A
1146A | BLAKELY | 22.0 | 3.74 | 0.91 | | 3.4 | | .6 | | FC35 | | 1-23 | 958A
1003A | ** | | | | | | | | 5 | - | | | | | | | | | 1 | | | | ., | 1 | 1 | | | 1030A | ļ | 5.0 | | 0.93 | | 1.2 | 1 1 | - | - | -+ | | | | | | | | | | | | | | | | 94 | 1-30 | 1037A
1123A | | 5.0 | 1.46 | 1.03 | - | 1.5 | \vdash | .5 | 5 | | | | | | | | 201 | | | | | | | | | 95 | 2-6 | 1130A
953A | - | 3.2 | 1.19 | 0.82 | | 0.98 | Н | .5 | 5 | | | | | DISCHARGE | MEABUREN | CENTE OF | COL | D CREE | Κ | | | | - 11 | 31-S | | 96 | 2-13 | 958A
101.0A | ** | 4.0 | 2.04 | 0.54 | | 1.1 | | .6 | 4 | | | | | AT
HEAR | Crate | r Camp | | | DUR | ING THE Y | EAR ENDING | BEPTEME | ER 30, | 1046 | 3 | 97 | 2-20 | 1017A | ** | 4.2 | 1.23 | 0.81 | | 1.0 | | .5 | 7 | | | | | | | | | 1 | | , | | | | | | 98 | 2-27 | 1014A
1020A | - 10 | 4.3 | 1.17 | 0.73 | | -0.86 | | .5 | 5 | - | - | | жa. | DATE | SESIN
END | NADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MÉAN
VELODITY
PT.PER SEO. | BAUDE
HEIGHT
FEET | DIBOHARGE
BEG. FT. | RAT- METH | MEAB. | G. HT.
CHANGE
TOTAL | HETER
HO. | 99 | 3-6 | 936A
941A | | 4.2 | | 0.44 | | 0.97 | | | 5 | | | | | | 1050A | | 4.0 | 0.58 | 0.88 | | 0.51 | .5 | 4 | Ī | FC35 | 100 | 3-13 | 1000A
1007A | | 4,3 | | 0.34 | | 0.53 | | | 5 | | - | | . 54 | 12/27 | 1054A
930A | HÁ1G | 4.0 | | | | | | | | | | i | 403P | | 1 | | | | | П | | - | | | | 55 | 1/3 | 934A
930A | ** | 2.0 | 0.30 | 0.90 | | | .5 | T | | |]} | 3-27_ | 408P
341P | | 3.2 | 0.59 | | | 0.52 | \vdash | .5 | 4 | -+ | | | 56 | - 1/10 | 936A
935A | | 2.0 | 0.30 | 0.77 | 10.75 | 0.23 | | 4_ | - | | 102 | 4-3 | 348P
453P | | 4.6 | 1.25 | 0.39 | | 0.49 | ++ | .5 | 6 | -} | | | 57 | 1/17 | 945A
1005A | | 2.2 | 0.46 | 0.80 | 10.79 | 0.37 | .5 | 4 | | | 103 | 4-10 | 458P
400P | 74 | 3.7 | 1.23 | 0.39 | | 0.48 | \vdash | .5 | 4 | _ | ** | | 58 | 1/23 | 1008A | | 2.0 | 0.42 | 0.74 | 10.79 | 0.31 | . 5 | 4 | | | 104 | 4-18 | 407P | | 5.0 | 1,01 | 0.28 | | 0.28 | | .5 | 6 |] | *- | | 59 | 1/31, | 905A
910A | •• | 2.0 | 0.39 | 0.69 | 10.79 | 0.27 | .5. | 4 | | | | r totala . colecci | and the second second | and a special contract of the second | | mante o min teng on | Commence (Spinisher) | | | | oper, eagler | | | | | 60 | 2/3 | 405P
415P | | 12.0 | 5.01 | | 11.00 | | 5 | | | <u> </u> |] | | | | | | | | | | | | | | | | 2/7 | 1134A
1137A | | 3.5 | 0.76 | 1 | 10.68 | | 5 | 5 | | | | | | | | | | | | | | | | | | 61 | | 1'140A | | | 1 | ł | i | 62 | 2/14 | 1144A
902A | | 2.0 | 0.47 | i | 10.67 | ŀ | -6 | 3 | | | | | | | | | | | | | | | | | | 63 | 2/21 | 906A_
125P | ** | 2.1 | 0.48 | 0.85 | 10.68 | 0.41 | 5 | ì | | | | | | | | | | | | | | | | | | 64_ | 2/27 | 1115A | | 1.8 | 0.45 | 0.93 | 10.67 | 0.42 | .5 | 1 | ├ | | 1 | | | | | | | | | | | | | | | 65 | 3/14 | 1 12 QA | ** | 1.8 | 0.33 | 0.79 | 10.68 | 0,26 | .5 | 4 | - | ļ | ll . | | | | | | | | | | | | | | | 66 | 3/19 | 1139A
_1143A | BOLLINGER | 5.8 | 1.37 | 0.80 | 10.72 | 1.1 | .5 | 5 | <u> </u> | FC6 | | | | | | | • | | | | | | | | | 67 | 3/21 | 153P
158P | ., | 3.6 | 0.86 | 0.95 | 10.70 | 0.82 | .5 | 4 | | | ll | | | | | | | | | | | | | | | 68 | 3/28 | 120P
125P | | 5.7 | 1.22 | 0,86 | 1 | l . | .5 | 6 | _ | | | | | | | | | | | | | | | | | | | 905A | ara i c | | 10.7 | 2.71 | | 1 | .6 | | | FC35 | [] | | | | | | | | | | | | | | | 69 | 3/30 | 918A
200P | HAIG | 12,0 | 1 | | 1 | | .5 | | | FC6 | | | | | | | | | | | | | | | | 70 | _4/4 | 207P | BOLLINGER | 8.5 | 2.02 | 0.89 | [| 1 | | | | | fl | | | | | | | | | | | | | | | 71_ | 4/11 | 198P
146P | | 4.6 | 1,32 | 0.98 | 10.67 | 1.3 | 1 1 3 | +° | | | + | | | | | | | | | | | | | | | l - 70 | 1 4/10 | 200P | · | 5.0 | 0.07 | 1 103 | 10 66 | 1 10 | 1 6 | 1 5 | 1 | P. | II | | | | | | | | | | | | | | | | DISCHARGE | E HEABURI | EMENTS OF | ELIZAB | ETH LA | KE CRE | EK | | | | FI | 41-S | | ня. | DATE | END | HADE BY | WIDTH | AREA OF
SECTION
EQ. FT. | MEAN
VELOGITY
FT.PER SEO | GAUSE
HEISHT
FEET | DISCHARGE
SEC. FT. | RAT- | 00 NO | AB. G, HT
D. SHANS
TOTAL | T. HEYER | |-------------------|-------------|-------------------------|-------------------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|----------|----------------------|---------------------------|--------------|------------|----------------|--------------------------|--|------------|-------------------------------|---------------------------------|---------------------------------------|-----------------------|-------------------|--------------|--|---------------| | | -AT- | aboy | e Dry Gulch | | | | NIND THE | YEAR ENDIN | 0 SEP | TEMBI | ER 30, | , <u>, 4</u> 6 | 3_ | 114 | 4-11 | 940/
945/ | | 8.5 | 2.94 | 1 | | 4.4 | \Box | .6 5 | | | | нр. | DAYE | RESIN | KADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELDOITY
FT.PER BED. | BAUBE
HEIBHY
FEET | DISCHARSE
SEC. FT. | RAT- | метн- | MEAS,
SEC.
NO. | B, HT
CHANGE
TOTAL | METER | 115 | 4-17 | 930A
935A | | 6.0 | 1.36 | 0.74 | ļ | 1.0 | П | .6 4 | | | | | 14/00 | 130P | | | | | î | | in a | <u> </u> | NO. | TOTAL | Ĭ. | 116 | 4-24 | 1025A | . " | 6.0 | 2.06 | 0.92 | } | 1.9 | \vdash | 6 6 | | | | _63
54 | 11/29 | 1105A | · [| 5.2 | 1.80 | 1 | 2.52 | 1.2 | | .5 | 6 | | FC43 | 1,17. | 5-2 | 1030A | * | 5.5 | 1.43 | 1-12 | | 1.6 | \vdash | 6 5 | | | | - 65 | 12/13 | 11304 | \ | 5.2 | 1,87 | ! | 2.56 | 1.5 | | .5 | 6 | | | 118 | 5-8 | 1125 | Α | 4.5 | | 1 | | 0.60_ | + | -6 4 | +- | | | 66 | 12/20 | 1205F | | 5.0 | 1.46 | 1 | 2,56 | 1.4 | L | .5 | 6 | ļ | | 119 | 5-14
6-19 | 11105/
1110/
1112/ | A | 1.2 | 0.10 | 1 | | 0.90 | $\dagger \dagger$ | .6 5 | | | | _67 | 12/22 | 1235P
1250P | •• | 32.0 | 35.6 | 8.27 | 4.20 | 266. | - | .6 | 5 | | " | 1 | 10-13 | | 3+ | 1.15 | 1 0.1.0 | | - | 1 0.02 | | .6 2 | + | | | 68 | . 12/23 | 1110A | | 34.0 | 30.8 | 5.23 | 3.70 | 161. | + | - 6 | 9 | | " | | | 4 | | | | | | | | | | | | -69 | 12/-27 | 425P | | 9.5 | 5.31 | 1.98 | 2.90 | 7.0 | H | .6 | 5 | | " | | DISCHARGE | MEABUR | EMENTS OF | м | ILL CR | EEK | | | | F | 112-8 | | | 70 | 1/3 | 220F | | 9.0 | 4.67 | | 2.80 | 4.7 | T | .6 | 9 | | ļ., | | -112.42 | abov | e Big Tujunga Cre | ek | | DUN | ING THE Y | EAR ENDING | BEPTE | MBEX 30 | s, 10 <u>4</u> 1 | 8 | | | 1/16 | 1145 | \ | 8.7 | 4,60 | | 3.85 | 4.2 | | .6 | 7 | | | | DATE | REGIN | | WIDTH | | | | | RAT- HE | | | HETER | | 73 | 1/24 | 1105/ | \ '' | 9.0 | 4.47 | 0.85 | 2.78 | 3.8 | | .6 | 7 | | : | HD. | | 920A | | FEET | AREA OF
SECTION
SQ. FY: | HEAN
VELOCITY
FT.PER SEC. | MAUME
HEIGHT
FEET | BEO. FT, | ING D | D NO. | · | NO. | | - 74 - | 1/31 | 1125
1135
1120 | | 9.0 | 4.33 | i | 2.76 | 3.3 | <u> </u> | .6 | 8 | | | 157 | 10/4 | 9264 | | 2.1 | 0.90 | 0.58 | 1.78 | 0,52 | | 6 6 | | FC37 | | 75 | 2/6 | 1130/ | ** | 9.3 | 4.05 | | 2,86 | 8.1 | \vdash | .6 | 5 | | | 158 | 10/11 | 1105A
1025A
1032A | | 4.0 | 1.02 | 0.93 | 1.78 | 0.76 | - | 5 5 | | | | 76 | 2/14 | 1140/
110F | | 9.5 | 3.03 | | 2.84 | 5.1 | \vdash | .6 | 6 | | | 160 | 10/25 | 947A
955A | | 4.0 | 1.05 | 0.48 | 1.76 | 0.50 | | 5 4 | † | | | 77 | 3/1 | 1045A | | 9.5 | 2.45 | 1 | 2.83 | 3.2 | ╁╌ | .6. | 5 | | ., | 161 | 11/1 | 1102A | | 4.0 | 1.12 | 0.65 | | 0.73 | | 5 4 | | | | 78 | 3/7 | 1055A | | 8.5 | 2.65 | 1 | 2.75 | 2.6 | T | .6 | 5 | | | 162 | 11/8 | 1055A | | 4.2 | 1.20 | 0.89 | 1.80 | 1.1 | | ŝ 4 | | FC42 | | -80 | 3/14
| 1135A | | 9.0 | 3.00 | 1.30 | 2.80 | 3.9 | | .6 | 5 | | | 163 | 11/15 | 408P
418P
159P | | 2.1 | 0.74 | 1.03 | 1.80 | 0.76 | | 5 5 | <u> </u> | <u></u> | | 81 | 3/19 | 1050A
1100A | TURNER | 12,5 | 6.09 | 2.37 | /3.02 | 14.4 | | .6 | ,6 | | 'FC43 | 164 | 11/21 | 207P
315P | | 2.1 | 0.76 | 0.95 | 1.80 | 0.72 | | 5 | | | | 82 | 3/21 | 1150A
1156A | | 9.5 | 3.49 | 1.75 | 2.86 | 6.1 | <u> </u> | -6 | 6 | | <u> </u> | 165 | 11/29 | 322P
204P | | 2.1 | 0.78 | 1.08 | 1.82 | 0.84 | | | - | | | - 83 | 3/28 | 1015A
-1025A
930A | | 25.0 | 5.33 | 1.44 | 3,11 | 7.7 | - | .5 | 8 | | " | 166
167 | 12/13 | 212P
318P
326P | | 2.1 | 0.76 | 1.04 | 1.82 | 0.79 | .6 | | | | | 84 | 3/31 | 940A
1105A | | 29.0 | 32.9 | 4,47 | | | | .6 | | | " | 168 | 12/13 | 205P
213P | | 2.1 | 0.85 | 1.09 | 1.82 | 0.93 | .6 | | † | | | 85 | 4/3 | 1115A
1045A | | 19.5 | 11.7 | 3,09 | 3.14 | 36.2 | Н | .6 | 7 | | . . | 169 | 1/3 | 226P
235P | DE VORE | 7.4 | 1.74 | 1.13 | 1.92 | 1.96 | . 6 | | | | | 86 | 4/11 | 1055A
1145A
1155A | | 13.5 | 7.24
4.02 | 1.99 | 2.95 | 9.8 | | .6 | 5 | | - | 170 | 1/10 | 140P
146P | | 5.2 | 1.46 | 0.96 | 1.92 | 1.4 | .6 | 5 | | | | 87 | 4/25 | 1145A
1155A | | 8.5 | 2.69 | 2.30 | 2,86 | 6.2 | | ,6 | 8 | | | 17.1 | 1/17 | 1008A
1015A
950A | | 5.4 | 1.52 | 0.84 | 1.92 | 1.28 | .6 | 5 | | | | - 89 | 5/2 | 1050A | | 8.5 | 2.96 | 1.96 | 2.87 | 5.8 | | .6 | 8 | | | 172 | 1/24 | 955A
213P | | 5.5 | 1.51 | 0,85 | 1.91 | 1.29 | .6 | | ┼ | | | 90 | 5/9 | 1120A
1130A | ** | 8.0 | 2.62 | 1.30 | 2.82 | 3.4 | | .5 | 8 | | | 173 | 1/31 | 219P
144P | | 5.4 | 1.48 | 0.79 | 1.90 | 1.17 | | 5 | + | | | 91 | 5/16 | 1105A
1115A
1045A | | 8.0 | 2.87 | 1.32 | 2.82 | 3.8 | \vdash | •5 | 8 | | <u>"</u> | 174 | 2/14 | 152P
1003A
1011A | | 6.8 | 1.92 | 0.68 | 1.92 | 1.54 | .6 | _ | + | . | | 92 | 5/29 | 1052A
635A | LUCE | 6.0 | 2.50 | 1.46 | | 3.7 | \vdash | .6 | 6 | <u> </u> | FC39 | 176 | 2/28 | 139P
148P | | 6.2 | 1.81 | 0,77 | 1.90 | 1.4 | .6 | | \vdash | | | 93 | 6/13 | 640A
240P | | 5.2 | 1.70 | 0.59 | | 1.0 | | .6 | 3 | | | 177 | 3/7 | 351P
357P | | 4.7 | 1.50 | 0,80 | 1.90 | 1.2 | . 6 | 6 | | | | 95 | 8/8 | 245P | | 2.5 | 0.31 | 0.26 | | 0 | | | , | | | 178 | 3/14 | 251P
300P
303P | | 6.0 | 1.96 | 0.77 | 1.90 | 1.5 | .6 | | ļ. J | | | | | | 1 | , | | ' | 1 | | | | | , | | 179 | 3/21 | 313P | DE VORE | 5.8 | 1.90 | 0.79 | 1.92 | 1.5 | - 6 | 8 | ļ | FC42 | | | | | | | | | | | | | | | | 180 | 3/28 | 1148A
320P | WADD LOOR | 5.2 | 1.55 | 1.61 | 1.94 | 2.5 | - 6 | | | FC22 | | , | DINGHARGE I | - EASUREM | ENTE OF ELIZABETH | LAKE C | REEK | | | | | ! | <u> 131</u> | -\$_ | | 181 | 4/1 | 335P
924A | STUNDEN
WADDICOR | 12.5 | 5.56 | 3,51 | | 19.5 | 6 | 6 | | FC36 | | - | ab | ove Dr | y Gulch | | | DURII | 40 THE YE | AR ENDING | BEPTE | CHUCA | 30, | <u>, 47</u> | | 182 | 4/4 | 934A
1150A
1200N | #ADDICOR | 6.0 | 4.80 | 1.30 | | 5.6 | - 6 | | | FC22 | | - | I | BEBIN | MADE BY | WIDTH | AREA OF
BESTION
BG. FT. | MEAN
VELOGITY
FT-PER SEG. | BAUBE
HEIBHT
FEET | DIBOHARUE | RAT- M | ETH- | HEAR. | E. HT.
DHANEE
TOTAL | METER | 184 | | 845A
855A | ** | | 3.00 | 1 | 1.98 | - 1 | 6 | - 1 | | FC37 | | MO. | DATE | 100P | | PERT | BQ. PT. | | PEET | | tHG. | | | | | 185 | 4/25 | 1225P
1233P | | 3.7 | 1.39 | 1.51 | 1.92 | 2,1 | 6 | 4 | | | | 96 | 11-12 | 105P | LUCE | 6.0 | 1.74 | - | | 1,3 | \dashv | T | | | FC39 | 186 | 5/2_ | 950A
1000A
1100A | 41 | 4.0 | 1.38 | 1.52 | 1,93 | 2.1 | 6 | 8 | \sqcup | •• | | } | 11-14 | 110P
1220P
1230P | | 19.0 | 6.94
9.76 | - 1 | | 14.3
25.7 | | .6 | - 1 | | | 187 | 5/9 | 1108A
1125A | " | 3,5 | 1.04 | 1,35 | 1.99 | 1.4 | 6 | 7 | ├ ─┤ | | | | 11-29 | 350P
355P | LUCE - LUNDWALD | 10.5 | 4.12 | 1.58 | | 6.5 | 1 | .6 | 7 | | | 188 | 5/16 | 1135A
1115A | | 3.4 | 0.97 | 1,44 | 1.99 | 1,4 | - 6 | 7 | | <u>:</u> | | 1 | 12-5 | 1030A
1100A | LUCE | 9.0 | 3.52 | | | 4.9 | | .6 | 7 | | ٠., | 189 | 5/23_
5/31_ | 1121A
1040A
1045A | TURNER | 3.5
4.3 | 1.22 | 1.48 | 1.88 | 1.1 | 5 | | | FC43 | | | 12-13 | 1140A
1150A | | 11.5 | 3.24 | 1.11 | | 3.6 | | .6 | 6 | | | 190 | 6/6 | 105P
115P | STUNDEN | 2.7 | 0.54 | 1.15 | 1.80 | 0,62 | 5 | | | FC36 | | 102 | 12-18 | 120P
125P | ** | 7.0 | 2.92 | 1.20 | | 3.5 | | .6 | 7 | | • •• | 192 | 6/13 | 915A
920A | TURNER | 2.8 | 0.53 | 1.45 | 1.84 | 0.77 | . 5 | 4 | | FC43 | | 103 | 12-27 | 1210P
1020A | LUCE - WRIGHT | 43.5 | 34,4 | 4.13 | - $+$ | 142. | \vdash | .6 | - 1 | | | 193 | .7/11_ | 135P
140P | | 2.5 | 0.32 | 0.56 | 1.74 | 0.18 | 5 | 4 | | | | 104 | 12-31 | 1030A | Lucie | 14.0 | 7.80 | | | 14.1 | \vdash | .6 | ļ | | ,, | 194 | 7/26 | 1230P
1235P
205P | LUCE | 2.5 | 0.25 | 0.48 | 1.71 | 0.12 | 5 | 3 | | FC39 | | 105 | 1-15 | 1040A
120P
130P | п | 12.0 | 5,54
4,42 | | | 6.5
5.1 | H | .6 | | | | 195 | 8/8 | 2 10P
925A | TURNER | 1.2 | 0.21 | 0.62 | 1.70 | 0.13 | - 5 | 3 | + | FC43 | | | 2-7 | 1040A
1050A | ** | 8.0 | 4.15 | 1.18 | | 4.9 | | .6 | | | | 196 | 8/15 | 930A
1130A | | 4.0 | 0.34 | 0.44 | 1.70 | 0.15 | _ 5 | - | + | - | | | 2-14 | 1025A
1030A | ** | 9.0 | 3.92 | 1.12 | | 4.4 | | .6 | 6 | | | 197 | 8/28 | 1135A
1125A | 111CS | 1.5 | 0.15 | 0.60 | 1.69 | 0.09 | 5
 6 | | + | FC39 | | | 2-20 | 1025A
1035A | * | 6.5 | 2.95 | 1.66 | | 4.9 | Ц | .6 | 6 | | | 198 | 9/11 | 1130A
145P
147P | | 1.7 | 0.21 | 0.50 | 1.68 | 0.09 | - 6 | | + | | | | 2-26 | 1135A
1145A | " | 9.0 | 3.16 | 1,39 | | 4.4 | H | .6 | - | | • | ,55 | + | 17/1 | | | · | | · · · · · · · · · · · · · · · · · · · | | -1- | - | + | | | _111_ | 3-7 | 1145A
1150A
1040A | LUCE + LUNDWALD | 8.0 | 3,65 | 1,29 | | 4.7 | \dashv | .6 | 5 | | • | | | | | | | | | | | | | | | | 3-28 | 1045A
855A | Luce | 10.0 | 4.50 | | | 9.1 | + | -6 | 5 | | | | | | | | | | | | | | | | | 113 | 4-3 | 900A | ** | 9.2 | 3,04 | 1.32 | | 4.0 | | .6 | 5 | L | اــــــا | l | | | | | | | | | | | | | | | DISCHARGE | MEABURE | HENTE OF MILL C | REEK | | | | | | FII | 2-8 | | | DIECHARGI | E MEABURE | HENTE OFNEWHAL | L CREEK | <u> </u> | | | | | Fi | 35-S | - | |------------|-------------|------------------------|------------------|---------------|--------------------|---------------------------------|-------------------------|------------|-----------------------|-------------|---------------------------|--------------|------|-----------|----------------|-----------------|---------|-------------------------------|---------------------------------|-------------------------|------------------------|-----------------|----------|------------------------------------|--------------| | | HEAR 3 | bove E | Blo Tujunga Cree | k_: | | DUA | NO THE Y | EAR ENDING | . SEPTEMBI | KR 90, | 19_47_ | | | nêIn. 1 | Ridge | Route Highway | | | Бия | ING THE Y | YEAR ENDIN | 9 8 EPTI | HEER : | 10, 19_4 | L | | NO. | DATE | BEDIN | YE TONK | WIDTH | AREA OF | HEAN
VELODITY
FT-FER BEG. | TAURE
HEIGHT
FEET | DIRCHARGE | RAT- METH- | MEAS. | G. HT.
DHANGE
TOTAL | HETER | No. | DATE | SKQIN | - MADE BY | WIPTH | ANEA OF
BEGTION
SQ. FT. | HEAN
VELOGITY
FT-PER BEG. | BAUGE
HEISHT
PEST | DISCHARGE | RAT- H | ETH- ME | AM. U. HI
C. CHAKE
TOTAL | METER | | | | 230P | | FEET | | | | BEG. FT. | | | | HO. | | | 1205P | - | FEET | Ť T | | PERT | BED. FT. | 186 | T | TOTAL | | | 200 | 10-2 | 235P
1055A | TURNER | 2.0 | 1 | 0.32 | 1 | | 5. | | | C43 | 4 | 11-13 | 1220P | LUCE - WRIGHT | 65.0 | 44.2 | 4.68 | | 207. | | .6 9 | - | FC39 | | 201 | 10-16 | 1100A
125P | | 2.1 | 0.78 | 1 | 1 1 | | | 4. | | - | | | | | | | | | | | | | | | 202 | 10-30 | 130P
250P | | 2.2 | 0.73 | Į | () | | | 4 | | " | | | | | | | | | | | | | | | | 11-15 | 255P
337P | BLAKELY | 6.0 | 2.92 | | 1 | | | 6 * | | | | | | | | | | | | | | 196-S | | | 204 | 11-21 | 345P
240P
250P | TURNER | 7.0 | 1.92 | | ! | | | 9 | 1 | C35
C43 | | DISCHARGE | MEASURE | MENTS OF | PA | COIMA C | CREEK | | | | | 180 0 | | | 206 | 12-4 | 300P
306P | • | 6.1 | | 0.94 | 1 | | 1 1 | 7 | | | | ₩AT. | MacLa | y Avenue | | | DUR | ING THE Y | EAR ENDING | 3 SEPTE | HBEN : | 10, 19 <u>46</u> | | | 207 | 12-19 | 239P
245P | •. | _6.0 | 1.68 | | 1 | | | 6 | | . | ND. | DATE | BEBIN | HADE BY | WIDTH | AREA DY
SECTION
SQ. FT. | HEAM
VELDOITY | HAURE
HEIBHT
FEET | DISCHARSE
SEC. FT. | RAT- H | ETH. HE | AB. B. HT
O. DHANGS | METER
NO. | | 208 | 12-27 | 1210P
1220P | TURNER - RILEY | 13.5 | 10,5 | 1 | | 32.7 | | 9 | | - | | | 905A | TIMES | + | 6.50 | 1,43 | 1.40 | 9.3 | 1 1 | | 7 | FC43 | | 209 | 1-2 | 305P
315P | TURNER | 13.0 | 5.08 | 1.24 | 2.02 | 6.3 | .6 | 7 | | | 24 | 7/31 | 911A
1140A | TURNER | 6.7 | 3.29 | 0.95 | 1.28 | | + + | + | 7 | | | 210 | 1-10 | 1:202P
1:206P | BLAKELY | 11.5 | 4.06 | 1.03 | 1.95 | 4.2 | 1.6 | 6 | FC | C35 | 25 | 8/5 | 915A | ., | 6.7 | 2.69 | 0.74 | 1.22 | 2.0 | FLO | AT . | 7 | . | | 211_ | 1-16 | 210P
216P | TURNER | 11.0 | 3.45 | 1.10 | 1.92 | 3,8 | .5 | 6 | FC | C43 | _ 26 | 8/7 | 925A | | - 0.7 | 1 2.00 | 1 0.7- | 11111 | | 1 | | - | - | | 212 | 1-30 | 1020A
1030A
230P | * | 11.0 | 3.43 | 0.99 | 1.91 | 3.4 | .5 | 6 | | | | | | | | | | | | | | | | | 213 | 2-6 | 23.5P
210P | ·n | 9.0 | 3.03 | 0.96 | 1.88 | 2.9 | .5 | 5 | | | | | | | | | | | | | | | | | 214 | 2-13 | 215P
214P | * | 10.0 | 3.09 | 0.97 | 1.88 | 3.0 | .6 | 6 | | | | | | MENTS OF PACOIM | A CREEK | | | | | | E 1 / | | | | 215 | 3-7 | 218P | BLAKELY | 7.8 | 1.89 | 0.95 | 1.85 | 1.8 | .5 | | F | C35 | | | | | | | | | _ | | | 96-S. | | | 216 | 3-14 | 1130A
245P | STUNDEN | 4.4 | 1.96 | 0.97 | 1.84 | 1.9 | .6 | 5 | F | C36 | | HEAT. | Maclay | Avenue | | | DUR | IND THE Y | EAR ENDING | BEFTE | HBER 3 | o, 19.47 | _ | | 217 | 3-19 |
255P
340P | TURNER | 7.0 | 2.06 | 1.02 | 1,83 | 2.1 | .5 | 5 | i — i | C43 | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELODITY
FT.PER SEO. | BAUDE
HEIGHT
FEET | DIEGHARGE
DIEG, FT, | RAY M | ETH- MEA | B. B. HT.
DHANGE
TOTAL | HETER | | 218 | 3-26 | 345P
240P | | 7,0 | 2,10 | 1.05 | 1,82 | 2.2 | .5 | 5 | | | | 40.40 | 930Å | TURNER | - | | | | | | .5 | <u> </u> | l —— | | 219 | 4-2 | 250P
255P | 1-89 | 7.2 | 3.24 | 0.56 | 1.84 | 1.8 | | 8 | | | 27 | 10-10 | 940Å | TURNER | 6.0 | 1.89 | | 1.12 | 0.69 | | DAT . | | FC43 | | 220 | 4-16 | 305P
140P | · · · | 8.0 | 2.94 | | 1 | | i 1 | 8 | | _ | 28 | 2-14 | 1250P | 1 | 5.0 | 1.48 | 0.65 | 1.10 | 0.97 | | 6 . | 5 0 | - | | 221 | 4-30 | 145P
155P | | 5.0 | 2.25 | | 1 | i . | 1 | 5 | - | | | | | | | | | | | | | | | | 222 | 5-14 | 200P
315P | | 5.0 | 2,19 | | | | | 5 | | | | | | | | | nrru | | | | | | | | 223 | 5-21 | 320P
305P | | 2.6 | | 0.50 | | 0.53 | -6 | | | - | | DISCHARGE | E MEABURE | MENTS OF | PAU | OIMA CI | KEEK | | | | | 197-5 | | | 224 | 5-28 | 310P
240P | | 3.0 | 1.31 | } | | ĺ | -6 | | | C43 | | AT Ar | leta S | treet, above Sp | reading | Ground | ds our | ING THE Y | EAR ENDIN | 3 6EPTE | MBER : | 10, 1e <u>46</u> | | | 225
226 | 6-4 | -245P
420P
430P | STUNDEN | 1.8 | 0.49 | | 1 | | -6 | 4 | | C36 | NO. | DATE | BEOIN | MADE BY | WIDTH | AREA DF | MEAN
VELOSITY
FT.FER BED. | BAURY | DISCHARSE
BEG, FT. | RAT- H | ETH. ME | HT | HETER | | 227 | | 840A
850A | * | 2.2 | 0.91 | ļ | | | | 4 | i I | | | | 955A | | PRET | 1 | i ——— | HEIBHT | | 111 | | -i | | | | 7-3 | 1030A | TURNER | 1.4 | 0.58 | | 1 | | | 2 | F | C43 | 47_ | 7/31 | 1005A
210P | TURNER | 15.0 | 4.35 | 1.15 | | 5.0 | + | 5 | 5 | FC43 | | | 7-9 | 630P
635P | STUNDEN | 2.4 | 0.66 | | | 1 | | 3 | | C36 | 48 | 8/5 | 215P | - | 5.0 | 1.30 | 0.54 | <u> </u> | 0.70 | | | ' | + | | | 7-16 | 1025A
1030A | TURNER | 1.5 | 0.56 | ! | | l | ll | 2 | | C43 | | | | | | | | | | | | | | | 231 | 7-30 | 955A
958A | TURNER - STUNDEN | 0.7 | 0.24 | 0.29 | 1.60 | 0.07 | .5 | | | | | | | MENTS OF | DAILE | TTE CE | CER | | | | | F122-3 | • | | 232 | 8-19 | 930A
933A | TURNER | 0.7 | 0.24 | 0,29 | 1.62 | 0.07 | SURF
FLOAT | 1_1_ | | | | | | | | | | | | | | | | | 233 | 8-28 | 335P
338P | STUNDEN | 0.6 | 0.20 | 0.35 | 1.62 | 0,07 | .5 | | F | C36 | | HEAR. | Big R | ock Creek | | | DUR | ING THE Y | EAR ENDIN | 3 BEPTE | MBER S | in, 14 46 | <u>)</u> | | 234 | 9-5 | 1130A
1133A
530P | TURNER | 0.7 | 0.21 | 0.14 | 1.58 | 0.03 | SURF
FLOAT
SURF | 1_1_ | | | , | DATE | BEBIN | MADE BY | WIDTH | AREA OF
SEQTION
EQ. FT. | HEAN
VELODITY
FT-FER BED. | BAUSE
HEISHT
FEET | DIEDHARDE
SED. FT. | RAT- M | ETH- HE | IS. G. HT
D. DHANGE
I. TOTAL | HETER
HD. | | 235 | 9-10 | 535P
200P | STUNDEN | 0,7 | 0,28 | 0.29 | 1.62 | 0),08 | FLOAT | 1_ | | | 20 | 1011- | 245P | TIPIED | | | | , set | | | 7 | | | | | 9-17 | 203P | TURNER | 0.7 | 0.24 | Company Major de Loren | | | FLOAT
SURF | 120,000 | | | 90 | 10/15 | 250P | TURNER | 3.0 | 0.48 | 1.38 | | 0.66 | | 5 3 | | FC43 | | 237 | 9-24 | 203P | | 0,7 | 0.21 | 0.14 | 156 | 0.03 | FLOAT | | | | 91 | 12/52 | 350P | 1 | 3.0 | 0.86 | 1.28 | | 0.65 | | 5 4 | | | | | | | | | | | | | | | | - 11 | 93 | 12/12 | 220P | | 1 | 0.48 | | | 0.65 | 1 1 | 6 5 | 1 | | | | | | | | | | | | | | | - 11 | 93. | 1/20 | 300P | ., | i | 0.71 | 1 | 1 | 0.77 | 1 1 | .5 5 | 1 | | | | DIEGHARGE | HEABURE) | MENTS OF | NEW | HALL C | REEK | | | | _Fı | 3 5- S | - H | 95 | 2/25 | | | | 0.88 | Į | | 1.0 | | .5 5 | | m · | | | AT
NEAR- | R | idge Route Highw | ay | | | NO THE Y | EAR ENDING | BEPTERB | ER 30, | ,_ 46 | - 11 | 96 | 3/20 | 200P | | 1 | 0.88 | ľ | | 1.6 | 1 | .5 4 | | | | | | BRUIN | 1 | | | | | | | | | | 97 | 4/9 | 240P
245P | | | 0.40 | | | 0.52 | | .5 4 | | | | HO. | DATE | END | | WIDTH
FEET | SECTION
SO. PT. | HEAN
VELODITY
FT.PER RED. | GAUSE
HEISHT
FEET | BEG. FT. | RAT- METH-
CO DNI | BEO.
NO. | DHANGE
TOTAL | HETER
HO. | 98 | 5/3 | 1035A
1040A | | | 0.62 | | | 0.60 | | .5 4 | | | | 1 | 12/22 | | TURNER | 28.0 | 9.33 | 2.84 | | 26.5 | .5 | 7 | F | FC43 | 99 | 6/12 | 120P | LUCE | 4.5 | 0.67 | 0.87 | | 0,57 | | .6 4 | \perp | FC39 | | _2 | 2/3 | 240P
250P | IURNER | 36.0 | | 3.07 | | 45.4 | | 9 | - | | 100 | 7/10 | | | 4.2 | 1.20 | 0.92 | | 1.1 | \sqcup | .6 5 | | | | _3 | 3/30 | 625A
640A | WRIGHT ~ | 58.0 | 40.7 | 4.72 | ļ | 192. | .6 | 9 | : | | 101 | 8/9 | 310P
315P | " | 4.5 | 0.78 | 0.91 | <u> </u> | 0.71 | \sqcup | .6 5 | | | | | | | | | | | | | | | | | 102 | 9/6 | 650A
655A | ļ | 3.0 | 0.86 | 1.51 | | 1.3 | \sqcup | .6 5 | | " | . | MENTS OF PALLETT | E CREEK | < | | | | | F1.23 | 2-S | | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BECTION
BQ. FT. | MEAN
VELOCITY
FT.PER BEC. | BAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- M | ÆTH- | CEAS. D. | HANGE | METER | |--|--|--|------------------|--|--|--|-------------------------|--|---|---|-----------------------------|---------------|--|---|--|--------------------|---|--|--|-------------------------|--|----------|--|---------------------------------|----------------------|--| | | | | | | | | | | | | | | - | - | 955A | | 12.6 | | 1.98 | FEET | 7.3 | | .5 | 8 | DTAL | NO. | | | +12in | IIG KO | ck Creek | | | | RING THE | YEAR ENDING | 3 SEP TER | E R3UM | a, 1#LL. | - | 72 | 5/9 | 950A | | 12.5 | 3.68 | 2.05 | | 7.5 | - | | 7 | - | | | ND. | DATE | BESIN | HADE BY | WIDTH | AREA DF
RECTION
EQ. FT. | HEAN
VELOCITY
FT.PER SEC. | MAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- NE | TH. MEA | B. G. HT
CHANGE
TOTAL | HETER
NO: | 73
74 | 5/16 | 1150A | | 10.5 | 3.45 | 2,39 | | 8.3 | 1 | | 7 | | FC39 | | 103 | 10-10 | 110P | LUCE | 3,5 | 0.66 | 1 | 1 | 0.93 | | .5 5 | i | FC39 | 75 | 6/13 | 1 340P | | 7.5 | 2,20 | 1.96 | | 4.3 | | .6 | 6 | | | | 104 | 10-31 | 1245P
1255P | 1 | 3.5 | 0.81 | | | 1.3 | 1 1 | 6 6 | | | 76 | 6/27 | 1115A | | 3.5 | 1.00 | 1.50 | | 1.5 | J. | .6 | 5 | | | | 105 | 12-19 | 230P
235P | • | 4.5 | 1.20 | | | 1.3 | 1 | 6 5 | | | 77 | 7/11 | 845A | | 6.5 | 1.39 | 0.72 | | 1.0 | _ ļ. | .6 | 6 | | | | 106 | 12-28 | 520P
525P | LUCE - WRIGHT | 8.0 | 2.40 | 3.29 | 4 | 7.9 | <u> </u> | 6 4 | | <u></u> | 78 | 7/24 | 300P
305P | | 3.0 | 0.82 | 1.10 | | 0,90 | | .5 | 4 | <u> .</u> | | | _107_ | 1-3 | 1000A
1005A | LUCE | 4.7 | 1.25 | 2.22 | | 2.8 | ļ., | 6 5 | ļ | | 79 | 8/8 | 1040A
1045A | P1 | 3.6 | 0.96 | 1,15 | | 1.1 | | 6 | 4 | - | | | 108 | 1-16 | 130P
135P
1210P | | 4.0 | 1.32 | 1.57 | | 2.1 | ╽ . | 6 4 | | <u>.</u> | .80 | 9/4 | 800A
805A
1145A | | 3.4 | 0.95 | 1.26 | L | 1.2 | 4 | 6 | 6 | | | | 109 | 1-31 | 1215P | ,, | 5.5 | 1.97 | 1.78 | 4 | 3.5 | | 6 6 | - | -" | B1 | 9/20 | | | 4.5 | 0.89 | 0.84 | ļ | 0.75 | | .6 | 5. | _ : | • | | 110 | 2-6 | 1255P
215P | · | 5.5 | 1.79 | 1 | | 2.6 | 1 ! | 6 5 | | " | | | | | | | | | | | | | | | | _111 | 2-21 | 220P
1025A | | 5.2 | 1.63 | | | 2.9 | | 6 5 | | | | | | | | | | | | | | | | | | | 3-13 | 1030A
150P | | 5.5 | 1.74 | - | | 2.6 | | 6 5 | | '' | | DISCHARGE | MEABUREN | ENTE OF SANTA CLA | RA RIV | ER | | | | | Fac | 3-S | | | | 113 | 3-20 | 155P
350P
355P | | 4.5 | 1,48 | 1 | | 2.5 | T-1- | 6 5 | 1 | | | n žī , a | bove L | ang R. R. Statio | in | | DURI | Y 3HT EN | EAR ENDING | BEPTE | MBER | 20, 14 | 17 | | | 114 | 4-16 | 250P
255P | | 4.5 | 1,30 | | | 1.9 | | 6 5 | - | | - | I I | MEDIN | MADE BY | WIDTH | AREA DF
SECTION
SQ. FY. | MEAN
VELDDITY
FT.PER BEG. | BAUGE
HEIGHT
FEET | DISCHARGE | RAT- HI | ETH. H | EAS. C. | НТ- | HETER | | 116 | 5-1 | 205P
210P | - | 4,5 | 1.18 | | | 1.3 | | 6 5 | | ** | NO. | DATE | 310P | MADE BY | FEET | NO. FY. | FT.PER SEC. | FEET | SEC. FT. | (HS C | 30 % | o. To | HT.
HANGE
DTAL | HETER
NO. | | 117 | 5-15 | 1035A
1040A | - 41 | 4.8 | 1.41 | | | 1.8 | 1 | 6 5 | 1 | | 82 | 10-11 | 315P
135P | LUCE | 4.5 | 1.11 | 1.00 | | | | .6 | .5 | - 1 | C39 | | | 6-5 | 935A
940A | | 4.5 | 1.05 | 1.05 | | 1.1 | Π. | 6 4 | | | 83 | 10-24 | 140P
925A | | 4.5 | 0.93 | 0.91 | ~ | 0.78 | í | | 5 | | | | 119 | 7-10 |
225P
230P | <u> </u> | 4.0 | 0.74 | 0.78 | <u> </u> | 0.58 | <u> </u> | 6 5 | | " | 84 | 11-7 | 930A
220P | | 5,2 | 1.50 | 0.80 | | 1.2 | | - 1 | 5 | : | | | 120 | 8-14 | 255P
300P
245P | | 3,3 | 0.56 | 0.84 | | 0.47 | ↓ ↓. | 6 3 | | | 85 | 11-14 | 1220P | LUCE - WRIGHT | 16.0 | 6.50 | 2.43 | | 15.8 | | - 1 | 9 | | | | 121 | 9-11 | 250P | т | 3.5 | 0.57 | 0,82 | - | 0.47 | - - | 6 6 | - | ** | 86 | 11-20 | 1235P
220P
230P | LUCE | 13.0 | 9,26
5,25 | 2.63 | | 13.8 | [| T | 8 | ٠, | | | | | | | | | | | | | | | | | 11-29 | 1010A
1015A | LUCE - LUNDWALD | 18.0 | 5.54 | 1.43 | | 7.9 | | - 1 | 7 | | | | | | | | | | | | | | | | | 89 | 12-5 | 830A
845A | LUCE | 10.5 | 3,30 | 2.42 | | 8.0 | Į | - 1 | 6 | , | | | | DISCHARGE | HEABURE | MENTS OF | SANTA | CLARA | RIVER | | 44 - 1 - 1 - 1 - 1 - 1 - 1 | | | F93-S | | 90 | 12-13 | 955A
1005A | # | 13.0 | 3.73 | 2.07 | | 7.7 |]. | .6 | 6 | | | | | **** | above | Lang R. R. Stat | Lion | | DUR | UND THE Y | YEAR ENDING | BEPTEM | IBER 30 | , 1946 | | 91 | 12-18 | 840A
850A | 44 | 10.0 | 3,36 | 2.17 | | 7.3 | <u> </u> | 6 | 5 | | | | | DATE | SEGIŅ | MADE BY | WIDTH | AREA DF | MEAN
VELOCITY
FY.PER BEC. | MAUGE
HEIGHT
FEET | DISCHARGE | RAT- MET | TH. MEA | ь д. нт. | HETER | 92 | 12-26 | 350P
400P
920A | LUCE - WRIGHT | 30.0 | 17.2 | 4.27 | | 73.5 | 4. | .6 | 8 | | . | | ND. | DATE | 1010A | MADE BY | FEET | AREA OF
BECTION
29. FT. | FT.PER SEC. | PEET | MED. FT. | RAT- MET | -i- | CHANGE
TOTAL | NO. | 93 | 12-31 | 925A
905A | LUCE | 16.5 | 6.46 | 2.74 | | 17.7 | 4 | 6 | 8 | | | | 44 | 10/4 | 1020A
157P | TURNER
TURNER | 9.0 | 1.98 | 0.56 | ļ | 1.1 | | 5 9 | + | FC43 | .94 | 1-15 | 915A
235P | | 15.8 | 5.65 | _1.89 | | 10.7 | | | 8 | | • | | 45 | 11/1 | 207P | PALMER
TURNER | 9.0 | 2.02
ANNELS | 0.64 | | 1.3 | | 5 9 | | | | 2-7 | 245P
900A | | 13.0 | 4.37 | 2.38 | | 10.4 | - | | 8 | - - | | | 46 | 11/9 | 1050A
145P | HUGHES
TURNER | 8.8 | 2.60 | 1.54 | | 4.0 | | 5 9 | | | | 2-14 | 910A
940A | , | 13.5 | 4,43 | 2.41 | | 10.7 | | | 8 | " | | | 47 | 11/15 | 155P
130P | | 8.8 | 2.57 | 1.40 | | 3.6 | | 5 9 | 1 | | 97 | 3-7 | 1000A
115P
125P | LUCE - LUNDWALD | 9.0 | 3.83
4.14 | 2.19 | | 8.4 | - 1 | | 6 | <u> </u> | | | 49 | 11/29 | 900A
910A | ** | 9.3 | 2.68 | 1.53 | | 4.1 | | 5 10 | | | | 3-14 | 915A
925A | LUCE | 9.8 | 4.12 | 1.70 | | 7.0 | | | 6 | | | | 50 | 12/6 | 205P
215P | | 8.8 | 2.71 | 1,55 | | 4.2 | | 5 9 | | | | 3-28 | 905A
915A | | 9.0 | 3.87 | 1.60 | | 6.2 | - | - 1 | 6 | | • | | 51 | 12/13 | 300P
310P | | 8.8 | 2.81 | 1.60 | | 4.5 | | 5 9 | | | 101 | 4-3 | 130P
140P | *** | 8.Q | 3.03 | 1.75 | | 5,3 | t | 1 | 6 | | • | | 52 | 12/20 | 300P
310P
215P | | 9.0 | 2.93 | 1.50 | | 4.4 | .: | 5 9 | ļ | | 102 | 4-11 | 830A
840A | | 9.6 | 3.20 | 1.50 | | 4.8 | | 6 | 6 | ., | | | 53 | 12/22 | 225P
925A | | TWO CH | ANNELS | | | 35.3 | .6 | 5 10 | | | 103 | 4-17 | 845A
855A | | 8.0 | 2.59 | 1.90 | | 4.9 | | .6 | 7 | | | | 54 | 1/3 | 935A | " | 1 | 3.70 | 2,03 | 1 | 7.5 | | 8 6 | - | ** | 104 | 4-24 | 905A
910A | | 3.5 | 2.29 | 1.31 | | 3.0 | _ . | 6 | 4 | | • | | 55 | | 9304 | | 8.0 | | | | | 1 1 | | | | | | Q1EA | | | | | | | - 1 | | .5 | | •• | | | 1/10 | 930A
940A
1020A | • | 10.5 | 3.50 | 2.00 | | 7.0 | .6 | | - | | 105 | 5-2 | 915A
920A
200P | | 4.6 | 2,38 | 1.76 | | 4.2 | - 1 | - 1 | 1 | 100 | C43 | | 56 | 1/16 | | | 10.5 | 3.50
4.13 | 2.00 | | 6.9 | 5 | 5 10 | - | | 105 | | 920A
200P
206P | TURNER | 4.6
7.3 | 2.38 | | | | - 1 | .5 | 7 - | i | | | _57 | 1/16 | 940A
1020A
1030A
935A
945A
925A | | 10.5
17.0
13.0 | 3.50
4.13
3.51 | 2.00
1.67
2.08 | | 6.9
7.3 | 6 | 5 10 | | | | | 920A
200P | TURNER LUCE | 7.3 | 2.13 | 1.46 | | 3.1 | - - | .5
.6. | . | FC | C39 | | 57
58 | 1/16 | 940A
1020A
1030A
935A
945A
925A
935A
955A | | 10.5
17.0
13.0
10.0 | 3.50
4.13
3.51
3.81 | 2.00
1.67
2.08
2.05 | | 6.9
7.3
7.8 | .6 | 5 10
5 8
6 6 | | | 106
107
108 | 5-23
5-29
6-19 | 920A
200P
206P
345P
350P
1220P
1225P
320P | | 7.3
8.0
4:5 | 2.13
2.40
0.99 | 1.46
1.21
0.92 | | 3.1
2.9
0.91 | | .5
.6 | 7 | FC | . | | 57
58
59 | 1/16
1/24
1/31
2/6 | 940A
1020A
1030A
935A
945A
925A
935A
955A
1005A | | 10.5
17.0
13.0
10.0 | 3.50
4.13
3.51
3.81
3.51 | 2.00
1.67
2.08
2.05
2.25 | | 6.9
7.3
7.8
7.9 | .6 | 5 10
5 8
6 6 | | | 106
107
108 | 5-23
5-29
6-19
6-26 | 920A
200P
206P
345P
350P
1220P
1225P
320P
325P
925A | | 7.3
8.0
4:5 | 2.13
2.40
0.99 | 1.46
1.21
0.92 | | 3.1
2.9
0.91 | | .5
.6 | 4 | FC | <u>. </u> | | 57
58
59
60 | 1/16
1/24
1/31
2/6
2/14 | 940A
1020A
1030A
935A
945A
925A
935A
1005A
1000A
1010A
255P | | 10.5
17.0
13.0
10.0
10.5 | 3.50
4.13
3.51
3.81
3.51
3.53 | 2.00
1.67
2.08
2.05
2.25
2.01 | | 7.3
7.8
7.9
7.1 | .6 | 5 10
5 8
6 6
5 7 | | | 106
107
108
109 | 5-23
5-29
6-19
6-26
7-9 | 920A
200P
206P
345P
350P
1220P
1225P
320P
325P
925A
930A
340P | | 7.3
8.0
4:5
4.4
5.0 | 2.13
2.40
0.99
1.06 | 1.46
1.21
0.92
1.13
0.98 | | 3.1
2.9
0.91
1.2 | | .6
.6
.6 | 7
4
5 | FC | . | | 57
58
59
60 | 1/16
1/24
1/31
2/6
2/14
2/21 | 940A
1020A
1030A
935A
945A
925A
935A
1000A
1010A
255P
305P
910A | | 10.5
17.0
13.0
10.0 | 3.50
4.13
3.51
3.81
3.51 | 2.00
1.67
2.08
2.05
2.25 | | 6.9
7.3
7.8
7.9 | . 5
. 6
. 6
. 6 | 5 10
5 8
6 6
7 | | | 106
107
108
109
110 | 5-23
5-29
6-19
6-26
7-9 | 920A
200P
206P
345P
350P
1220P
1225P
320P
325P
925A
930A
340P
345P | LUCE | 7,3
8.0
4:5
4.4
5.0 | 2.13
2.40
0.99
1.06
1.12
0.96 | 1.46
1.21
0.92 | | 4.2
3.1
2.9
0.91
1.2
1.1 | | .5
.6
.6
.6 | 7
4
5
5 | FC | | | 57
58
59
60
61
62 | 1/16
1/24
1/31
2/6
2/14 | 940A
1020A
1030A
935A
945A
925A
935A
1005A
1000A
1010A
255P
305P | | 10.5
17.0
13.0
10.0
10.5
10.5 | 3.50
4.13
3.51
3.81
3.51
3.53
3.67 | 2.00
1.67
2.08
2.05
2.25
2.01 | | 7.3
7.8
7.9
7.1
8.0 | .6 | 5 10
5 8
6 6
7 6 8 | | | 106
107
108
109
110
111 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23 | 920A
200P
200P
345P
350P
1220P
1225P
320P
325P
925A
930A
340P
345P
100P
110P
1225P | | 7,3
8.0
4:5
4.4
5.0 | 2.13
2.40
0.99
1.06 | 1.46
1.21
0.92
1.13
0.98 | | 4.2
3.1
2.9
0.91
1.2
1.1
0.96 | | .5
.6
.6
.6 | 7
4
5
5 | FC | | | 57
58
59
60 | 1/16
1/24
1/31
2/6
2/14
2/21 | 940A
1020A
1030A
935A
945A
925A
935A
1005A
1000A
1010A
255P
305P
910A
920A | | 10.5
17.0
13.0
10.0
10.5
10.5 | 3.50
4.13
3.51
3.81
3.51
3.53
3.67
3.60 | 2.00
1.67
2.08
2.05
2.25
2.01
2.18
2.03 | | 7.3
7.8
7.9
7.1
8.0 | .6 | 5 10
5 8
5 6
5 7
6 8
6 8
6 8 | | | 106
107
108
109
110
111
112 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23 | 920A
200P
206P
345P
350P
1220P
1220P
320P
325P
925A
930A
340P
100P
110P
1225P
1230P | LUCE | 7.3
8.0
4.5
4.4
5.0
5.0 | 2.13
2.40
0.99
1.06
1.12
0.96 | 1.46
1.21
0.92
1.13
0.98
1.00 | | 4.2
3.1
2.9
0.91
1.2
1.1 | | .5
.6
.6
.6 | 7
4
5
5 | FC | | | 57
58
59
60
61
62
63 | 1/16
1/24
1/31
2/6
2/14
2/21
3/1
3/7 | 940A
1020A
1030A
935A
945A
925A
935A
1000A
1010A
255P
305P
910A
920A
930A
940A
1010A
1020A | | 10.5
17.0
13.0
10.0
10.5
10.5
10.5 | 3.50
4.13
3.51
3.81
3.51
3.53
3.67
3.60
4.05 | 2.00
1.67
2.08
2.05
2.25
2.01
2.18
2.03
2.12 | | 6.9
7.3
7.8
7.9
7.1
8.0
7.3 | .6 | 5 10
5 8
6 6
7 6 8
6 8
6 8
6 8 | | | 106
107
108
109
110
111
112
113 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23
7-31
8-13 | 920A
200P
206P
345P
350P
1220P
320P
325P
925A
930A
340P
345P
100P
110P
1230P
1230P
845A | LUCE | 7.3
8.0
4:5
4.4
5,0
5.0
Two C | 2.13
2.40
0.99
1.06
1.12
0.96
HANNELS | 1.46
1.21
0.92
1.13
0.98
1.00 | | 4.2
3.1
2.9
0.91
1.2
1.1
0.96 | | .5
.6
.6
.6 | 7
4
5
5
5
9 | FC | | | 57
58
59
60
61
62
63 | 1/16
1/24
1/31
2/6
2/14
2/21
3/1
3/7
3/14 | 940A
1020A
1030A
935A
945A
925A
935A
1005A
1010A
255P
305P
910A
920A
930A
940A
1010A
1020A
1020A | | 10.5
17.0
13.0
10.0
10.5
10.5
10.5
10.5
11.0 | 3.50
4.13
3.51
3.81
3.53
3.67
3.60
4.05 | 2.00
1.67
2.08
2.05
2.25
2.01
2.18
2.03
2.12 | | 7.3
7.8
7.9
7.1
8.0
7.3
8.6 | . 6
. 6
. 6
. 6
. 6
. 6
. 6 | 5 10
5 8
6 6
7
6 8
8
6 8
8
8 8
8 8
8 8
10 | | | 106
107
108
109
110
111
112 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23 |
920A
200P
206P
345P
350P
1220P
325P
325P
325P
325P
100P
112P
122P
1230P
455P
500P
840A
845A
645A
650A | LUCE | 7.3
8.0
4:5
4.4
5.0
5.0
Two C | 2.13
2.40
0.99
1.06
1.12
0.96
HANNELS | 1.46
1.21
0.92
1.13
0.98
1.00 | | 4.2
3.1
2.9
0.91
1.2
1.1
0.96
1.2
1.0 | | .5
.6
.6
.6
.6
.5 | 5
5
7 | FC | | | 57
58
59
60
61
62
63
64 | 1/16
1/24
1/31
2/6
2/14
2/21
3/1
3/7
3/14
3/21 | 940A
1020A
1030A
935A
945A
925A
935A
935A
1000A
1010A
255P
910A
920A
1010A
1025A
1026A
1025A
1036A
1036A
1036A
1036A
1036A
240P | | 10.5
17.0
13.0
10.0
10.5
10.5
10.5
10.5
11.0
12.0 | 3.50
4.13
3.51
3.81
3.51
3.53
3.67
3.60
4.05
4.42
4.81 | 2.00
1.67
2.08
2.05
2.25
2.01
2.18
2.03
2.12
1.76
1.85 | | 7.3
7.8
7.9
7.1
8.0
7.3
8.6
7.8 | | 5 10
5 8
6 6
7
6 8
8
6 8
8
8 8
8 8
8 8
10 | | | 106
107
108
109
110
111
112
113
114 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23
7-31
8-13 | 920A
200P
206P
345P
350P
1220P
325P
325P
925A
930A
340P
100P
110P
1225P
1230P
455P
840A
845A | LUCE | 7.3
8.0
4:5
4.4
5.0
5.0
Two C | 2.13
2.40
0.99
1.06
1.12
0.96
HANNELS
" | 1.46
1.21
0.92
1.13
0.98
1.00 | No. law forth 100 | 4,2
3,1
2,9
0,91
1,2
1,1
0,96
1,2
1,0 | | .5
.6
.6
.6
.5
.5 | 7
5
5
7
4
6 | FC | | | 57
58
59
60
61
62
63
64
.65 | 1/16 1/24 1/31 2/6 2/14 2/21 3/1 3/7 3/14 3/21 3/28 | 940A
1020A
1030A
935A
925A
925A
925A
1005A
1000A
1010A
255P
305P
910A
920A
940A
1025A
1025A
1025A
1025A
240P
250P
940A
240P
240P | | 10.5
17.0
13.0
10.0
10.5
10.5
10.5
11.0
12.0
14.0 | 3.50
4.13
3.51
3.81
3.51
3.53
3.67
3.60
4.05
4.42
4.81
5.36 | 2.00
1.67
2.08
2.05
2.25
2.01
2.18
2.03
2.12
1.76
1.85
1.44
3.72
2.35 | | 7.3
7.8
7.9
7.1
8.0
7.3
8.6
7.8
8.9 | | 5 10
5 8
6 6
7 8
8 8
8 8
8 8
9 9
10
10
10
10
10
10
10
10
10
10 | | | 106
107
108
109
110
111
112
113
114
115 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23
7-31
8-13
8-21
9-10 | 920A
200P
206P
345P
350P
1220P
325P
925A
930A
340P
345P
100P
1122P
1225P
500P
840A
845A
645A
650A | LUCE TURNER LUCE | 7.3
8.0
4:5
4.4
5.0
5.0
Two C | 2.13
2.40
0.99
1.06
1.12
0.96
HANNELS
"
0.60
0.74 | 1.46
1.21
0.92
1.13
0.98
1.00 | No. law forth 100 | 4,2
3,1
2,9
0,91
1,2
1,1
0,96
1,2
1,0
1,1 | | .5
.6
.6
.6
.6
.5
.5 | 7
4
5
5
7
4
6 | FC | | | 57
58
59
60
61
62
63
64
65
66 | 1/16 1/24 1/31 2/6 2/14 2/21 3/1 3/7 3/14 3/21 3/28 4/3 | 940A
1020A
1030A
935A
945A
925A
935A
1000A
1010A
255P
305P
910A
920A
1010A
1020A
1020A
1025A
240P
930A
240P
930A
240P
930A
240P
930A
240P | TURNER | 10.5
17.0
13.0
10.0
10.5
10.5
10.5
11.0
12.0
14.0
15.5
14.0
15.0 | 3.50
4.13
3.51
3.81
3.51
3.53
3.67
3.60
4.05
4.42
4.81
5.36
7.95
6.81
4.34 | 2.00 1.67 2.08 2.05 2.25 2.01 2.18 2.03 2.12 1.76 1.85 1.44 3.72 2.35 | | 7.3
7.8
7.9
7.1
8.0
7.3
8.6
7.8
8.9
7.7
29.6
16.0 | 2 2 2 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 | 5 10
5 8
6 6
7 7
6 8
8 8
6 8
8 8
8 8
8 8
8 8
8 8 | | | 106
107
108
109
110
111
112
113
114
115 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23
7-31
8-13
8-21
9-10 | 920A
200P
206P
345P
350P
1220P
325P
925A
930A
340P
345P
100P
1122P
1225P
500P
840A
845A
645A
650A | LUCE TURNER LUCE | 7.3
8.0
4:5
4.4
5.0
5.0
Two C | 2.13
2.40
0.99
1.06
1.12
0.96
HANNELS
"
0.60
0.74 | 1.46
1.21
0.92
1.13
0.98
1.00 | No. law forth 100 | 4,2
3,1
2,9
0,91
1,2
1,1
0,96
1,2
1,0
1,1 | | .5
.6
.6
.6
.6
.5
.5 | 7
4
5
5
7
4
6 | FC | | | 57
58
59
60
61
62
63
64
65
66
67 | 1/16
1/24
1/31
2/6
2/14
2/21
3/1
3/7
3/14
3/21
3/28
4/3
4/11 | 940A
1020A
1030A
935A
945A
925A
935A
1005A
1000A
255P
910A
920A
1010A
1020A
1020A
1020A
240P
240P
240P
240P
240P
240P
240P
105P | TURNER | 10.5
17.0
13.0
10.0
10.5
10.5
10.5
10.5
11.0
12.0
14.0
15.5
14.0 | 3.50
4.13
3.51
3.81
3.51
3.53
3.67
3.60
4.05
4.42
4.81
5.36
7.95
6.61 | 2.00
1.67
2.08
2.05
2.25
2.01
2.18
2.03
2.12
1.76
1.85
1.44
3.72
2.35 | | 7.3
7.8
7.9
7.1
8.0
7.3
8.6
7.8
8.9
7.7
29.6 | | 5 10
5 8
6 6
7 8
8 8
8 8
8 8
9 9
10
10
10
10
10
10
10
10
10
10 | | | 106
107
108
109
110
111
112
113
114
115 | 5-23
5-29
6-19
6-26
7-9
7-17
7-23
7-31
8-13
8-21
9-10 | 920A
200P
206P
345P
350P
1220P
325P
925A
930A
340P
345P
100P
1122P
1225P
500P
840A
845A
645A
650A | LUCE TURNER LUCE | 7.3
8.0
4:5
4.4
5.0
5.0
Two C | 2.13
2.40
0.99
1.06
1.12
0.96
HANNELS
"
0.60
0.74 | 1.46
1.21
0.92
1.13
0.98
1.00 | No. law forth 100 | 4,2
3,1
2,9
0,91
1,2
1,1
0,96
1,2
1,0
1,1 | | .5
.6
.6
.6
.6
.5
.5 | 7
4
5
5
7
4
6 | FC | | | | DISCHARGE I | MEABUREMI | NT# OF | SANTA | CLARA | RIVER | | | | | F 137B | <u>-</u> s | NO. | DATE | BESIN | HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELODITY
PT.PER SED. | SAUSE
HEISHT
FEET | DISCHARGE
SED, FT. | RAT- | жетн-
00 | HEAR.
BEC.
HO. | G. HT.
SHANSK
TOTAL | HETER
HO. | |----------|----------------|--|--|---------------|-------------------------------|---------------------------------|-------------------------|--------------------|-------------------|---------------|------------------------------|-------------------|------------|---------|----------------------|-----------------|-------|-------------------------------|---------------------------------|--|-----------------------|--|-------------|----------------------|---------------------------|----------------| | | | | est of Castaic | Junction | n | | NG THE YE | AR ENDING | BEPTER | 48ER : | 3D, 19 | 6 | 95 | 3-7 | 1015A
1025A | | 24.0 | 20.9 | 4:07 | 744. | 85.2 | 11 | .6 | 8 | | | | | - | | | | | | | | | -,- | | | 00 | 3-14 | 220P
230P | ** | 19.0 | 12.7 | 2.97 | | 37.7 | \Box | .6 | 10 | | | | NO. | DATE | SEGIN
END | NADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELOGITY
FT.FER BEG. | HAUGK
HEIGHT
FEET | BED, FT. | ING O | TH- HE
D N | C. DHAP | HT. METE
HD. | 97 | 3-21 | 305P
315P | | 22,5 | 11.9 | 2.76 | | 32.9 | П | .6 | 8 | | - 14 | | 46 | 10/11 | 1010A
1020A | TURNER | 14.0 | 9.20 |
2.11 | | 18.6 | ٠, | 6 | 7 | FC43 | 98 | 3-28 | 140P
150P | " | 21.0 | 13.6 | 3.34 | | 45.5 | | .6 | 11 | | ** | | 47 | 11/1 | 918A
933A | ·· | 14.5 | 11.0 | 2.13 | | 23.4 | <u></u> | 6 | 8 | ļ., | 99 | 4-3 | 810A
820A | - 44 | 21.5 | 11.7 | 2),78 | | 32.5 | | .6 | 6 | | - | | 48 | 11/9 | 1240P
1250P | TURNER
HUGHES | 16.0 | 11.2 | 2.09 | | 23.4 | 4 | .6 | 9 | | 100 | 4-11 | 225P
240P | , | 13.5 | 9.81 | 2.99 | L | 29.3 | Ш | .6 | 8 | | - | | 49 | 11/15 | 1 105A
1115A | TURNER | 14.5 | 11.2 | 2.23 | | 25.0 | | .6 | 8 | - | 101_ | 4-16 | 320P
335P | | 12.5 | 8.92 | 2.88 | ļ | 25.7 | | .6 | 7 | | | | 50 | 1.1/2.1 | 1000A
1012A
1220P | | 14.5 | 11.5 | 2.17 | | 25.0 | | .6 | 8 | | 102 | 4-27 | 245P
300P | | 18.5 | 9.35 | 2.32 | | 21.7 | | .6 | 7 | لـــــ | | | 51 | 11/29 | 1230P
930A | * | 19.0 | 15.6 | 1.86 | | 29.0 | | . 6 | 9 | | 103_ | 5-2 | 230P
240P | | 14.9 | 7.20 | 2.08 | | 15.0 | \sqcup | .6 | 8 | | | | _52 | 12/6 | 945A | ** | 26.0 | 17.7 | 1.65 | | 29.2 | | | 10 | :- | 104 | 5-8 | 215P
225P
825A | ** | 14.2 | 7.51 | 2.33 | <u> </u> | 17.6 | | .6 | 8 | لـــــا | ** | | . 53 | 12/13 | 1035A
1015A | | 28.0 | 18.5 | 1,75 | | 32.4 | | | 10 | - | 105 | 5-14 | 835A
1005A | ** | 13.0 | 7.76 | 2.61 | | 20.3 | \sqcup | .6 | 7 | | - | | 54 | 12/20 | 1030A
1140A | | 28.0 | 19.0 | 1.76 | | 33.5
47.8 | | | 13 | | 106 | 5-23 | 1020A
845A | TURNER | 20.0 | 7.88 | 2.12 | | 16.7 | \vdash | .6 | 10 | | FC43 | | _55 | 12/27 | 1155A
120P | ** | TWO CHA | NNELS | | | 42.7 | | | 14 | i. | 107 | 5-29 | 900A
625A | LUCE | 11.2 | 7.27 | 1.86 | - | 13.5 | + | -6 | 7 | - | FC39 | | _ 56 | 1/3_ | 135P
1120A | | 17.0 | 11.1 | 3.55 | - | 39.4 | - | .6 | 9 | | 108 | 6-19_ | 635A
835A | * | 12.8 | 6.44 | 1.52 | - | 9.8 | ╁┚ | 1.6 | 7 | - | ** | | 57 | 1/10 | 1 130A
2 15P | •• | 23.0 | 11.8 | 3.70 | | 43.7 | | .6 | 9 | | 109 | 6-26 | 845A
145P | - | 13.7 | 6.55 | T | - | 7.8 | \vdash | .6 | 7 | - | - | | 58 | 1/16 | 225P | | 18.0 | 11.6 | 3.76 | | 43.6 | | .6 | 9 | | 110 | 7-9 | 155P
850A | ** | 11.0 | 6.00 | 1.23 | | 7.4 | + | .6 | 7 | <u> </u> | | | 59 | 1/24 | 150P
115P
125P | | 17.5 | 10.2 | 3.69 | | 37.6 | | .6 | 9 | | 111 | 7-17 | 900A
945A | | 10.5 | 6.30 | 1.53 | | 9.6 | + | .6 | 7. | <u> </u> | | | 60 | 1/31 | 140P
150P | | 20.0 | 12.7 | 3.65 | | 46.3 | | .6 | 10 | | 112 | 7-23 | 955A
310P | TURNER . | 11.0 | 5.63 | 1.10 | | 6.2 | + | .6 | 3 | | FC43 | | 61 62 | 2/6 | 125P
135P | | 20.0 | 12.1 | 3.60 | | 43.6 | | .6 | 10 | | 113 | 7-31 | 320P | 1 | 13.0 | 5.03 | | | 4.6 | + | .6 | | | FC39 | | .63 | 2/21 | 1055A
1105A | | 20.0 | 12.0 | 3.60 | | 43.2 | | .6 | 10 | | 114 | 8-13 | 110P
400P | LUCE | 7.0 | 3.28 | Į – | | 7.7 | t | .6 | 1 | | | | 64 | 3/1 | 120P
130P | | 20.0 | 12.0 | 3.44 | | 41.3 | | .6 | 11 | | 115 | 8-21 | 1125A | | 6.5 | 4.04 | | 1 | 10.8 | 1 | .6 | | | | | _65 _ | 3/7 | 100P | TURNER | 19.5 | 10.9 | 3.31 | | 36.1 | | .6 | 10 | FC4 | | 9-10 | 830A
840A | | 6.0 | 5.48
4.83 | 1 | 1 | 7.9 | \top | .6 | | | | | 66 | 3/14 | 140P | 111 | 19.0 | 10.9 | 3.21 | | 35.0 | - | .6 | 10 | | 117 | 9-18 | 950A
1005A | ** | 6.6 | 5.05 | Τ" | | 10.1 | 1 | .6 | - | | .,, | | 67_ | 3/21 | 125P
135P | | 19.0 | 10.7 | 3.33 | | 35.6 | | .6 | 10 | | 11.0 | 10 10 | 13.535 | | 1 | 1., | 1 | | + | - | | _ | | 1 | | 68 | 3/28 | 1230P
1242P | | 20.0 | 13.6 | 3,53 | 3 | 48.0 | 1-1 | .6 | 10 | | # | | | | | | | | | | | | | | | 6.9 | 4/3 | 140P
155P | | 27.5 | 23.7 | 4.26 | i | 101. | \bot | .6 | 9 | - '- | -# | DISCHAR | DE MEABUR | EHENTS OF | SANTA | MONIC | A_CREE | K | | | | | /2- | -s | | 70 | 4/11 | | | 24.5 | 16.1 | 3.47 | - | 55.8 | - | .6 | 13 | | | -AT- | Above | e Rustic Canyon | | | | | | | | | . 4e | 8 | | 71 | 4/19 | 710A
725A | | 24.0 | 13.4 | 3.28 | Ļ | 43.9 | + | .6. | 13 | | | ****** | | | | | | | YEAR ENDI | 10 867 | TEMB | ER 30, | , 19 | _ | | _72 | 4/25 | 405P
415P | <u> </u> | 24.0 | 12.2 | 2.61 | 4 | 31.9 | + | .6 | 10 | | | DATE | END | MADE NY | WIDTH | AREA DE
BESTION
SQ. PT. | MEAN
VELOCITY
FT.PER SEC | BAUGE
HEIGHT | DISCHARGE | | - HETH | MEAR.
SEC.
NO. | D. HT | METER
E NO. | | _73 | 5/2 | 130P
305P | | 23.0 | 11.2 | 2.70 | - | 30.3 | + | .6 | 12 | | 214 | 10/18 | 1057A | | 5.0 | 0.42 | 2.22 | | 0.93 | 3 FL | .OATS | s 5 | | | | _74 | 5/9 | 320P | | 23.5 | 10.7 | 2.66 | | 28.5 | +- | .6 | 1 1 | | 215 | 11/15 | 233P | | 4.0 | 0.31 | | | 0.99 | , | | 3 | 3 | | | _75_ | 5/16 | | <u> </u> | 22.5 | 10.1 | 1 | - 1 | 25.8 | + | .6 | 12
9 | | 716 | | 320P | 1 | 3.8 | 0.54 | 1.24 | | 0.67 | , | .6 | 5 5 | i . | FC6 | | 76 | 5/29 | 748A
135P | LUCE | 24.5 | 9.5 | | | 18.0 | + | .6 | 9 | FC3 | 217 | 1/3 | 239P
247P | | 4.0 | 0.29 | 3.20 | | 0.93 | 3 FL | .CATS | s 4 | 4 | | | _77 | 6/13 | 130P | | 18.5 | 8.6 | | | | \dagger | T | | | 218 | 1/31 | | | 3.6 | 0.30 | 2,83 | | 0.85 | 5 . | 上 | 4 | 4_ | <u> </u> | | _78_ | 6/27 | 1 13 54 | | 17.6 | 7.6 | | | 9.7 | | .6 | 9 7 | | 219 | 2/21 | | | 4.0 | 0.28 | 2.93 | ļ | 0.82 | 2 | 4_ | | 4 | | | _79 | 7/1: | 800A | | 13.0 | 6.6 | | - 1 | 9.8 | \top | .6 | 7 | | 220 | 3/7 | 227P
235P | ** | 4.5 | 0.38 | 2,13 | - | 0.81 | ┵ | 1 | 4 | Щ | | | _80_ | 7/24 | 135P | | | 5.9 | | | 6.3 | T | .6 | 7 | | 221 | 4/25 | 1128A
1136A | | 3.5 | 0.23 | 3,30 | - | 0.76 | <u>; </u> | ╀ | 3 | 3 | | | 81 | 8/2 | 11254 | | 12.0 | 5.5 | T | 1 | 6.2 | | .6 | 7 | | 2:22 | 5/16 | | | 3.5 | 0.26 | 3.46 | - | 0.90 | ٦٢. | + | 4 | 1 | | | 82 | 9/4 | 915 | | 14.0 | 6.3 | | | 7.6 | T | .6 | | | 223 | 5/31 | 1217P | <u> </u> | 3.6 | 0.15 | 3.00 | - | 0.45 | + | + | 14 | 4 | + | | 83 | | | | | 1 | 1 | 1 | 7 | | 1 | 1 -7 | 7. | 224 | | 1137A | <u> "-</u> | 3.6 | 0,23 | 3.08 | | 0.71 | 4: | | 4 | | | | | er i samestila | and the contract of | AND THE PROPERTY OF THE PERSON | | ma 10 m | ****** | | on one or see or a | | | | and the second | 225 | | 1110A
1154A | RAIG | _3.5 | 1 | i | - | 1.3 | 1 | -5 | 5 5 | 4 | EC35 | | | | | MENTS OF SANTA C | LARA RIV | /ER | | | | | | F# 37 | B-S | 226 | 7/25 | 1200N
952A | | 2.6 | 1 | 1 | 1 | 0.86 | - 1 | i | 3 | \vdash | - | | - | | | | | | | | | | | | | 227 | 8/8 | 958A
1120A | 1 | 4.0 | | 2.44 | | 0.73 | 1 | ŤΤ | 4 | +- | + | | | HEARL | 3 mile: | s west of Casta | ic Junct | ion | | RING THE | YEAR ENDIN | O BEPT | EMBE | R 30, 11 | 47 | 228 | 9/5 | 1125A | ļ a | 3,5 | 0,23 | 3.00 | | 0.69 | - | +- | 4 | + | + | | ND. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BESTION
BQ. FT. | MEAN
VELOGITY
FT,PER BEG | BAUGE
HEIGHT | DIECHARGE | RAT-
ING | METH- | MEAN. G.
BEC. G.
ND, 1 | HT. HI | TER
ID. | | | | | | | | | | | | | | | | 10-11 | 925A
935A | LUCE | | 1 | i " | 1 | 1 | \Box | | i | | | | | | | | | | | | | | | | | 84
85 | 10-11 | 840A
850A | | 14.0 | 9.18 | ì | 1 | 13.2 | $\dagger \dagger$ | .6 | 7 | FC3 | 2 | | | | | | | | | | | | | | | 86 | 11-7 | 330P
340P | 1 | 13.0 | 9.26 | | 1 | 14.8 | \top | 6 | | | | | | | | | | | | | | | | | | 87 | 11-29 | 150P
200P | ** | 1 | 12.0 | | | 37,9 | 1 | .6 | 1 | . | | | | | | | | | | | | | | | | 88 | 12-5 | 1240P
1250P | | 1 | 10.8 | 1 | | 34.6 | \top | .6 | 1 1 | | | | | | | | | | | | | | | | | | 12-13 | 225P
240P | | | 11.7 | 1 | | 35.0 | | .6 | | - | | | | | | | | | | | | | | | | 90 | 1 | 1030A
1045A | | | 12,3 | | | 40.1 | | .6 | i 1 | - | | | | | | | | | | | | | | | | | | 7 | | | | | | 1 | 91 | | 1120A
1140A | | 38.0 | 23.5 | 4.08 | | 96.0 | ┸ | .6 | 11 | | | | | | | | | | | | | | | | | | 1-24 | 1120A
1140A
1045A
1100A
225P | | | 23.5 | 1 | 1 | 96,0
49.9 | | .6 | | - | | | | | | | | | | | | | | | | | | | MENTE OF SANTA MO | | REEK | | NNO THE T | FEAR ENDIN | 2 BEPTE | | 72-S | ·
<u>-</u> | | | | Rustic Canyon | | | | | YEAR ENDIN | | | F5! | | |--|--
---|------------------------------------|--|--|---|-------------------------|--|------------------------------
---|-----------------------------|-----------------------------------|---|--|--|--|--|---|--|-------------------------
--|-------------------|--|--|---------------------------------------| | | DATE | BEOIN | HADE BY | WIDTH | AREA OF | HEAN
VELDOITY
FT-PER SEG. | SAUGE
HEISHT
FEST | DISCHARGE | RAT- ME | TH. ME | B. HT.
DHANGE
TOTAL | METER | HQ. | DATE | BEBIN | - HADE BY | WIDTH | AREA OF
SECTION
SQ. FT. | MEAN
VELDOITY
FT-PER SED. | BAUME
HEIBHT
FEET | DIRENARRE | RAT- | HETH- | MEAS. E.
SEG. CH
ND. TO | HT. HETER | | NO. | BATE | 103P | HADE BY | PERT | \$0. F7. | FT-PER SEC. | FEET | 800. PT. | | _ | TOTAL | NO. | H.U. | | 1250P | RADE ET | PEET | 99. FT. | FT.PER SED. | FEET | 820. FT. | ING | 00 | ND. T | ANDE NO. | | 229 | 10-10 | 108P | BOLL INGER | 3.8 | 0.19 | 3.21 | | 0.61 | FLOA | - i | ļ | | 289 | 10-10 | 1255P
120P | BOLLINGER | .4.0 | 1.00 | 0.85 | | 0.85 | \vdash | 5 | 4 | FC6 | | 230 | 10-24 | 140P
1240P
1245P | - | 3.6 | 0.18 | 2.18 | | 0.46 | | 4 | | <u> </u> | 290 | 10-24 | 127P | | 2.8 | 0.71 | 1.18 | | 0.84 | $\dagger \dagger$ | .5 | 3 | - - | | 231 | 11-27 | 119P | -44 | 3.7 | 0.18 | 3.46 | | 0.90 | - | 5 | | | 291 | 11-7 | 1230P
105P
111P | | 2.0 | 0.62 | 1,34 | | 0.83 | - | OATS | | | | | 12-12 | 1154A
1158A | *** | 3.8 | 0.23 | 2.74 | | 0.63 | | 4 | 1 | - | 292 | | 1205P | | 6.0
7.5 | 0.71 | 3.66 | | 2.6 | T | | | | | 233 | 1-2 | 139P
143P | | 3.5 | 0.23 | 3.49 | - | 0.80 | <u> </u> | 3 | 1 | | 293 | 12-12 | 1210P
130P
135P | _ | 6.5 | 0.55 | 1.76 | | 0.97 | \Box | ., | 5 | | | 234 | 1-9 | 200P
206P | | 3.4 | 0.17 | 2.94 | | 0.50 | - | 3 | 1 | | 294 | 1-9 | 141P
150P | | 4.2 | 0.93 | 1,51 | | 1.4 | 口 | .5 | 6 | FC6 | | 236 | 1-16 | 150P
155P | | 3.6 | 0.18 | 2.66 | | 0.48 | | 3 | | | 296 | 1-16 | 130P
138P | | 5.0 | 1.31 | 1.14 | | 1.5 | | .5 | 5 | , , | | 237 | 1+30 | 145P
151P | | 3.5 | 0.20 | | | 0.62 | - | 4 | | | 297 | 1-30 | 127P
135P | ** | 4.2 | 1.27 | 1.26 | | 1.6 | | .5 | 5 | - | | 238 | 2-13 | 207P
212P | ** | 3.5 | 0.20 | | | 0,64 | - | 4 | | | 298 | 2-13 | 150P
158P | | 4.2 | 1.77 | 1.07 | | 1.9 | | .6 | 6 | | | 239 | 2-20 | 140P | | 3.6 | 0.21 | 2.80 | | 0.59 | | 4 | | | 299 | 2-20 | 120P
127P | | 4.5 | 1.66 | 1.02 | | 157 | | .5 | 6 | ** | | 240 | 3-6 | 146P
125P
131P | | 3.2 | 0.15 | ł | | 0.46 | - | 4 | | | 300 | 3-6 | 110P | | 4.0 | 1.41 | 1.06 | | 1.5 | | .5 | 5 | | | 241 | 3-20 | 1141A
1147A | | 3.5 | 0.18 | 2.84 | | 0.51 | - | 4 | | | 301 | 3-20 | 1126A
1132A | ,, | 6.0 | 0.44 | 2.96 | | 1.3 | F | OATS | 4 | | | 242 | 4-3 | 1214P
1220P | - | 3.3 | 0.17 | 3.35 | | 0.57 | - | 4 | | | 302 | 4-3 | 1200N
1206P | | 3.0 | 0.67 | 1.49 | | 1.0_ | | .5 | 3 | FC6 | | 243 | 5-1 | 106P
112P | ** | 3.2 | 0.19 | 3.20 | | 0.61 | <u> </u> | 4 | | | 303_ | 5-1 | 1250P
1258P | ., | 3.0 | 1.54 | 0.84 | | 1.3 | | .6 | 5 | | | | 5-29 | 1127A
1135A | | 3.6 | 0.16 | 3.06 | <u> </u> | 0.49 | - | 3 | | | 304_ | 5-29 | 1114A
1119A | ** | Two Cr | ANNELS | | ļ | 1.0 | F | OATS | 3 | | | 245 | 6-19 | 1145A
1149A | * | 3.6 | 0.21 | 2,52 | | 0,53 | | 3 | | | 305 | 6-19 | 1130A
1137A | | | | | | 1.1 | | | . з | | | 246 | 7-10 | 1:225P
1:232P | | 3.5 | 0.16 | 3.00 | | 0.48 | <u> </u> | 3 | | | 306 | 7-10 | 1210P
1216P | | 5.7 | 1.11 | 0.78 | | 0.86 | | .5 | 5 | FC6 | | 247 | 7-30 | 150P | MOON | 2.0 | 0.23 | 2.13 | | 0.49 | - | 2 | | | 307 | 7-30 | 150P | MOON | TWO CH | ANNELS | ļ | | 0.78 | | .5 | 5 | FC22 | | . 248 | 8-5 | 221P
225P | 7 | 3.0 | 0.19 | 1.84 | | 0.35 | 1 | 4 | | | 308 | 8-6 | 210P
225P | | | | | | 0.70 | Fi | OATS | 6 | | | 249 | 9-4 | 1106A | | | 1 | 1 | 1 | l . | 1 1 | - 1 | - 1 | I . | 11 | | 1050A | 1 | l | | 1 | | | 1 1 | - i | - 1 | | | | 10.4 | 1112A | BOLLINGER | 3.5 | 0.23 | 2.96 | | 0.68 | - - | _ 3 | | - | 309 | 9-4 | 1055A | BOLL INGER | 2.3 | 1.01 | 0.77 | ļ | 0.78 | | .5 | 4 | FC6 | | | , | MEABURER | Į. | SANTA I | MONICA | CREEK | NO THE Y | 0.68 | - | DER SC | | | | DISCHARGE | MEASURE | BOLLINGER MENTE OF ttle Rock Creek | SANT | lAGO (| CREEK | ING THE Y | 0.78 | | thuer | F 125- | <u>S</u> _
16 | | мо. | DINGHANGE | Delow
Besin | IXNTS OF | 1 | MONICA | CREEK | | | SEFTEM
RAT- MET
ING CO | DER SC | . 1, 48 | | | DISCHARGE | MEASURED OVE LITE SESSIN ZND | MENTE OF | SANT | LAGO (| REEK | | | BEPTE | thuer | F 125- | <u>S</u> _
16 | | | DIRCHARGE | BERIN END 1105A | Restic Canyon | SANTA I | MONICA | CREEK | NO THE Y | EAR ENDING | - | MEAN SEC NG. | . 1, 48 | | | DIBOHAROE AND | MEASURED DVE L1 SEEDH END 1020A 1025A | MENTE OF | SANT | lAGO (| CREEK | ING THE Y | EAR ENDING | RAT- M | thuer | F 125- | <u>S</u> _
16 | | MG. | DIBOHANGE
HEART | BCBIN BHD 1105A 1110A 244P 249P | RESTIC GARYON | SARTA P | MONICA | CREEK | NO THE Y | EAR ENDING | RAT- MET
ING DD | MER SC
MEAN | . 1, 48 | METER
NG. | NG. | DISCHARGE | меавике
всеин
дир
1020A
1025A
1045A
1050A | MENTE OF CTOCK MADE BY TURNER TURNER | SANT | AMEA OF SCOTTON SO. FT. | DUAN MEAN VELOCITY PER SEC. | ING THE Y | EAR ENDING | RAT- M | EMBER
DD 3 | F 125- | S METER MOLY | | на.
274 | DIBOHANGE HEARE 10/18 11/15 | MEABUREP
 Dellow Dell | RESTIC CARYON MAGE BY BOLL INGER | SARTA P | MONICA | CREEK DURI MEAN | NO THE Y | EAR ENDING | RAT- MET | H- MEAS | . 1, 48 | METER
NO. | на.
51 | DISCHARGE AP A DO
| EESDH END 1020A 1025A 1050A 230P 245P | MADE BY TURNER PALMER | SANT | AREA DF SECTION SG. 1.45 | MEAN VELDOITY FF. JEER ACC. | ING THE Y | DISCHARSE SEC. FT. | RAT- M | EMBER
100 3, | F 125- | S MATER NO. FC43 | | ио.
274
_275 | DIBOHANGE DATE 10/18 | MEABUREP
 Dellow Scalin Evic 1105A 1110A 244P 249P 309P 313P 254P 301P | RESTIG CANYON MAGE BY BOLL INGER | SANTA P | AREA DF AREATION SOL FT. | CREEK DURI MEAN | NO THE Y | EAR ENDING | .6 | # MEAS SEC NG. 5 | . 1, 48 | METER
NO. | ыс.
51
52 | DATE 12/24 | EEBIN ZND 1020A 1025A 1045A 230P 245P 1000A 1010A | MENTS OF | SANT WIDTH PEET 6.5 | AREA DF SECTION SG. 1.45 | MEAN VELDOITY FF. JEER ACC. | ING THE Y | DISCHARGE EXC. FT. 2.8 0.41 | RAT- M | .6 .5 | 50, 1125
50, 1121
6 3 3 10 6 | S METER METER NO. FC43 | | 274
275
276 | DIBOHANGE DATE 10/18 11/15 | MEABUREP
 SCEIN END 1105A 11105A 1110 | RESTIG CANYON MAGE BY BOLL INGER | SANTA I | MONICA AND DE SECONDE | CREEK DURI | NO THE Y | DISONARE SEC. FT. | RAT- MET
ING DD | MEASON SEC NO. | . 1, 48 | METER
NO. | ма.
51
52
53 | DISCHARGE AND ATE 12/24 1/30 3/30 | #EASURED #EASUR | MADE BY TURNER PAIMER TURNER TURNER TURNER TURNER WRIGHT | SANT WIDTH PEET 6.5 2.0 TWO CH | AMEA OF SECUTION BG, PT. 1.45 0.32 ANNELS | MEAN VELOCITY FFER RG. 1.93 | ING THE Y | DISCHARGE SEC. FT. 2.8 0.41 73.6 | RAT- M | .6 .5 | 50, 151
30, 151
30, 151
6 | S S S S S S S S S S S S S S S S S S S | | жо.
274
275
276
277 | DIBOHANGE DATE 10/18 11/15 12/13 1/3 | BCBIN BNB 1105A 11105A 1110A 244P 249P 308P 313P 254P 301P 138P 46P 219P 227P | RESTIG CANYON MAGE BY BOLL INGER | SANTA I | MONICA AND DE SECONDE | CREEK DURIN MEAN VELDOITY FT-FER BEC. 2.87 3.50 | NO THE Y | DISCHAREE SEC. FT. 1.2 1.4 0.85 | .6 | # MEAS SEC NG. 5 | a. Is. HY. DAMEE TOTAL | METER
NO. | ыс.
51
52
53 | DATE 12/24 1/30 3/30 4/9 | EEBIN ZND 1020A 1050A 1050A 230P 245P 1000A 300P | MENTS OF TURNER PALMER TURNER TURNER TURNER WRIGHT TURNER | SANT WIDTH FEET 6.5 2.0 TWO CH | 1.45
0.32
ANNELS | MEAN (MEAN) (MEA | ING THE Y | DISDIMANE SEC. FT. 2.8 0.41 73.6 3.3 | RAT- M | .6 .5 | 50, 1125
50, 1121
6 3 3 10 6 | S METER METER NO. FC43 | | жо. 274 275 276 277 278 | DIBOHANGE
DATE
10/18
11/15
12/13
1/3 | below
below
1105A
11105A
1110A
244P
308P
313P
254P
301P
136P
219P
227P
244P
227P
244P
251P | RESTIC CANYON WAGE BY BOLL INGER | SANTA P | ANCA DE ASCOTION SOL FT. ANNELS Q.35 Q.55 | MEAN VELOUITY TARKS BEC. 2.87 3.50 | NO THE Y | DIBONAREE SEC. Fr. 1.2 1.4 0.85 | .6
.6
.6 | #- MEASON NO. 5. 4. 5. 5. 5. 5. | a. Is. HY. DAMEE TOTAL | METER
NO. | ыс.
51
52
53 | DATE 12/24 1/30 3/30 4/9 | EEBIN ZND 1020A 1050A 1050A 230P 245P 1000A 300P | MENTS OF TURNER PALMER TURNER TURNER TURNER WRIGHT TURNER | SANT WIDTH FEET 6.5 2.0 TWO CH | 1.45
0.32
ANNELS | MEAN (MEAN) (MEA | ING THE Y | DISDIMANE SEC. FT. 2.8 0.41 73.6 3.3 | RAT- M | .6 .5 | 50, 1125
50, 1121
6 3 3 10 6 | S METER METER NO. FC43 | | ма. 274 275 276 277 278 279 | DIBOHANGE DATE 10/18 11/15 12/13 1/31 2/21 | MEABURE | RESTIC CANYON WAGE BY BOLL INGER | winder rest Two CH 4.2 5.6 Two CH. 5.3 | AMONICA AMECA DIN ARCOTION BEOTION O. 35 O. 55 NNNELS O. 41 | 2.87
3.50
3.66 | NO THE Y | DISCONDER SEC. 77. 1.2 1.4 0.85 1.9 2.1 | .6
.6
.6 | 5 4 5 5 5 5 4 4 | L S. HY.
OHANGE
TOTAL | METER
NO. | ыс.
51
52
53 | DATE 12/24 1/30 3/30 4/9 5/3 | #EASURED DV6 L1: #E00 1020A 1025A 1045A 1050A 230P 245P 1000A 1010A 300P 305P | MENTS OF TURNER PALMER TURNER TURNER TURNER WRIGHT TURNER | SANT WIDTH PERT 6.5 2.0 TWO CH 6.0 2.0 | 1.45
0.32
ANNEL S
1.80
0.22 | DURIT - | SAUSE
HEIDET | DISDIAGREE EXC. FT. 2.8 0.41 73.6 3.3 0.10 | RAT- M | .6 .5 .5 .5 | 30, 19.25-
30, 19.25- | S METER METER NO. 1 | | же. 274 275 276 277 278 279 280 | DIBOHANGE DATE 10/18 11/15 12/13 1/31 2/21 3/7 | MEABUREP
 Dellow | RESTIC CANYON MAGE BY BOLL INGER | ************************************** | MONICA ARCH DR BOL FT. ANNELS 0.35 0.55 NAVELS 0.41 0.65 | 2.87
3.50
3.66 | NO THE Y | DIRECTOR ENDING SEC. 17. 1.2 1.4 0.85 1.9 2.1 1.5 2.0 1.8 2.4 | FLC AT: | ## MEAR 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | . S. HY. OMANEY TOTAL | METER
NO. | ыс.
51
52
53 | DIEGHARGE 12/24 1/30 3/30 4/9 5/3 | MEABURE
DV6 L1
ERD
1020A
1025A
1045A
1050A
230P
245P
1010A
1010A
1010A
1010A | MADE BY TURNER PAIMER TURNER TURNER TURNER WHIGHT TURNER | SANT WIDTH FEET 6.5 2.0 TWO CH 6.0 2.0 | 1.45
0.32
ANNELS
1.80
0.22 | NEAN VELOCITY 1.93 1.28 1.83 0.45 | SAUSE
HEIGHT
FEET | 2.8
0.41
73.6
3.3 | RAT- NIND | .6 .5 .5 .5 .5 | 50, 191 100 100 100 100 100 100 100 100 100 | S | | 274
275
276
277
278
279
280
281 | DIBOHARGE DATE 10/18 11/15 12/13 1/3 1/31 2/21 3/7 4/25 | MEABURE-
 Del OW Even 1105A 1110A 1 | RESTIC CARYON MAGE BY BOLL INGER | ************************************** | MONICA AMELINIA ANNELS 0.35 0.55 NNNELS 0.41 0.65 0.54 | CREEK ********************************** | NO THE Y | DIBONAMES SEG. FT. 1.2 1.4 0.85 1.9 2.1 1.5 2.0 | FLC AT: | ## MEAR 30 | B. IFF. OPAMEE TOTAL | METER
NO. | ыс.
51
52
53 | DIEGHARGE 12/24 1/30 3/30 4/9 5/3 | меавического 1020A 1025A 1025A 1025A 1050A 300P 305P | MENTS OF | SANT WIDTH FEET 6.5 2.0 TWO CH 6.0 2.0 CREEK | AMAR BY SECTION 1.45 0.32 ANNELS 1.80 0.22 | MEAN VELOCITY 1.93 1.28 1.83 0.45 | PAUSE HEIGHT FEET | DIROUANNE SKO. FT. 2.8 0.41 73.6 3.3 0.10 | SEPTE SEPTE | .6 .5 .5 .5 | 50. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30 | S | | жо. 274 275 276 277 278 279 280 281 | DIBOHARGE DATE 10/18 11/15 12/13 1/31 2/21 3/7 4/25 5/16 | MEABUREH
 See Ow
 See Ow
 1105A 110 | RESTIC CARYON MAGE BY BOLL INGER | SANTA ! whome rest TWO CH 4.2 5.6 TWO CH 5.3 6.2 6.0 | MONICA AMELINIA ANNELS 0.35 0.55 NNNELS 0.41 0.65 0.54 | CREEK ********************************** | NO THE Y | DIRECTOR ENDING SEC. 17. 1.2 1.4 0.85 1.9 2.1 1.5 2.0 1.8 2.4 | FLC AT: | ## MEAR 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | B. IFF. OPAMEE TOTAL | METER
NO. | ыс.
51
52
53 | DIEGHARGE 12/24 1/30 3/30 4/9 5/3 | ###################################### | MENTS OF | SANT WIDTH FEET 6.5 2.0 TWO CH 6.0 2.0 | 1.45
0.32
ANNELS
1.80
0.22 | NEAN VELOCITY 1.93 1.28 1.83 0.45 | SAUSE
HEIGHT
FEET | 2.8
0.41
73.6
3.3 | SEPTE SEPTE | .6 .5 .5 .5 .5 | 50. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30 | S | | же. 274 275 276 277 278 279 280 281 282 | 10/18
11/15
12/13
1/31
1/31
2/21
3/7
4/25
5/16 | MEASURE: | RESTIC CARYON MAGE BY BOLL INGER | ************************************** | MONICA MACA DE SECULOR MONICIA MONIC | CREEK ********************************** | NO THE Y | DISONANEE SEG. FT. 1.2 1.4 0.85 1.9 2.1 1.5 2.0 1.8 2.4 | RAT- MET OD | ## MEAR 30 | L. S. HY. SOLARIST TOTAL | METER
NO. | MG. 51 52 53 54 55 | DIECHARGE 12/24 1/30 3/30 4/9 5/3 | ###################################### | MADE BY MADE BY TURNER PALMER TURNER TURNER WRIGHT TURNER MADE BY | SANT WISTN PERT 6.5 2.0 TWO CH 6.0 2.0 CREEK | AMAR BY SECTION 1.45 0.32 ANNELS 1.80 0.22 | MEAN VELOCITY 1.93 1.28 1.83 0.45 | PAUSE HEIGHT FEET | DISCHARGE SEC. FT. 2.8 0.41 73.6 3.3 0.10 | SEPTE SEPTE | .6 .5 .5 .5 .5 | 50. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 19. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30 | S | | 274
275
276
277
278
279
280
281
282
283 | 10/18 11/15 12/13 1/3 1/31 2/21 3/7 4/25 5/16 5/31 6/13 | MEASURE: | RESTIC CARYON MAGE BY BOLL INGER | SANTA ! with the children in | MONICA MACA DE SECULOR MONICIA MONIC | | NO THE Y | 1.2
1.4
0.85
1.9
2.1
1.5
2.0
1.3
1.5
1.0 | | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | h ls. HV. OMMER | FC6 | NG. 51 52 53 54 555 | DISCHARGE 12/24 1/30 3/30 4/9 5/3 DISCHARGE DATE | MEABURE | MADE BY TURNER PALMER TURNER PALMER TURNER WRIGHT TURNER CHENTS OF SANTIAGO. Little Rock Cree MAGE BY LUCE - WRIGHT | SANT WINDTH FEET 6.5 2.0 TWO CH 6.0 2.0 CREEK | ANA DE SECTION SA PER CONTROL DE SECTION SA PER CONTROL DE SECTION SA PER CONTROL DE SECTION SA PER CONTROL | | PAUSE HEIGHT FEET | DIBOUANE BEO.FT. 2.8 0.41 73.6 3.3 0.10 | RAT- MINO | .6 .5 .5 .5 .5 .5 | 30, 191 30, 191 30, 191 6 3 3 10 6 3 3 10 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | S | | 274
275
276
277
278
279
280
281
282
283
284 | 10/18 11/15 12/13 1/31 1/31 2/21 3/7 4/25 5/16 5/31 6/13 | MEASURE: | RESTIC CARYON MAGE BY BOLL INGER | SANTA ! weens TWO CH 5.6 TWO CH 5.3 6.2 6.0 6.5 TWO CH TWO CH | MONICA MACA DE 177. ANNELS 0.35 0.41 0.65 0.54 0.90 ANNELS | | NO THE Y | 1.2
1.4
0.85
1.9
2.1
1.5
2.0
1.3
1.5
1.0
1.3 | .6 .6 .6 .6 | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | h In. 117. Dissert | FCG FCGS FCGS FCGS FCGS FCGS | NG. 51 52 53 54 555 | DISCHARGE 12/24 1/30 3/30 4/9 5/3
DISCHARGE 11-20 | MEABURE | MADE BY TURNER PALMER TURNER PALMER TURNER WRIGHT TURNER WRIGHT TURNER WRIGHT LUCE - WRIGHT LUCE | SANT WINDTH FEET 6.5 2.0 TWO CH 6.0 2.0 CREEK | 1.450 (1.45 | | PAUSE HEIGHT FEET | DIBONANE REGITAL BEGITAL B. 6. | BEPTE BEAT- M | .6 .5 .5 .5 | 5 125- | S | | 274
275
276
277
278
279
280
281
282
283
284
285 | 10/18 11/15 12/13 1/31 1/31 2/21 3/7 4/25 5/16 5/31 6/13 7/10 | MCASURED | RESTIC CARYON MAGE BY BOLL INGER | SANTA ! WIETT TWO CH 4.2 5.6 TWO CH 5.3 6.2 6.0 6.5 TWO CH TWO CH 3.0 | MONT CA MARCH 271 MANNELS 0.35 0.41 0.65 0.54 0.90 MANNELS | CREEK | NO THE Y | 1.2
1.4
0.85
1.9
2.1
1.5
2.0
1.3
1.5
1.0 | | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | h In. 117. Dissert | FC6 | ма.
51
52
53
54
55
ма. | DISCHARGE 12/24 1/30 3/30 4/9 5/3 DISCHARGE 11-20 11-22 | MEABURE | MADE BY TURNER PALMER TURNER PALMER TURNER WRIGHT TURNER WRIGHT LUCE - WRIGHT LUCE - WRIGHT | SANT WINTH FEET 6.5 2.0 TWO CH 6.0 2.0 CREEK WINTH FEET 7.0 3.5 | 1.450 (| | PAUSE HEIGHT FEET | DIBOUANE BEO.FT. 2.8 0.41 73.6 3.3 0.10 ORDINARE ENDINARE EN | SEPTE | .6 .5 .5 .5 .5 .5 .5 .5 .6 .6 .6 .6 .6 | F125- 30, 191 100 6 3 100 6 3 F125- 100 7 100 7 100 7 100 7 100 100 100 100 | S | | 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | 10/18 11/15 12/13 1/31 1/31 2/21 3/7 4/25 5/16 5/31 6/13 7/10 7/25 | MCABURET | RESTIC CARYON MAGE BY BOLL INGER | SANTA ! with the children chi | MONICA MEDITION MANUELS 0.41 0.65 0.54 0.90 MANUELS MANUELS MANUELS 0.88 | CREEK | NO THE Y | 1.2
1.4
0.85
1.9
2.1
1.5
2.0
1.3
1.5
1.0
1.3 | .6 .6 .6 .6 | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | h In. 117. Dissert | FCG FCGS FCGS FCGS FCGS FCGS | ма.
51
52
53
54
55
55
86 | DISCHARGE 12/24 1/30 3/30 4/9 5/3 DISCHARGE 11-20 11-22 12-28 | #EABUREC #EABURE #E | MADE BY TURNER PALMER TURNER PALMER TURNER WRIGHT TURNER WRIGHT LUCE - WRIGHT LUCE - WRIGHT LUCE | SANT WINTY FEET 6.5 2.0 TWO CH 6.0 2.0 CREEK k WINTY FEET 7.0 3.5 7.5 | 1.45
0.32
NNNELS
1.80
0.22 | DUNING PROBLEM PROBL | PAUSE HEIGHT FEET | DIBOUANE BEO.FT. 2.8 0.41 73.6 3.3 0.10 ORDINARE ENDINARE EN | SIPTE MAT- M | .6 .5 .5 .5 .5 .6 .6 .6 .6 .6 .6 | 5. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19 | S | #### RISING WATER AT WHITTIER NARROWS THIS IS A COMPUTED DISCHARGE DETERMINED WEEKLY, EXCEPT WHEN THERE IS BANK RUNOFF DURING STORMS. FROM DISCHARGE MEASUREMENTS BY THE FORMULA: $S = A + B + (D + E + F + X) + I + J + (K + L) + N + 0 + Q \quad \text{WHICH.} \ \ \text{IN GENERAL.}$ - S = THE RISING WATER AT WHITTIER NARROWS, IN SECOND-FEET. - A = THE MEASURED DISCHARGE AT STATION F64-R. RIO HONDO 1000 FEET ABOVE MISSION BRIDGE. - B = THE MEASURED DISCHARGE AT STATION F83-R, MISSION CREEK (FORMERLY RIO HONDO SLOUGH) AT SAN GABRIEL BLVD. - D ... THE MEASURED DISCHARGE OF THE RIO HONDO ABOVE RISING WATER. - E = THE MEASURED DISCHARGE AT STATION F668-S, TRI-CITY OUTFALL SEWER ABOVE JUNCTION WITH RIO HONDO. - F THE MEASURED DISCHARGE OF THE EL MONTE SEWER. - X ADDITIONAL FLOW AT VARIOUS LOCATIONS. - I THE MEASURED DISCHARGE OF TEMPLE DITCH. - J = THE MEASURED DISCHARGE OF RINCON DITCH. - K THE MEASURED DISCHARGE AT STATION F84-S. CATE DITCH BELOW SLUICE GATE. - $L = \mbox{THE MEASURED, OR ESTIMATED, DISCHARGE FROM THE CATE DITCH WELL.}$ - N = THE MEASURED DISCHARGE AT STATION F85-S. STANDEFER DITCH BELOW HEADGATE. - 0 = THE MEASURED DISCHARGE AT STATION F86-S. SAN GABRIEL RIVER BELOW STANDEFER DITCH. - Q = THE MEASURED DISCHARGE OF SAN GABRIEL RIVER ABOVE RISING WATER. FOR THE PURPOSE OF DETERMINING THE MONTHLY AND YEARLY RUNOFF, STRAIGHT LINE VARIATION IN FLOW BETWEEN MEASUREMENTS HAS BEEN ASSUMED. INCLUDED HEREWITH IS THE GRAPH SHOWING THE MEAN MONTHLY RISING WATER SINCE JANUARY, 1923, (SEE PAGE 311.) | | Factor | HEABURER | TENTE OF RIO HO | NDO | | | | | | | | | | NO. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BEGTION
BG, FT. | HEAM
VELDOITY
FT.PER SEC. | BAUGE
HEIBHT.
FEET | D)EGHARGE
BEG. FT. | RAT- H | ETH- M | IZAB, G. | I. HT. | HETER
HO. | |-------------|-------------|---------------|------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|------------------|-------------|----------------------|---------------------------|--------------|------|-------|----------------------|--------------------|-------|-------------------------------|---------------------------------|--------------------------|-----------------------|----------|--------|----------|-----------|--------------| | | AT-
NEAR | | sing Water
r Avenue | | | DUR | IND THE Y | EAR ENDIN | G MEPT | EMBE | F 30. | 47 | | | | 736A | ., | | | | , ree- | | | \neg | . , | TETAL (| · · | | | | | | , | | | | | , , , | , | | , | , | 393 | 3/7 | 750A
736A
752A | ,, | 11.0 | 7.60 | 0.92 | - | 7.1 | | .6 | 7 | | | | NO. | DATE | BEGIN | HADE BY | WIDTH
FEET | AREA DF
SECTION
SQ. FT. | MEAN
VELOCITY
FT.PER SEC. | GAUGE
HEIGHT
FREY | DISCHARGE
BYC. FY. | HAT- | мЕТН-
ОО | MEAS.
SEC.
NO. | G. HT.
DHANGE
TOTAL | METER
No. | 394 | | 801A
817A | | 16.0 | 12.6 | 0.86 | | 10.8 | П | .6 | 8 | \exists | | | 7 | 1-3 | 320P
330P | BREWSTER | 10.0 | 3.40 | 1.82 | | 6.2 | | .6 | 5 | | FC12 | 395 | 3/21 | 740A
756A | | 16.0 | 9.0 | 1.00 | | 9.0 | П | .6 | 8 | | | | 8 | .1:9 | 704A
713A | 11 | 6,0 | 1,85 | 1,24 | | 2,3 | | ,6 | 4 | | | 396 | 4/4 | 742A
758A | | 14.0 | 7.40 | 1.08 | | 8.0 | | .6 | 7 | | FC12 | | 9 | 1-16 | 720A
730A | 11 | 61.0 | 1,26 | 1,35 | | 1,7 | | ,6 | 6 | | | 397 | 4/11 | 746A | | 14.0 | 9.40 | 0.77 | | 7.2 | П | .6 | 7 | | | | | - | | | | | | | | | | | | | 399 | 4/25 | 752A | ., | 15.0 | 10.6 | 0.83 | | 8.8 | П | - | | | | | | | | | | | | | | | | | | | 400 | 5/2 | 742A
757A | | 12.0 | 6.10 | 1.20 | | 7.3 | | .6 | -6 | \Box | | | | | R #E!! | ENTS OF | IRI-CLIY | OUTE | ALL SE | ÉR | | | | F6 | 6B-S | | 401 | 5/9 | 730A
742A | | 12.0 | 5.60 | 1.20 | | 6.7 | | 6 | | | | | | .AT. | above | Rio Hondo | | | DUE | NO THE W | EAR ENDING | | | . | 40 | | 402 | 5/16 | 730A | | 14.0 | 7.20 | 0.99 | | 7.1 | | .6 | 7 | | | | | | | | | | | | EAR ENDING | | | | | -
 | 403 | 5/23 | 730A | | 14.0 | 6.60 | 1,09 | | 7.2 | | .6 | 7 | | •, | | ND. | DATE | BEGIN
END | NADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELODITY
FT.PER SEQ. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | OD. | MEAS.
SEC.
ND. | E. HT.
CHANGE
TOTAL | METER
NO. | 404 | 5/31 | 740 A
751 A | | 12.0 | 4.08 | 1.35 | | 5.5 | | .6 | 5 | | • | | 373 | 10/4 | 829A
743A | BREWSTER | 9.0 | 6.50 | 1,14 | | 7.4 | | .6 | 5 | | FC12 | 405 | 6/7 | 735A
747A | | 12.0 | 4.68 | 1.24 | | 5.8 | | .6 | 6 | | | | 374 | 10/11 | 743A
755A | ••• | 11.0 | 10.4 | 0.74 | | 7.7 | | .6 | 6 | | " | 406 | 6/13 | 728A
740A | BREWSTER
WRIGHT | 12.0 | 5,20 | 1.06 | | 5.5 | | .6 | 6 | | | | 375 | 10/18 | 800A
812A | | 13.0 | 8.65 | 1.05 | | 9.1 | | .6 | 5 | | | 40.7 | 6/20 | 733A
745A | BREWSTER | 12.0 | 7.40 | 0.76 | | 5.6 | | .6 | 6 | | | | 376 | 10/25 | 758A
810A | | 14.0 | 7.20 | 1.08 | | 7.8 | | .6 | 5 | | | 408 | 6/27 | 744A
758A | | 13.0 | 9.75 | 0.77 | | 7.5 | | .6 | 7 | | | | 377 | 11/1 | 734A
748A | ., | 14.0 | 5.40 | 1.17 | | 6.3 | | -6 | 7 | | | 409 | 7/5 | 730 A
742A | | 13.0 | 8.40 | 0.76 | | 6.4 | | .6 | 6 | | | | 378 | 11/8 | 718A
730A | | 12.0 | 5.00 | 1.40 | | 7.0 | | .6 | . 6 | | | 410 | 7/11 | 733A
745A | | 14.0 | 10.9 | 0.72 | | 7.9 | | .6 | 7 | | •• . | | 379 | 11/15 | 741 A
755A | | 11.0 | 7.05 | 1.05 | | 7.4 | | .6 | . 6 | | | 411 | 7/18 | 732A
746A | 11 | 14.0 | 9.00 | 0.83 | | 7.5 | | .6 | 7 | | | | 380 | 11/23 | 726A
738A | | 10.0 | 5.40 | 1.33 | | 7.2 | | ,6 | 5 | | - | 41:2 | 7/.25 | 734A
749A | , | 14.0 | 7.80 | 0.99 | | 7.7 | | .6 | 7 | | ,- | | 381 | 11/29_ | 723A
735A | •• | 11.0 | 4.50 | 1.49 | | 6.7 | | .6 | 6 | | | 413 | 8/1 | 718 A
726 A | | 13.0 | 8.00 | 0.86 | | 6.9 | | .6 | 7 | | | | _382 | 12/6 | 743A
759A | | 13.0 | 7.75 | 1.15 | | 8.9 | | .6 | 7 | | | 414 | 8/8 | 730 A
738 A | BONADIMAN | 13.0 | 8.96 | 0.80 | | 7.2 | \sqcup | .6 | 7 |] | FC19 | | 383 | 12/13 | 750A
804A | | 13.0 | 7,45 | 1.07 | | 8.0 | | .6 | 7 | | | 415 | 8/15 | 710 A
720 A | " | 14.0 | 11.0 | 0.61 | | 6.7 | \perp | .6 | _7 | | •• | | 384 | 12/20 | 735A
745A | | 10.0 | 6.40 | 0.92 | | 5.9 | | . 6. | _5_ | | | 416 | 8/22 | 645A | | 14.0 | 10.7 | 0.64 | ı | 6.8 | | .6 | _7 | | | | 3 <u>85</u> | 12/27 | 740A
756A | ** | 14.0 | 10.2 | 0.94 | | 9.6 | | . 6 | 7 | | | 417 | 8/29 | 74:2A
756A | | 11.0 | 8.40 | 0.86 | L | 7.2 | | .6 | 6 | | FC1-2 | | 386 | 1/3 | 720A
734A | | 13.0 | 10.8 | 1.18 | _ | 12.7 | | .6 | 7 | | | 418 | 9/5 | 730A | | 12.0 | 8.00 | 0.90 | <u> </u> | 7.0 | 1 | .6. | 6 | | | | 387 | 1/24 | 727A
742A | | 14.0 | 6.80 | 1.12 | | 7.6 | | .6 | 7 | | | | | | | | | | | | | | | | | | 388 | 1/31 | 750A
800A | | 9.0 | 6.15 | 1.11 | | 5.8 | | .6 | 5_ | <u> </u> | | | | | | | | | | | | | | | | | 389 | 2/7 | 746A
758A | | 11.0 | 6.00 | 1.42 | | 8.5 | | .6 | 6 | | | l | | | | | | | | | | | | | | | .390 | 2/14 | 744A
756A | | 12.0 | 10.2 | 0.75 | | 7.6 | | .6 | 6 | | | | | | | | | | | | | | | | | | 391 | 2/21 | 742A
758A | | 11.0 | 7.15 | 1.12 | | 8.0 | Ш | .6 | 6 | | | 1 | | | | | | | | | | | | | | | 392 | 2/28 | 752A
806A | | 11.0 | 6.75 | 1.08 | | 7.3 | | .6 | 6 | ļ | ENTS OF TRI-CIT | | 200 | | | | | | 11.000 | B-S | | | | | MENTO DF | | | | | | | | | - | |-----|--------------|-------|----------------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|-------------|----------------------
---------------------------|--------------|------|--------------|-------------------------|--------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-------|-----------------------------------|----------------| | | <u></u> | 4 | 040 | Rio Hondo | -//.,- | | DUR | ING THE Y | EAR ENDING | 1 469 | TEMBE | A 3G, | 19_47 | - | | HAT | Junctio | on with Rio Hon | do | | DU F | IING THE Y | AR ENDING | SEPT | EMBER | 30, 19 | 1 6 | | | DATE | | SKUIN
SHD | MADE BY | WIDTH
FEET | AREA OF
MEDTION
MD. FT. | HEAN
VELOCITY
FT.PER SEC. | BAUBE
HEIGHT
FEET | DISCHARGE
SEC. FT. | HAT-
ING | METH-
OD | MEAN,
SEC.
NO. | E. HT.
CHANGE
TOTAL | METER
NO. | HO. | DATE | BKO:H | NADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT,FER EEC. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | DD H | HEAR. S.
HEC. CHAN
NO. TOTA | HT. MI | | _ | 16-3 | | | BREWSTER . | 15.0 | 10.8 | 0.93 | | 10.0 | | .6 | 8 | | FÇ12_ | 326 | 10/4 | 74·2A
750A | BREWSTER | 4.0 | 0.94 | 0.95 | | 0.89 | | .6 | 4 | FC | | _ | 10-10 | : | 742A
758A | * | 12.0 | 9.60 | 0.71 | | 7.4 | _ | .6 | 6 | | ** | 327 | 10/11 | 809 A
815A | | 3.0 | 1.20 | 0.92 | | 1.1 | | ـهـ | _3 | | | 4 | 10-17 | | 742A
756A
730A | * | 16.0 | 10.4 | 0.89 | <u> </u> | 9.3 | | .6 | 8 | | ** | 328 | 10/18 | 744A
750A | | 3.0 | 0.60 | 1.07 | | 0.64 | - | -6 | 3 | ٠. | | _ | 10-24 | | 744A
734A | N | 16.0 | 8.46 | 0.99 | | 8.3 | | .6 | 8 | | " | 329 | 10/25 | 737A
745A
801A | <u></u> | 4.0 | 0.88 | 0.92 | | 0.61 | | .6 | 4 | - - | | 4 | 10-31 | | 46A
729A | н | 11.0 | 6.30 | 1.16 | | 7.3 | _ | .6 | 6_ | | ** | 330 | 11/1 | 809A
744A | | 3.0 | 1.85 | 0.81 | | 1.1 | | .6 | 3 | | | - | 11:7 | | 41A
45A | - | 11.0 | 7.85 | 1.01 | | 7.9 | _ | .6 | 6 | | •• | 331 | 11/8 | 752A | | 4.0 | 1.08 | 0.91 | <u> </u> | 0.98 | | .6 | 4 | - - | | 4 | 11-15 | 17 | 57Å | | 14,0 | 10.2 | 1.25 | | 12,8 | | .6 | 7 | | " | 332 | 11/15 | 728A
734A | | 3.0 | 0.84 | 1.19 | | 1.0 | | .6 | 3 | 4 | | _ | 12-19 | 8 | 49A
105A | ** | 14.0 | 9.00 | 1.23 | | 11.1 | | .6 | 7 | | | 333 | 11/23 | 750 A
758 A
750 A | | 3.0 | 0,62 | 1.21 | | 0.75 | | .6 | 3 | 4 | | _ | 1-3 | 5 | 30A | · · | 15.0 | 7,65 | 1,31 | | 10,0 | | .6 | 8 | | ** | 334 | 11/29 | 759A | 11 | 4.0 | 1.04 | 0.90 | | 0.94 | | .6 | 4 | 4 | | 1 | 1-9 | 1 | 726A
738A | * | 11.0 | 7.30 | 1,34 | | 9,8 | | .6 | 6 | | * | 335 | 12/6 | 728A
736A | | 4.0 | 1.06 | 0.91 | | 0.96 | | .6 | 4 | 4 | | 4 | 1-16 | 17 | 36A
48Â | | 11.0 | 6.85 | 1.45 | | 9.9 | | .6 | 6 | | •••• | 336 | 12/13 | 731 A
740 A | | 4.0 | 1.12 | 1.04 | | 1.16 | | ا ۵۰ | 4 | 4 | | 4 | 1:23 | | 731A
145A | - 11 | 14.0 | 7.40 | 1.29 | | 9.5 | | .6 | 7 | | • | 337 | 12/20 | 759A
805A | | 4.0 | _1.00 | 0.92 | | 0.92 | | -6 | 4 | 4 | | 4 | 1-30 | 8 | 756A
808A
734A | | 12.0 | 7.10 | 1,21 | | 8.6 | | .6 | 7 | | | 338 | 12/27 | 812A
820A | | 4.0 | 0.96 | 1.25 | ļļ | 1.2 | | .6 | 4 | - | | | 2-6 | 1.7 | 50A
44A | | 14,0 | 6,15 | 1.14 | | 7,0 | | ,6 | 8 | | | 339 | 1/3 | 739A | | 3.0 | 0.98 | 1.22 | | 1.2 | | .6 | 3 | 1 | | - | 2-13 | | 58A
50A | | 14.0 | 7.68 | 1.03 | | 7.9 | | .6 | 7 | | •• | 340 | 1/24 | 752A
758A | 14 | 3.0 | 0.72 | 1,15 | | 0.83 | \vdash | .6 | 3 | 4 | | | 2-20 | 7 | 58A | BREWSTER-WADDICOR | 14.0 | 8.80 | 0.99 | | 8.7 | L | .6 | 7 | | • | 341 | 1/31 | 812A
820A | 11 | 4.0 | 0.98 | 0.83 | | 0.81 | | .6 | 4 | _ | | _ | 2-27 | | | WADDICOR | 13.8 | 5.89 | 0,99 | | 5.8 | | .6 | В | | FC37 | 342 | 2/7 | 815A
825A | ., | 4.0 | 1.70 | 0.76 | | 1.3 | | .6 | 4 | 4 | | _ | 3-6 | | 100A
10A
45A | | 14.0 | 9.40 | 0.96 | | 9.0 | L | .6 | 7 | | | 343 | 2/14 | 812A
821A | | 4.0 | 1.52 | 1.14 | | 1.7 | | .6 | 4 | 4 | | | 3-13 | 7 | 55A
40A | | 12,6 | 4,79 | 1.48 | | 7.1 | | .6 | 7 | | · | 344 | 2/21 | 724A
731A | ** | 3.0 | 1.10 | 1.00 | | 1.1 | | .6 | 3 | | | | 3-20 | 1 7 | 50A | WADDICOR | 12.4 | 4.28 | 1,63 | | 7.0 | | .6 | 8 | | , | 345 | 2/28 | 733A
741A | | 4.0 | 1.08 | 1.:11 | | 1.2 | | .6 | 4 | 4 | | _ | 3-27 | 8 | COA | VAN DER GOOT | 10.7 | 4.19 | 1.86 | | 7.8 | | ,6 | 7 | | | 346 | 3/7 | 807A
815A | | 3.0 | 0.90 | 0.62 | | 0.74 | | .6 | 3 | 4 | | | 4-2 | ٤ | | WADD (COR | 10.5 | 4.00 | 1.85 | | 7.4 | | .6 | 7 | | | 347 | 3/14 | 720A
727A | ., | 3.0 | 0.96 | 0.89 | | 0.85 | | .6 | 3 | _ | | _ | 4-10 | 8 | 50A
00A | | 11.0 | 5,61 | 1.31 | | 7,3 | | ,6 | 6 | | | 348 | 3/21 | 740A
749A | | 4.0 | 0.92 | 1.09 | | 1.0 | | .6 | 4 | _ | | | 4-17 | 8 | 755A
305A | <u>,</u> | 11,5 | 6.47 | 1,19 | | 7.7 | | .6 | 7 | | | 349 | :4/4 | 812A | 7 | 3.0 | 0.71 | 1.18 | | 0.64 | | ,6 | 3 | | | | 4-24 | 8 | 750A
300A | , : | 12,0 | 5,67 | 1,18 | | 6.7 | | .6 | 7 | | | 350 | 4/11 | 725A
731A | | 4.0 | 0.92 | 1,09 | ļļ | 1.0 | | .6 | 4 | | | | 5-1 | 8 | | WADDICOR-MELLEN | 13,3 | 7.66 | 1,33 | | 10,2 | | ,6 | В | | | 351 | 4/18 | 729A
739A | | 3.0 | 0.90 | . 1.02 | | 0.92 | Щ | .6 | 3 | | | | 5-8 | 8 | | WADD COR | 12,0 | 6,08 | 1,40 | | 8.5 | | .6 | 7 | - | h | 352 | 4/25 | 740A
746A | ., | 3,0 | 0.92 | 1.02 | | 0.94 | | .6 | 3 | | | 1 | 5-15 | € | 750A
800A | | 12,5 | 6.56 | 1,23 | | 8.1 | | .6 | 7 | | ., | 353 | 5/2 | 727A
734A
754A | ** | 4.0 | 1.24 | 0.89 | | 1.1 | | .6 | 4 | _ | | | 5-22 | | 755A
305A | , | 12.3 | 5.76 | 1.34 | | 7.7 | | .6 | 7 | | | 354 | 5/9 | 802A | •• | 4.0 | 0.82 | 1,43 | | 0,93 | | .6 | 4 | | | | 5-29 | | 750A
300A | ** | 12.2 | 6.40 | 1.47 | | 9.4 | | .6 | 7 | | | 355 | 5/16 | 754A
803A | | 4.0 | 0.81 | 1.23 | | 1.0 | | .6 | 4 | | | | 6+5 | | 55A
605A | | 12.7 | 5.90 | 1.54 | | 9.1 | | 46 | 8 | | | 356_ | 5/23 | 755A
803A | ** | 3.0 | 0.66 | 1.17 | | 0.77 | | .6 | 3 | | | | 6-12 | | 752A
302A | | 12.5 | 5.57 | 1.56 | | 8.7 | | -6 | 8 | | ** | 357 | 5/31 | 802A
810A | | 4.0 | 0.70 | 1.07 | | 0.75 | | .6 | 4 | | | П | 6-19 | | 50A
100A | , | 12.7 | 5.57 | - 1.44 | | 8.0 | | ·6 | 8 | | | 358 | 6/7 | 720 A
728 A | | 4.0 | 0.78 | 1.09 | | 0.85 | | . 6 | 4 | | | | 6-26 | | 755A
805A | •• | 12,0 | 3.86 | 1.32 | | 5.1 | | .6 | 7 | | | 359 | 6/13 | 750A
756A | BREWSTER
WRIGHT | 3.0 | 0.60 | 1.00 | | 0.60 | | .6 | 3 | | | П | 7-3 | | 750A
800A | | 12.5 | 5.83 | 1.34 | | 7.8 | | .6 | 7 | | | 360 | 6/20 | 755A
801A | BREWSTER | 3.0 | 0.62 | 1.40 | | 0.68 | | .6 | 3 | | | П | 7-10 | 7 | 750A
100A | | 12.0 | 3.09 | 1.03 | | 3.2 | | .6 | 9 | | | 361 | 6/27 | 726A
734A | | 4.0 | 0.78 | 1.00 | | 0.78 | | -6 | 4 | | | | 7-17 | 7 | 735A
745A | ** | 11.8 | 5.31 | 1.41 | | 7.5 | | ,6 | 8 | | ,m | 362 | 7/5 | 752A
800A | | 4.0 | 0.98 | 0.87 | | 0.85 | | .6 | 4 | | | -1 | 7-24 | | 50A
100A | * | 12.0 | 6.84 | 1.24 | | 8.5 | | .6 | 7 | | | 363 | 7/11 | 755A
803A | | 4.0 | 0.84 | 0.95 | | 0.80 | | .6 | 4 | | | - 1 | 7-31 | 7 | 45A
55A | | 12,2 | 7.71 | 1.21 | | 9.3 | | -6 | 7 | | | 364 | 7/18 | 752A
758A | | 3.0 | 0.84 | 1.17 | | 0.98 | | | 3 | | | 1 | 8•7_ | - 1 7 | AOE! | BREWSTER | 13.0 | 6.05 | 1.42 | | 8.6 | | .6 | 7 | | FC12 | | 7/25 | 800A
806A | | 3.0 | 0.56 | 1.41 | | 0.79 | | | 3 | | | П | | 7 | 40A
52A | # | | | | | 7.2 | | .6 | 6 | | -,4 | 365 | 8/1 | 740A
745A | BREWSTER
BON AD I MAN | 3.0 | 0,60 | 1.57 | | 0.94 | | | 3 | 1 | | - 1 | 8-14
8-21 | 7 | 42A
54A | * | 13.0 | 5.27
6.90 | 1.37 | | 8.6 | | .6 | 6 | | | 366 | | 750A | BON AD IMAN | 3.0 | 0.94 | 1.00 | | 0.93 | | | 3 | T | | - 1 | 8-21
8-28 | 8 | OOA | WADDICOR | | | 1.25 | | | | | | _ | | 36.7 | 8/8 | 756A
730 A | BONADIMAN | | 1 | | | 0.68 | | .6 | 3 | \exists | | T | | 7 | 20A | | 11.5 | 8,12 | 1,19 | _ | 9.7 | | <u>.6</u> | 7_ | | FC37 | 368 | 8/15
8/22 | 734A
710A
714A | | 2.0 | 0.40 | 0.80 | | 0.32 | | .6 | 2 | \exists | | - 1 | 9-4
9-11 | | 30A
40A
50A | · | 11.0 | 3.29 | 1.37 | | 4.5
8.1 | | .6 | 7 | | | 369 | | 805A | BREWSTER | 3.0 | 0.54 | 1 | | 0.50 | П | .6 | 3 | | | T | | 7 | 40A | _ | 12.0 | 5,57 | 1,45 | | | | | | | | 370 | 8/29 | 755A | | | | 1 | | | | | | - | | - | 9-18 | | 50A
50A | - | 12.0 | 6.17 | 1,36 | | 8.4 | | ,6 | 9 | | | 371 | 9/5 | 801 A | L." | 3.0 | 0.62 | 0.89 | 4 | 0.55 | - | -6 | 3 | | | | | MZABUREN | EL MONT | | | | | | | | | | | | | | ENTS OF | | LE DIT | CH | | | | | | | | |------|-------|------------------------|-------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|--------|----------------------|---------------------------|---|-----|--------|----------------------|-----------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|----------|-------------------|----------------|--------------| | | | Juncti | on with Rio Hond | o | | DUR | NNO THE Y | EAR ENDING | BEPT | TEMBER | 30, | 19_17 | | | #T. | above | Head of Pipe Li | ne | | | HNO THE Y | EAR ENDING | BEPT | KMBER | 30, 11 | .46 | | | но. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER SEC. | SAUSE
HEIGHT
FEET | DISCHARGE
BEC. FT. | RAT- | METH- | MKAU,
BEC.
NG. | G. HT.
CHANGE
TOTAL | HEYER
NO. | мо. | DATE | BEGIN | MADE BY | WIDTH
FEET | AREA OF
SECTION
EQ. FT. | HEAN
VELOCITY
FT.PER SEC. | BAUGE
HEIBHT
FEET | DISCHARGE
BEG, FT. | RAT- | DD . | EAS. G.
EG. G. | HANGE
TOTAL | HETER
MD. | | 72 | 10-3 | 755A
803A | BREWSTER | 4.0 | 0,74 | 0.85 | | 0.63 | | .6 | 4 | | FC12 | 320 | 10/4 | 235P
245P | BREWSTER | 8.0 | 4.40 | 1.32 | | 5.8 | | .6 | 4 | | FC1-2 | | 73 | 10-10 | 1010A
1016A
827A | | 3.0 | 0.90 | 0.98 | | 0.88 | | .6 | 3 | | | 321 | 10/11 | 205P
217P | | 6.0 | 5.10 | 0.96 | |
4.9 | | .6 | 6 | | | | 74 | 10-17 | 833A
755A | | 3.0 | 0.58 | 1.09 | ļ | 0.63 | | .6 | 3 | | - | 322 | 10/18 | 21 5P
22 7P | | 6.0 | 4.10 | 1.32 | | 5.4 | | .6 | 6 | | •• | | 75 | 10-24 | 801A
757A | ," | 3.0 | 0.60 | 1.15 | | 0.69 | | -6 | 3 | | | 323 | 10/25. | . 200P | | | | - | EST. | 1.5 | | _ | \dashv | | | | 76 | 10-31 | 805A
714A | - 49 | 4.0 | 0.88 | 0.90 | ļ | 0,79 | | | 4 | | ** | 324 | 11/8 | 205P | | 5.0 | 3.90 | 1.31 | | 5.1 | | -6 | -5- | \dashv | FC1 2 | | 77 | 11-7 | 720A
720A | - 11 | 3,0 | 0.86 | -1.05 | - | 0,90 | | .6 | 3 | | | 325 | 11/15 | 205P
215P | ** | 6.0 | 3.65 | 1.37 | - | 5.0 | | 6 | 5 | -+ | | | 78 | 11-15 | 726A
730A | • | 3,0 | 0.84 | 1.10 | - | 0.92 | | .6 | | | | 326 | 11/23 | 105P | | · | - | | | 0 | | | + | | | | 79 | 12-19 | 736A
830A | ** | 3,0 | 0.78 | 1.12 | | 0.87 | _ | | | | | 327 | 11/29 | 120P
127P | " | | - | | - | 0 | | \vdash | | \dashv | | | 80 | 1-3 | 838A
802A | | 4.0 | 0.98 | 1.01 | | 0.99 | - | .6 | 4 | | | 328 | 12/6 | 136P | **, | 5.0 | 1.70 | 1.24 | - | 2.1 | | .6 | 5 | \dashv | FC1 2 | | 81 | 1-9 | 810A
810A | | 3.0 | 0.76 | 1.14 | | 0.87 | | | | | ., | 329 | 12/13 | 135P | | | - | | 1 | 0 | | | + | | — | | 82 | 1-16 | 818A
755A | | 4.0 | 1.04 | 1.25 | - | 1.1 | - | .6 | | - | <u>.</u> | 330 | 12/20 | 1 55P | | | | | | 0 | | | \dashv | \dashv | | | 83 | 1-23 | 737A
745A | ,, | 4.0 | 0.84 | 1.04 | | 0.87 | | .6 | | † | | 331 | 12/27 | | | | 1 | - | | 0 | - | | + | + | | | 85 | 2-6 | 800A
808A | + | 4.0 | 1.00 | 0.85 | 1 | 0.85 | - | .6 | 4 | | | 333 | 1/3 | 150P | | | - | | 1 | 0 | \vdash | H | - † | - | | | 86 | 2-13 | 804A
813A | 1. | 4.0 | 0.84 | 0.93 | | 0.78 | | .6 | <u> </u> | | | 334 | 1/10 | 115P | | | | | | 0 | T | | \top | \dashv | | | 87 | 2-20 | 805A
810A | BREWSTER-WADDICOR | 4.0 | 0.96 | 1.25 | | 1.2 | | .6 | _ | | | 335 | 1/24 | | | | | | | 0 | T | | 1 | | | | 88 | 2-27 | 750A
755A | WADDICOR | 2.8 | 0.58 | 1,03 | | 0.60 | | -6 | 3 | | FC37 | 336 | 1/31 | 120P | | | | | | 0 | Γ | | | | | | 89 | 3-6 | 816A
822A | | 4.0 | 1.02 | 1.47 | | 1,5 | L | .6 | 4 | | - | 337 | 2/7 | 115P | | | | | | 0 | | | | | | | 90 | 3-13 | 802A
807A | ** | 3.0 | 0.67 | 1.27 | | 0,85 | | ,6 | 4 | <u> </u> | | 338 | 2/14 | 210P | | | | | | 0 | | | | | | | 91 | 3-20 | 800A
807A | 9 | 3.0 | 0.64 | 1.28 | | 0.82 | L. | .6 | 4 | | | 339 | 2/21 | 1255P | | | | | | 0 | | | | | | | 92 | 3-27 | 805A
810A | ,, | 3.0 | 0.65 | 1.43 | | 0.93 | | .6 | 4 | | " | 340 | 2/28 | 1250P | **. | | | | | 0 | | | | | | | 93 | 4-2 | 815A
820A | | 3,0 | 0.64 | 1,56 | | 1.0 | L | .6 | 4 | <u> </u> | - | 341 | 13/7 | 118P
127P | ,. | 5.0 | 4.40 | 0.73 | | 3.2 | | .6 | 5 | | ,FC12 | | 94 | 4-10 | 810A
818A | - | 3.0 | 0.62 | 1,39 | | 0,86 | L | .6 | 4 | | | 342 | 3/14 | 108P
116P | | 4.0 | 3.20 | 1.59 | | 5.1 | | .6 | 4 | | | | 95 | 4-17 | 812A
817A
805A | | 3.0 | 0.57 | 0.98 | ļ | 0.56 | 1_ | .6 | 4 | - | - | 343 | 3/21 | 100P | | | | | | 0 | | | _ | | | | 96 | 4-24 | 810A
826A | | 3.0 | 0.58 | 1,24 | | 0.72 | - | .6 | 4 | ↓_ | | 344 | 3/28 | 12452 | | | | ļ | ļ | 0 | L | | \dashv | | | | 97 | 5-1 | 828A
810A | WADDICOR - MELLEN | 3,0 | 0.56 | 1,23 | - | 0,69 | ļ | .6 | 4 | | - | 345 | 4/4 | 1215P | | | | | | 0 | _ | | _ | | | | 98 | 5-8 | 815A
810A | WADDICOR | 3.0 | 0.54 | 1,15 | + | 0,62 | - | .6 | 4 | | - | 346 | 4/11 | | 1 | 4.0 | 3.80 | 1.55 | <u> </u> | 5, 9 | L | .6 | 4 | | FC12 | | 99 | 5-15 | 815A
812A | | 3,0 | 0.88 | 0.70 | | 0.62 | - | .6 | 4 | | <u> " </u> | 347 | 4/18 | 105P
113P
120P | | 4.0 | 3,20 | 1.41 | - | 4.5 | 1 | .6 | 4 | | ٠, | | 00 | 5-22 | 817A
810A | | 3.0 | 0.53 | 1.15 | + | 0.61 | - | .6 | 4 | - | . ** | 348 | 4/25 | | ", | 6.0 | 4.15 | 1.25 | 1 | 5.2 | - | .6 | 5 | | 1 | | 01 | 5-29 | 815A
815A | | 3.0 | 0.74 | 1.49 | + | 1.1 | \vdash | .6 | 4 | - | | 349 | 5/2 | 135P | " | 5.0 | 3.75 | 1.93 | | 5.0 | ╁ | | 4 | | **. | | 02 | 6-5 | 820A
810A | * | 3.0 | 0.57 | 1.26 | | 0.72 | ╀ | -6 | | - | | 350 | 5/9 | 125P | ** | 4.0 | 3.35 | 1.49 | ' | 5.0 | - | - | 4 | | | | 03 | 6-12 | 815A
810A | * | 3.0 | 0.57 | 0.97 | - | 0,55 | ╁ | .6 | 4 | + | - | 351 | 5/16 | | " | 4.0 | 3.15 | 1.59 | | 5.0 | +- | + | 4 | | 4. | | 04 | 6-19 | 815A
815A | - | 3.0 | 0.58 | 0,98 | | 0.57 | H | .6 | | + | | 352 | 5/23 | | ** | 5.0 | 3.45 | 1.51 | | 5.2 | \vdash | .6 | | - | ••, | | 05 | 6-26 | 822A
810A | * | 3.0 | 0.81 | 1.10 | | 0.89 | H | .6 | | + | . | 353 | 5/31 | | | 4.0 | 2.95 | 1.69 | - | 5.0 | ╁ | -6 | | - | **. | | 06 | 7-3 | 815A
808A | * | 3.0 | 0.65 | 1.09 | | 0.71 | - | •6 | 1 | +- | - | 354 | 6/7 | 1 35P | " | 4.0 | 3.65 | 1.45 | <u> </u> | 5.3 | + | .6 | 4 | | •; | | 107 | 7-10 | 813A
800A | | 3.0 | 0,59 | | + | 0.55 | + | .6 | | +- | †:- | 355 | 6/13 | | • | 10.0 | 6.60 | 0.79 | | 5.2 | ╁ | .6 | 5 | | " | | | 7-17 | 805A
808A
813A | * | 3.0 | 0.54 | 1 | - | 0.51 | | .6 | 1 | + | | 356 | 6/20 | 106P | | 6.0 | 3.95 | 1.37 | ' | 5.4 | + | ,6 | 4 | | •, | | | 7-24 | 802A | , | 3.0 | 0.60 | | + | | +- | + | - | + | | 357 | 6/27 | 120P | | | 6.00 | | | 5.6 | + | .6 | | | •• | | | 7-31 | 807A
755A | | 3.0 | 0.58 | | 1 | 0.52 | H | 1 | 4 | +- | - | 358 | 7/5 | 104P | 1 | 9.0 | - 1 | 1 | 1 | 3.6 | ╁ | | 5 | | | | 111 | 8-7 | 801A
726A | BREWSTER | 3.0 | 0.60 | 0.80 | - | 0.48 | $^{+}$ | .6 | 1 | + | FC12 | 359 | 7/11 | 102P | *. | 7.0 | | | | 4.6 | + | .6 | | | | | 12 | 8-14 | 732A
724A | · | 3.0 | 0.56 | 1 | - | 0.56 | ╁ | | 3 | + | 15. | 360 | | 1252P | ** | 6.0 | 1 | l l | 1 | 3.4 | ╁ | .6 | 1 | , | 1: | | 113 | 8-21 | 732A
815A | | 4.0 | 0.74 | | + | 1 | 3 | Ť. | 4 | + | | 361 | 7/25 | 140P | BREWSTER | 6.0 | | i i | 1 | 3.5 | + | | 6 | | | | 114 | 8-28 | 740A | WADDICOR | 3.6 | 0.80 | | + | 0.80 | \dagger | | 4 | + | FC37 | 362 | . | 150P | | 10.0 | | | 1 | 3.0 | \dagger | .6 | | | FC12 | | 115 | 9-4 | 745A
800A
805A | | 4.0 | 0.70 | | | 0.69 | 1 | .6 | Ī — | | - | 363 | 1 | 159P
150P | | 9.5 | | } | 1 | 3.3 | \dagger | | 6 | | FC19 | | 116 | | 800A | | T | | | + | | T | Ï | T | 1 | | 364 | 8/15 | 130P | i | 9.0 | 1 | ļ. | | 2.7 | 1 | .6 | 6 | | •• | | 117_ | 9-18 | 805A
810A | | 4.0 | 1,28 | 0.79 | 1 | 0.66 | T | | 4 | | | 365 | 8/22 | 1240P | | 9.0 | i | | 1 | | + | .6 | | | FC1 2 | | 118 | 9-25 | 820A | + | 1 4.0 | 1.0.06 | 1 4.13 | - | 1. 0.00 | +- | 4-14 | +-7 | -+ | - | 366 | 8/29 | 1237P | | 6.0 | | į. | | 2.1 | + | .6 | | | | | | | | | | | | | | | | | | | 367 | | 1249P | | 7.0 | 1 | 1 | i | 5.2 | | .6 | | | | | | | | • | | | | | | | | | | | 368 | | 1250P | | 10.0 | | | | 4.7 | + | .6 | 1 | | | | | | | | | | | | | | | | | | 369 | 1 | 1248P | | 6.0 | | | | 4.0 | + | .6 | _ | | | | | | | | | | | | | | | | | | 370 | 9/26 | 1257P | | 1 0.0 | 1 4.94 | - 1 1.0 | - I | , | | 1,00 | , | | | | | Factor | S; R | HENTS OF TEMPLE D | 1 TCH | | | | | | | | | | | FACT | OR #J= | 4ENTS OF | RIN | CON DI | TCH | | | | | | | | |-------------------------|-------------|------------------------|-------------------|--------------|-------------------------------|--|--|-----------------------|---------------------|----------|----------------------|---------------------------|--------------|------------|--------|-----------------------|-----------------|---------------|--|---------------------------------|-------------------------|-----------------------|----------|--------------------|----------------------|---|----------------| | | | | ead of Bloeline | | | DU | 11HG THE 1 | EAR ENDING | 9 WEPT | CH# CR | 30, | ·•_47. | _ | | | above | Head of Pipe Li | ne | | | ING THE Y | EAR ENDING | MEP1 | FEMBER | ı 3a,'' | 1 <u>9.46</u> | | | HG. | DATE | PESIN
END | HADE BY | WIDTH | AREA DF
BEDTION
BQ. FT. | MEAN
VELOCITY
FT.PER BEG. | BAUBE
HEIBHT
FEET | DISCHARRE
SEC. FT. | RAT- | 80 BD | IEAS.
SEC.
NO. | E. HT.
CHANGE
TOTAL | метек
но. | NO. | DATE | BESIN | HADE BY | WIDTH
FEET | AREA DF
BEGTION
BG. FT. | HEAN
VELOCITY
FT.PER BEG. | BAUBE
HEISHT
FET7 | DISGNARSE
SEG. FT. | RAT- | ыетн. ^М | MEAS.
BED.
NG. | S. HT.
DHANEX
TOTAL | METER
NO. | | 371 | 10-3 | 110P
122P | BREWSTER | 6.0 | 4.20 | 0.90 | | 3.8 | | .6 | 6 | | EC12 | 329 | 10/4 | 205P
215P | BREWSTER | 8.0 | 12.8 | 0.41 | | 5.3 | Ш | .6 | 4 | | FC12 | | 372 | 10-10 | 1355 | | 5.0 | 3,10 | 1,26 | | 3,9 | | .6 | 5 | | ** | 330 | 10/11 | 130P
142P | | 8.0 | 13.2 | 0.42 | | 5.5 | Ļļ | 6 | 4 | | •• | | 373 | 16-17 | 1245P
1257P
102P | • | 8,0 | 2,82 | 1,45 | | 4,1 | | .6 | 5 | | • | 331 | 10/18 | 145P
155P | | 8.0 | 12.4 | 0.40 | | 4.9 | | .6 | 4 | لــــــــــــــــــــــــــــــــــــــ | | | 274 | 10-24 | 111P | | 9,0 | 2,87 | 1,40 | | 4.0 | | .6 | 5 | | * | 332 | 10/25 | 130P
140P | ** | 8.0 | 11.6 | 0.43 | | 5.0 | | .6 | 4 | | •• | | 375 | 10-31 | 135P | • | ļ | | | | 0 | Ш | [| | | | _333 | 11/1 | 1:245P
1255P | | 8.0 | 11.8 | 0.46 | | 5.4 | | .6 | 4 | لــــا | | | 376 | 11-7 | 155P | ** | ļ | ļ | ļ | | 0 | | | | | | 334 | 11/8 | 130P | ., | | | | | 0 | | _ | | | | | 377 | 11-15 | 100P | ** | | | <u> </u> | | 0_ | | _ | | | | 335_ | 11/15 | | | 8.0 | 11.8 | 0.47 | | 5.6 | \vdash | .6 | 4 | | FC12 | | \$78 | 11-22 | 1115A | <u></u> | | | <u> </u> | | 0 | | - | - | | | 336 | 11/23 | 1235P | ** | | | | | 0 | \vdash | _ | \dashv | | | | 379 | 11-29 | 1152A | | | | | | 0 | | | -1 | | | 337 | 11/29 | 100P | | | | | | 0 | \dashv | _ | - | ! | | | 380 | 12-5 | 1250P | - | ļ | - | | ļ | 0 | | | - | | - | 338 | 12/6 | 1244P | ., | | | - | - | 0 | Н | _ | \dashv | | | | 381 | 12-12 | 1220P | | ļ | - | - | | . 0 | | - | | | | 339 |
12/13 | 110P | | | | - | ļ — | 0 | | - | | | | | 382 | 12-19 | 1240P | | | | ļ | ļ | 0 | | | - | | | 340 | 12/20 | 130P | | | | | | 0 | Н | \dashv | \dashv | | ļ | | 383 | 12-27 | 1155A | | | - | | - | 0 | \vdash | | \dashv | | | 341 | 12/27 | 315P | | | - | | | 0 | Н | -+ | \dashv | | | | 384 | 1-3 | 1250P | ••
•• | | - | - | - | 0 | \vdash | - | - | | | 342 | 1/3_ | 130P | •• | | | | | σ | Н | \vdash | \dashv | | | | 385 | 1-9 | 1247P | ** | - | | | | 0 | H | \dashv | - | | | 343 | 1/10 | 1230P | | _ | | | | 0 | Н | \dashv | \dashv | | | | 386 | 1-16 | 120P | | - | | | <u> </u> | 0 | \vdash | \dashv | - | - | | 344 | 1/.17 | | •• | | | | | 0 | \vdash | \vdash | \dashv | - | ļ | | 387 | 1-23 | 1240P | - | | | | | 0 | H | - | - | | | _345_ | 1/24 | | •• | l | | - | | 0 | Н | \vdash | - | | | | 388 | 1-30 | 1237P | | | | | | 0 | H | | | | | _ 346_ | 1/31 | | | | | - | | 0 | \vdash | \vdash | \dashv | | | | 389 | 2-6 | 1231P | - | - | | | | 0 | | _ | | | | 347 | 2/7 | 1250P | ., | | | | | 0 | Н | \dashv | \dashv | | | | 390 | 2-13 | 1254P | | | | - | | 0 | H | - | - | | | 348 | 2/14 | | ., | | | | - | 0. | П | \top | \dashv | | | | 391 | 2-20 | 210P
200P | WADDICOR | | | | | 0 | | + | 1 | | · | 349 | 2/21 | | | | | | | 0 | П | \Box | \dashv | | | | 392 | 2·27
3·6 | 210P
220P | #ADDICOR | 5.7_ | 2.53 | 1.26 | | 3.2 | П | .6 | 6 | | FC37 | _350 | 3/7 | 1233P
1253P | | | | | | 0 | П | \Box | \exists | | | | | | 210P | | 6.0 | 3.80 | 1.29 | | 4.9 | | .6 | 一 | | | 351 | 3/14 | | , | | | | | С | П | П | \exists | | | | _ 394
395 | 3-13 | 220P
200P
210P | | 6.0 | 3.46 | 1.27 | İ | 4.4 | | .6 | - 1 | | ., | 352
353 | 3/21 | 118P | | | | | | 0 | П | ıT | | | | | 3.96 | 3-27 | 245P | - | | | | ļ — | 0 | | | | | | 354 | | 1215P | | | | | | 0 | П | | | | | | 397 | 4-2 | 135P
145P | •• | 9.0 | 4.26 | 0.99 | | 4.2 | | .6 | 5 | | FC37 | 355 | 4/4 | 1230P | | | | | | 0 | | \Box | | | | | 398 | 4-10 | 240P
250P | | 7.5 | 3.61 | 0.97 | | 3,5 | | .6 | | | | 356 | 4/11 | 1242P | | | | | | 0 | | Ш | | | | | 399 | 4-17 | 330P
340P | | 9.3 | 7.43 | 0.83 | | 6,2 | | .6 | - 1 | , | | 357 | 4/18 | 1245P | | | | | | 0 | Ш | | | | | | 400 | 4-27 | 305P
315P | | 8.5 | 7.22 | 0.76 | <u> </u> | 5.5 | | .6 | 6 | | | 358 | 4/25 | 1250P
100P | | 8.0 | 11.6 | 0.49 | | 5,7 | Ш | .6 | 4 | | FC12 | | 401 | 5-1 | 217P
223P | | 8.7 | 6,47 | 0.85 | | 5.5 | | .6 | 7 | | | 359 | 5/2 | 103P
115P | | 9.0 | 9.40 | 0.59 | | 5.5 | Ш | .6 | 5 | <u> </u> | | | 402 | 5-8 | 240P
320P | -98 | | | | | 0 | | | | | | 360 | 5/9 | 1252P
101P | | 8.0 | 7.20 | 0.76 | | 5.5 | Ш | .6 | 4 | <u> </u> | | | 403 | 5-15 | 330P | * | 9.0 | 6.78 | 0.74 | ļ | 5.0 | | .6 | 6 | | FC37 | 361 | 5/16 | 120P
130P | | 8.0 | 7.60 | 0.75 | | 5.7 | | .6 | 4 | <u> </u> | <u> </u> | | 404 | 5-22 | 220P
230P | • | 9.0 | 5.20 | 0.98 | | 5.1 | Ш | .6 | 5 | | | 362 | 5/-23 | 117P
126P | | 8.0 | 7.60 | 0.63 | | 4,8 | | .6 | 4 | <u> </u> | ļ.· | | .405 | 5-29 | 235P
245P | | 8.0 | 4_90 | 0.92 | - | 4,5 | | .6 | 5 | | | 363 | 5/31 | 142P | | 8.0 | 10.4 | 0.52 | | 5.4 | - | .6 | 4 | _ | <u> </u> | | 406 | 6=5 | 300P
310P
310P | * | 8).0 | 4.51 | 1.00 | | 4.5 | $\vdash \downarrow$ | .6 | 6 | | - | 364 | _6/7 | 1254P
103P
125P | | 8.0 | 9.20 | 0.54 | - | 5.0 | \vdash | .6 | 4 | - | ļ | | 407 | 6-12 | 320P | • | 7.5 | 3,73 | 0.94 | | 3.5 | \vdash | .6 | - 1 | | - | 365 | 6/13 | 135P
1236P | | 8.0 | 6.20 | T | - | 5.7 | H | .6 | 4 | - | - | | 408 | 6-19 | 320P | | 7.5 | 4).38 | 0.69 | - | 3.0 | | .6 | | | | .366 | 6/20 | 1245P
1250P | | 8.0 | 6.20 | 1.00 | - | 6.2 | H | 6 | _4 | | | | 409 | 6-26 | 310P | | 8.0 | 3.74 | 0.70 | | 2.6 | \vdash | .6 | 1 | | - | .367 | 6/27 | 100P
1236P | | 8.0 | i | 0.54 | ļ | 5.6 | | .6 | 4 | - | | | 410 | 7+3 | 320P
305P | | 8,2 | 5.68 | 0.51 | | 2,9 | | ,6 | - | - | | .368 | 7/5 | 1248P
1215P | | 6.0 | 7.55 | 0.82 | | 6.2 | - | .6 | 4 | | 7 | | 411 | 7-10 | 315P | • | 6.7 | 3.91 | 0.77 | - | 3.0 | - | .6 | | | | 369 | 7/ 11 | 1/225P | | 8.0 | 10.4 | 0.61 | ┼ | 6.3 | t | .6 | 4 | | | | | 7-17 | 325P
300P | • | 9.0 | 4.00 | 0.65 | | 2.6 | ╁╾╁ | .6 | | | | 370 | 7/18 | 1230P | | 8.0 | 10.6 | 0.54 | | 5.7 | \vdash | .6 | 4 | 1 | † | | 413 | 7-24 | 310P
305P | • | 8.0 | 4.42 | 0.61 | - | 2.7 | | .6 | | | ., | 371 | 7/25 | 1245P | BREWSTER | 8.0 | 7.60 | | - | 6.3 | | .6 | 4 | | FC12 | | | 7-31 | 315P
100P | ** | 7,8 | 4,61 | 0.54 | - | 2.5 | \vdash | .6 | | | 74 | 372 | 8/1 | 126P
130P | BONADIMAN | 8.00 | 7.40 | 1 | + | 6.4 | \vdash | 1 | | | FC 19 | | ▲15 | 8:7 | 108P | BREWSTER | 4.0 | 2.50 | 1.08 | - | 2.7 | \vdash | .6 | | | FC12 | 373 | 8/8 | 138P | BON ADIMAN | 6.5 | 5.59 | | 1 | 4.8 | T | .6 | 5 | T | | | 415_ | | 206P
100P | | 5.0 | 2.24 | 1.12 | | 2.5 | H | .6 | 5 | | | _374 | 8/15 | 122P | | 7.0 | 5,72 |] | 1 | 3.8 | T | .6 | 5 | T | 1 | | 417 | 8-21 | 110P | WARRICOR | 4,0 | 1,88 | 1.06 | | 2.0 | | .6 | 5 | | | _375 | 8/-22 | 110P
1212P | | 6.0 | 5.33 | | 1 | 4.9 | + | .6 | 4 | T | FC12 | | 418 | 8-28 | 300P
240P | WADDICOR | 7,2 | 2,01 | 0,90 | | 1,8 | \vdash | | \neg | | | _376 | 8/29 | 1221P | BREWSTER | 8.0 | 7.40 | | | 6.3 | T | .6 | 4 | | | | 419 | 9-4 | 250P
235P
245P | | 8.5 | 2.93 | 0,51 | | 1.5 | \vdash | .6 | 5 | | ** | .377 | 9/5 | 1225 P | | 6.0 | 6.25 | 0.99 | 1 - | 6.0 | \top | .6 | 4 | | 1 | | 420 | 9-11 | 300P | - | 7.2 | 2.24 | 0.64 | - | 1.4 | H | .6 | 6 | | | .378 | 9/12 | 1:220P | " | 6.0 | | 0.58 | 1 - | 5.0 | T | .6 | 4 | | 1 | | 421 | 9-18 | 310P
320P
330P | ** | 6.8 | 1.79 | 0.78 | † | 1.4 | H | .6 | 7 | | | 379 | 9/19 | 1220P
1218P | | 6.0 | 6.55 | 1.05 | 1 | 6.9 | 1 | .6 | 4 | | | | 422 | 9-25 | 330 | ļ | + *** | 11./9 | 10.70 | + | '' | 1 | •• | - 1 | | | _380 | 1 9/26 | 12:27P | | + | + | - | | 1 | 1 | - | - | + | 1 | | | Facto | HEABUREN | ENTE OFRINCON | DITCH | | | | | | | | - | | FACTOR | MEYBRISE | ENTS OF | CA | E DIT | CH | | | | | F84- | <u>3</u> | |------|-------------|----------------------|---------------------------------------|---------------|-------------------------------|---------------------------------|--|-----------------------|-----------|--------------------------|----------------|-----------------|------|-------------|-----------------------|---------------------------------------|-------------|-------------------------------|---------------------------------|--|-----------------------|-----------|--------------|-----------------------------------|---------------------| | | AT a | bove H | ead of Pipeline | | | DUR | NG THE YE | AR ENDING | BEPT | MBER 30 | , 19 <u>4</u> | 7 _ | | - ATT. | below | Siulce Gate | | | DUR. | ING THE S | EAR ENDIN | 3 SEPTE | МВЕ Я | 30, 19. 1 | 3 | | NO. | DATE | BEGIN
END | HADE BY | WIDTH
FEET | AREA OF
BESTION
BQ. FT. | HEAN
VELOCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
BEG. FT. | RAT- N | ETH- MEAS
SEC.
NO. | CHARLE
TOTA | T. HETER
NO. | ND. | DATE | SENIN
END | HADE BY | WIDTH | AREA DF
SECTION
EQ. FT. | MEAN
VELODITY
FT.PER BEG. | MAUGE
HEIGHT
FEET | DIECHARGE
SEC. FT. | NAT- H | ETH- M | EAS. D, D
ED, DHAN
ED, TOTA | HT. MEYER
OE NO. | | 381 | 10-3 | 1242P
1254P | BREWSTER | 6.0 | 6.40 | 0.88 | | 5.6 | | .6 4 | | FC12 | 4 46 | 10/4 | 905A
917A | BREWSTER | 12.0 | 7.00 | 1.27 | | 8.9 | | .6 | 6 | FC12 | | 382 | 10-10 | 1240P
1250P | , | 6.0 | 6.20 | 0.92 | | 5.7 | | .6 4 | | <u> </u> | 447 | 10/11 | 930A
945A | | 12.0 | 7.80 | 1.21 | | 9,4 | | .6 | 6 | ••. | | 383 | 10-17 | 1210P
1220P | ** | 6.0 | 6.40 | 0.69 | | 4.4 | | .6 4 | | - ** | 448 | 10/18 | 925A
939A | | 11.0 | 14.8 | 0.59 | | 8.8 | | .6 | 6 | | | 384 | 10-24 | 1232P
1241P | | 6.0 | 6.85 | 0.93 | | 6.4 | | .6 4 | <u> </u> | <u> </u> | 449 | 10/25 | 915A
929A | ** | 12.0 | 11.4 | 0.82 | | 9.3 | \sqcup | .6 | 6 | **. | | 385 | 10-31 | 110P
120P | | 6,0 | 7,70 | 0,75 | | 5.8 | | .6 4 | _ | | 450 | 11/1 | 910A
922A | | 12.0 | 8.60 | 1.17 | | 10.1 | | .6 | 6 | | | 386 | 11-7 | 130P | | 4.0 | 6.50 | 0.91 | | 5.9 | | .6 4 | ļ | | 451 | 11/8 | 906A
920A | | 11.0 | 8.30 | 1.31 | | 10.9 | \sqcup | .6 | 6 | | | 387 | 11-15 | 1240P | | | | | | 0 | 1 | | _ | | 452 | 11/15 | 91 2A
926A
910A | | 11.0 | 8.15 | 1.23 | | 19.0 | \vdash | .6 | 6 | | | 388 | 11-22 | 1100A | ** | | | | | 0 | - | - | - | - | 453 | 11/23 | 924A
906A | | 12.0 | 8,40 | 1.25 | | 10.5 | \vdash | .6 | 6 | | | 389 | 11-29 | 1123A | | | | | | 0 | | | - | ļ | 454 | 11/29 | 918A
915A | •• | 10.0 | 7.00 | 1.17 | - | 8.2 | \vdash | .6 | 5 | | | 390 | 12-5 | 1220P | * | | - | | | 0 | \square | + | +- | + | 4.56 | 12/6 | 927A
912A | | 10.0 | 6.60 | 1.19 | | 8.1 | \vdash | .6 | 5 | | | 391 | 12-12 | 1250P | | | | - | | 0 | | | - | | 456 | 12/13 | 924A
912A | | 10.0 | 7.80 | 1.21 | | 9.4 | \vdash | .6 | 5 | | | 392 | 12-19 | 105P | <u> </u> | <u> </u> | | | | 0 | | _ | - | + | 457 | 12/20 | 926A
1020A | ** | 11.0 | 9,65 | 1.45 | - | 11.1 | \vdash | .6 | 6 | | | 393 | 12-27_ | 1145A | ., | <u> </u> | | | | . 0 | | | + | + | 458 | 12/20 | 1032A | •• | 4.7 | 6.54 | 2.65 | - | 17.3 | ++ | .6 | 5 | " | | 394 | 1-3 | 105P | * | | | | | 0 | | - | +- | +- | 459 | 12/27 | 935A | <u></u> | | ļ | | | 0 | \vdash | - | | | | 395 | 1-9 | 1230P | | - | - | | | 0 | \vdash | - | +- | | 460 | 1/3_ | 905A | | - | | | | 0 | + | - | + | +- | | 396 | 1-16 | 210P | ** | | | | | 0 | \vdash | \dashv | +- | -
 _461 | 1/10 | 900 A
92 0 A | | + | | 0.00 | - | 0 | \vdash | .6 | - | FC12 | | 397 | 1-23 | 105P | * | | | | | 0 | \vdash | - | + | + | 462 | 1/17 | 932A
920A | | 10.0 | 5.00 | 0.84 | | 4.2 | \vdash | -6 | .5 | | | 398 | 1-30 | 107P | ** | | | | | 0 | | - | +- | - | 463 | 1/24 | 930A | ** | 10.0 | 2.40 | 0,83 | - | 2.0 | \vdash | -6 | 5 | | | 399 | 2-6 | 1252P | * | | ļ | | | 00 | H | | | - | 464 | 1/31 | 9424 | | 10,0 | 4.20 | 0.79 | | 3.8 | + | .6 | 5 | | | 400 | 2-13 | 114P | • | | | | | 0 | \vdash | | - | + | 465 | 2/7 | 938A | •• | - | | ļ — | | 0 | ++ | \dashv | | _ | | 401 | 2-20 | 140P | | l | | | | 0 | \vdash | | + | | 466 | -2/14 | 945Å
910Å | Ψ. | | | | | 0 | ++ | - | | | | 402 | 2-27 | 130P | WADDICOR | | | | _ | 0 | | | + | | 467 | 2/21 | 920A
912A | | 9.0 | 2.45 | | | 2.0 | + | .6 | 5 | FC12 | | 403 | 3-6 | 145P | •• | | 1 | | | 0 | - | | - | - | 468 | 2/28 | 924A
926A | | 9.0 | 3.15 | 1.08 | ļ | 3.4 | \vdash | .6 | 5 | 1, | | | 3-13 | 145P | ., | | | | - | 0 | 1 | | +- | | 469 | 3/7_ | 938A
857A | | 10.0 | 4.20 | 1.02 | | 4.7 | + | .6 | 5 | · | | | 3-20 | 140P | | | - | | | 0 | \vdash | | +- | | 470 | 3/14 | 909A
929A | · | 10.0 | 2.48 | 0.85 | | 2.1 | + | .6 | 5 | | | | 3-27 | 235P | | | | | | 0 | \vdash | + | | - | 471 | 3/21 | 933A | " | 2.0 | 0.32 | 0.25 | ļ | 0.08 | +- | .6 | 2 | | | 407_ | 4-2 | 125P | | | | | | 0 | H | | | <u> </u> | 472 | 3/28. | 805A | ., | + | | | |) | + | - | - | | | | 4-10 | 225P | | | · | | | 0 | H | | + | - | 473 | 4/4 | 915A
915A | | 10.0 | | | | 0 | \forall | - | - | | | | 4-17 | 310P
230P | | | ļ | | | 0 | H | | | FCon | 474 | 4/11 | 927A
915A | | 10.0 | 3.04 | | | 3.1 | + | .6 | 5 | FC12 | | | 5-1 | 240P
152P
200P | WADD FCOR-MELLEN | 6.5 | Ι. | 0.70 | | 5.9
4.6 | m | .6 5 | | FC37 | 475 | 4/18 | . 918A | <u> </u> | 11.0 | 4.25 | T | | 5.2 | + | .6 | 6 | 1. | | | 1 | 202P
212P | WADDICOR | 8.0 | 12.1 | | - | 6.9 | H | .6 5 | | ٠. | 476 | 4/25 | 911A | | 11.0 | 3.34 | 0.99 | 1 | 3.3 | + | .6 | 6 | | | | 5-8
5-15 | 240P
255P | " | COMPO | 1 | 0.57 | | 9.4 | | .6 12 | | - | 477 | 5/2 | 922A
900A | "- | 5.0 | 4.40 | | | 4.1 | + | .6 | 6 | | | 414 | | 152P
200P | | 8.3 | 10.6 | 0.67 | | 7.1 | 1 | .6 5 | 1 | . | 478 | 5/9 | 912A
905A | · · | 12.0 | 18.0 | 0.88 | | 15.8 | \forall | .6 | 5 | | | 415 | 5-29 | 209P
219P | ,, | 8.3 | 12.3 | 0.78 | - | 9.6 | | .6 5 | | | 479 | 5/16 | 914A | T | 10.0 | 6.00 | | | 9.4 | | .6 | 5 | - | | | | 220P
230P | | 8.3 | 10.1 | 0.68 | | 6.9 | | .6 5 | | | 480 | 5/23 | 910A | | 10.0 | 6.80 | | | | + | | 5 | | | 416 | 6-5
6-12 | 245P
255P | | 8.4 | 10.7 | 0.62 | | 6.6 | \sqcap | .6 6 | | | 48) | 5/31 | 921A
858A | † <u>"</u> . | 10.0 | 10.6 | 1.08 | 1 | 11.5 | \top | .6 | 5 | - | | 417 | 1 | 240P
250P | - | 8.0 | 10.3 | | | 5,4 | П | .6 5 | | | 482 | 6/7_ | 910A
905A | | 10.0 | 11.0 | Ι. | | 17.4 | | .6 | | - | | 419 | T | 200P
210P | | 10.6 | 15.5 | | l | 6,2 | | .6 6 | | ١. | 483 | 6/13 | 910A | | 10.0 | 8.20 | 1 | | 12.2 | | .6 | | ٠, | | | 1 | 225P | | | | | | 4.7 | | ,6 5 | \top | - | 484 | 6/20 | 9164 | 1 | | | 1 | 1 | T | | | | " | | 420 | 1 | 235P
225P
235P | 4 | 7.4 | 7.02 | 0,66 | | 4.1 | | .6 4 | | 1. | 4.85 | ,6/27 | 900A | | 10.0 | 12.6 | 1.25 | 1 | 15.8 | 1 1 | .6 | 5 | | | 421 | | 220P | . | | 11.1 | 0.46 | | 5.1 | † | .6 5 | 1 | | 486 | 7/5 | 9.12A
920A | | 10.0 | 8.20 | | + | 10.6 | 1 1 | <u>.6</u> | 5 | - " | | 422 | 7-17 | 230P
210P
220P | ** | 9.8 | 11.9 | 0.50 | | 6.0 | İ | ,6 5 | | | 487 | 7/11 | | | 10.0 | 7.60 | 1.22 | + | 14.1 | 1 1 | .6
.6 | 5 | - | | 424 | | 220P
230P | | 7.2 | 7.79 | | | 5.6 | П | .6 5 | | | 488 | 7/18 | 34.30 | | 10.0 | 1 | 1.25 | † | 14.2 | + | .6 | 5 | | | | B-7 | 1205P | BREWSTER | 8.0 | 10.6 | | | 6.5 | | .6 4 | | FC12 | 489 | 7/25
8/1 | 935A
845A
852A | BREWSTER | 10.0 | +- | | 1 | | | | \top | | | 426 | 1 | 1210P
1220P | | 8,0 | 10.4 | 0.52 | | 5.4 | | .6 4 | | | 491 | 8/8 | 940 | | 12.0 | _ | | 1 | 13.2 | 1 | .6 | 5 | | | | Ì | 1217P | | | | 1 | | | | | Ī | | 7 | | 920A | | | | 1.02 | | 14.4 | | .6 | 8 | FC19 | | 427 | 8-21 | 210P
220P | ' } | 8.0
6.2 | 4.84 | | | 5.8
5.6 | | .6 5 | | FC37 | 492 | 8/15 | 9104 | · · · · · · · · · · · · · · · · · · · | 11.0 | | 1.42 | | 15.1 | | .6 | 7 | 1 | | | 1 | 150P
200P | | 6,1 | 4,77 | 1.01 | | 4.8 | | ,6 | | | 493 | 8/-22 | 930A | | 11.0 | ì | 1 | | 13.5 | 1 | -6 | 7 | | | 429 | l. | 150P
200P | 1 | 7.2 | 6.66 | | | 5,4 | | .6 | - | +- | 494 | 8/29 | 905A |] | 10.0 | 1 | | i | 9.2 | l. | .6 | 5 | FC12 | | 430 | ì | 210P | <u> </u> | | 7.40 | | | 5.0 | + | .6 | | | 495 | 9/5 | 917A | | 10,0 | | 0.93 | 1 | 12.9 | - 1 | -6 | 5 | | | | 9-18 | 220P | · · · · · · · · · · · · · · · · · · · | 7.0 | | | 1 | | \vdash | .6 | - | | 496 | 9/12 | 857A | | 10.0 | | 1.20 | . | 14.7 | 1 | -6 | 5 | | | 432 | 9-25 | 240P | ļ | 8.0 | 7.13 | 0.97 | | 6.9 | | .0 | | | 497 | 9/19 | 909A | · | 10.0 | 14.0 | 0.79 | Ц | 14.0 | - | .6 | 5 | | | | Fact | or #K" | MENTS OFCA | TE DIT | СН | | 101111000 | . . | | | Feu | ı-s_ | | | | OH RNP | MENTS OF | STANI | JEFER ! | DITCH | | | | | ال ـ | F85-S | | |--------------|-------|-------------------------|----------------------|--------|-------------------------------|---------------------------------|--|-----------------------|-------------|-------|----------------------|---------------------------|--------------|--------------|---------------|----------------------------|-------------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------------|-------------|---------------------------|--------------| | | **** | below | Sluice Gate | | | | SHT DHE | YEAR END:N | 0 8CFT | EMBE | :R 30, | , <u>,47</u> | - | | -##-
-1847 | | Head Gate | | | Dus | IND THE Y | YEAR ENDING | BEFT | EMBER | 30, 1 | ,46 | | | KO. | DATE | SESIN
END | NADE BY | WIDTH | AREA DF
SECTION
SO. FT. | MEAN
VELODITY
FT.PER BED. | BAUBE
HEISHT
FEET | DISCHARGE
SED, FT. | RAT-
ING | METH- | HEAR.
BEC.
No. | E. HT.
DHANGE
TOTAL | HETER
HD. | HD. | DATE | BESIN
END | HADE BY | WIDTH
PERT | AREA OF
BESTION
EQ. FT. | MEAN
VELOCITY
PY.PER SEG. | MACHE
HEISHT
FERT | DISCHARGE
SEC. FT. | RAT- | 3D H | EAS.
NO. | E. HT.
DHANGE
TOTAL | METER
NO. | | 499 | 10-3 | 924A
936A | BREWSTER | 10.0 | 9.00 | 1.32 | | 11.9 | | .6 | 5 | | FC12 | 450 | 10/4 | 1015A
1027A | BREWSTER | 5.0 | 8.00 | 2.36 | | 18.9 | | .6 | 5 | | FC12 | | 500 | 10-10 | 942A
954A | | 10.0 | 8,60 | 1.21 | ļ | 10.4 | | .6 | 5 | | | 451 | 10/411 | 1046A
1058A | | 5.2 | 9.02 | 2.43 | | 21.9 | | .6 | 5 | | •• | | 501 | 10-17 | 917A
929A | | 10.0 | 11.8 | 1.29 | | 15,2 | Ш | .6 | 5 | | - | 452 | 10/18 | | | 5.2 | 9.02 | 2.41 | | 21.7 | | .6 | 5 | | | | 502 | 10-24 | 910A
920A | | 10.0 | 11.8 | 1.36 | <u> </u> | 16.0 | | .6 | 5 | | | 453 | 10/25 | | | 4.9 | 7.50 | 2,57 | | 19.3 | | .6 | 5 | | •• | | 503 | 10-31 | 935A
947A | | 5.0 | 10.0 | 1.33 | | 13,3 | Ш | .6 | 5_ | | - | 454 | 11/1 | 1015 ^A
1027A | | 5.0 | 8.00 | 2.51 | | 20.1 | | .6 | 5 | | | | 504 | 11-7 | 923A
935A | | 10.0 | 10.2 | 1.31 | ļ | 13.4 | | .6 | 5 | | | 455 | 11/8 | 1010A
1020A | | 4.8 | 7.02 | 2,52 | | 17.7 | | .6 | 5 | | ** | | _505_ | 11-15 | 915A
921A | | 3.0 | 0.48 | 1,15 | ļ | 0.55 | | .6 | 3 | | • | 456 | 11/15 | 1021A
1033A
1009A | | 4.6 | 6.08 | 2.68 | | 16.3 | | .6 | 5 | | •• | | 506 | 11-22 | 858A
905A | | 4.0 | 0.70 | 0.87 | | 0.61 | \vdash | .6 | 4 | | н | 457 | 11/23 | 1020A | ** | 4.7 | 6.54 | 2.63 | | 17.2 | | .6 | 5 | | | | _507 | 11-29 | 834A
840A
845A | • | 3.0 | 0.52 | 1.10 | <u> </u> | 0.57 | | .6 | 3 | | | 458 | 11/29 | 1017A
1017A | | 4.7 | 6.54 | 2.61 | | 17.1 | _ | .6 | 5 | | •• | | 508 | 12-5 | 851A
910A | * | 3.0 | 0.60 | 1.02 | | 0.61 | Ш | .6 | 3 | | ., | 459 | 12/6 | 1029A | •• | 4.7 | 6.54 | 2,63 | | 17.2 | Н | .6 | 5 | | •• | | 509 | 12-12 | 915A | * | 3.0 | 0.48 | 0.90 | - | 0.43 | \sqcup | .6 | 3 | | | 460 | 12/13 | 1014A
1026A | ., | 4.8 | 7.02 | 2,68 | | 18.8 | Н | .6 | 5 | | •• | | 510 | 12-19 | 923A | | 4.0 | 0.74 | 0.46 | | 0.34 | | .6 | 4 | | • | 461 | 12/:27 | 1030A | | | - | ļ | | 0 | | + | _ | \rightarrow | | | _511_ | 12-27 | 850A | | | | | | 0 | | | | | | 462 | 1/3 | 1030A | | | | | | 0 | | \dashv | - | | | | 512 | 1-3 | 1005A | ** | | | | | 0 | | | | _ | | 463 . | 1/10 | 1000¥ | 4. | ļ | <u> </u> | ļ | | 0 | | - | 4 | | | | 513 | 1-9 | 1005A
1000A | | | - | | | 0 | | | | | | 464 | 1/17 | 1020A | | | ļ | | <u> </u> | 0 | | 4 | _ | _ | | | 514 | 1-16 | 1006A | ** | 3.0 | 0.56 | 0.89 | | 0.50 | \vdash | .6 | 3 | | FC12 | 465 | 1/24 | 1025A | | ļ | | <u> </u> | | 0 | | -+ | - | | | | 515 | 1-23 | 1006A
927A | | 3.0 | 0.64 | 0.89 | | 0,57 | | ,6 | 3 | | - | 466 | 1/31 | 1030A | " | | - | | - | 0 | \dashv | - | - | | | | 516 | 1-30 | 935A
913A | n | 4.0 | 0.94 | 0.72 | ļ | 0.68 | | .6_ | 4 | | - | 467 | 2/7 | 103:2A | ** | ļ | | | - | 0 | | - | - | | | | 517 | 2+6 | 922A
916A | * | 4.0 | 1,02 | 0,76 | | 0.78 | - | .6 | 4 | | | 468 | 2/14 | 1035A | " | - | ļ | | | 0 | - | \dashv | - | | | | 518 | 2-13 | 927A
1010A | * | 4.0 | 0.84 | 0.83 | | 0.70 | | .6 | 4 | | - | 469 | 2/21 | 10164 | • | ļ | - | | | 0 | | - | - | | | | 519 | 2-20 | 1018A
950A | | 4.0 | 1.30 | 0.73 | - | 0.95 | \vdash | .6 | 4 | | " | .470 | 2/28 | 1017A | | - | - | <u> </u> | | 0 | \dashv | - | - | - | | | 520 | 2-27 | 958A
1010A | WADDICOR | 6.3 | 2.69 | 0.97 | - | 2.6 | - | .6 | 6 | | FC37 | 471 | 13/7 | 1040A | 4
 | | | | '0 | \vdash | - | - | | | | 521 | 3-6 | 1020A
945A | - | 5.5 | 2.99 | 1.17 | | 3.5 | \vdash | .6 | 6 | | | 4/2 | 3/14 | | | | | | | 0 | | + | + | | | | 522 | 3-13 | 952A
940A | | 5.1 | 2.68 | 1.08 | | 2.9 | \vdash | .6 | 5. | | - | 473 | 3/21 | 1021A | " | | - | | | 0 | | + | + | | | | 523 | 3-20 | 945A
1023A | WADDICOR
WADDICOR | 4.0 | 1.28 | 0.67 | | 0.86 | \vdash | . 6 | 4 | | - | 474 | 3/28 | 90.0A | | | | | | 0 | | \dashv | + | | | | 524 | 3-27 | 1033A
1005A | VAN DER GOOT | 7.5 | 4.93 | | | 5.9 | \vdash | .6 | 6 | | - | 4 7.5 | 4/4 | 100GA | | | | | | 0 | + | | \dashv | \dashv | | | 525 | 4-2 | 1015A
945A | WADD I COR | 5.8 | 3.00 | | | 3,3 | | .6 | 6 | | | 476 | 4/11 | | | | | | - | 0 | \dashv | - | + | | | | 526 | 4-10 | 955A
1025A | " | 7.0 | 4,69 | i | | 4,5 | | .6 | 6 | | | 47./ | 4/18 | | | | | | | 0 | \dashv | + | - | | | | _527 | A-17 | 1035A
1025A | .,, | 11.2 | 13.6 | 0.96 | | 13.0 | | .6 | 8 | | - | 478 | 4/25 | 1020A
1009A | | 1.0 | 3.50 | 2.60 | | 9.1 | | .6 | 5 | | FC12 | | _528_ | 4-24 | 1035A
951A | | 9.0 | 8,67 | 1.06 | | 9.1 | \vdash | . 5 | 7 | | | 479 | 5/2 | 1020A | | 4.0 | 4.32 | 1 | | 12.6 | | \rightarrow | 5 | | | | 529 | 5-1 | 956A
946A | WADDICOR-MELLEN | 10.0 | 9.70 | | | 10.2 | H | ,6 | Ť | | | 480 | 5/9 | 1019A
1007A | | 4.6 | 6.84 | | | 24.2 | | | 5 | | •• | | 530 | 5-8 | 950A
950A | WADDICOR | 12.0 | 21.8 | 0.59 | | 12.8 | H | .6 | 7 | | | 481 | 5/16
5/23 | 1016A | ** | | 1 | | | 20.4 | | + | _ | | | | 531
532 | 5-15 | 1000A
938A
948A | - | 10.0 | 7.52 | 0.57
1.04 | - | 7.8 | H | .6 | 5 | | | 483 | | 1028A
1018A | | 4.6 | 6.08 | l | | 19.6 | \Box | - | 5 | | ., | | | | 950A | | | - | | | | | - 1 | | | | 484 | 5/31
6/7 | 959A
1011A | | 4.4 | 5.18 | | İ | | | 6 | - | | | | _533_ | 5-29 | 955A
1005A | | 11.5 | 16.4 | 0.87 | | 14.3 | | .6 | .7
6 | | | 485 | 6/13 | 10 10A | BREWSTER
WRIGHT | 4.5 | 5.62 | 1 | | 15.9 | \Box | * | 5 | | | | 534 | 6-12 | 1005A
1015A
1025A | ** | 12.0 | 15.2 | 0.58 | | 13.5 | П | .6 | 7 | - | - | 486 | 6/20 | 101 1A
10:23A | BREWSTER | 4.7 | 6.54 | ſ | | 19.9 | \Box | 6 | 5 | 1 | | | _535
_536 | 6-19 | 1015A
1025A | 77 | 11.2 | 15.0 | 0.76 | | 12.1 | П | .6 | 7 | | | 487 | 6/27 | 1017A | | 4.4 | 5.18 | 1 | | 14.4 | П | 6 | 5 | | | | _537 | 6-25 | 935A | | 10.5 | | 1.00 | | 9.5 | П | .6 | 6 | | | 488 | 7/5 | 1007A
1019A | BREWSTER | 4.6 | i | 3.04 | | 18.5 | | \neg | 5 | | FC12 | | 538 | 7-3 | 950A
1000A | | 10.5 | 16.4 | 0.60 | | 9.8 | | 6 | 6 | | - | 489 | 7/11 | 948A | | 4.4 | | 2.68 | | 13.9 | | T | 5 | | 19 | | 539 | 7-10 | 1010A
1020A | н | 10.3 | 12.2 | 0.94 | | 11.5 | 1 | .6 | 8 | | - | 490 | 7/18 | 9.45A
95.7A | | 4.6 | 1 | 3,01 | | 18,3 | | | 5 | | | | 540 | 7-17 | 1010A
1020A | | 9.0 | 12,5 | 1.04 | | 13.0 | 1 | .6 | 5 | | | 491 | 7/25 | 948A | | 4.4 | 5,18 | i | | 14.3 | | .6 | 5 | | •• | | 541 | 7-24 | 930A
940A | | 11.5 | 15.8 | 0.90 | | 14.2 | | .6 | 7 | | | 492 | 8/1 | 956A
1005A | BREWSTER
BONAD IM AN | 4.5 | 5.44 | 1 | | 13.7 | | - 1 | 5 | | | | 542 | 7-31 | 935A
945A | | 11.0 | 18.8 | 0.77 | | 14.5 | 1 1 | .6 | 6 | | | 493 | 8/15 | 9 45A | BONADIMAN | 4.4 | 5.00 | T | | 11.7 | | .6 | 5 | | FC19 | | 543 | 8-7 | 915A
927A | BREWSTER | 9.0 | 8,00 | | | 13.1 | | .6 | 5 | | | _494 | 8/22 | 940A | | 4.4 | 5.36 | | | 12.6 | Ľ | . 6 | 5 | | | | 544 | 8-14 | 910A | | 11.0 | 17.0 | 0.94 | | 16.0 | | .6 | 6 | | | 495 | 8/29 | 955A
1007A | BREWSTER | 4.6 | 6.08 | | | 17.4 | 1 | - | 5 | | FC12 | | 545 | 8-21 | 922A
916A
930A | - | 12.0 | | 1.33 | | 14.4 | | .6 | 6 | | | 496 | 9/5 | 931A
943A | | 4.5 | 5.62 | 2,62 | | 14.7 | | .6 | 5 | | | | 546 | 8-28 | 955A
1005A | WADDICOR | 12,0 | 22.2 | 0.91 | | 20,2 | | .6 | 7 | | F€37 | 497 | 9/12 | 948A | | 4.4 | 5.18 | 2.34 | | 12.1 | | .6 | 5 | | | | 547 | 9-4 | 905A
915A | * | 10.8 | 9.20 | | | 13.4 | 1 | .6 | 7 | | | 498 | 9/19 | 921A | ** | 4.4 | 5.18 | 2.49 | | 12.9 | | .6 | 5 | | •• | | 548 | 9-11 | 925A
935A | 11 | 11.0 | 10.2 | 1.52 | | 15.5 | 1 1 | .6 | 7 | | | 499 | 9/26 | 930A | | 4.4 | 1 | 2.41 | | 1.2.9 | | .6 | 5 | | | | 549 | 9-18 | 940A
950A | | 10.5 | 10.6 | 1.33 | | 14.1 | 1 1 | .6 | | | | | | , | | | • | - | | | | | • | | | | 550 | 9-25 | 945A
955A | 44 | 11.0 | 11.6 | 1.26 | | 14.6_ | | .6 | 7 | | | | | | | | | | | | | | | | | | | DIRCHA | ADE I | | ENTE OF STANDEF | | | DUR | NO THE Y | EAR ENDING | OCPT | | 85- | | ā | FACTOR "O" SAN GABRIEL RIVER FR6S below Standefer Ditch During the year ending september 30, 19, 46 | | | | | | | | | | | | | | |-------------------|--------|--------|--|-----------------|----------|-------------|---------------------------------|-------------------------|------------|--------------|----------|--|---------------------------|------------------|--|--------|------------------|---------------------------------------|---------------|-------------------------------|---------------------------------|-------------------------|--|----------|-----|-------------------|------|-----------| | . | DATE | ŀ | BEGIN | MADK BY | WIDTH | | HEAN
VELOCITY
FT.PER SEC. | GAUSE
HEISHT
FEET | | | METH- | | G. HT.
CHANGE
TOTAL | METER | NO. | DATE | SEGIN | WADE BY | winth | AMEA OF
SECTION
EQ. FT. | MEAN
VELOCITY
FT.FER BEO. | DAUGE
MEIGHT
PERT | DIECHARGE | | | MEAS. G
SEC. D | | MET | | - | 1 | + | 951A | | FEST | AQ. FT. | FT.PER SEG. | PEET | SEC. PT. | IND | BB | ND. | TOTAL | ND. | - | | 1032A | | FEET | | PT.PER BEO. | PERT | 2EC. 77. | INE | 00 | No. | DTAL | N | | | 10-3 | | 1005A
1005A | BREWSTER | 4.6 | 6.08 | 2.55 | | 15.5 | - | -6 | 5 | | FC12 | 444 | 10/4 | 1053A
1105A | BREWSTER | TWO CH | ANNELS | | | 28.6 | \perp | .6 | 10 | | FCI | | | 10-10 | | 1017A | | 4.6 | 6.08 | 2,65 | | 16.1 | | .6 | 5 | | • | 445 | 10/11 | 1125A
1050A | н | 21.0 | 16.2 | 1.65 | | 26.8 | - | .6 | 6 | | " | | | 10-17 | 7 | 944A
956A | | 4.9 | 7.50 | 2.76 | | 20.7 | | .6 | 5 | | • | 446 | 10/18 | 1110A | | TWO CH | ANNELS | | | 28.2 | | .6 | 10 | | ••. | | | 10-24 | 4 | 935A
947A | | 5.0 | 8.00 | 2.90 | | 23.2 | | .6 | 5 | | | 447 | 10/25 | 1046A
1 107A | •• | | | | | 33.8 | | .6 | 11 | | 17., | | | 10-31 | | 1005A
1017A | | 4,8 | 7.02 | 2.68 | | 18.8 | | .6 | 5 | | | 448 | 11/1 | 1032A
1053A | | | | | | 32.8 | | .6 | 11 | | ٠., | | , | 11-7 | | 947A
959A | ** | 4.9 | 7.50 | 2.80 | | 21.0 | | .6 | 5 | | | 449 | 11/8 | 1025A
1049A | | | | | | 36.6 | | .6 | 11 | | ٠, | | | 11-15 | | 935A | ** | | | | | 0 | | | | | | 450 | 11/15 | 1038A
1 100A | | ·. | | | | 33.4 | | .6 | 10 | | **. | | - | Γ''' | | , | | | | | | | H | | _ | | | li . | | 1025A | | 1 | | | | | Т | | | | | | | 11-22 | | 917A | , | | | | | 0 | | | | | | 451 | 11/23 | 1049A
1023A | 1 | ". | | | | 41.4 | | .6 | *1 | | <u>".</u> | | - | 11-29 | 9 | 855A | | | | | | 0 | | | - | | | 452 | 11/29 | 1049A
1034A | | | - | | | 44.0 | \vdash | .6 | 13 | | <u></u> | | - | 12-5 | -+ | 940A | ** | | | _ | | 0 | \vdash | \dashv | - | | | 453 | 12/6 | 1100A
1031A | · · | | | | - | 41.7 | ┢ | -6_ | 11 | | ••, | | _ | 12-12 | 2 | 926A | | | | | | 0 | \vdash | _ | | | | 454 | 12/13 | 1057A
1037A | ** | " | ļ | L | | 42.2 | ļ | .6 | 12 | | **, | | | 12-19 | 9 | 1015A | | | | | | | | \vdash | | | | 455 | 12/20 | 1103A | * | | | | | 42.2 | 1_ | -6 | 13 | | ٩. | | 2 | 12-2 | 7 | 940A | | | | | | 0 | Ш | | | | | 456 | 1/3 | 1035A
1105A | | ••. | | | | 76.6 | <u>L</u> | .6 | 12 | | ••, . | | 3 | 1-3 | | 1020A | ts | | | | | 0 | | | | | L | 457 | 1/10 | 1006A
1020A | | 24.0 | 25.6 | 3.14 | | 80.4 | \perp | .6 | 6 | | 19, | | 4 | 1-9 | | 1018A | ,, | | | | L | 0 | | | | | | 458 | 1/17 | 1025A
1041A | | 21.0 | 23.6 | 3.32 | | 78.3 | L | .6 | 6 | | ٠, | | 5 | 1-16 | | 1022A | ** | | | | | 0 | | | | | | 459 | 1/24 | 1030A
1045A | | 23.0 | 25.3 | 3.20 | | 81.0 | 1 | .e | , T | | ٠., | |
5 | 1-23 | | 1020A | | i | | | | 0 | | | | | | 460 | 1/31 | 1.035A
1.053A | | 23.0 | 24.6 | 3.38 | | 83.2 | Т | Ĺ | - | | | | | | | | | | | | | 0 | | | | | | 1 | | 1037A | | 1 | 1 | , | | l | 1 | | | | | | 7 | 1+30 | | 1025A | | | | <u> </u> | | | | | | | | 461 | 2/7 | 1058A
1040A | | 40.0 | 38.4 | 2.27 | | 87.0 | + | ь | 10 | | Ë, | | 3 | 2-6 | | 1017A_ | | | | | | 0 | - | - | | | | 462 | 2/14 | 100A
1020A | 1. | 32.0 | 35.4 | 2.50 | | 88.6 | + | .6 | 9 | | 17. | | <u> </u> | 2-13 | | 1029A | * | | | | | 0 | - | | | | | 463 | 2/21 | /1040A
1022A | '' | 32.0 | 36.2 | 2441 | - | 87.2 | + | .6_ | 9 | | ۴, | | | 2-20 | _ | 1030A | <u></u> | | ļ | ļ | <u> </u> | 0 | | | | | ļ | 464 | 2/28 | 1040A | " | 29.0 | 34.9 | 2.52 | | 87.9 | - | .6 | 8 | | 1.5 | | L | 2-27 | . | 1020A | WADDICOR | | <u> </u> | | | 0 | | | | | ļ | 465 | 3/7- | 1045A
11 105A | - '' | 36.0 | 36.4 | 2,28 | ļ | 82.9 | 1 | .6 | 9 | | <u></u> | | 2 | 3-6 | | 1030A | ** | <u>L</u> | ļ. <u>.</u> | ļ | | 0 | | | | | | 466 | 3/14 | 10 14A
1033A | ** | 33.0 | 36.8 | 2.30 | | 84.6 | _ | .6 | 9 | | ••, | | 3 | 3-13 | . | 1015A | | | | | | | | 1 | | | | 467 | 3/21 | 1025A
1045A | | 31.0 | 37.2 | 2.57 | | 95.6 | . L | .6 | 9 | | ., | | 4 | 3-20 | | 1000A | ,, | | | | | _ 。 | | | | | | 468 | 3/28 | 904A | | 31.0 | 39.2 | 2.55 | | 100. | | .6 | 9 | | FC | | -
5 | 3-27 | | 1045A | ,, | | 1 | | | | İ | | _ | | | 469 | 4/4 | 1005A
1023A | · | 43.0 | 43.2 | 2.45 | | 106. | | .6 | 7 | | | | | | | 1025A | ,, | | 1 | | | | T | \vdash | | | 1 | 11 | 1 | 1025A | | 49.0 | 46.4 | 2.05 | | 95.0 | T | .6 | 9 | | | | 6 | 4-2 | | 1032A
1005A | |
4.2 | 4.40 | 1.86 | | 8.2 | ┼ | -6 | 5_ | | FC:3.7 | 470 | 4/11 | 1045A
1021A | · [| | 41.4 | 2.25 | | 93.2 | +- | .6 | 8 | | ., | | 7_ | 4-10 | | 1015A
1046A | | 3,9 | 3.62 | 2.18 | | 7.9 | \vdash | -6 | 5 | | | 471 | 4/18 | 1025A | | 45.0 | | T . | | | +- | | \vdash | | - | | B | 4-17 | | 1056A
1050A | , , | 4.6 | 6.28 | 3,02 | | 19.0 | ├ | .6 | 5 | | | 4 /2 | 4/25 | 1043A | | 49.0 | 42.0 | 2.08 | ├ | 87.3 | + | .6 | 9 | | ., | | 9 | 4-24 | | 1100A
1013A | | 4.7 | 6.46 | 3.08 | | 19.9 | ₽ | .6 | 5 | - | | 473 | 5/2 | 1055A | · · · | TWO C | ANNELS | - | | 73.4 | + | .6 | 14 | | | | 0 | 5-1 | | 1020A | WADDICOR-MELLEN | 4.7 | 6.46 | 3.16 | | 20.4 | ļ | ,6 | 5 | | | 474 | 5/9 | 10 50A | | •• | | ļ.— | | 57.2 | 4 | .6 | 13 | | ļ., | | 1 | 5-8 | | 957A
1007A | WADDICOR | 4.7 | 6.46 | 3.08 | | 19.9 | | .6 | 5 | | | 475 | . 5/16 | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | 49.8 | \perp | .6 | 13 | | | | 2 . | 5-15 | . | 1015A
1025A
1000A | | 4.5 | 5.54 | 2,69 | | 14.9 | | .6 | 5 | | | 476 | 5/23 | 1033A | | | | <u></u> | | 50,9 | _ | .6 | 13 | | | | 3 | 5-22 | | 1000A
1010A | *1 | 4,5 | | 2.74 | | 15.4 | | .6 | 5 | | - | 477 | 5/3 | 1036A | | | | | | 43.2 | | .6 | 13 | | | | 4 | E-20 | | 1012A
1022A | | 4,5 | | 2.58 | | 14.3 | | .6 | 5 | | | 478 | 6/7 | 10164 | A) | | | Ţ | | 39.8 | Т | .6 | 12 | | | | | 5+29 | | 1020A | | i - | | 1 | | | T | | | Г | | 11 | 1 | 1025/ | 4 | 15.0 | 11.2 | 2.53 | | 28.3 | 1 | .6 | 7 | | 1., | | 5 | 6-5 | \neg | 1030A
1037A | | 4.7 | | 2.86 | 1 | 18.4 | 1 | .6 | 5 | | † . | 479 | 6/13 | 1028 | ١ | 15.0 | [| | · | 28.2 | \top | .6 | 7 | | | | 5 | 6-12 | - 1 | 1047A
1040A | •• | 4.7 | | 2.90 | + | 19.5 | \vdash | .6 | 5 | - | " - | 480 | 6/20 | 10344 | \ | 15.0 | 10.8 | 2.61 | 1 | | + | T | | | 1 | | 7 | 6-19 | - | 1050A
1000A | | 4.8 | 6.82 | 2.93 | | 20,0 | + | П | 5 | - | - - | 481 | 6/27 | 1024 | \ " | 116.0 | 10.6 | 2'-47 | 1 | 26.2 | + | .16 | 7 | | ۲ | | В | 6-26 | _ | 1010A
1015A | | 4.8 | 7.22 | 3,13 | | 22.6 | ₽- | •6 | 5 | | | 482 | 7/5 | 1039A | \ <u>'</u> | 13.0 | 10.4 | 2.68 | | 27.9 | + | .6 | 7 | | + | | 9 | 7-3 | | 1020A | | 4.7 | 6.74 | 3.09 | ļ | 20.8 | <u> </u> | .6 | 5 | ļ | | 483 | 7/1 | 10214 | \ <u>"</u> | 14.0 | 10.4 | 2.50 | | 26.0 | 4 | .6 | 7 | | | | 2 | 7-10 | | 1040A
1050A | <u> </u> | 4.6 | 5.85 | 2.80 | ļ | 16.4 | \perp | .6 | 5 | <u> </u> | | 484 | 7/18 | | · · · · · · · · · · · · · · · · · · · | 14.0 | 10.8 | 2.49 | ļ | 26.9 | 4_ | .6 | 7 | | ļ: | | 1 | 7-17 | ,] | 1120A
1130A | * | 4.7 | 6.54 | 2.83 | | 18.5 | | .6 | 5 | <u> </u> | - | 485 | 7/2 | | _: | 13.0 | 10.6 | 2.59 | | 27.5 | 1 | .6 | 7 | | 1. | | 2 | 7-24 | ļ | 950A
1000A | | 4.7 | 6.54 | 2.88 | <u></u> | 18.8 | | .6 | 5 | L | | 486 | 8/1 | 1010/ | BREWSTER | 14.0 | | 2.44 | 1 | 26.6 | 1 | .6 | 7 | | ٠., | | 3 | 7-31 | - | 955A
1005A | ** | 4.7 | | 2.99 | | 20.1 | | .6 | - | | - | I[| | 1020 | A . | 14.5 | 1 | | | 27.6 | - 1 | .6 | 9 | | , | | | i | | 940A | | | 1 | | T | 16.9 | 1 | .6 | T | 1 | FC 12 | 487
488 | 8/8 | 1,0000 | N) | 10.5 | 1 | 1 2.69 | 1 | 24.5 | - 1 | .6 | 1 1 | | 1. | | 4 | 8-7 | | 952A
935A | BREWSTER | 4.6 | | 2.78 | 1- | T | | 1 | | \vdash | 1 | 1 | | 10054 | N | | | 1 | 1 | | + | + | 1- | | 1. | | 5 | 8-14 | ı | 947A
940A | " | 4.7 | 6.54 | | + | 16.2 | | -6 | | | | 489 | 8/2 | 1012/ | | 11.0 | | 4 2.54 | | 24.3 | | .6 | | | +- | | 6 | 8-21 | | 952A
1040A | | 4.6 | 6.08 | 2.73 | | 16.6 | - | .6 | 5 | | | 490 | 8/29 | 948 | BREWSTER | 11.0 | 10.2 | 2.37 | + | 24.2 | - | .6 | 1 | | F | | 7_ | 8+28 | В | 1050A | WADDICOR | 4.6 | 6.26 | 2.73 | 1 | 17.1 | 1 | .6 | 5 | | FC37 | 491 | 9/5 | 1000/ | A " | 9.0 | 8.7 | 2.66 | 1 | 23.3 | 1 | .6 | 5 | | ∤: | | 8 | 9-4 | | 930A
940A | ,, | 4.5 | 5.80 | 2.58 | 1_ | 15.0 | <u> </u> | .6 | .5 | | - | 492 | 9/1 | | A BREWSTER | 10.0 | 9,4 | 2.65 | 1 | 24.1 | 4 | .6 | 6 | | F | | 9 | | L | 945A
955A | ,, | 4.6 | 6.26 | 2.68 | | 16.8 | | 46 | 1 | | , | 493 | 9/1 | 939 | | 11.0 | 13.2 | 1.86 | 1 | 24.6 | <u>;</u> | .6 | 6 | | • | | 0 | 9-18 | | 1005A
1015A | | 4.7 | 1 | 2.86 | | 18.2 | | .6 | 1 | | | 494 | 9/2 | 947 | A | 11.0 | | | | 24.4 | T | . 6 | | | | | _ | | E | 1010 ^A
1020 ^A | ы | T | 3.30 | 00 | | 1 .0.2 | 1 | 10 | † - " | - | 1 | 11-454 | 9/-2 | لكاللك | | 1 1144 | | + | 1 | · | | - | + | | + | Factor "O" SAN GABRIEL RIVER FRG-S DATE SERIN MADE BY WIDTH AREA OF MADE BY WINDERS AREA OF MEAN MADE BY WINDERS AREA OF MEAN MADE BY WINDERS AREA OF MEAN MEAN MADE BY WINDERS AREA OF MEAN MEAN MADE BY WINDERS AREA OF MEAN MEAN MADE BY WINDERS AREA OF MEAN MEAN MADE BY WINDERS AREA OF MEAN MEAN MADE BY WINDERS AREA OF WAS ARROWN AND WINDERS AREA OF MEAN WAS ARROWN AND | Month Mont | 24.3
25.1
17.7
13.3
26.4
24.1
70.4
71.5
72.0
108. | .60 .60 .60 .60 .60 .60 .60 .60 .60 .60 | 6 6 6 6 7 8 8 8 8 8 | S. HT.
CHANGE
TOTAL | MCTER NO. FC12 | |--|--|--|--|---------------------------|----------------| | 496 10-3 1022A BREWSTER 10.0 11.4 2.13 | 25.1
17.7
13.3
26.4
24.1
70.4
71.5
72.0
108.
80.0
71.5 | 3. 6
3. 6
3. 6
3. 6
3. 6
3. 6 | 6
6
11
5
6
7
8
8
8 | | 19 | | 498 10-10 1034A " 11.0 12.4 2.02 497 10-17 1013A " 10.0 6.95 2.55 498 10-24 1014A " TWO CHANNELS 499 10-31 1034A " 10.0 10.6 2.49 500 11-6 1030A " 10.0 9.55 2.52 500 11-15 956A " 60.0 33.3 2.11 502 11-22 940A " 65.0 34.2 2.09 503 11-29 900A " 68.0 40.8 1.75 504 12-5 1005A " 72.0 52.55 505 12-12 930A " 67.0 39.4 2.03 506 12-19 900A " 74.0 39.9 1.79 507 12-27 1033A " 69.0 62.4 2.56 508 1-3 1051A " TWO CHANNELS 509 1-9 1049A " " | 17.7 19.3 26.4 24.1 70.4 71.5 72.0 108. 80.0 71.5 | 3.
3.
3.
3.
6.
6. | 6
11
5
6
7
8
8
8 | | | | 497 10-17 1013A " 10,0 6,95 2,55 498 10-24 1014A " TWO CHANNELS 499 10-31 1034A " 10.0 10.6 2,49 100 11-6 1030A " 10.0 9.55 2.52 500 11-5 1030A " 10.0 9.55 2.52 501 11-15 956A " 60.0 33.3 2.11 502 11-22 920A " 65.0 34.2 2.09 900A 945A " 65.0 34.2 2.09 900A 945A " 72.0 52.55 2.06 503 11-29 900A " 68.0 40.8 1.75 504 12-5 1005A " 72.0 52.5 2.06 505 12-12 930A " 67.0 39.4 2.03 506 12-19 1020A " 74.0 39.9 1.79 507 12-27 1033A " 69.0 62.4 2.56 508 1-3 1051A " TWO CHANNELS 509 1-9 1049A " " | 13,3
26,4
24,1
70,4
71,5
72,0
108,
80,0
71,5 | 3.
3.
6.
6.
6.
6. | 11
5
6
7
8
8
8 | | 11 | | 498 10-24 1014A " TWO CHANNELS 499 10-31 1054A " 10.0 10.6 2,49 100 11-6 1030A " 10.0 9.55 2.52 500 11-6 1030A " 10.0 9.55 2.52 501 11-15 956A " 60.0 33.3 2.11 502 11-22 940A " 65.0 34.2 2.09 900A 945A " 66.0 40.8 1.76 504 12-5 1005A " 72.0 52.55 2.06 505 12-12 950A " 67.0 39.4 2.03 506 12-19 1020A " 74.0 39.9 1.79 507 12-27 1033A " 69.0 62.4 2.56 508 1-3 1051A " TWO CHANNELS 509 1-9 1049A " " | 26,4
24,1
70,4
71,5
72,0
108,
80,0
71,5 | 3.
3.
6.
6.
6. | 5
6
7
8
8
8 | | 11 | | 499 10-31 1054A " 10.0 10.6 2,49 500 11-6 1030A " 10.0 9.55 2.52 500 11-6 1030A " 10.0 9.55 2.52 500 11-15 956A " 60.0 33.3 2.11 502 11-22 940A " 65.0 34.2 2.09 503 11-29 920A " 68.0 40.8 1.76 503 11-29 920A " 68.0 40.8 1.75 504 12-5 1005A " 72.0 52.5 2.06 505 12-12 950A " 67.0 39.4 2.03 505 12-12 950A " 67.0 39.4 2.03 506 12-12 950A " 67.0 39.9 1.79 945A 507 12-27 1003A " 69.0 62.4 2.56 508 1-3 1051A " TWC CHANNELS 509 1-9 1049A " " " | 24,1
70,4
71,5
72,0
108,
80,0
71,5 | .6
.6
.6 | 6
7
8
8
8 | | ** | | 500 11-6 1030A " 10.0 9.55 2.52 501
311-15 956A " 60.0 33.3 2.11 502 11-22 940A " 65.0 34.2 2.09 503 11-29 920A " 68.0 40.8 1.76 504 12-5 100SA " 72.0 52.5 2.06 505 12-12 950A " 67.0 39.4 2.03 506 12-19 1020A " 74.0 39.9 1.79 507 12-27 1033A " 69.0 62.4 2.56 508 1-3 1051A " TWC CHANNELS 509 1-9 1049A " " " 510 1-16 1054A " " " | 70.4
71.5
72.0
108.
80.0
71.5 | .6 | 7
8
8
8
8 | | | | 501 11-15 956A " 60.0 33.3 2.11 | 71.5
72.0
108.
80.0
71.5 | .6 | 8 8 | | | | 502 11-22 940A " 65.0 34.2 2.09
900A " 68.0 40.8 1.76
945A " 72.0 52.5 2.06
503 11-29 920A " 72.0 52.5 2.06
945A " 72.0 52.5 2.06
931A " 67.0 39.4 2.03
1020A " 74.0 39.9 1.79
940A " 74.0 39.9 1.79
9507 12-27 103A " 69.0 62.4 2.56
1025A " TWC CHANNELS
509 1-9 1049A " " " | 72.0
108.
80.0
71.5 | .6 | 8 8 | | ., | | 503 11-29 920A " 68.0 40.8 1.75 945A " 72.0 52.5 2.06 955 12-12 950A " 67.0 39.4 2.03 1020A " 74.0 39.9 1.79 506 12-12 1020A " 74.0 39.9 1.79 507 12-27 1003A " 69.0 62.4 2.56 508 1-3 1051A " TWC CHANNELS 509 1-9 1049A " " | 108.
80.0
71.5
160. | .6 | 8 | | | | 504 12-5 1005A " 72.0 52.5 2.06 | 80.0
71.5
160. | .6 | 8 | | - | | 505 12-12 950A " 67.0 39.4 2.03 506 12-19 1040A " 74.0 39.9 1.79 507 12-27 1003A " 69.0 62.4 2.56 508 1-3 1051A " TWC CHANNELS 509 1-9 1043A " " 510 1-16 1054A " " | 71.5 | .6 | | 1 | | | 506 12-19 1040A 74.0 39.9 1.79 | 160. | 1 1 | 8 | | | | 507 12-27 1003A | | 6 | | <u> </u> | * | | 508 1-3 1051A " TWO CHANNELS
509 1-9 1043A " " "
500 1-1056A " " " | 80.9 | | 8 | | | | 509 1-9 1049A " " " 1026A | | ,6 | 11 | ļ | | | 510 1-16 1054A " " " | 83.5 | .6 | 12 | ļ | • | | 1025A | 83.8 | .6 | 12 | ļ | - | | 511 1-23 1052A " " " | 85.1 | .6 | 12 | <u> </u> | ** | | 512 1-30 1056A " " " | 85.3 | .6 | 12 | | , | | 513 2-6 1050A " " " | 84.8 | e | 13 | | - | | 514 2-13 1102A " " " | 87.2 | .6 | 12 | | - | | 515 2-20 1051A BREWSTER-WADDICOR " " | 85.3 | .6 | 13 | | | | 516 2-27 1050.A WADDICOR " " | 74.7 | .6 | 14 | <u> </u> | FC37 | | 517 3>6 1050A " " " | 77.5 | .6 | 12 | | _n | | 518 3-13 1045A " " " | 71.4 | | 14 | | - | | 519 3-20 1030A " " " | 77.3 | | 12 | | • | | 1103A WADDICOR
520 3-27 1120A VAN DER GOO'T " " | 73.1 | | 14 | <u> </u> | - | | 521 4-2 1057A WADDICOR " " | 57.7 | | 13 | <u> </u> | | | 1025A
522 4-10 1045A " " " | 59.5 | | 14 | | | | 523 4-17 1117A " " " | 29,6 | Ι | 11 | | | | 524 4-24 1117A " " " | 28,3 |] . | 11 | | - | | 525 5-1 1050A WADDICOR-MELLEN " " | 32.0 | | 14 | | | | 526 5-8 1035A WADDICOR " " | 24,1 | | 14 | | - | | 527 5-15 1055A " " " | 37.0 | | 15 | | | | 1020A
528 5-22 1040A " " " | 32.4 | | | | " | | 1035A | 35.4 | | 14 | | - | | 529 529 1055A " " "
1040A " " " | 27.9 | 1 1 | 1 | T | - | | 531 6-12 1122A " " " | 21,2 | | 15 | | | | 1055A
532 6-19 1110A " " " | 19.6 | | | | | | 1020A
533 6-26 1035A " " " | 26.9 | | | | | | 1030A
534 7-3 1050A " " | 20.5 | 1 | 1 | | | | 1103A | 20.3 | 1 1 | . | | - | | 535 7-10 1120A 1100A 1 | 19.9 | T-1 | T | | | | 536 7-17 1007A
537 7-24 1027A " " " | 17.8 | | | T | " | | 537 7724 1027A
1010A
538 7-31 1030A " " " | 14.3 | | | | | | 538 /-31 1030A
957A | 18.1 | 1 1 | T | 1 | | | 539 8-7 1018A " " " 952A 540 8-14 1012A " " " | 17.2 | 7 | | | | | 957A | | | | | - | | 541 8-21 1025A ". 16.0 11.2 1.6
1055A 13.8 13.7 1.3 | ! ! | | | 1 | . | | 950Å | 1 | | | | | | 1000A 1713 1713 1713 | 1 1 | | _Ţ | | - | | 544 9-11 1010A " 17.0 14.3 1.2
1025A | l i | 1 1 | | | <u>.</u> | | 545 9-18 1035A " 16.5 7,50 2.1 | | | 1 | ĺ | | | 546 9-25 1045A " 21.5 17.2 1.0 | 20 17.2 | | 5_ .7. | - | | F. C. Dist. Form 52 4-45 #### LOS ANGELES COUNTY FLOOD CONTROL DISTRICT . HYDRAULIC DIVISION | Daily o | ischarge, in se | econd-feet of | RISING W | ATER at W | hittier N | arrows | | | | , for the yes | ar ending Septe | mber 30, 19 11 | |----------------------------------|--|---------------------------------|--|--|---------------------------------|--|---------------------------------|--|---------------------------------|----------------------------|----------------------------|----------------------------| | рау | Oct | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 1
2
3
4
5 | 100
100
100
100
100 | 105
105
105
105
106 | 105
105
106
106
106 | 115
116
117
118
118 | 127
127
127
128
128 | 132
132
132
131 | 151
152
154
155
154 | 134
133
133
133
133 | 119
118
117
116
115 | 97
97
96
96 | 88
89
90
91
92 | 8 8
8 8
8 8
8 8 | | 6
7
8
9 | 101
101
101
101
102 | 106
106
106
106
106 | 106
106
107
107
107 | 119
119
120
120
121 | 128
128
128
129
129 | 131
131
131
132
132 | 153
152
151
150
149 | 132
132
132
132
132 | 114
113
112
111
111 | 96
96
95
95 | 93
94
95
94
92 | 88
88
88
87 | | 11
12
13
14
15 | 102
102
102
102
103 | 106
106
106
106
106 | 107
108
108
108
108 | 121
122
122
123
123 | 129
129
130
130
130 | 132
132
133
133
135 | 148
148
147
147
146 | 131
131
131
131
130 | 110
109
108
107
107 | 95
95
94
94 | 91
89
88
86
85 | 87
87
87
87
87 | | 18
17
18
19
20 | 103
103
103
103
103 | 106
106
105
105 | 108
108
108
108 | 124
124
124
124
124 | 130
130
130
130
130 | 136
138
140
142
143 | 146
145
145
144
143 | 130
129
129
128
127 | 106
105
104
104
103 | 94
93
93
93
92 | 86
86
87
87
88 | 88
88
88
88 | | 21
22
23
24
25 | 103
103
103
103 | 105
104
104
104 | 108
109
109
110 | 124
124
124
124
124 | 130
130
131
131
131 | 145
145
145
145
146 | 142
141
140
139
138 | 126
126
125
124
124 | 102
102
101
100
99 | 92
92
92
91
91 | 88
89
89
89 | 88
88
88 | | 26
27
28
29
30
31 | 103
104
104
104
104
105 | 105
105
105
105
105 | 111
111
112
113
114
114 | 125
125
126
126
127
127 | 131
132
132 | 146
146
146
147
148
150 | 137
137
136
135
134 | 123
123
122
121
121
121 | 99
98
98
97
97 | 91
90
90
89
89 | 88
88
88
88
88 | 88
89
89
90 | | | 3171 | 3159 | 3361 | 3790 | 3625 | 4288 | 4359 | | 3202 | 2892 | 2763 | 2639 | | EAN | 102. | 105. | 108. | 122 | 129 | 138. | 145. | 128. | 107. | 93.3 | 89.1 | 88.0 | | CRE- | 6,290. | 6,270. | 6,670. | 7.520. | 7.190 | 8.510. | 8.650 | 7.890. | 6.350. | 5.740. | 1 | 5.230. | | | Remarks: | | | | | | , | | | YEAR MEA | N113. | 31,790. | F. C. Dist. Form 53 4-46 ## LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Sta. No.____ | | | | | н | YDRAULIC | DIVISION | | | | | | |--------------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|----------------------------|---------------------------------| | Cally discharg | e, in second-feet of_ | RISIN | G WATER & | t Whittle | r Narrows | | | | , for the year | ar ending Septe | ember 80, 19 <u>17</u> | | Day Oct | . Nov. | Dec. | Jan. | Feb. | Mar. | Apr, | May | June | July | Aug. | Bept. | | 1 9
2 9
3 9
4 9 | 2 98 | 110
109
109
108 | 121
122
122
122 | 129
129
128
128 | 121
121
122
123 | 108
107
107
107 | 102
102
102
101 | 99
98
97
96 | 87
86
85
85 | 83
83
83
82 | 82
82
82 | | 5 9
6 9
7 9
8 9 | 2 97
2 96
1 96
1 96 | 108
108
108
109 | 122
123
124
125 | 128
128
128
128 | 124
125
125
125 | 106
106
106 | 101
101
100
100 | 95
95
95 | 85
85
85 | 82
82
82 | 82
82
83 | | 10 9
11 9
12 9
13 9 | 1 98
1 99
1 100 | 109
109
109
110
110 | 126
126
126
126
126 | 129
129
130
130
131 | 124
123
123
122
122 | 105
105
104
103
102 | 99
99
100
100
101 | 94
94
94
93 | 85
85
85
85 | 82
82
82
82 | 8 3
8 4
8 5
8 5
8 5 | | 14 9
15 9
18 9
17 9
18 9 | 3 106
3 106
4 107 | 110
110
110
110
111 | 126
126
126
126
126 | 131
131
130
130
130 | 122
123
124
125
126 | 100
99
98
97
97 | 102
103
102
101
100 | 92
91
90
89
88 | 85
85
85
85 | 82
82
82
83 | 85
84
84
84
84 | | 19 9
20 9
21 9
22 9
23 9 | 5 108
5 108
6 109
6 109 | 111
111
111
112
113 | 126
127
127
128
128 | 129
129
128
126
125 | 127
127
126
125
123 | 98
98
99
99 | 99
98
97
96
96 | 88
88
89
89 | 85
85
85
85 | 83
83
83
83
83 | 84
83
83
82 | | 24 9
25 9
26 9
27 9 | 7 109
7 109
7 110 | 114
115
116
117 | 128
128
128
128 | 124
122
121
120 | 121
119
118
117 | 100
100
100
100 | 97
97
98
98 | 90
91
92
91 | 85
85
85 | 83
83
83
83 | 81
79
79
79 | | 28 9
29 9
30 9
31
9 | 8 110
8 110
8 110 | 117
118
119
120 | 129
129
129
129 | 120 | 115
114
112
110 | 101
101
101 | 99
100
100
99 | 90
89
88 | 8 4
8 4
8 3
8 3 | 83
83
83
82 | 78
78
78 | | 291 | 4 3112 | 3461 | 3905 | 3571 | 3774 | 3060 | 3090 | 2764 | 2631 | 2558 | 2468 | | AEAN 94 | .0 104 | 112 | 126 | 128 | 122 | 102 | 99.7 | 92.1 | 84.9 | 82.5 | 82.3 | | CRE-
FEET 5.7 | | 6,860 | 7.750 | 7,080 | 7,490 | 6,070 | 6.130 | 5,480 | 5,220
YEAR ME | 5,070 | 4,900 | | Remar | K#: | | | | | | | | OR | | 74,000 | ### MISCELLANEOUS STATIONS | | DISCHARG | E MCAMURE | MENTS OFBA | LLONA | CREEK J | DRA I NAC | E ARE | A | | | | | | | DIRCHARG | E MEABUR | CHENTS OF BALLO | A CREE | CDRAII | NAGE A | REA | | | | | | | | |-----------|----------|----------------------|------------------|---|-------------------------------|---------------------------------|-------------------------|-----------------------|-------------|-------|----------------------|---------------------------|--------------|------------|--------------|-----------------------|-----------------|--------------|-------------------------------|---------------------------------|--|-----------------------|---------------------------|-----------|---------|---------------------------|--------------|--| | | NET | aj | scellaneous poin | IntaDURING THE YEAR ENDING SEPTEMBER 30, 1916 | | | | | | | | | | | | Iscell | aneous points | | | | ING THE | EAR ENDIN | NDING BEPTEMBER 30, 19 47 | | | | | | | но | DATE | BESIN
END | MADE BY | WIDTH | AREA DF
EXCTION
EQ. FT. | MEAN
VELDOITY
FT.PER BEC. | BADGE
REIGHT
FEET | DIECHARGE
BEC. FT; | RAT-
ING | HETH- | HEAR.
BEC.
HD. | E. HT.
CHANGE
TOTAL | METER
ND. | NO. | DATE | #EGIN
END | HADE BY | WIDTH | AREA OF
SECTION
BQ. FT. | MEAN
VELOCITY
FT.PER BEG. | GAUDE
HEIGHT
FEET | DISCHARGE
SEQ. FT. | RAT- | ETH- | HEAR, I | E. HT.
CHANGE
TOTAL | HETER
NO. | | | | | <u> </u> | BALLONA CREEK | at Jack | SON A | enue | ļ | | ļ_ | | | | | 211 | 10-2 | 828A
840A | BOLLINGER | 10.0 | 9,07 | 0.95 | | 8.6 | Ш | .6 | 10 | | FC6 | | | | | 835A | | <u> </u> | ļ | | | - | - | | | | | 212 | 10-17 | 815A
826A | ** | 11.0 | 11.1 | 0.51 | ļ | 5,7 | Ш | .6 | 9 | | | | | 54 | 10/3 | 843A
750A | BOLL INGER | 9.0 | 6.76 | | | 7.8 | | .6 | | | FC6 | 213. | 10-24 | 827A
839A
1100A | - | 11.0 | 12.0 | 0.49 | | 5.9_ | \sqcup | -6 | 9 | | | | | 35 | 10/10 | 800A
820A | | _11.8 | 6.83 | | | 6.9 | - | .6 | 8 | | | 214 | 10-31 | 1110A
910A | - 19 | 11.0 | 11,6 | 0.49 | - | 5,7 | \prod | .6 | 9 | | - | | | 66 | 10/18 | 827A
907A | | 9,0 | 8,68 | | | 7.6 | | -6 | 8 | | | 215 | 11-7 | 918A
915A | | 12.0 | 12,2 | 0.44 | - | 5.4 | +- | .6 | 9 | | <u></u> | | | 7 | 10/25 | 915A
844A | | 10.7 | 5.54 | 1.10 | | 6.1 | - | .6 | 7 | | | 216 | 11-27 | 926A
855A | ** | 11.5 | 9.51 | 0.86 | | 8.2 | + | .6 | 10 | | - | | | .B | 11/1 | 852A
815A | | 12.0 | 7.93 | 0.79 | | 6.3 | | .6 | 7 | - | ., | 217_ | 12-5 | 907A
810A | * | 12.7 | 10.7 | 0.75 | ├ | 8.0 | + | .6 | 4 | \dashv | ** | | | 9—
10— | 11/8 | 823A
855A | | 10.0 | 7.08
8.58 | 0.93 | | 6.6 | | .6 | 7 | | | 218 | 12-12 | 821A
1030A | - | 12.0 | 10.7 | 0.57 | - | 6.1 | \vdash | -6 | 9 | | - | | | 1 | 11/15 | 903A
933A
941A | | 10.0 | 8.05 | 0.85 | | 6.8 | T | .6 | ģ | | | 219 | 12-19 | 1045A
258P | | 11.0 | 1 | 0.67 | | 6.6 | 1 | -6 | 9 | | | | | 2 | 12/7 | 828A
836A | | 7.5 | 6.14 | 1.01 | | 6.2 | | .6 | 7 | | | 220 | 1-2 | 311P
317P | | | | 1.14 | - | 15.0 | 1 1 | -6 | 11 | - | Ė | | | 3 | 12/13 | 927A
936A | | 8.0 | 6.49 | 0.89 | | 5.8 | | 1 1 | 8 | | | 221 | 1-9 | 330P
343P | | 12.1 | 12.5 | 1.07 | | 13.4 | 1 | .6 | 12 | | <u>.</u> | | | 4 | 1/3 | 847A
905A | •• | 11.5 | 14.4 | 1.66 | | 23.9 | | | 10 | | | 222 | 1-16 | 353P
225P
235P | ** | 12.3 | 11.7 | 0.82 | | 9.6 | | .6 | 9 | | _ <u>-</u> _ | | | 5 | 1/10 | 836A
847A | | 11.3 | 10.0 | 0.87 | | 8.7 | | .6 | | | | 224 | 1-30 | 305P
317P | | 12.5 | 9.28 | | <u> </u> | 9.9 | 1 1 | .6 | 10 | - | | | | 6 | _1/17_ | 1055A
1104A | | 11.7 | 11.6 | 0.80 | | 9.3 | L | .6 | | | | 225 | 2-6 | 355P
405P | | 12.5 | 11.0 | 1.08 | | 11.9 | | .6 | 12 | | - | | | 7 | 1/24 | 914A
924A | | 10.8 | 9.27 | 0.71 | <u> </u> | 6.6 | <u> </u> | .6 | 10 | | ., | 226 | 2-13 | 327P
338P | - 91 | 13.0 | 11.2 | 1.09 | | 12.2 | 1 | .6 | 10
9 | | | | | 8 | 1/31 | 250P
301P | | 11.3 | 10.5 | 0.93 | <u> </u> | 9.8 | L | .6 | 11_ | | ,, | 227 | 2-20 | 305P
315P | 44 | 12.5 | 8,43 | | | 11.5 | 1 1 | .6 | 9 | | - | | | 9 | 2/7 | 110P
119P | ., | 11.5 | 10.7 | 0.89 | | 9.5 | Ļ. | .6 | 1 i | | | 228 | 2-27 | 305P
316P | di . | 12.5 | 9.90 | i | | 12.5 | 1 1 | .6 | 9 | | | | | 0 | 2/14 | 145P
154P | | _11.6 | 10.8 | 0.81 | | 8.7 | _ | .5 | 10 | | | 229 | 3-6_ | 333P
345P | н | 12.0 | 11.2 | 0.96 | | 10.8 | | | 10 | | | | | 1 | 2/21 | 1045A
1053A | <u></u> | 11.5 | 10.5 | 0.64 | | 6.7 | L | .6 | 9 | | •• . | 230 | 3-13 | 345P
355P | | 11.5 | 10.8 | 0.89 | | 9.7 | | .6 | 8 | | | | | 2 | 2/28_ | 101.0A
1021A | | 11.5 | 10.7 | 0.67 | | 7.2 | - | .5 | 10 | | •• | 231 | 3-20 | 825A
835A | | 11.5 | 11.3 | 1.00 | | 11.3 | | .6 | 10 | | | | | 3 | 3/7 | 826A
835A
853A | ,, | 11.7 | 10.2 | 0.66 | - | 7.4 | ļ | .5 | 10 | | " | 232 | 3-27 | 820A
836A | | 12.0 | 14.2 | 0.75 | | 10.6 | | .6 | 12 | | | | | 4 | 3/14 | 905A
820A | BOLLINGER | 11.7 | 10.5 | 0.72 | <u> </u> | 7.6 | _ | .5 | 14 | | FC6 | 233 | 4-3 | 753A
804A | | 13,0 | 8.85 | 0.75 | | 6.6 | | .6 | 10 | | | | | 35 | 4/4 | 835A
803A | | 14.5 | 14.4 | 0.85 | | 12.2 | L | .6 | 10 | | | 234 | 4-10 | 810A
821A | | 11.5 | 9.57 | 0.63 | | 6.0 | Ш | .6 | 10 | | - | | | 6 | 4/11 | 812A
835A | ** | 15.0 | 14.3 | 0.73 | | 10.4 | - | .6 | 10 | | •• | 235 | 4-18 | 918A
930A
958A | | 12,3 | 10,3 | 0.76 | | 7.8 | Ш | ,6 | 11 | | - | | | 37 | 4/18 | 847A
808A | ** | 14.6 | 12.3 | 0.67 | <u>.</u> | 8.2 | \vdash | .6 | 10 | | • | 236 | 4-24 | 1008A
815A | * | 11.5 | 10.3 | 0,75 | ļ | 7.7 | | .6 | 10 | | *. | | | 8 | 4/25 | 820A
820A | 1, | 14.0 | 12.3_ | 0.78 | | 9.6 | - | -6 | 10_ | | ** | 237 | 5-1 | 815A
827A
838A | , | 12.0 | 11.0 | 1.02 | | 11.2 | 1 | .6 | -13 | | • | | | 9 | _5/2 | 831A
800A | | 13.3 | 12.0 | 0.68 | | 8.2 | - | .6 | 9 | | • | 238 | 5-8 | 850A
727A | | 11.5 | 10.7 | 0.78 | ļ | 8.3 | 1 | .6 | 10 | | • | | | Φ | 5/9 | 810A
815A | ., | 11.0 | 10.9 | 0.69 | | 7.5 | - | .6 | 10 | | •• | 239 | 5-15 | 739A | * | 11.8 | 10,5 | 0.69 | - | 7,2 | Н | ه. | 9 | | • | | | 11 | 5/16 | 824A
850A | | 12.0 | 9.60 | 0.67 | <u> </u> | 6.4 | +- | -6 | .8 | | | 240 | 5-22 | 1013 ^A | •• | 11.8 | 9,65 | 0.69 | | 6.7 | Н | .6 | 10 | | - | | | 2 | 5/23 | 900A
800A | | 13.0 | 11.0 | 0.84 | | 9.2 | ┝ | -6 | | | ** | 241 | 5-29 | 750A
955A | | 12.2 | 10.0 | 0.87 | | 8,7 | + | .6 | 12 | | • | | | 3 | .5/31 | 810A
830A | " | 12.5 | 10.4 | 0.89 | | 9.3 | ╁ | .6 | | | | 242 | 6+5_ | 1005A
957A | * | 11.9 | 11.4 | 0.82 | | 9.4 | 1-1- | .6 | 10 | | - | | | 4 | 6/6 | 756A | <u> </u> | 12.2 | 9.79 | 0.84 | | 8.2 | \vdash | | 9 | | | 243 | 6-12 | 1008A
740A | •• | 10.9 | 10,3 | 0,68 | | 7.0 | | | 10 | | 7 | | | 5 | 6/13 | 808A
808A
818A | | 12.5 | 9.84 | 0.75 | <u> </u> | 7.4 | \vdash | .6 | | | | 244 | | 750A
923A | | 11.8 | 12.6 | 0.96 | | 12.1 | l i | 6. | 10 | | - | | | 6
7 | 6/27 | 757A
809A | ** | 11.5 | 10.8 | 0.79 | | 7.5 | T | .6 | 9 | | | 245 | | 935A
844A | | 37.5 | 8.54 | 1,04 | | 8,9 | 1 } | .8 | 7 | | - | | | 8 | 7/3 | 920A
950A | HAIG | 10.0 | 7.10 | 0.96 | | 6.8 | Г | .6 | | | C35 | 246 | 7-3 | 852A
716A | | 37.0 | 8.10 | | | 6.9 | 1 | .5 | 7 | | | | | 9 | 7/10 | 830A
840A | | 10.0 | 8.70 | 0.76 | | 6.6 | T | .5 | | | " | | 7-10 | 726A
922A | | 36.0 | 6.86 | | | 5.5 | T - T | .5 | 8 | | - | | | ρ | 7/17 | 920A
940A | | 10.0 | 9.00 | 1 | | 8.9 | Τ | .6 | | | | F - | 7-17 | 932A
337P
345P | | 8.5 | 8.43 | 0.81 | | 6.8 | | .6
IBF | 7 | | | | | 1 | 7/25 | 743A
754A | BOLL INGER | 8.2 | 6.04 | 1 | | 6.4 | Γ | .6 | | | -C6 | 249 | 1 | | MOON | 10.5 | 8,50 | | | 16.1 | | | 5 | | FC22 | | |)2 | 8/1 | 626A
635A | BOLL INGER | 12.5 | 9.85 | | | 8.4 | | | 10 | | FC6 | 250
251 | | 837A
830A
840A | | 8.5 | | 0.94 | | 7.6 | 1 - | .6 | 6 | | - | | | 13 | 8/8 | 650A
702A | | 12.0 | 9.92 | 1 | | 8.5 | | .6 | | | 44 | 252 | | 915A
922A | | 7.0 | | 0.85 | † | 6.4 | 1 | .6 | | | | | | 14 | 8/14 | 805A
816A | | 13.0 | 13.0 | 1.08 | | 14.1 | | .6 | | | | 252 | 8-13
8-21 | 958A | BOLLINGER | 33.5 | 1 | 0.85 | | 5.4 | | .5 | ъ6
В | | FC6 | | | 15 | 8/21 | 725A | | 10.1 | 8.46 | 1 | | 7.9 | | . 6 | | | | 254 | 8-28 | 825A
834A | # | 34.0 | | 1.00 | | 6.4 | | .5 | В | | - | | | 06 | 8/29 | 652A
700A | ., | 10.3 | 8.94 | | | 7.4 | | .6 | | | | 255 | l. — | 756A
806A | | | 1 5 | | † † | | | | | | , | | | 27 | 9/5 | 750A
758A | | 10.0 | 8.56 | | | 6.6 | | .6 | | | | 256 | 9-11 | 943A
954A | | 35.0
23.5 | 6.32
5.88 | 0.41 | † | 5.1
4.6 | 1 1 | .5
.5 | 8 | | - | | | 08 | 9/12 | | | 9.5 | 8.05 | 0.82 | | 6.6 | L | 6 | 8 | | 44 | 257 | | 945A
958A | •• | 25.0 | | 1.21 | | 8.2 | 1 | .5 | 12 | | | | | 09 | 9/19 | 800A
812A | | 9.5 | 8.10 | 0.82 | | 6.6 | | .6 | | | ., | | 9-25 | 732A
743A | | 23.0 | | 0.81 | | 4.6 | 1 1 | | 10 | | | | | | 9/26 | 747A
758A | | 9.5 | 8.63 | 0.81 | | 7.0 | L | .6 | 9 | | | | , | | | | | + ו61 | r | +·· | ++ | | | _ | | | | | | | Ilaneous points | | NITE | | | EAR ENDIN | G 86PT | EMBE | R 30. | 1, 46 | _ | ×a. | DATE | END | HADE BY | WIDTH
FEET | AREA DF
SECTION
SQ. FT. | MEAN
VELOUITY
FT.PER BEG. |
RAUSE
HEIGHT
FERT | BEG. FT. | NAT- | DD . | NG. | B. HT.
CHANNE
TOTAL | ' | |----------|-------|------------------------|-----------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------|----------|----------------------|---------------------------|--------------|--------------|----------|------------------------|------------------------|---------------|-------------------------------|--|-------------------------|--------------|--------------------|-----------|----------|---------------------------|----| | | DATE | BEBIH
END | MADE BY | WIDTH
FEET | AREA OF
BEGTION
SQ. FF. | NEAM
VELOCITY
PT.PEN REQ. | SAUSE
HEISHT
FEET | DIBOHARBE
BEG. FT. | RAT- | METH- | MEAR.
BEG.
Ng. | E. HT.
CHANGE
TOTAL | METER
NO. | | | | LOS ANGELES RIV | ER, L. | A.V.D. | Main | Spread | ing Ca | al | | | _ | | | _ | | - | | | | } | | | | _ | | | | it 25 | 10/4 | 1235P
1255P | | THREE (| HANNEL | _ | 2.45 | 46.4 | \Box | | 18 | 0_ | F | | \dashv | | | PACOINA CREEK | bove D | am tin | flow) | | | \vdash | | | | | 196 | 11/29 | 340P
353P | HAIG | " | | | | 45.5 | | | 24 | _0_ | F | | \dashv | | 1016A- | | | | | | | \vdash | | | | | 197 | 12/13 | 820A
850A | HAIG | | | | 3.33 | 26.8 | | .6 | 18 | 0_ | L | | \dashv | | 1620A | DE VORE | 6.0 | 3.12 | 0.64 | | 2.0 | \vdash | l | 9 | | FC42 | 198 | 3/14 | 852A
924A | | | | <u> </u> | 1.81 | 39.8 | $\perp \downarrow$ | .6 | 18 | 0 | L | | 1 | 3/5 | 1034A
1035A | | 5.2 | 2.52 | 0.99 | - | 2.5 | H | i | 9 | | | 199 | 4/18 | 840 A
910 A | | | <u>.</u> | ļ | 2.59 | 42.8 | $\perp \downarrow$ | -6 | 18 | 0 | L | | | 4/26 | 1045A | WADDICOR | 14.0 | 6.10 | 1.23 | | 7.5 | \vdash | .6 | .7 | | FC37 | 200 | 5/2 | 925A
855A | | | | | 1.97 | 52.6 | \perp | .6 | 18 | .02 | ļ. | | 1 | | | BICOINT CDEEN | alon D | | r Cara | **** | A 3000 | | | | | | .201 | 5/9 | 920A
810A | | | ··- | | 2.59 | 42.3 | + | .6 | 18 | 01 | ļ | | 7 | | | PACOIMA CREEK | SIVE U | 1190 | Laid | LENGI | A REVI | | 7 | | | | 202 | 5/16 | 840A
850A | | ., | | | 2.74 | 40.6 | + | -6 | 18 | -01 | L | | 7 | 7/16 | 232P
240P | STUNDEN | 5.0 | 1.80 | 1.67 | | 3.0 | П | .5 | 6 | | FC36 | 203 | 5/23 | 916A
910A | •• | ** | " | | 2.88 | 42.4 | + | | 18 | _0 | F | | | 77.10 | | | | | | | | | | _ | | | 204 | 5/31 | 940A
850A | ļ | _ '' | | - | 2.53 | | + | -7 | | 0 | ╀ | | | | | BIG TUJUNGA CRI | EK abo | ve For | Creek | (Infl | OW) | | | | | | .205 | 6/6 | 920A
742A | " | *! | - "- | | 2.55 | | ++ | | 18 | 0 | F | | | | | | | | | | | | | | | | 206 | 6/13 | 850^ | | 19.0 | 41.6 | 1.13 | 2.58 | | + | ī | 17 | | t | | | 4/18 | | WADD I COR | 14.5 | 11.4 | 1.75 | | 20.0 | | .6 | 9 | | FC37 | 207 | 6/20 | 850A | HAIG | THREE (| HANNEL: | \$ | 2.62 | 42.1 | 1 1 | -6 | J | 0 | t | | _ | | 1200N
1215P | STUNDEN | 8.0 | 7.45 | 1.57 | | 11.7 | | .6 | 8 | | FC36 | 208 | 6/27 | 935A | | | | | 2.69 | 42.3 | 1 1 | . 1 | 18 | 0_ | f | | 4 | 5/15_ | 130P
150P | | TWO CHA | NNELS | | | 9.2 | | .6 | 9 | | | 209 | 7/18 | 1000A
950A
1008A | | | | | 2.78
2.82 | 42.0
39.1 | i I | -6 | 18 | 0 | t | | _ | | 1225P
#235P
200P | TURNER
STUNDEN | 11.0 | 6.01 | 0.72 | | 4.3 | \square | .6
.5 | 8 | | FC43 | 211 | 8/1 | 820A
840A | | | | | 2.78 | 37.8 | 1 1 | - 1 | 18 | 0 | t | | 4 | 6/20 | 2107 | B. STUNDEN | 5.4 | 2536 | 0.72 | | 1.7 | | .6 | 6 | | FC36 | 212 | 8/8 | 835A
855A | | | | | 2.76 | 36.6 | | ì | 18 4 | | r | | + | | - | | | | - | | | Н | | | | | 213 | 8/15 | 1035A
1855A | BOLL INGER | | | | 1.82 | 38.3 | 1 1 | | 12 | 0 | Ī | | + | | | FOX CREEK above | Blo Ti | junga | Creek | | | H | - | | | | 214 | 8/22 | 1135A
1153A | ** | | | | 2.84 | 37.1 | | - 1 | 12 | 0_ | Ī | | - | | 135P | | | | | | | H | \dashv | \dashv | | | 215 | 8/28 | 203P
217P | BOLL INGER
WADDICGR | •• | | | 2.82 | 37.4 | 1 1 | - ! | | 0 | | | + | 1/17 | 143P
128P | DE VORE | 5.4 | | 0.78 | | 1.5 | 1 1 | . 6 | 5 | | FC42 | 216 | 9/4 | 1125A
1145A | | | | | 2.79 | 36.6 | 3 | .6 | 12 | 0 | | | + | 1/24 | 138P
232P | | 5.5 | 1.77 | 0.66 | | 1.2 | 1 1 | .6 | 6 | | | 217 | 9/13 | 105P
124P | BOLLINGER | ., | | L | 2.84 | 36.9 | \sqcup | .6 | 12 | ٥ | L | | \dashv | 2/20 | 243P
1130A | | 5.8 | 2.54 | 0.39 | | 0.99 | H | .6 | 8 | | £C2** | 218 | 9/20 | 125P
150P | | •• | | ļ | 2.85 | 35.7 | \sqcup | .6 | 12 | ٥ | L | | 1 | 4/18 | 1140A
1250P | WADDI COR
STUNDEN | 8.0
4.5 | 6.21
1.94 | 0.56 | | 3.5 | | .5 | 8
5 | | FC37
FC36 | 219 | 9/27 | 1020A
1038A | | ., | | | 2.82 | 36.4 | \vdash | .6 | 12 | 0 | Ļ | | | 5/15 | 100P | " | 6.0 | 3.64 | 0.47 | | 1.7 | | .6
.5 | 6 | | | ļ | | | | | | | | <u> </u> | + | \dashv | \dashv | | ŀ | | | 6/6 | 1200N
1205P | TURNER | 3.3 | 1.61 | 0.47 | | 0.75 | 1 | .6 | 4 | | FC43 | ļ | <u> </u> | | ARROYO SECO ab | ove Mi | iard | Creek | | | + | | -+ | | H | | | 6/20 | 230°
240° | STUNDEN
B. STUNDEN | 2.8 | 1,18 | 0.77 | | 0.91 | | .5 | 3 | | FC36 | | - | 250P | WADDICOR | | | | | | \vdash | - | - | | F | | 1 | | | | | | | | | | | | | | 63 | 4/1 | | BROWN | 32.8 | 27.5 | 2.14 | | 59.0 | \Box | .6 | 11 | | F | | + | | | BIG TUJUNGA CR | EEK bel | ger fo | (Cree | c (inf | low to | res | erv | oir) | L | | | | | MILLARD CREEK | above / | rroyo | Seco | | | \prod | \exists | 4 | | | | | 10/11 | | GILLESPIE | 6.9 | 1.24 | 1.29 | | 1.6 | | .6 | 6 | | FC37 | | | 235P | WADDICOR | | - | | | | ++ | - | \dashv | | t | | 1 | 10/25 | 1245P
1255P | ., | 4.0 | 1.04 | 1.92 | | 2.0 | | -6 | 4 | | ** | - | 4/1 | 240P | BROWN | 3.5 | 1.00 | 120 | | 1,2 | Ħ | -6 | -6- | | F | | 4 | 11/15 | | DE VORE | 5.2 | 1.38 | 2.46 | | 3.4 | | .5 | 7 | | FC42 | | | | ARROYO SECO be | low at | lard | Craak | | | $\dagger \dagger$ | \dashv | \neg | | r | | - | | 1143A
1152A | | 5.4 | 1.53 | 2.16 | | 3.3 | - | .6 | 6 | | | | | | ARROTO SECO DE | 104 61 | 100 | 1000 | | | Ħ | | 寸 | - | r | | -+ | 12/13 | 1150A
1150A | | 6.7 | 1.92 | 2. 19 | | 4.2 | \vdash | .5 | 7 | | <u> </u> | 42 | 12/25 | 100P | MOON | 24.0 | 13.9 | 2.03 | | 28.2 | | .6 | 11 | | , | | 1 | 1/17 | 111P
1201P | • | 14.3 | 5.96 | 1.54 | | 9.2 | \vdash | .6 | | | •• | 43 | 12/26 | 1030A
1045A | | | 10.2 | 1.84 | | 18.8 | | .6 | | | | | + | 1/24 | 1215F
1048A | | 8.8 | 4.43 | 1.96 | | 8.7 | \vdash | .6 | | | | 44 | 12/26 | 1115A
1125A | z1 | 7.5 | 1.79 | 3.03 | | 5.4 | | .6 | 7 | | - | | + | 2/7 | 1101A
150P | | 10.6 | 4.67 | 2,87 | | 13.4 | - | .6 | - 1 | | | | | | | | | | | | | | | | Γ | | + | 2/20 | 200P | | 10.0 | 4.27 | 2.35 | | 10.0 | \vdash | .6 | 8 | | · | | | | ARROYO SECO be | low Dev | ils G | ate Da | | | | | | | | | + | 3/7 | 10574
11174 | | 9.8 | 4.52 | 1.95 | | 9.0 | \vdash | .5 | 11 | | •• | | | | | | | <u>.</u> | | | 11 | | | | L | | + | 3/21 | 1136A
1228P | •• | 22.0 | B. 19 | 1.88 | | 15.4 | | .6 | | 1 | FC#2 | 109 | 4/9 | 1015A
1018A | MOON | 1.3 | 0.10 | 1,00 | | 0.10 | 41 | .5 | 2 | | ŀ | | + | 4/4 | 1240P
225P | , WADD LEOR | 27.0 | 26.6 | 2.93 | | 78.1 | Н | -6 | ο | - { | FO22 | | | | | | | | | | | | | | | | -+ | | 230°
1125A | TURNER | 2.5 | 0.43 | 0.65 | | 0.28 | \perp | .5 | 4 | | FC43 | l l | | | | | | | | | | | | | | | The column | | DISCHARGE | MEASURE) | TENTE OF LOS ANGEL | ES RIVE | R DRAI | NAGE A | REA | | | | | _ | ×п. | DATE | BEGIN | MADE BY | WIDTH | AREA OF
BEGTION
BO. FT. | MEAN
VELOCITY
FT.PER BEG. | BAUDE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- | METH- | MEAS. S
BEC. D | B. HT.
CHANGE
TOTAL | HETER | |--|-----|-----------|----------|--------------------|----------------|-------------------------------|---------------------------------|----------------|-----------------------
--|--|--------------------------|------------------------|----------|-----------|---------|---------------------------------------|-------------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------------|--------|-------------------|---------------------------|----------------| | No. | | _AT_Mie | scellar | ecus points | | | DUB | ING THE Y | FAR THOING | BERTEM | ere 3 | 47 | , | | | END | | TRET | 8Q. FT. | FT.PER BEG. | FEET | acc. FT. | ING. | 20 | HD | TOTAL | NO. | | No. Process | | | | | | | | | | | | | | ļ | <u> </u> | | ARROYO | SECO. A | hove b | Hilard | Creek | | | | 7 | | | | PACINE 1982 | HO. | DATE | | NADE BY | WIDTH
FEET | AREA OF
BEDTION
BQ. FT. | HEAN
VELOGITY
FT.PER BEG. | HEIGHT
FEET | DISCHARDE
SEG. FT. | RAT- MET | H- HEA | B. d.)
CHANG
TOYA | MT. METER
GE
NO. | 64 | 11-25 | | 4 | | 1 | 1 | 0.00 | 38.6 | | .6 | 8 | | FC22 | | 1965 | | | | PACOIMA | CREEK. | above | Dam (I | nflow | | | | <u> </u> | | | | | | | 1.2 | | | | | | | | | | 1. 1. 1. 1. 1. 1. 1. 1. | 25 | 12-18 | 240P | TURNER | 10.5 | 4.46 | 1.17 | | 5.2 | | 5 10 | 0 | FC43 | | | | ARROYO | SECO. b | elow | illard | Creek | | | | | | | | 1 | 26 | 2-25 | 1030A | и | 12.0 | 4.44 | 0.97 | | 4.3 | | 11 | 1 | | 45 | 11-26 | 140P | MOON | 19.5 | 18.3 | 1,55 | | 28.4 | | .6 | 11 | | FC22 | | 1 | 27 | 3-25 | 1020A* | 19 | 9.5 | 4.30 | 0.70 | | 3.0 | | 5 10 | 0 | | _46 | 12-26 | 815A | MOON - STEVENS | 25.0 | 39.1 | 2.96 | | 116. | | .6 | 12 | | - | | | 28 | 4-15 | 315P | * | 9,3 | 2.11 | 0.66 | | 1.4 | | 5 10 | 0 | | 47 | 12-29 | 1035A | MOON | 26.0 | 33.4 | 2.37 | | 79.0 | Ш | .6 | 13 | | | | 10 | 29 | 4-29 | 250P | * | 2.7 | 1.78 | 1.29 | | 2.3 | | 3 . | 5 | | 48 | 12-30 | | | 25.0 | 28.3 | 2.08 | ļ | 55.2 | | -6 | 12 | | | | 1 | 30 | 5-15 | 155P | | 2.3 | 1,29 | 0.62 | | 0.80 | | 5 4 | 4 | | 49 | 12-31 | 1015A | ·, | 26.0 | 27.9 | 1.66 | ļ | 46.3 | | .6 | 12 | | | | 1 | 31 | 5-29 | 110P | ** | 2.2 | 1.18 | 0.51 | | 0.60 | | 5 4 | 4 | | .50 | 1-2 | 1140A | | 25.0 | 24.0 | 1.61 | ļ | 38.7 | | .6 | 12 | | | | | 32 | 6-25 | 1245P | STUNDEN | 2,5 | 0.64 | 0.44 | | 0.28 | | 5 4 | 4 | | 51 | 1-3 | 955A | - 10 | 24.0 | 22.6 | 1.57 | ļ | 35.4 | \vdash | .6 | 12 | | - | | 11 11 12 13 14 15 15 15 15 15 15 15 | | | | | | | | | | + | + | | | 52 | 1-4 | 1045A | * | 24.0 | 20).9 | 1,54 | - | 32.2 | 1 | .6 | 12 | | | | 229 C. | | | 330P | | below F | ох Сге | ek (Ir | flow 1 | o Rese | rvo i r |) | - | | 53 | 1-29 | | | 8.0 | 4.20 | 3.50 | | 14.7 | | .6 | 6 | | • | | 10 | 237 | | 335P | | | | | | | +: | 5 | 9 | - 1 | 1 | | | | | | | | | | | | | | | 1 | | | 100P | | 1 | | | | | | | | - 1 | 1 | | | | | | | | | | | | | | | | | | 310P | | | | | | | | | | | | DISCHARGE | MEABURE | MENTS OFR | O HOND | O DRAI | NAGE A | REA | | | | | | | | Color | 240 | 7-9 | 320P | <u> </u> | 4.0 | 1.16 | 0.43 | | 0.50 | | 5 | 4 | " - | 1 | AT. | misc | ellaneous point | <u> </u> | | | NA THE Y | EAR ENDIN | 3 66 F1 | rem ne | A 30, 1 | <u>46</u> | | | Color | | | | LOC ANCELES DI | VED 14 | ND 14-1 | | | Caral | | + | | + | <u> </u> | 1 | | 1 | · · · · · · | AREA DE | HEAN | DAUGE | | TT | | HEAT. | E. WY. | | | 22 1-1 1500 150 | | | 1130A | | | 7 | i | | | | | | FCOR | NO. | DATE | | MADE BY | PEET | BECTION
UD. FT. | PT.PER BEG. | PEET | | | CD. | NO. | TOTAL | HD. | | 22 G-17 1920 Made Corp. | | | 1205P | WADD I COR | 15REE | 1 | -3 | | | | ı | 1 | | | | | SANTA ANITA CRI | EK bel | w San | ta Ani | a Dam | (outf | OW | - | \dashv | _ | <u> </u> | | 1200 | | | 1225P | | - | - | | | | | | | | | | 2224 | | - | - | ļ | ļ | | \square | _ | _ | | | | 22 C-31 1350 | | | 1200N | ,, | | | | | i | | | | ., | 335 | 10/4 | 910A | STUNDEN | 2.0 | 0.80 | 1.6 | 2 | 1.3, | \square | .5 | 4 | | FC36 | | 28 | | | 1130A | | | | | | | | | | | 336 | 10/4 | 930A | • | 2.8 | 1.29 | 1.0 | ļ | 1.3 | | .5 | 4 | | | | 129 1-10 1-1 | | | 1125A | ,, | | | | | | 1 | 1 | 2 | | 337 | 10/11 | 8154 | | 2.8 | 1.35 | 0.96 | 5 | 1.3 | Н | | 5 | | | |
22 | | | 136P | BLAKELY - ODEKIRK | | , | | | 1 | .6 | 1 | 8 | | 338 | 10/18 | _836A | MOON | 2.8 | 1.25 | 1.04 | 1 | 1.3 | | .5 | . 5 | | | | 22 | | | 205P | | | | | 2.31 | 45.4 | .6 | , 1 | 18 | | 339 | 10/25 | 805A | HOON | 2.8 | 1.21 | 1.0 | 2 | 1,2 | | ٠5 | 5 | | | | 22 4:10 200 | | | 124P | 1 | | | | 2,25 | 39.9 | | , | 12 | | 340 | 11/1 | 931A | | 2.8 | 1.26 | 0,9 | 5 | 1.2 | \vdash | .5 | 5 | | | | 230 6.17 1066 LANELY JOHNSON " - 2.18 40.1 6 12 FCSS 342 11.17.15 825.6 2.8 1.29 1.01 1.3 1.5 5 2.21 4.74 112018 RANELY 2.18 40.4 1.6 12 343 11.21 86.4 2.8 1.29 1.01 1.3 1.5 5 2.8 1.29 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 | | l | 200P | | | | | 1 | ł | | | 2 | | 341 | 11/8 | 820A | MOON | 2.8 | 1.30 | 1.00 | - | 1.3 | \vdash | | 1 | | - | | 23 | | | 106P | | | | | | 40.1 | | <u>. </u> | 2 | FC35 | 342- | 11/15 | 825A | ,, | 2.8 | 1.29 | 1.0 | | | | T | | | | | 232 | 231 | | 1151A | | | <u> "</u> | | | ł | | - 1 | - | | 343 | 11/21 | 845A | •• | 2.8 | 1.29 | 1 | | | - | _ | 1 | | | | 238 | 232 | 5-1 | 154P | | | | L | 2.21 | 39.0 | | 5 1 | 12 | | 344 | 11/29 | 845A | | 2.8 | 1.30 | | 1 | | \vdash | | 1 | | | | 234 5-15 200 " " 2.39 38.6 4.5 12 " 346 12/13 810A " 2.8 1.31 0.99 1.13 1.5 5 " 348 1.16 1.15 1.16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 5 1.1 16 1.8 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.1 16 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | 233 | 5-8 | 1255P | | | ,, | | 2.28 | 41.3 | <u> </u> | 5 1 | 12 | • | 345 | 12/6 | 820A | •• | 2.8 | 1 | 1 | | | | | 1 | | | | 235 5-21 MSP STANDEN " " 2.66 36.0 6.15 FC26 34.0 1.0 15 FC26 34.0 1.0 1015 | 234 | 5+15 | 202P | | | | | 2.39 | 38.6 | <u></u> , | بــا | 12 | | 4 | | | " | | 1.31 | 0.9 | 9 | | - | .5 | | | - | | 286 6-5 407F [RAKELY " " 2.66 34.0 6. 15 FC35 349 1/17 10156 " 5.5, 3.20 1.12 3.6 5 6 " 279 122 121F " " 2.79 40.0 6. 15 " 350 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 13.5 6 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 6 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 6 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 6 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.1 4 6 9 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.2 1.6 6. 4 " 1286 34.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.2 1.6 6. 4 " " 1286 34.6 " TWO CHANNELS 12.2 1.6 6. 4 " " 1286 34.6 " TWO CHANNELS 12.2 1.6 6. 4 " " 1286 34.6 " TWO CHANNELS 12.2 1.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.2 1.6 6. 4 " " 1286 34.6 " TWO CHANNELS 12.2 1.6 6. 12 FC35 320 1/23 8204 " TWO CHANNELS 12.2 1.6 6. 6 " TWO CHANNELS 12.2 1.6 6. 12 | 235 | 5-21 | 145P | STUNDEN | | | | 2.45 | 35.9 | | | 18 | FC36 | 347 | 12/20 | | | 2.8 | 1.26 | 1.0 | 3 | 1.3 | + | -5 | 5. | | • | | 237 | 236 | 6-5 | 407P | BLAKELY | | ., | | 2.64 | 34.0 | <u></u> , | با | 15. | FC35 | 348 | 1/10_ | | | 2.8 | 4.59 | 0.7 | 4 | 3.4 | ╁ | -6 | 4 | | | | 238 6-19 1277 " " " 2.81 38.5 6 15 " 355 BOLLINGER " " " 2.86 34.6 .6 12 FC6 35 1/31 940A " 4.5 1.55 1.16 1.8 1.6 4 " 2.87 355 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 | 237 | 6-12 | 221P | | <u> </u> | ., | | 2.79 | 40.0 | | L | 15 | | 4 | 1 | | | | | | 2 | | + | .5 | -6 | | - | | 239 7-2 41FF BOLLINGER " " 2.86 34.6 6 15 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " 240 7-10 41FF BLAKELY " " 2.84 36.0 6. 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " 241 7-17 228F " " 2.86 36.4 6. 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " 241 7-17 228F " " 2.86 36.4 6. 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " " 2.86 36.4 6. 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " " 241 7-17 228F " " 2.86 36.4 6. 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " " 241 7-17 228F " " 2.86 36.4 6. 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " " 242 7-24 242F " " 2.86 36.4 6. 15 FG35 352 2/5 140P " 7.0 4.15 1.66 6.9 6.9 6.7 " " 242 7-24 242F " " 2.86 36.4 6. 15 " 352 2/28 822A MOON 6.0 2.73 9.81 2.2 16 6 FG22 140 140 140 140 140 140 140 140 140 140 | 238 | 6-19 | | | | | | 2.81 | 38.5 | ļ., | با | 15 | | 1 | 1 | 1 | | 1 | | | | 1 | + | -6 | 1 1 | | | | 240 7-10 4159 BLAKELY " " 2.84 36.0 16 15 FC35 352 2/14 845A " 6.6 2.86 0.77 2.1 16 7 " 241 7-17 228P " " 2.86 36.4 1.6 15 FC35 353 2/14 8552A " 6.6 2.86 0.77 2.1 1.6 7 " 242 7-24 242P " " " 2.80 35.9 1.5 15 " 354 2/21 800A " 6.7 2.84 0.70 2.0 6 7 " 243 7-31 222P " " " 2.80 35.9 6 15 " 355 2/28 800M 6.0 2.73 9.81 2.2 16 6 FC22 | 239 | 7-2 | 415P | | | | | 2.86 | 34.6 | . | 5 1 | 12 | FC6 | 1 | | 120P | · · · · · · · · · · · · · · · · · · · | 1 | | | T | | \dagger | -6 | ГΠ | | | | 241 7-17 228P " " " 2.86 36.4 6 15 FG35 354 2/21 900A | 240 | 7-10 | 415P | BLAKELY | - | þ | | 2.84 | 36.0 | . | ىل | 15 | FC35 | 4. | | .845 A | | | 1 | } | İ | l. | | -6 | | | 1 | | 242 7-24 242 " " 2.79 35.1 6 15 " 355 2/28 20A MOON 6.0 2.73 0.81 2.2 16 6 FC2 243 7-31 222P " " 2.80 35.9 6 15 " 356 3/7 825A " 6.0 0.79 2.0 1.5 6 " 244 8-7 42P | 241 | 7-17 | 228P | | <u> </u> | - " | 1 | 2.86 | 36.4 | | <u>.</u> | 15 | FC35 | 4 | ì | 900A | | 1 | 1 | ĺ | 1 | 1 | 1 | -6 | | | T | | 243 7-31 222P " " " 2.80 35.9 6 15 " 356 3/7 225A " 6.0 2.60 0.79 2.0 .5 6 " 244 8-7 452P " " 2.68 34.8 6 15 " 356 3/7 225A " 6.0 2.60 0.79 2.0 .5 6 " 244 8-7 452P " " 2.68 34.8 6 15 " 357 3/13 910A " 6.4 2.93 0.78 2.3 .6 7 " 257 245 8-13 1243P UNNER " " 2.72 36.8 .6 18 FC43 358 3/2 810A " 6.0 2.39 0.46 1.1 .6 7 " 2.46 8-20 100P " " 2.75 33.7 .6 18 " 358 3/27 810A " 6.0 2.39 0.46 1.1 .6 7 " 358 3/27 810A " 6.0 2.25 15.9 .6 8 FC34 3/27
810A " 6.0 2.25 15.9 .6 8 FC34 3/27 810A " 6.0 2.25 15.9 .6 8 FC34 3/27 810A " 6.0 2.25 15.9 .6 8 FC34 | 242 | 7-24 | 242P | | | | | 2.79 | 35.1 | | ىل | 15 | - | 4 | | 820 | MOON | 1 | | 1 | | 1 | T | 1.6 | | m | FC22 | | 244 8-7 452P " " 2.68 34.8 6 15 " 357 3/13 910A " 6.4 2.93 0.78 2.3 .6 7 " 245 8-13 1243P TURNER " " 2.72 36.8 .6 18 FC43 358 3/27 810A " 6.0 2.39 0.46 1.1 .6 7 " 246 8-20 100P " " 2.75 33.7 .6 18 " 358 3/27 810A " 6.0 2.39 0.46 1.1 .6 7 " 247 8-28 266 81.4KELY " " 2.80 35.9 .6 15 FC35 36 4/3 330P STUNDEN 7.8 7.06 2.25 15.9 .6 8 FC34 3/2 8-24 134P " " 2.78 34.8 .6 15 " 360 4/3 330P " 7.8 7.06 2.25 15.9 .6 8 FC34 3/2 8-24 134P " " 2.85 34.9 .6 15 " 361 4/11 822A MOON 5.4 2.50 0.92 2.3 .6 6 PC22 14.5 14.5 " 361 4/15 822A MOON 5.4 2.50 0.92 2.3 .6 6 PC22 15.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1. | 243 | 7-31 | 222P | | ., | | - | 2.80 | 35.9 | 1-1- | Щ | 15 | ** | 4 | i | 8154 | | 1 | | Ì. | i | 1 . | 1 | 1 | | | | | 245 B-13 1243F TURNER | 244 | 8-7 | 452P | | - | - | ┼ | 2.68 | 34.8 | .6 | 1 | 15 | | 4 | İ | 900 | 1 | | | 1 | | 1 | 1 | 1 | 1 1 | | | | 246 8-20 100P " " 2.75 33.7 6 18 " 359 4/3 320P SUNDEN 7.8 7.06 2.25 15.9 6 8 FC34 15.4P 1 | 245 | B-13 | 1243P | | T | | - | 2.72 | 36.8 | 1 | 1 | 18 | | -1 | | 800 | \ | 1 | | i | | | | 1 | 1 | | | | 247 8-28 206 BLAKELY " 2.80 35.9 .6 15 FC35 36.0 .43 320° 7.8 7.18 2.27 16.1 .6 8 248 9-4 134P " 2.78 34.8 .6 15 360 .4/3 335° 7.8 7.18 2.27 16.1 .6 8 249 9-11 142° 2.85 34.9 .6 15 361 4/11 8224 M00M 5.4 2.50 0.92 2.3 .6 6 PC22 2.49 9-11 142° 2.88 33.9 .6 115 362 4/15 8384 5.4 2.46 0.61 1.5 5 .6 250 9-18 200° 2.98 32.6 .6 15 363 4/25 830° 5.3 2.38 0.59 1.4 .5 6 251 2.25 145P 2.96 32.6 .6 15 363 4/25 830° 5.3 2.38 0.59 1.4 .5 6 364 5/3 1160° 365 5/8 8374 5.2 2.39 0.63 1.5 5 6 365 5/8 8374 5.2 2.39 0.65 1.5 5 6 366 5/16 8274 5.2 2.39 0.65 1.5 5 6 367 5/23 900Å 5.3 2.42 0.62 1.5 5 5 6 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 367 5/23 900Å 5.5 2.62 0.69 1.8 6 360 | 246 | 8-20 | 100P | 1 | 1 | | - | 2.75 | 33.7 | | 1 | 18 | - 4 | -# | 1 | 3058 | • | | | 1 | | | | 1 | | | FC36 | | 248 B-4 134P " " 2.78 34.8 6 15 " 361 4/11 822A MOON 5.4 2.50 0.92 2.3 .6 6 PC27 134P " " 2.85 34.9 6 15 " 361 4/11 822A MOON 5.4 2.50 0.92 2.3 .6 6 PC27 144P " " 2.85 34.9 6 15 " 362 4/15 838A " 5.4 2.46 0.61 1.5 .5 6 " 250 1.18 20P " " 2.86 33.9 6 115 " 362 4/15 838A " 5.4 2.46 0.61 1.5 .5 6 " 251 1.25 1.45P " " 2.96 32.6 6 15 " 363 4/25 830A " 5.3 2.38 0.59 1.4 .5 6 " 364 5/3 1190A " 5.2 2.39 0.63 1.5 .5 6 " 365 5/4 837A " 5.2 2.39 0.65 1.5 .5 6 " 366 5/16 827A " 5.2 2.39 0.66 1.6 .5 6 " 366 5/16 827A " 5.2 2.38 0.66 1.6 .5 6 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 0 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 0 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 0 " 367 5/23 900A | 247 | B-28 | 206P | BLAKELY | | + | | 2.80 | 35.9 | | 5 1 | 15 | | -# | 1 | 320P | 1 | | | | | 1 | | | | | | | 249 b-11 142P " " " 2.85 34.9 6 15 " 362 4/15 38A " 5.4 2.46 0.61 1.5 " 5 6 " 250 3-18 200P " " " 2.88 33.9 6 115 " 362 4/15 38A " 5.3 2.38 0.59 1.4 .5 6 " 251 3-25 145P " " 2.96 32.6 6 15 " 364 5/3 1190A " 5.2 2.39 0.63 1.5 .5 6 " 364 5/3 1190A " 5.2 2.39 0.63 1.5 .5 6 " 365 5/48 337A " 5.3 2.42 0.62 1.5 5 6 " 366 5/16 827A " 5.2 2.39 0.66 1.6 .5 6 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 " 367 5/23 900A " 5.5 2.62 0.89 1.8 .6 6 " " | 248 | 9-4 | 134P | | | | - | 2.78 | 34.8 | | 5 1 | 15 | | 4 | l. | 815 | | 1 | i | 1 | | } | | | 1 | | PC22 | | 250 b-18 200P " " " 2.88 33.9 6 115 " 363 4/25 330A " 5.3 2.38 0.59 1.4 .5 6 " 364 5/3 1160A " 5.2 2.39 0.63 1.5 .5 6 " 364 5/3 1160A " 5.2 2.39 0.63 1.5 .5 6 " 364 5/3 1160A " 5.2 2.39 0.63 1.5 .5 6 " 364 5/3 1160A " 5.2 2.39 0.63 1.5 .5 6 " 364 5/3 1160A " 5.2 2.39 0.63 1.5 .5 6 " 365 5/8 337A " 5.3 2.42 0.66 1.6 .5 6 " 365 5/8 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 6/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 .5 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.66 1.6 6 " 365 5/4 327A " 5.2 2.43 0.6 6 1.6 6 " | 249 | 9-11 | 142P | | - | 1 | | 2.85 | 34.9 | . | - 1 | - 1 | - | # | | 830A | ١ | | i | | 1 | 1 | Ι | [| 1. | | i | | 251 b-25 145P " " 2.96 32.6 46 15 " 364 5.3 1160A " 5.2 2.39 0.63 1.5 .5 6 " 364 5.3 1160A " 5.3 2.42 0.62 1.5 .5 6 " 366 5/16 327A 5.3 2.42 0.66 1.6 .5 6 " 366 5/16 327A 5.2 2.43 0.66 1.6 .5 6 " 367 367 5/23 900A 5.5 2.62 0.69 1.8 .6 6 " 367 | 250 | 9-18 | 200P | 19 | | | - | 2.88 | 33.9 | | 5 11 | 15 | | -4 | ļ | 820A | 1 | | | i | | 1 | I | | | | | | 365 | 251 | 9-25 | 145P | ļ. . | - | " | - | 2.96_ | 32.6 | | <u> </u> | 15 | - | 4 | 1 | 1050A | i | 1 | 1 | ļ | ì | 1 | Ι | | 1 1 | | | | 366 5/16 827A · · · 5.2 2.43 0.66 1.6 .5 6 · · · 850A · · · 5.2 9.69 1.8 .6 6 · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | 1 | | 830 | \ | | | 1 | | 1 | I | | | | | | 367 5/23 900A 5.5 2.62 0.69 1.8 .6 6
815A | | | | | | | | | | | | | | ll . | | 8204 | \ | 1 | | | | ļ | | 1 | | | | | 8154 | | | | | | | | | | | | | | 1 | | 850 | k | 1 | | . 1 | 1 | i i | 1 | | 1 | | | | | | | | | | | | | | | | | | 3968 | 5/30 | 8154 | | 5.3 | | 1 | İ | 1 | 1 | | | | | | | | | | | DO_ DHA | LNAGE . | AKEA | | | | | | | NO. | DATE | END | HADE BY | FEET | AREA OF
SECTION
SQ. FT.
| MEAN
VELODITY
FT.PER BED. | EAUSE
HEIBHT
FEET | DINGHARGE
PEG. FT. | HO H | DD | BEG. DI | MT.
MAKBE
SITAL | |-----|--------------------|-------------------------|--|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|-------|----------------------|--|------------------|--------|--------------|------------------------|-------------------------|--------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------------|------|---------|-----------------------| | | ,AT. | misce | llaneous points | | | DUR | ING THE Y | EAR ENDIN | g BEP | TEMBE | R 30, | 1 9 116 | - | 124 | 5/30 | 840A
842A | MOON | 2.0 | 0.36 | 1.56_ | | 0.56 | Ш | .5 | _2 | F | | жa. | DATE | MEMD | MADE BY | WIDTH | AREA OF
BESTION
SQ. FT. | MEAN
VELODITY
FT.PER BEG. | HAURE
HEISHT
PEET | DISCHARGE
SEG. FT, | RAT- | METH- | MEAB,
BEG.
NG. | B. HT.
DHANGE
TOTAL | METER
HEL | :125 _ | 6/6 | 900A
902A | | 2.0 | 0.30 | 1,13 | | 0.34 | Ц, | .5 | 2 | _ | | | | | | | | | | | | | | | | 126 | 6/13 | 925A
927A
1140A | " | 2.0 | 0.56 | 1.27 | | 0.71 | Ц. | .5 | 2 | _ | | | | | SANTA ANITA CRE | FK belo | w San | a Ani | a Dam | foutf | low1 | _ | (00 | 1t.) | | 127 | 6/20 | 1142A
910A | | 2.0 | 0.36 | 1.25 | | 0.45 | Д. | .5 | 2 | - - | | | | | | | | | | | | | | | | 128 | 6/27 | 912A
900A | ** | 2.0 | 0.28 | 1.18 | - | 0.33 | | 5 | 2 | | | 9 | 6/6 | 830A
837A | ., | 5.3 | 2.68 | 0.75 | | 2.0 | | .5 | 6 | | | 129 | 7/3 | 902A
900A | · · · | 2.0 | 0.28 | 1.32 | - c | 0.37 | - | 5 | 2 | | | ۱۵ | 6/8 | 835A
845A | •• | 6.3 | 4.05 | 1.23 | | 5.0 | | .6 | 7_ | | • | 130 | 7/11 | 902A
900A | " | 2.0 | 0.28 | 1.43 | | 0.40 | | 5 | 2 | | | . | 6/13 | 900 A
910 A | ** . | 6.4 | 4.80 | 1.88 | | 9.0 | L | .6 | 7_ | | | 131 | 7/18 | 902A
1100A | *** | 2.0 | 0.24 | 1.17 | | 0.28 | 1 | 5 | 2 | | | 2 | 6/18 | 1145A
1155A
1115A | | 6.2 | 4.66 | 1.59 | | 7.4 | - | .6_ | 7 | | ļ | 132 | 7/20 | 1102A
845A | | 2.0 | 0.22 | 1.18 | - | _0.26 | | 5 | 2 | - ' | | 3 | 6/20 | 1125A
845A | | 6.5 | 4.49 | 1.54 | ļ. — | 7.2 | - | .6 | 7 | | <u> </u> | 133 | 7/25 | 910A | | 2.0 | 0.24 | 1.17 | - | 0.28 | | | 2 | | | 4 | _6/27 | 855A
830A | MOON | -6.3 | 4.65 | 1.48 | | 6.9 | - | -6 | j. | | FC22 | 134 | 8/1 | 912A
900A | | 2.0 | 0.24 | 1.25 | | 0.30 | | 5 | 2 | | | 5 | 7/3 | _840A | | 6.5 | 4.71 | 1.42 | | 6.7_ | - | -6. | | <u>. </u> | _ | 135 | 8/8 | 902A
850A
852A | | 2.0 | 0.22 | 1.50 | | 0.30 | | 5 | 2 | - | | 6 | 7/11 | 840A
820A | •• | 6.5 | 4.66 | 1.42 | | 6.6 | | .6 | 7_ | | ** | 137 | 8/22 | 900A
902A | | 2.0. | 0.20 | 0.95 | | 0.19 | | | 2 | | | 7 | 7/18 | 830A
1010A | '' | 6.5 | 4.69 | 1.41 | | 6.6 | +- | .6 | . 7 | | " | 1.38 | 8/29 | 845A
847A | | 2,0 | 0.20 | 1.15 | | 0.23 | | 5 | 2 | 1. | | 8 | 7/20 | 1020A
1030A | •• | 3.9 | 2.22 | 0.86 | | 1.9 | - | .6 | _8_ | | | 139 | 9/5 | 758A
803A | STUNDEN | 2.0 | 0.20 | 0.80 | | 0.16 | | URF | 2 | F | | • | 7/20 | 1036A
810A | | 3.9 | 2.22 | 0.86 | | 1.9 | H | .6 | 5 | - | | 140 | 9/14 | 935A
940A | | 2.0 | 0.20 | 0.65 | | 0.13 | 1 1 | | 2 | | | ٥ | 7/25 | 816A
830A | " | 3.9 | 2.31 | 0.91 | | 2.1 | | .6 | 5
4 | - | | -141 | 9/19 | 745A
750A | | 2.0 | 0.20 | 0.80 | | 0.16 | | URF | | | | 1 | 8/1 | 835A
830A
835A | | 3.9 | 2.20 | 0.94 | | 2.0 | T | .5 | 4 | | | 142 | 9/25 | 815A
820A | | 2.0 | 0.20 | 0.75 | <u> </u> | 0.15 | | URF. | | · | | 3 | 8/8
8/15 | 820A
825A | | 4.0 | 2.00 | 0.75 | | 1.5 | Г | .5 | 4 | | | | | | SANTA ANITA BOS | ve Çia | shell | | ļ | | _ | | \perp | | | 4 | 8/22 | 820A
825A | | 4.0 | 2.00 | 0.75 | | 1.5 | | .5 | . 4 | | | | | | | | ļ | | ļ | | 1 | 4 | | | | 5 | 8/29 | 815A
820A | | 4.0 | 2.00 | 0.75 | | 1.5 | | .5 | 4 | | | 129 | 12/21 | 205P
- 217P
400P | MOON | TWO C | ANNELS | | | 24.8 | - | .6 | 8 | F | | 6 | 9/5 | 825A
830A | STUNDEN . | 4.0 | 1.96 | 0.71 | | 1,4 | | .5 | 5 | | FC36 | 130 | 12/21 | 420P | | | <u> </u> | | | 47.2 | -+ | .6 | 4 | | | 7 | 9/14 | 900A
910A | ** | 4.0 | 1.99 | 0.65 | | 1.3 | L | .5 | 5 | | | 131 | 12/22 | 745A
1000A | | | " | | | 86.3 | - | .6 1 | 3 | - | | 8_ | .9/19 | 805 A
815 A | ** | 4.0 | 1.96 | 0.71 | | 1.4 | L | .5 | 4 | | | 132 | 12/27 | 1010A
142P | MOON | 13.0 | 7.30 | 1.91 | | 14.0 | _ | .6 | 9 | | | 9 | 9/25 | 840A
850A | ņ | 4.0 | 1.98 | 0.66 | | 1.3 | L | .5 | 4 | | | 133 | 3/20 | 156P
820A | ROCKENMEYER | 11.0 | 8,20 | 2.07 | _ | 17.0 | + | .6 1 | 1 | - | | | | | SANTA ANITA CR | EK - I | hree (| ities | Farms | Divers | on | | | | ļ | 134 | 3/21 | 830A
430A | MOON MOON | 11.0 | 8,20 | 2,27 | - | 18.6 | - 1 | .6 1 | | | | _ | | 940A | | | | | | | - | | | | ļ | 135 | 3/30 | 438A
1105A | MOON | TWO CI | ANNELS | | | 31.2 | | .6 | 8 | | | 4 | 10/4 | | STUNDEN | TWO CH | NNELS | | | 0.65 | | .5 | 4 | | FC36 | 136 | 3/30 | 1117A
423P | MOON | - :- | " | | | _83.6 | | | 3 | | | 5 | 10/11 | 840A
900A | ــــــــــــــــــــــــــــــــــــــ | | | | | 0.39 | - | .5 | 8 | | | 137 | 3/30 | 1136A
1150A | MOON | | | | | 132.
51.2 | | .6 1 | | - | | 6 | 10/18 | 905A
830A | MOON | | | - | | 0.46 | - | .5 | 4. | - | FC22 | 139 | 3/31 | 154P
207P | MOON
ROCKENMEYER | | | | | 33.9 | | T | 4 | 1 | | 7 | 10/25 | 834A
1000A | MOON | | - | | ļ | 0.54 | \vdash | .5 | 4 | | •• | 140 | - 4/1 | 342P
350P | WADDICOR
BROWN | 20.4 | 18.5 | 1.89 | | 35.0 | | .6 1 | - | | | 8 | 11/1 | 1004A
845A | ROCKENMEYER | | | - | | 0.48 | + | .5 | 4_ | | :- | 141 | 4/4 | 445P
515P | STUNDEN | 22.5 | 24.2 | 2,46 | | 59.6 | | .6 1 | 3 | F | | ĺ | 11/8 | 850A
840A | MOON | | ļ | | | 0.48 | | .5 | 4 | | - | 142 | 4/5 | 345P
357P | MOON | 11.0 | 6.38 | 1.91 | | 12.2 | | | 8 | F | | | 11/15 | 845A
910A | | | | | - | 0.38 | - | .5 | 4 | | | | | | RIO HONDO above | Peck | Road | | | | | | | | | - 1 | 11/21 | 914A
900A | | | | | | 0.37 | - | .6 | 4 | | : | | | | | | , | | | İ | | | | | | 3 | 11/29 | 904A
835A
837A | | | | | | 0.33 | | .5 | 4 | | | _7 | 1/3 | 405P
415P | MOON
BEAM | 53.0 | 89.2 | 3.46 | | 309. | | .6 | 8 | F | | 4 | 12/6 | 835A
_837A | •• | 2.0 | 0.72 | 0.60 | | 0.43 | | .5 | 2 | | | _8_ | 1/7 | 120P
135P | BE AM | _51.0 | 77.2 | 3.01 | | 232. | _ | .6 | 10 | | | | 12/20 | 910A
912A | **. | 2.0 | 0.28 | 1,29 | | 0.36 | | .5 | 2 | | | 9 | 1/9 | 155P
207P | MOON | 46.0 | 64.0 | 2.67 | | 171. | Ц. | .6 | 10 | | | 6 | 1/10 | 915A
920A | " | TWO CH | NNELS | | | 0.26 | | .5 | 4 | | | 10 | 1/16_ | 210P
230P
1225P | | 47.0 | 65.2 | 2.90 | | 189. | \downarrow . | .6 | 10 | _ . | | , | 1/17 | 10,40A
1042A | MOON | 2.0 | 0.32 | 1.28 | | 0,41 | | .6 | 2 | | FC22 | ш | 1/18 | 1245P
1250P | STUNDEN | 44.0 | 55.7 | 2.37 | | 132. | + | .6 | 10 | | | в | 1/23 | 830A
832A | ** | 2.0 | 0.32 | 1,56 | <u> </u> | 0.50 | \perp | .5 | 2_ | | | 12 | 9/12 | 120P
415P | YAN DER GOOT
STUNDEN | 48.0 | 53.4 | 4.43 | | 237. | + | .6 | 10 | FC | | 9 | _1/31 | 1000A
1003A | ** | 2.0 | _0.30 | 0.90 | ļ | 0.27 | - | .5 | 2_ | <u> </u> | ļ. <u>.</u> | _13 | 9/13 | 435P
330P | COLE
STUNCEN | | 120. | 3.22 | | 386. | - 1 | | 13 | - ' | | ۵. | 2/5 | 200P
202P | | 2.0 | 0.36 | 1.41 | | 0.51 | _ | -5 | 2 | ļ | <u></u> | 14 | 9/18 | 355P
200P | STUNDEN | 51.0 | 66.9 | 4.73 | | 316. | | | 12 | | | i | 2/21 | 925A
927A | •• | 2.0 | 0.32 | 1.78 | | 0.57 | - | .6 | 2 | | | -15 | 9/23 | 218P | BOLL INGER | 48.0 | 59.3 | 4.02 | ļ | 238. | - | 6 | 11 | <u> </u> . | | 2 | 2/28 | 845A
847A
840A | | 2.0 | 0.32 | 1.34 | | 0.43 | \vdash | .5. | 2 | _ | <u> -</u> - | | | | | | | | | | | | | | | 3 | 3/7 | 842A
920A | ** | 2.0 | 0.40 | 1.30 | | 0.52 | - | .5 | 2 | - | <u> </u> | | | | | | | | | | | | | | | 4 | 3/13 | 922A
850A | •• | 2.0 | 0.34 | 1.47 | - | 0.50 | - | .5. | 2_ | | '' | | | | | | | | | | | | | | | 5 | 3/27 | 852A
540P | •• | 2.0 | 0.20 | | | 0.21 | +- | .5 | | - | " - | | | | | | | | | | | | | | | 6_ | 4/4 | 543P
845A | STUNDEN | 2.0 | 2.00 | 1 | | 1.0 | +- | .6 | | | FC36 | | | | | | | | | | | | | | | 7 | 4/11 | 847A
900A | i | 2.0 | 0.30 | ļ | - | 0.36 | 1 | .5 | 1 | | FC22 | | | | | | | | | | | | | | | В | 4/18 | 902A
840A | | 2.0 | 0.20 | | | 0.24 | 1 | .5 | ļ | - | ··- | | | | | | | | | | | | | | | 9- | 4/25 | 842A | | 2.0 | 0.30 | i | | 0.36 | T | .5 | į | 1 | \ <u></u> | | | | | | | | | | | | | | | | 5/3 | 1112A
900A | | 2.0 | 0.34 | } | | 0.43 | T | .5 | i | | | | | | | | | | | | | | | | | 1 | _5/9 | 902A
900A | | 2.0 | 0.32 | 1.25 | T | 0.40 | | .5 | 1 | | 1 | | | | | | | | | | | | | | | 2 | 5/16 | 902A | | 2.0_ | 0.36 | 1.28 | DIBCHARGE | MFARITRE | RIO HON | DO DRAI | NAGE A | AREÀ | | | | | | | | | DATE | BERIM | NADK BY | WIGTH | AREA OF
BECTION
EQ. FT. | HEAM
VELGOITY
FT.PER SEG. | BAUDE
HEIGHT
FEST | DISCHARGE | RAT- ME | TH- HEAL | 8. Q. H | T. HEYER | |------------|-------------|-------------------------|-------------------------------|---------|-------------------------------|---------------------------------|--|------------|----------|------------|----------------------|--|------------------|------------|--------|-----------------------|--------------------|---------|-------------------------------|---------------------------------|-------------------------|--------------|-----------|------------|---------|----------------| | | | | laneous points | | | | ING THE Y | EAR ENDING | | -FUBF | • •- | 714. | | 159 | 4-9 |
1225P
1227P | ** | 2.0 | 0.36 | 1.36 | PRET | 0.49 | ING D | 5 2 | + | 1. | | | | | | T | | | , | | , | | | | _ | 160 | 4-16 | 1220P
1222P | - | 2.0 | 0.36 | 1.44 | | 0.52 | | 5 2 | | † . | | NO. | DATE | END | MADE BY | FEET | AREA OF
BECTION
SQ. FT. | MEAN
VELDOSTY
FT_PER BED. | MAUDE
HEIGHT
FEET | BEG. FT. | RAT- | HETH- | MEAU.
BEG.
ND, | G. HT.
CHANGE
TOTAL | HÉTÉR
ND, | 161 | 4-24 | 1150A
1152A | - 41 | 2.0 | 0.30 | 1.40 | | 0.42 | | 5 2 | | 1- | | | | 327P | SAWPIT CR | EEK. 1 | flow 1 | o Rese | rvolr | | | | | | | 162 | 4-30 | 200P
202P
1210P | | 2,0 | 0.32 | 1.44 | ļ | 0.46 | _ . | 5 2 | - | - | | 15 | 1-2 | 335P | MOON | 8.5 | 2,59 | 1.28 | | 3.2 | | .6 | 8 | | FC22 | 163 | 5-8 | 1212P
830A | н | 2.0 | 0.32 | 1.62 | | 0.52 | <u> -</u> | 5 2 | 4- | - | | | | | CANTA ANATA | 00554 | | | | | | | | | | 164 | 5-15 | 832A
335P | | 2.0 | 0.30 | 1.50 | | 0.45 | | 5 2 | | - | | . 74 | 11-25 | 120P
130P | SANTA ANITA
MOON - SHIPLEY | 12.5 | 12.5 | | Anita | 22.8 | | .6 | 10 | | FC22 | 165 | 6-4 | 337P
330P | .,, | 2.0 | 0.32 | 1.25 | | 0.40 | | 5 2 | | + | | 75 | 12-29 | 109P | MOON | 15.0 | | 2.43 | İ | 52.2 | T | .6 | | | " | 166 | 6-11 | 332P
925A
927A | | 2.0 | 0.30 | 1.53 | | 0.46 | į. | 5 2
5 2 | | † . | | 76 | 12-30 | 1052A
1107A | MOON - LANG | 14.0 | 19.8 | | | 40,8 | | .6 | . 10 | | | 168 | 7-3 | 950A
952A | | 2.0 | 0.28 | 1,43 | | 0.40 | | 5 2 | | | | _77 | 12-31 | 1255P
105P
150P | MOON | 13.0 | 17.0 | 1.78 | | 30.2 | | . 6 | 10 | | | 169 | 7-9 | 1105A
1107A | | 2.0 | 0.24 | 1.42 | | 0.34 | Ι. | 5 2 | | - | | 78 | 1-2 | 201P | | 13.0 | 15.2 | 1.52 | - | 23.1 | | .6 | _11 | | | 170 | 7-17 | 910A
912A
940A | MOON - PAYNE | 2.0 | 0.28 | 1.29 | | 0.36 | ᆚ. | 5 2 | 4_ | - | | _79 | 1-3 | 1220P
840A | _ . | 13.0 | 13.9 | 1.49 | | 20.7 | | .6 | | | ** | 171 | 7-24 | 942A
945A | | 2.0 | 0.26 | 1,23 | | 0.32 | ٠. | 5 2 | - | | | 80 | 1-4 | 850A
1040A | | 12.0 | 13.5 | | | 18.5 | | .6_ | .10 | - | - | 172 | 7-31 | 947A
1107A | * * | 2,0 | 0.28 | 1.14 | | 0.32 | | 5 2 | - | - | | _81 | 1-6 | 1052A
830A
840A | * | 12.0 | 12.3 | 1.37 | ł | 16.9 | | .6 | 10 | | <u>"</u> | 173 | 8-7 | 1109A
850A | | 2.0 | 0.20 | 1,20 | | 0.24 | | 5 2 | | | | 83 | 9-11 | 920A
930A | STUNDEN-SHIPLEY | 1.0 | 0.53 | 0.72 | | 0.38 | | .6 | 2 | | | 174 | 8-14 | 950A
952A | , , | 2.0 | 0.30 | 1.57 | - | 0.50 | | 5 2 | T | - | | | | | | | | | | | | | | | | 175
176 | 8-21 | 915A
917A | | 2.0 | 0.14 | 0.88 | | 0.18 | - T | 5 2
5 2 | -T | | | | | 8 | SANTA ANITA | CREEK, | below | Santa | Anita | Dam | | | | | | 177 | 9-3 | 810A
815A | STUNDEN | 2.0 | 0.36 | 1.05 | | 0.38 | - 1 | 5 3 | | FC36 | | 390 | 10-3 | 830A
835A | MOON | 4.0 | 1.90 | 0.63 | | 1,2 | Ц | .5 | 4_ | | FC22 | 178 | 9-11 | 1005A
1015A | ** | 2.0 | 0.24 | 0.83 | | 0.20 | \$u | | 7 | - | | 391 | 10-10 | 830A
835A
1253P | | 4.0 | 1.95 | 0.62 | ļ | 1.2 | | .5 | 4 | | | 179 | 9-17 | 4'25P
430P
930A | | 2.0 | 0.22 | 1.09 | | 0.24 | 4. | 5 4 | 4_ | FC40 | | 392 | 10-17 | 1258P
820A | | 4.0 | 1,98 | 0.71 | ļ | 1.4 | | .6 | 4 | | | 180 | 9-25 | 940A | | 2.0 | 0.34 | 0.91 | | 0.31 | 4 | 5 4 | + | | | 393 | 10-24 | 825A
930A | ** | 4.0 | | 0.71 | <u></u> | 1.4 | | .5 | 4_ | | | ₩ | ļ | | - | | | | ļ | | + | - | +- | | | 394 | 10-31 | 935A
820A | | 4.0 | | 0.70 | | 1.4 | - | .5 | 4_ | | - | | | 1016P | | | | ve Cl | mshel | 1 1 | + | - | +- | | | 395
396 | 11-7 | 825A
820A
830A | | 7.5 | 1.99 | 1.63 | | 9.7 | | .5 | 8 | | | 143 | 11-12 | 1021P | 1 | | ANNELS | | | 48.9 | - 1 | 6 8 | +- | FC22 | | 397 | 12-18 | 830A
840A | | 7.0 | | 0.86 | T | 3,2 | | . 6 | 7_ | | : | 144 | 11-14 | 1252P
145P
156P | | 18.0 | 10.2 | 2.55
3.73 | | 26.0
60.6 | | 6 7 | +- | 1. | | 398 | 2-11 | 755A
805A | | 11.0 | 5.80 | | | 20.6 | | .6 | 6 | | | 146 | 11-20 | 253P
259P | | 25.0 | 34.4 | 4.80 | | 167. | 1 | 6 6 | | | | 399 | 2-13 | 820A
830A | | 8.0 | 4.10 | 3,22 | | 13.2 | | .6 | 8 | | | 147 | 11-21 | 525P
537P | MOON - ROCKENMEYER | 16.0 | 15.4 | 3.82 | | 58.8 | | 6 8 | | | | 400 | 2-14 | 820A
830A | - | 8.5 | 3.28 | 1.77 | | 5.8 | | .6 | 5_ | | | 148 | 11-23 | 940A
1010A | MOON | 22.0 | 19.1 | 2.18 | | 41.7 | | 6 11 | | - | | 401 | 2-26 | 1045A
1050A
1140A | * | 8.0 | 2.48 | 1.94 | ļ | 4.8 | | ,5 | 5 | ļ | - | 149 | 11-26 | 717A
730A
230P | * | 13.5 | 10.0 | 2.33 | | 23.3 | | 6 10 | 4 | - | | 402 | 3-5 | 1150A
940A | н | 9.0 | | 1.70 | - | 5.0 | | .6
.5 | 7 | | ļ <u>.</u> – | 150 | 11-29 | 245P
1045A | STUNDEN | 18,5 | 12.6 | 1.66 | | 20.9 | | 6 10 | 4 | FC36 | | 403 | 3-12 | 948A
900A | | 4.0 | 1.72 | 1 | 1 | 2.5 | | .6
.5 | 5 | | - | 151 | 12-3 | 1055A
1115A | MOON | 12.0 | 5.90 | 1.66 | | 9.8 | | e 10 | ٠ | FC22 | | 404 | 3-19 | 906A
900A | | 3.5 | | 1.47 | | 2.5 | | .5 | 5_ | | | 152 | 12-11 | 1130A
150P | STUNDEN | 9.0 | 5.12 | | | 5,8 | لعلب | 6 9 | | FC36 | | 405
406 | 3-26
4-2 | 910A
1015A
1024A | • | 4.0 | 1.77 | 1.47 | | 2.6 | | .5 | 6 | | | 153 | 12-25 | 600P
610P | MOON - STEVENS | 10.0 | 9.20 | | | 21.6
35.0 | | 6 5
6 5 | 1 | FC22 | | 407 | 4-9 | 1135A
1140A | 11 | 3.0 | 1.20 | | | 1.5 | | .5 | 4 | | | 1 | 1.2.22 | 0.0. | Most Stevens | 12.0 | 3.40 | 3.72 | | 33,0 | 1 | , | + | | | 408 | 4-16 | 900A
907A | H | 3.5 | 1.89 | 1.75 | | 3.3 | | .5 | 5 | | | | | L | ITTLE SANTA ANIT | A CREEK | . outf | low_fi | om F. | C. Dam | | | | | | 409 | 4-24 | 1130A
1135A
1110A | | 4.0 | 1,61 | 1,74 | ļ | 2.8 | | .5 | 4_ | | | 3 | 2.5 | 930A
935A | i | 1.44 | 0.36 | | | 0.73 | FL. | OATS | 2 | | | 410 | 4-30 | 1115A
1145A | | 3,0 | 1,19 | 2.44 | 1 | 2.9 | | .5 | 5_ | | • | 4 | | | | | | | | | · | · | | • | | 411 | 5-8 | 1152A
800A | | 3.0 | 1.33 | 1.73 | | 2.3 | | .5 | | | | - | | | | | | | | | | | | | | 412 | 1 | 805A
750A | •• | 3.0 | 1 | 1.10 | | 0.92 | | .5 | | | | ł | | | | | | | | | | | | | | 413 | | 755A
840A
850A | STUNDEN | 3.0 | 1 | 1.25 | | 1.1 | - | .5 | | | | | | | | | | | | | | | | | | | 3-3 | UJUA | 2.GIDEN | 3,0 | 0.90 | 1.22 | | 1.1 | | .5. | 6 | SANTA ANI | A CREE | , Ihr | ee Cit | es Fa | rms Di | ег | ion | | | | | | | | | | | | | | | | | | 143 | 10-3 | 900A
902A | MOON | 2.0 | | 0.95 | | 0.21 | | .5 | | | FC22 | | | | | | | | | | | | | | | 144 | 10-10 | 855A
857A
1234P | | 2.0 | 0.22 | 1.36 | ļ | 0.30 | ļ., | .5 | 2 | ļ | - |] | | | | | | | | | | • | | | | | 10-17 | 1234P
1238P
850A | • | 2.0 | 0.20 | 1.15 | | 0.23 | | .5 | 1 | - | | 1 | | | | | | | | | | | | | | 146 | i l | 852A
950A | | 2.0 | 0.20 | | | 0.23 | - | .5 | | | - | 1 | | | | | | | | | | | | | | 147 | 1 | 952A
905A | | 2.0 | 0.18 | | - | 0.15 | - | .5 | 2 | - | • | | | | | | | | | | | | | | | 148 | | 907A
820A | | 2.0 | 0.16 | 1 | † | 0.14 | \vdash | •5
E | 2 | | | 1 | | | | | | | | | | | | | | 149 | ! | 900A
902A | ** | 2.0 | 0.12 | | † | 0.14 | | .5 | 2 | - | † " – | | | | | | | | | | | | | | | 151 | 1 | 910A
912A | | 2.0 | 0.32 | 1 | | 0.44 | | .5 | | ļ — | - | 1 | | | | | | | | | | | | | | | 2-19 | 800A
803A | H | 2.0 | 0.24 | | | 0.30 | | .5 | | | - |] | | | | | | | | | | | | | | 153 | | 1020A
1022A | 11 | 2.0 | 0.24 | 1.12 | | 0.27 | | .5 | 2 | | - | | | | | | | | | | | | | | | 154 | 3-5 | 1130A
1132A
850A | ** | 2.0 | 0.24 | 1.12 | ļ | 0.27 | _ | .5 | 2 | · | • | 4 | | | | | | | | | | | | | | . 155 | 3-12 | 852A
835A | *** | 2.0 | 0.40 | 1.38 | | 0.55 | - | .5 | 2 | | • | 1 | | | | | | | | | | | | | | 156 | 1 | 837A
930A | | 240 | 0.32 | į | | 0.44 | - | .5 | 2 | - | - | - | | | | | | | | | | | | | | 157 | | 932A
1045A | | 2.0 | 0.36 | T | | 0.50 | | •5 | 2 | | - | | | | | | | | | | | | | | | _158 | 4-2 | 1047A | ** | 2.0 | 0.36 | 1.39 | | 0.50 | <u> </u> | .5 | 2 | | ļ <u>.</u> | ij | | | | | | | | | | | | | | | AT. | Bis | cellaneous point | 1 | | DUR | ING THE Y | EAR ENDIN | 2 SEP | TEMBE | R 30, | 1 <u>- 46</u> | - | 1 | | 900A | | FEET | AREA GF
SECTION
EQ. FT. | MEAN
VELOCITY
FT-FER MED | GAUBE
HEIBHT
FEET | MKC. FT. | ЭНО | | HEAS.
SEG.
HG. | S. HT
SHARBE
YDTAL | + | |----------|--------|-----------------|------------------------|---------------|-------------------------------|---------------------------------|----------------|--|--------------|-------------|---------|---------------------------|--------------|------------|--------------|-----------------------|----------------------|------------|-------------------------------|--------------------------------|-------------------------|--------------|------------------|----|----------------------|--------------------------|---| | _ | | PERIN | | <u></u> | APPA OF | l urau | naugr | ſ | | 4 | urse | la | 1 | 136 | 6/11 | 928A
227P | | | | | - | 28.6 | H | -6 | 18 | | 1 | | | DATE | EHD | MADE BY | WIDTH
FEET | AREA OF
HIGHIGN
SQ. FT. | MEAN
VELDOITY
FT.PER BEG. | REIGHT
FEET | DISCHARGE
SEC. FT. | ING | METH-
DD | HEG. | G. HT.
DHANGE
TOTAL | METER
ND. | 137 | 6/13 | 242P
122P | T | 18.0 | 7.41 | 0.92 | <u> </u> | 6.8 | \Box | .6 | 1 1 | | | | 4 | | | SAN GABRIEL RIV | ER - W | st Fo | rk abo | ve Dev | ils Cr | esk | L., | ļ | | | 138 | 6/18 | 132P
1230P | BROWN | 8.5 | 4.42 | 0.16 | | 0.71 | | 6 | ÌΙ | | - | | _ | | | | | | | | | L | | | | ļ | 139
140 | 6/20 | 1240P
1040A | | 9.0
2.5 | 0.52 | 0.17 | - | 0.74 | H | 6 | 1 | | 1 | | | 10/25 | 324P | MIDDLETON | 8.0 | 2:22 | 6.35 | | b. 78 | L | .6 | 7 | <u> </u> | FC29 | 141 | 1 | 1045A
138P | | | | 0.72 | | | | .6 | 1 1 | | 1 | | _ | 11/33 | 115P | F.
TREAT
M. TREAT | 6.0 | 1.83 | 0.84 | | 1.5 | L. | .6 | 6 | | FC26 | 9 | 6/28 | 142P | LUDDI STON | 2.6 | 0.45 | 0.71 | | 0.32 | \Box | .6 | ļ | | 1 | | | _3/8 | 151P | WENTZ
MIDDLETON | 9.5 | 4.57 | 1.07 | | 4.9 | | .6 | 8 | | FC29 | 142 | 9/6 | 1156A | MIDDLETON | 4.0 | 0.85 | l | | 0.80 | | 0 | - | - | 1 | | | 4/18 | | WENTZ | 10.2 | 8.66 | 1.91 | | 16.6 | | .6 | 10 | | FC26 | | | | SAN GABRIEL RIV | K Delo | w Koge | rs cre | E K | | | | | | 1 | | 3 | 4/18 | 945A
1010A | | 14,0 | 7.22 | 2,32 | | 16.8 | | .6 | 13 | | | <u> </u> | | | STUNDEN | | | | ļ ——— | | 1 | ٦ | | | - | | | 9/17 | 210P
220P | •• | 2.0 | 0.32 | 0.94 | | 0.30 | | .6 | 3 | | | | 9/12 | 840A
820A | STUNDEN | 63.0 | ļ | 2.94 | | 368. | 1-1 | ĺ | 10 | | + | | | | | | | | | | | L | | | | <u> </u> | 8 | 9/13 | 850A
900A | WADD I COR | 86.0 | 165. | 3.60 | <u> </u> | 595. | 1 | .6 | .17 | | + | | | | | DEVILS CREEK at | ove Ju | ction | with | San Ga | briel | R I V | er | | | ļ | 9 | 9/17 | B15A | BOLLINGER
STUNDEN | 136. | .240. | 2.56 | | 615. | \vdash | -6 | 1 1 | | - | | _ | | | | | | | | | <u> </u> | | | | L | 10 | 9/18 | 845A
820A | BOLLINGER
STUNDEN | 83.0 | 162 | 3.05 | | 495 | | .6 | 17 | | F | | | 10/25 | 145P | TREAT
MIDDLETON | _13.5 | 6.00 | 0.07 | | 0.43 | | .6 | 7 | | FC29 | <u> </u> | 9/23 | 900A | BOLL INGER | 74,0_ | 135. | 2.95 | 1 | 398. | 1 | .6 | 15 | ki w | + | | <u>.</u> | ļ | 1105A | F. TREAT M. IREAI | 14.5 | 7.78 | 0.15 | | 1.2 | | .6 | 10 | | FC26 | l | | | SAN DIMAS CREEN | below | San_D | mas D | am (or | tflow) | \vdash | | \neg | | + | | , | | 1100A | WENTZ
MIDDLETON | 17.8 | 13.2 | 0.13 | | 1_7 | | .6 | 9 | | FC29 | | | 1115A | <u> </u> | | | | | | | - | | | + | | , | 3/8 | 253P | WENTZ
MIDDLETON | 10.5 | 3.51 | 0.66 | | 2.3 | | .6 | 10 | | | 73 | 11/21 | 1125A
100P | BREWSTER | 4.0 | 2.60 | 0.69 | | 1.8 | - | .6 | 4 | | - | | | | 1028A | WENTZ | 11.4 | 7.63 | 2,67 | | 20.5 | | .6 | | | FC26 | 74 | 12/5 | 108P | ļ | 4.0 | 2.55 | 0.63 | + | 1.6 | \vdash | .6 | 4 | | ł | | | 4/18 | 105P
132P | ., | 21.4 | 19.1 | 1.00 | | 19.2 | | .6 | 11 | | | 75 | 12/12 | 1240P | | 4.0 | 2.24 | . 0.71 | | 1.6 | \vdash | -6 | 4 | | + | | | | | | | | | | | | | | | - | .76 | 12/22 | 1134A
1130A | | 28.0 | 41.2 | 0.92 | | 38.0 | + | .6 | 7 | | 1 | | | | | SAN GABRIEL RIV | ER - W | st Fo | rk inf | low to | Dam N | d . : | 2 | | | | .77 | 12/24 | 1145A
130P | | 26,0 | 30.8 | 1.14 | | 35.4 | \vdash | -6 | _7 | | + | | | | | | | | | | | Ī . | | | | T | 78 | 12/26 | 145P
830A | | 20.0 | 20.6 | 0.63 | | 12.9 | \vdash | .6 | 5 | | - | | | 4/18 | 834P
854P | WENTZ | 14.8 | 11.6 | 3,46 | | 40.1 | | .6 | 14 | | | 79 | 12/28 | 845A
1210P | | 14.0 | 5.80 | 0.91 | | 5.3 | | .6 | 7 | | | | | 9/4 | 140P | WENTZ
YORK | 3.2 | 0.72 | 0.47 | | 0.34 | | .6 | | | | 80 | 1/30 | 1220P | | 4.0 | 1.95 | 0.92 | <u></u> | 1.8 | \vdash | .6 | 4 | | + | | | 9/24 | 218P | WENTZ | 3.7 | 0.59 | 0.40 | | 0.20 | | .6 | 7 | | | 81 | 2/4 | 500P
516P | | 8.0 | 6.50 | 1.63 | - | 10.6 | | .6 | 8 | | + | | | -3/.54 | Lucs | | | 0 | D.50 | | VIEW- | Ī | | - | | 1 | .82 | 2/5 | 710A
730A
1205P | ** | 8.0 | 6.40 | -1.64 | ļ | 10.5 | - - | -6 | 8 | | - | | | | | SAN GABRIEL RIV | CD _ U. | | - b - b | au+h | of out | | **** | | D | | 83. | 2/13 | 1220P | | 8.0 | 3.90 | 0.77 | ļ | 3.0 | H | .6 | 8 | | 1 | | _ | | | SAN GADNIEL KIY | CK | St FO | K at | egg Ln | or our | | | 1161 | DAR. | #2 | .84 | 2/20 | 112P
130P | | 8.0 | 3.92 | 0.71. | ļ | 2,8 | 11 | .6 | 8 | | 1 | | \neg | | | MIDDLETON | | | | | | | | | | | 85 | 2/27 | 1138A
1156A | | 8.0 | 3.89 | 0.69 | ļ | 2.7 | | .6 | 8 | | 1 | | 20 | 7/19 | 138P | WENTZ | 3.2 | | 4.00 | | ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ | PL | OAT | 3 | | | 86 | 3/6 | 105P
120€ | | 8.0 | 3.78 | 0.66 | ļ | 2.5 | \sqcup | .6 | 8 | | 1 | | 21_ | 9/6 | 200P | WENTZ | 1.4 | _0.17 | 1.76 | | 0.30 | | - | . 2 | | | 87 | 3/13 | 1130A
1148A | | 8.0 | 4.61 | 0.95 | ļ | 4.4 | Ц | .6 | . 8 | | 1 | | 22 | 9/6 | 205P
945A | | 2.7 | 0.44 | 0.82 | | 0.36 | 1 | .6. | _4 | | FC26 | 88 | 3/27 | 1139A
1148A | | 4.0 | 1.71 | 0.70 | | 1.2 | | .6 | 4 | | 1 | | 23 | 9/13 | .946A | | 1.7 | 0.68 | 088 | | 0.06 | Į.F. | OAT | _2 | | | 89 | 5/1 | 100P | | 4.0 | 1.56 | 0.90 | | 1.4 | | .6 | 4 | | 1 | | | | | | | | | | - | \vdash | - | - | | | 90 | 5/8 | 1140A
1150A | | 4.0 | 1.78 | 1.12 | ļ | 2.0 | | .6 | 4 | | | | - | | | SAN GABRIEL RIV | ER - We | st For | k abor | e Rea | r Creel | ┡ | | - | | ļ | 91 | 5/.15 | 1215P
1225P | BREWSTER | 4.0 | 176 | 1.14 | | 2.0 | | .6 | 4 | | | | | | 9104 | | | | | | | - | | <u></u> | | | 92 | 5/22 | 1050A
1100A | | 4.0 | 1.71 | 1.17 | | 2.0 | | .6 | 4 | | | | 3 | 10/23 | 930A
150P | IREAT | 9.5 | 13.9 | 0.41 | | <u> </u> | - | -6 | -11 | | FC26 | | 5/29 | 1100A
1110A | ., | 4.0 | 1.84 | 1.08 | | 2.0 | | .6 | 4 | | | | 4_ | 10/29 | 200P | MIDDLETON
WENTZ | 12.0 | 7.00 | 1.10 | | 7.7 | - | -6 | a | | FC29 | 94 | 6/6 | 1211A
1220A | | 4.0 | 1.83 | 1.04 | | 1.9 | | .6 | 4 | _ | I | | 5 | 3/7 | 930A | MIDDLETON
MIDDLETON | 17.5 | 8.98 | 0.57 | | 5.1 | <u> </u> | .6 | -10 | | | 95 | 6/12 | 1150A
1158A | ,, | 4-0 | 1.92 | 0.99 | | 1.9 | | .6 | 4 | | I | | 6 | 7/19 | | WENTZ | 6.2 | 2.68 | 1.04 | | 2.8 | ļ | -6. | 6 | | | 96 | 6/19 | 1110A
1120A | | 4.0 | 2.00 | 1.20 | | 2.4 | | .6 | 4 | | 1 | | | | | | | | | | <u>. </u> | - | | _ | | | 97 | 6/26 | 1255P
105P | | 4.0 | 2.02 | | | 2.4 | | .6 | 4 | | 1 | | | | | BEAR CREEK abov | <u>Junct</u> | ion wi | th Sar | GAbr | ei Rly | er | | | | ļ | 98 | 7/3 | 1231P | | 4.0 | 1.99 | | | 2.4 | П | .6 | 4 | | Ì | | | - | 236P | | | · _ | ļ | | | \vdash | | ļ | | ļ <u>.</u> | 99 | 7/10 | 100P | | 4.0 | 2.06 | | | 2.8 | | .6 | 4 | | 1 | | 7_ | 10/29 | 245P | MIDDLETON | 14.0 | 12.4 | 0.36 | | 4.5 | <u> </u> | .6 | 8 | ļ | FC29 | l | 7/17 | 1105A | | 4.0 | 2.04 | | | 1.6 | | .6 | 4 | | 1 | | в | 3/7 | 1010*
_10284 | MEDDLETON | 14.5 | 5,90 | 1.60 | | 9.4 | | .6 | 9 | ļ <u>.</u> | | 100 | | 320P | | į | 1.89 | | 1 | 2.4 | \Box | .6 | 4 | | 1 | | - | | | SAN GABRIEL RIV | ER Nor | th For | k abov | e June | tion_w | th | We: | it. | ork | ļ | 101 | 7/24 | 330P | | 4.0 | | | † T | 2.7 | | .6 | 4 | | 1 | | _ | | 0.55 | | | | | ļ | | - | | ļ | _ | ļ <u>.</u> | 102 | 7/31 | 1110A
1045A | | 4.0 | 1.88 | | <u> </u> | 1.9 | | .6 | | | 1 | | | 10/29 | 307P
319P | MIDDLETON | 11.2 | 4.66 | 1.33 | - | 6.2 | _ | .6 | 10 | ļ. — | FC29 | 103 | 8/14 | 1050A
205P | | | | | | | 1 | | Ť | | 1 | | | | 1 105A
1123A | WENTZ
MIDDLETON | 12.9 | 5.51 | 1.58 | | 8.7 | <u> </u> | -6 | 10 | ļ | <u></u> | 104 _ | 8/28 | 215P | BREWSTER | 4.0 | 1.78 | | † | 2.0 | \vdash | .6 | 4 | | 1 | | | | | | | | | <u></u> | | _ | | | | | 105 | 9/4 | 1145A
135P | † | 4.0 | 1.85 | l | | 2.1 | - | .6 | 4 | | - | | | | | CATTLE CANYON a | bove Ju | nct lo | with | San G | abriel | Eas | t F | ork | | L | 106 | 9/10 | 145P
140P | <u> </u> | 4.0 | 1.76 | ļ | l | 2.0 | † † | .6 | . i | | + | | | | | | | | | | | <u>L</u> | _ | | <u></u> | ļ | 107 | 9/18 | 150P
1217P | | 4.0 | 1.73 | ļ | | 2.1 | - | .6 | | | 1 | | | 3/7 | 210P
227P | WENTZ
MIDDLETON | 10.3 | . 3.63 | 1.89 | | 6.8 | 1 | .6 | 9 | L | FC29 | 108 | 9/25 | 1229P | | 5.0 | 2.61 | 1.72 | | 4.5 | | .6 | 5 | | | | |] | | | | | | | | L | | | ļ | | | | | | | | | | | + | | - | | 1 | | | | | SAN GABRIEL RIV | ER belo | w San | Gabria | 1 Dam | NO. I | | | _ | <u> </u> | | l | | | LIVE OAK CREEK | elow L | ive Oa | K Dam | + | | 1- | | | | - | | | | | | | | | | | | | | | | ' | | 326 P | | | | - | + | | -+ | | | | | | | L1/1 | 125P
144P | MIDDLETON | 19.3 | 15.0 | 2,30 | | 34.5 | | .6 | 1.1 | | FC29 | 93 | 1/2 | 335P
300P | BREWSTER | 4.0 | 2.25 | 0.89 | | 2.0 | - | .6 | 4 | | ^ | | - 1 | | 1252P | " | 21.5 | 16.6 | 3.00 | | 49.8 | | | 10 | | | 94 | 12/26 | 310P
109P | <u>"</u> | 4.0 | 2.45 | 0.78 | | 1.9 | \vdash | .6 | | | _ | | - 1 | 6/8 | 125P
132P | | 4.5 | 0.92 | 0.61 | | 0.56 | | .6 | | 1 | ١ | 95 | 6/12 | 1.15P | <u> </u> | 2.0 | 0.96 | 1.04 | | 1.0 | \vdash | ٠6 | 4 | | | | | 6/10 | 845A | | l | HANNELS | 1 | | | T | | 17 | | ļ | 96 | 6/19 | 1240P
1250P | | 2.5 | 1.01 | 0.92 | <u> </u> | 0.93 | Ш | .6 | 5 | | _ | | | | 908A | | L 1770. S | A FANNING LLS | · | | 21.6. | · | ı h | . 17 | | | 1.i | k. | 229P | I . | 1 | i . | 1 | 1 | | | | | | | | | | | MENTS OF SAN GAB | RIFI RI | VFR DR | AINAGE | AREA | | | | | | £. | | | acon | | T | | | т | | | | | | <u> </u> | |-----------------|--------|-----------------------|-------------------|---------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|---------|------------------------------|--------------|--------------|-----|-------------|--------------------|--------------------|----------|-------------------------------|---------------------------------|-------------------------|-----------------------|----------|----------|--------------|----------------|--------------| | | | | | | | | | | | | | | | но. | DATE | 1058 | MADE BY | PERT | AREA DF
SECTION
BD, FT. | MEAN
VELOCITY
FT.FER SEC. | BAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | ING H | DD I | HEAD. G | HANGE
TOTAL | HETER
NO. | | | -NEAR- | 11SCE 1 | aneous points | | | DUR | ING THE Y | EAR ENDING | ВЕРТЕ | мвея | 30, 19 | • <u>47.</u> | | 27 | 2-27 | 1115 | A | 12.3 | 9.27 | 1.84 | ├ ─-! | _17.1_ | \sqcup | -6 | 12 | | | | NG. | DATE | #END | MADE BY | WIDTH | AREA DF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER SED. | GAUGE
HEIGHT
FEET | DISCHARGE
SEC. FT. | RAT- MI | TH. | MEAS.
S.
MEG. C.
NO. 1 | HANGE | METER
NO. | 28 | 2-28 | 935 | A * | 11.9 | 8.78 | 1.86 | | 17.4 | \vdash | .6 | 12 | | • | | | | | SAN GABRIEL RIV | FR-WEST | | | | s Cree | · | 1 | | | | | 3-4 | 125
907 | P # | 15,5 | 10.8 | 1.61 | | 17.4 | 1 1 | .6 | - 1 | \dashv | . * | | 21_ | 12-17 | 210P
220P | WENTZ . DE VORE | 9.1 | 4.77 | 2.44 | 5001 | 11.6 | | .6 | 8 | - | 26 | 30 | 3-7_ | 928 | | 13.0 | 9.72 | 1,59 | | 15.5 | ╁┼ | .6 1 | 13 | | | | _22 | 1-1 | 1111A
1142A | WENTZ | 17.0 | 18.9 | 3.90 | | 73.7 | 1 | - 1 | 16 | | 32 | 31 | 3-11 | 248
907 | P * | 12.3 | 8.59 | 1.70 | | 14.6 | ╁ | .6 1 | 13 | | ••• | | 23 | 1-7 | 320P
333P | MIDDLETON-WENTZ | 14.5 | | 3.73 | | 41.0 | | 6
ST | | 1 | 18 | _32 | 3-14. | 929
134 | P) ' | 10.9 | 6.88 | 1 | | 13.6 | ₩ | .6 1 | 11 | - | FC26 | | 24 | 1-8 | 924A
940A | WENTZ | 15.5 | 9.61 | 4.24 | | 40.8 | | .6 | 9 | | 26 | | 3-18 | 157
904 | Α | 10.3 | 5.43 | | | 12.2 | LT | .6 1 | | | - | | _25 | 1-9 | 928A
955A | 15 | 15.0 | | 3,16 | | 34.2 | Т | T | 15 | | . | | 3-21 | 923
1257 | P | 10:8 | 6.55 | | | 16.3 | 1 1 | .6 1 | | - | * | | 26 | 1-10 | 913A
941A
914A | ** | 14.8 | 10.4 | 3.07 | | 32.1 | | • | 15 | ١. | | 35 | 3-25 | 905 | A | 10.3 | 6.03 | | - | 13.8 | 1 | .6 1 | | \dashv | - | | 27 | 1-11 | 914A
937A | | 14.6 | 10.2 | 3.07 | | 31.4 | | -1 | 15 | | | | 3-28
4-1 | 927
144
200 | P | 11.8 | 8.31 | 2.70 | \vdash | 22.4 | | 6 1 | | \dashv | | | | | D | EVILS CREEK, abo | ve Jun | ction | with S | an Gal | riel R | ver | | | | | | 4-4 | 1205 | P | 10.0 | 6.66 | | | 15.1 | | .6 1 | | \dashv | | | 20 | 12-17 | 259P
309P | WENTZ - DEVORE | 8.6 | 4.31 | 1.64 | | 7.1 | | 6 | 7 | F | C26 | 38 | 4-8 | 1219
112
126 | 9 | 10.5 | 6,53 | | \vdash | 14.8 | 1 1 | .6 1 | - 1 | - | | | 21 | 12-31 | 130P | MIDDLETON - WENTZ | 21.0 | 20.0 | 2.48 | | 49.6 | | 6 | 13 | F | C18 | 40 | 4-15 | 113 | | 9.3 | 1 | 2.13 | \vdash | 11.4 | 1 1 | | 9 | \dashv | - | | _22 | 1-1 | | WENTZ | 21.5 | 17.9 | 2.52 | | 45.1 | _ . | 6 | 13 | F | C32 | | 4-15 | 205 | P | 9.2 | 5.91 | 2.30 | | 9.7 | T T | 6 1 | 9 | - | | | _23_ | 1-7 | | MIDDLETON-WENTZ | 11.5 | 7.70 | 2.52 | | 19.4 |]. | 6 | 9 | F | C18 | 42 | 4-29 | 215
233 | • | 8.6 | 4,26 | | | 9.2 | | .6 | | 7 | | | 24 | 1-8_ | | WENTZ | 11.5 | 7.94 | 2,29 | ļ <u> </u> | 18.2 | 4 | 6 | 11 | F | C26 | 43 | 5-6 | 339
353 | DE VORE | 8.1 | 4-17 | | | 6.9 | | .6 | | | | | 25 | 1-9 | 1022A | | 11.5 | 7.94 | 2.26 | | 18.0 | <u> </u> | 6 | 11 | | | 44 | 5-20 | 134
154 | 9 | 8.4 | 4.05 | | | 4.9 | 1 T | | 12 | | | | _26 | 1-10 | 952A
1008A
954A | 63 | 11.4 | 7.65 | 2,21. | | 17.0_ | . | 6 | 11 | | | 45 | 6-3 | 204 | | 6,3 | 3.16 | 1 | | 5.4 | 7 | 6 1 | | | | | 27 | 1-11 | 1017A | <u>.</u> | 11.3 | 7.66 | 2,16 | | 16.6 | | 6 | 11 | | | 46 | 6-6 | 942
1003 | | 6.7 | 3.48 | 1 | | 4.8 | 1 1 | .6 1 | - 1. | | | | | Ĺ | 1021A | SAN GABRIEL RIV | R-WEST | FORK, | Infle | w to | Dam No. | 2 | 4 | | | | 47 | 6-17 | 145
203 | ** | 6.1 | 2,40 | 1,16 | | 2.8 | Π. | 6 1 | 1 | | - | | 6 | 1-13 | 1040A
1132A | MIDDLETON-DE VORE | 16.0 | 14.9 | 3.32 | | 49.4 | | .6 | 14 | FC | 229_ | 48. | 7-21 | 1045 | MIDDLETON | 4.0 | 1.34 | 0,34 | | 0,45 | | .6 | 6 | | FC29 | | 7 | 1-14 | 1155A | WENTZ | 15.8 | 15.2 | 3.14 | | 47.7 | 6 | .6 | 15 | FC | 26_ | | | SAN | BRIEL RIVER-NOR | TH FORK | abov | e juns | tion | rith We | st F | ork | | | | | 8 | 1-15 | 1142A
- 1056A | ir . | 15.3 | 14.7 | 3.01 | | 44.8 | \vdash | .6 | 14 | _ . | | 22 | 3-31 | 420i
432i | ' I | 14.7 | 9.47 | 1 | | 14.1 | 1 1 | .6 | 10 | | FC29 | | 9_ | 1-16 | 1114A
913A | | 15.0 | 13.9 | 2.99 | | 41.6 | + | .6 | 14 | FC | 32 | 23 | 5-26_ | 1152 | · | 11.0 | 5.55 | 1.55 | | 8.6 | Ш | .6 | 10 | | | | 10 | 1-17 | 940A
927A | ** | 15.0 | 13.8 | 2.77 | | 38.1 | 1 | .6 | 15 | | - | | | | | ļ | | | igsquare | <u> </u> | Ш | _ | | | | | 11 | 1-18 | 957A
904A | | 15.0 | 13.9 | 2.55 | | 35.6 | | | 15 | -+ | | | | | SAN GABRIEL RIV | R. bel | ow San | Gabri | el Par | No. 1 | Ш | _ | _ | | | | 12 | 1-21 | 928A
1110A | | 15.3 | 13.8 | 2.40 | - | 33.2 | - | .6 | 15 | | | 143 | 11-18 | 945
_1013 | A MIDDLETON | 40.5 | 59.4 | 0.73 | | 43.4 | Ш | .6 | 17 | | FC29 | | 13 | 1-23 | 1134A
940A | ** | 15.0 | 13.1 | 2.39 | | 31.3 | + | | 14 | | 26 | 144 | 2-7 | 900
914
1050 | A MIDDLETON-HOOKER | 27.5 | 7.95 | 0.69 | igsqcut | 5.5 | | .6 | اهد | | • | | 14 | 1-25 | 1005A
926A | | 14.4 | 10.7 | 2.43 | | 26.1 | | -7 | 14 | | | 145 | 5-20 | | MIDDLETON | TWO C | ANNELS | | | 0.81 | \sqcup | .6 | 11 | | | | | | 950A
118P | | 15.0 | 12.8 | 2.45 | - | 31.4 | | | 15 | -+ | | | | | + | ļ | ļ | | | | \sqcup | 4 | \downarrow | _ | | | 16
17 | 1-30 | 134P | | 10.0 | 7.88 | 3.35 | | 26.6 | | | 10 | | | | | 315 | ROGERS CREEK, a | ove ju | nction | with | San Ga | briel | Rive | <u>-</u> | + | _ | | | | | 1118A
143P | | 10.0 | 7.75 | 3.46 | <u> </u> | 27.1 | | - | 10 | - : | | _7 | 12-31 | 320 | MOON | 10.0 | 8.60 | 2.18 | | 18.7 | \vdash | -6 | 5 | | FC22 | | 18 | - | 201P
1145P | | 11,5 | 9.29 | 2.58 | | 24.0 | | \neg | 10 | | | | | | | | - | <u> </u> | } - | | \vdash | \dashv | + | | | | 19 | 2.6 | 210P | | 13.0 | 7.80 | 2.79 | <u> </u> | 21.8 | _ T | 6 | 7 | - i | | | | 230 | | CREEK, | at mo | uth of | canyo | n | \vdash | - | | -(| | | 20 | 2-11 | 928A | | 14.0 | 8.52 | 2.38 | | 20.3 | | 6 | | | | 5 | 12-31 | 240 | MOON | 16_0_ | 11.2 | 1.88 | ├ | 21.0 | ╁┼ | .6 | -7 | | FC22 | | | | 954A
906A
928A | | 14.6 | | | | 23.4 | | 6 | | <u> </u> | | | | | | <u> </u> | | | | | \vdash | \dashv | + | | | | 22 | 2-13 | 928A
932A
955A | | 13.5 | 8.43 | 2.70 | | 22,8 | | -r | 12 | <u> </u> | | | | 305 | | ì | 1 | | o F.C | . Dam_ | \vdash | + | + | | | | 23 | | 955A
126P
144P | | 11.4 | 7.67 | 2.75 | - | 21.1 | | -1 | | 1. | | | 1-7 | 1020 | A | Two C | HANNELS | | | 2.1 | + | .6 | . 5 | | C12 | | <u>24</u>
25 | 2-18 | 915A
937A | ** | 10.7 | 7.09 | 2.71 | | 19.3 | | 6 | | <u>:</u> | | | 2-11 | 1030 | A | 4.0 | 1 | 0.79 | | 0.85 | 1 T | -6 | 4 | | | | 25 | | 1052A | ** | | 7.05 | | | 19.7 | | 6 | | | | | 3-13 | 1105 | A | T-** | HANNELS | | - | 0.68 | | .6 | _ 6 | | | | 60 | Z-Z3 | 1110A | | 10.8 | 7.44 | 2.37 | ļ | 17.7 | + | 6 | 11 - | | | | 4-23 | 910 | A | | "- | - | | 0.37 | \vdash | .6 | 5 | \dashv | - | | | | | | | | | | | | | | | () | _7 | 5-15 | 915 | A | <u> </u> | - | | | 0.31 | \vdash | .6 | 4 | | • | | | -HEARL | <u> HISCI</u> | ellaneous points | | | DUR | ING THE Y | EAR ENDINE | AEP | TEMB | ER 30, | 1941 | • | |------|--------------|-------------------------|---------------------|---------------|-------------------------------|---------------------------------|-------------------------|-----------------------|--------------|-----------|--|---------------------------|------| | NO. | DATE | BEGIN
END | HADE BY | WIDTH
FEET | AREA DF
SECTION
SQ. FT. | HEAN
VELOCITY
FT.PER BEC. | GAUGE
HEIGHT
FEET | DISCHARGE
BEG, PT. | RAT-
IND | METH- | MEAN,
BEG,
HD. | D. HT.
CHANGE
TOTAL | HETE | | | | L | BIG DALTON CF | REEK. 1 | nflow | to Spr | eading | Area | | | | | | | 22 | 12-31 | 305P
.315P | BREWSTER | 6.0 | 3.65 | 3.29 | | 12.0 | _ | -6 | 4 | | FC12 | | | | | | | ļ | | | | | | | | | | | | 140P | SAN DIMAS (| | 1 | San Di | mas Da | | ļ | | | | - | | 14 | 1 | 152P
1115A | BREWSTER | 6.0 | 3.60 | 1.67 | | 6.0 | - | -6 | 6 | - | FC12 | | 15 | 2-11 | 1127A
120P | | 7.0 | 3.76 | 1.41 | | 5.3 | | .6 | .5. | | | | 16 | 3-6 | 134P
1033A | - ** | 7.0 | 3.78 | ı | | 4.5 | - | -6 | 7 | | - | | 17 | 4-17 | 1045A
1034A | | 6.0 | 2.78 | ľ | | 2.2 | | <u>.6</u> | 6 | | " | | 18 | 5-14 | 1046A
1050A | 11 | 5.0 | 2.40 | 0.88 | | 2.1 | - | .6 | 5 | | | | 19 | 6-24 | 1100A
1144A | WADDICOR | 4.4 | 1.25 | 0.62 | | 0.78 | | .6 | 5 | | FC37 | | 20 | 7-23 | 1152A
1050A | BREWSTER | 1.5 | 0.38 | 0.92 | | 0.35 | | .6 | 3 | | FC12 | | 21 | 8-13 | 1055A
1210P | | 0.5 | 0.13 | 0.85 | | 0.11 | | .6 | 1 | | | | 22 | 9-10 | 1215P | | 0.5 | 0.13 | 1.08 | | 0.14 | | .6 | 1.1 | | - | | | 1 | s | AN DIMAS CREEK, | below | San Di | mas Da | m (out | flow) | | | ļ | | | | 09 | 10-9 | 120P
130P | BREWSTER | 5.0 | 2.38 | | | 3.6 | | -6 | .5 | | FC1 | | 10 | 10-16 | 1140A | | 4.0 | | 1.73 | | 3.9 | | . 6 | 4 | | | | 11 | 10-23 | 1150A
1205P
1215P | ** | 4.0 | 1.98 | 1,31 | | 2.6 | | .6 | 4 | | | | 12 | 11-6 | 1220P
1230P | | 4,0 | 1.93 | | | 2.5 | | .6 | 4 | | | | 13 | 11-14 | 715A
730A | ** | 20,0 | 19,1 | 1.53 | | 29.2 | | .6 | 7 | | | | 14 | 11-21 | 800A
816A | ** | 26.0 | 32.6 | 1.88 | | 61.2 | | .6 | 9 | | | | 115_ | 11-24 | 920A
940A | BREWSTER
JOHNSON | 19.0 | 18.0 | 1.42 | | 25.5 | | .6 | 7 | | | | 116 | 12-20 | 452P
510P | BREWSTER | 17.0 | 9.35 | 0.87 | | 8.1 | | .6 | 9 | | - | | 117 | 12-25 | 310P
330P | | 20.0 | 23.2 | 2.32 | | 53.9 | | .6 | 10 | | | | 118 | 1-8 | 230P
240P | | 5.0 | 2.70 | 1.22 | | 3.3 | | .6 | 5 | | | | 119 | 1-28 | 400P
418P | | 18.0 | 12.9 | 0.81 | | 10.5 | | .6 | 9 | | | | 120 | 2-5 | 1055A
1107A | 9 | 5.0 | 2.86 | 1,33 | | 3.8 | | .6 | 5 | | - | | 121 | 6-24 | 1020A
1030A | WADDICOR | 4.8 | 1.25 | 1.04 | | 1,3 | | .6 | 6 | | FC37 | | 122 | 9-8 | 418P
430P | BREWSTER | 5.0 | 3.68 | 1.60 | | 5.9 | | .6 | 5 | | FC12 | | 123 | 9-10 | 1225P
1237P | 71 | 5.0 | 3.46 | 1,53 | | 5.3 | | .6 | 5 | | | | | | | | | ļ | | | | | _ | | | | | | ļ | 1145A | SAN DIMAS WASH | above | Puddi | ngston | e Div | rsion | Оал | | ļ | | | | 2 | 2-12 | 1155A | BREWSTER | 9.0 | 3.55 | 0.70 | | 2.5 | | .6 | 5 | | FC12 | | | | | LIVE OAK | REEK | helow | Live C | ak Da | | - | - | - | | - | | 99 | 12-30 | 850A
900A | BREWSTER | 4.0 | 1.24 | 1,69 | La Pai | 2.1 | | .6 | 4 |
 FC12 | | 00 | 1-2 | 1100A
1108A | DREWSIER | 3.0 | 1.90 | 1.05 | | 2.0 | | .6 | 3 | - | | | | | 207P | -# | 1 | 2.03 | | | 1.8 | | .6 | | | | | 01 | 1-8
5-14 | 315P
1209P | | 3.0 | | 0.89 | | 0.90 | | ĺ | 4_ | <u> </u> | | | 03 | 5-22 | 1219P
1055A
1100A | • | 0.5 | 0.88 | 0.50 | | 0.06 | | .6 | | | ., | | | ļ | | | | | | | | L | | _ | | | | | ļ | S A1 | | | | | sewer | | w) | - | - | | _ | | _1 | 3-12 | 1100A
1100A | 1 | 6.0 | 2.93 | 1.81 | | 5.3 | - | .6 | 6 | - | FC12 | | 2 | 3-19 | 1115A | | 6.0 | 2.64 | 1.86 | | 4.9 | - | .6 | 6 | | ** | | | | | CAN | JOSE CR | FFK - | t lemo | n Aver | ue. | - | | | | - | | | i | 1130A | | | 3.16 | | . AVE | 5.0 | Γ | .6. | 4 | 1 | FC1: | | | 3-12 | 1140A
1135A | BREWSTER | 8.0 | 3.15 | 1.58 | | 2.0 | | -0 | 1.4 | 1 | 1012 | TABLE IX | | | | ASED ON M | SSES ON CO
ETER MEASU
1946-47 | | | | | | |---------|------------------------------------|---|-------------|-------------------------------------|-------------|-----------------------|-------------|--------------------------------|-------------| | DATE | 600' BE-
LOW GREEN-
LEAF DR. | INFLOW 300'
BELOW P.E.R.R.
TRACKS | LOSS
CFS | ALAWEDA
STREET | LÒSS
CFS | DOMINGUEZ
JUNCTION | LOSS
CFS | JUNCTION
WITH L.A.
RIVER | Loss
CFS | | 3-11-47 | 6.57 | 0.06 | +0,06 | 6,63 | 0 | 6.52 | 0.11 | 5,11 | 1.41 | | | PERCOLATIO
BASED ON METER | | ENTS & RE | ANITA CREEK
SCORDER STAT | | | |-------|---|---------------------------|-------------|-----------------------------|-------------|--| | DATE | FLOW & SANTA
ANITA CREEK &
FOOTHILL BLVD. | FLOW AT
DUARTE
ROAD | LOSS
CFS | FLOW AT
ARROW
HIGHWAY | Loss
CFS | | | 11-21 | 143 | 115 | 28 | 93.9 | 21.1 | | | | PERCOLATI | ON LOSSES ON
BASED ON MET | SAN GABE
ER MBASU | RIEL RIVER A | AND RIO H
RECORDER | ONDO IN MA
STATIONS | IN BAS | IN | | | |-----------------|--|--|----------------------|---------------------------------------|-----------------------|---------------------------------|-------------|------------------------------------|-------------|--| | | | | | 1945-46 | | | | | | | | DATE
1945-46 | SAN GABRIEL
RIVER BELOW
MORRIS DAM | SAN GABRIEL
RIVER AT
FOOTHILL
BOULEVARD | LDSS
CFS | RIO HONDO
BELOW
SANTA FE
DAM | LOSS
CFS | RIO HONDO
ABOVE
PEOX ROAD | LOSS
CFS | RIO HONDO
& LOWER
AZUSA ROAD | LOSS
CFS | REMARKS | | 1-3 | 491 | 450 | 41 | 407 | 43 | 309 | 98 | 205** | 104 | •• FLOW NOT
STABILIZED. | | 1-4 | 491* | 455* | 36 | 412 | 43 | | | 252 | 160 | *FROM DAM & RE-
CORDER RECORDS. | | 1-7 | 368 | 343 | 35* | 304 | 39 | 232 | 72 | 186 | 46 | *10.0 C.F.S. IN
FLOW FROM DUARTE
DITCH RETURN. | | 1-9 | 289 | 270 | 19 | 241 | 29 | 171 | 70 | 148 | 23 | | | 1-16 | 289 | 277 | 17* | 254 | 23 | 189 | 65 | 161 | 28 | *5.0 C.F.S. INFLOW
FROM DUARTE DITCH | | 1-18 | 214 | 219 | Ď• | 196 | 23 | 132 | 64 | 109 | 23 | RETURN. | | 9-11 | 439 | 369 | 70 | 348 | 21 | · | - | 112 | 236 | | | 9-12 | 398 | 369 | 29 | 341 | 28 | 237 | 104 | - | - | | | 9-13 | 595 | 530 | 65 | 474 | 56 | 386 | 88 | - | - | | | 9-17 | 615 | 559 | 56 | 527 | 32 | | | - | | | | 9-18 | 495 | 478 | 17 | 437 | 41 | 316 | 121 | | - | | | 9-23 | 398 | 376 | 22 | 359 | 17 | 238 | 121 | 163 | 75 | | | | | | | 1946-4 | 7 | | | | | | | 12-4 | 1 - | - | - | 287 | | 224 | 63 | 170 | 54 | | | 12-11 | | - | • | 255 | • | 183 | 72 | 150 | 33 | | | | | | | | | PERC
BA | COLATION
SED ON 1 | LOSSE
ÆTER | MEASURE | E RIO H
MENTS & | ONDO IN CO
RECORDER | ASTAI
STATI | BASIN | | | | | | | | |-------|-------------------------------------|--|-------------|--|-------------|---|--|---------------|---|--------------------|--|----------------|-------------------------|--|-------------|--|-------------|-------------------------------------|-------------|---| | DATE | RIO HONDO
@
MISSION
BRIDGE | RIO HONDO
LA MERCED
COMPROMISE
LINE | LOSS
CFS | RIO HONDO
ABOVE
MISSION
CREEK | LOSS
CFS | ADDITIONAL
FLOW FROM
MISSION
CREEK | RIO HONDO
BELOW
MISSION
CREEK | LOSS
CFS | RIO HONDO
BELOW
WHITTIER
BOULEVARD | LOSS | RIO HONDO ®
MONTEBELLO
STORM DRAIN | LOSS
CFS | CATE
DITCH
RETURN | rio hondo @
Washington
Boulevard | LOSS
CFS | Río Hondo
®
Santa Fe
Railroad | LOSS
CFS | RIO HONDO
S
TELEGRAPH
ROAD | LOSS
CFS | REMARKS | | 10-24 | 23.9 | 18.9 | 5.0 | - | - | 20.9 | 39.7* | 0.10 | 14.0 | 4.6 | 0 | 14.0 | • | | | - | | - | | *21,1 C.F.S. DIVERTED
TO ARROYO DITCH. | | 5-14 | 23.4 | 19,1 | 4.3 | 21.7 | +2.6 | 23.1 | | | 20,9 | 5.6 | 8,2 | 12.7 | + 2.0 | • | - | 0 | 10.2 | - | , | 18.3 C.F.S. DIVERTED
TO ARROYO DITCH. | | 6-25 | 19,6 | 16.5 | 3.1 | - | - | 17.8 | 35.2 | +0.9 | 14.4 | + 0.8 | 0 | 14.4 | - | • | ٠ | | • | - | | 21,6 C.F.S. DIVERTED
TO ARROYO DITCH. | | 7-24 | 20.7 | 18.9 | 1.8 | - | • | 13,9 | 30.8 | 2.0 | 33,8 | + 3.0 | 0 | 33.8 | | | | | İ | | | | | " | | · | | | | | | | 1 | 946-47 | | | | · | <u> </u> | | | | | | | 3-3 | 26,6 | 25.0 | 1.6 | - | - | 26.2 | 50.0 | 1.2 | 44.3 | 5.7 | 31.2 | 13,1 | | 24.8 | 6.4 | 9,9 | 14.9 | 0 | 14.9 | ARROYO DITCH DRY | | 4-14 | 20,7 | 18,2 | 2.5 | - | | 18.3 | 34.6 | 1.9 | 13.3 | 7.2 | 0 | 7.2 | - | • | - | - | | • | ٠ | 14.1 C.F.S. DIVERTED
TO ARROYO DITCH | #### PERCOLATION LOSSES ON LITTLE DALTON WASH BASED ON METER MEASUREMENTS & RECORDER STATIONS 1945-46 | DATE
1945-46 | FLOW AT
BROADWAY | FLOW AT
VINCENT
AVENUE | LOSS
CFS | FLOW AT
MERCED
AVENUE | LOSS
CFS | REMARKS | |-----------------|---------------------|------------------------------|-------------|-----------------------------|-------------|---| | 4-19 | 1.9 | 0 | 1.9 | | - | END OF PERC. 1 MI. BELOW VINCENT AVE. | | 4-23 | 1.3 | 0 | 1.3 | • | - | | | 5-21 | 0.93 | 0 | 0.93 | - | • | END OF PERC. 1200' ABOVE VINCENT AVE. | | 5-28 | 3.2 | | - 1 | 0 | 3.2 | END OF PERC. 1700' BELOW MERCED | | 6•3 | 1.1 | 0 | 1.1 | | | END OF PERC. 700' BELOW VINCENT AVE. | | 6-18 | 0.71 | 0 | 0.71 | - | - | END OF PERC. 1500' ABOVE VINCENT AVE. | | 6-25 | 1.1 | 0 | 1.1 | • | - | END OF PERC. 900' BELOW VINCENT AVE. | | 7-2 | 0.88 | 0 | 0.88 | | - | END OF PERC. 150' ABOVE VINCENT AVE. | | 7-9 | 0.78 | 0 | 0.78 | | | END OF PERC. 500° ABOVE VINCENT AVE. | | 7-23 | 0.80 | 0 | 0.80 | | • | END OF PERC. 400' ABOVE VINCENT AVE. | | 7-30 | 1,1 | 0 | 1.1 | | - | END OF PERC. 1000' ABOVE VINCENT AVENUE | | 8-6 | 0.12 | 0 | 0.12 | - | - | END OF PERC. 400' ABOVE VINCENT AVE. | | 8-19 | 0.22 | 0 | 0.22 | | - | END OF PERC. 600' BELOW BROADWAY | | 9-3 | 1.1 | 0 | 1.1 | - | - | END OF PERC. 700' BELOW VINCENT AVE. | | 9-10 | 0.67 | 0 | 0,67 | - | - | END OF PERC. 2000' ABOVE VINCENT AVE. | | 9-18 | 0.57 | 0 | 0.57 | - | | END OF PERC. 3000' ABOVE VINCENT AVE. | | 9-25 | 0.88 | 0 | 0.88 | | _ | END OF PERC. 400' ABOVE VINCENT AVE. | #### PERCOLATION LOSSES ON BIG DALTON WASH BASED ON METER MEASUREMENTS & RECORDER STATIONS ### 1945-46 | DATE
1945-46 | FLOW AT
BEN LOMOND
AVENUE | FLOW AT
CITRUS
AVENUE | LOSS
CFS | FLOW AT
CERRITOS
AVENUE | LØSS
CFS | FLOW AT
AZUSA
AVENUE | LOSS
CFS | REMARKS | |-----------------|---------------------------------|-----------------------------|-------------|-------------------------------|-------------|----------------------------|-------------|--| | 4-19 | 6.7 | - | - | - | - | 0 | 6.7 | END OF PERC. 4 MI. BELOW AZUSA AVE. | | 4-23 | 6.3 | 0 | 6.3 | | • | - | | | | 4-25 | 12.7 | • | | 0 | 12.7 | - | | | | 5-2 | 8.5 | 0 | 8.5 | | • | - | • | END OF PERC. 900' BELOW CITRUS AVE. | | 5-13 | 5.7 | 0 | 5.7 | · 1 | - | - | - 1 | END OF PERC. 1100' BELOW CITRUS AVE. | | 5-21 | 6.9 | • | | 0 | 6.9 | | - 1 | END OF PERC. 1000' ABOVE CERRITOS AVE. | | 5-28 | 10.3 | - | | | - | 0 | 10.3 | | | 6+3 | 7.3 | - | · · · · | 0 | 7.3 | - | - 1 | END OF PERC. 600' ABOVE CERRITOS AVE. | | 6-11 | 1.0 | 0 | 1.0 | - | • | - | | | | 6-18 | 2.4 | 0 | 2.4 | - | • | - | - 1 | END OF PERC. 400' ABOVE CITRUS AVE. | | 7-2 | 1.1 | 0 | 1.1 | - | - | - | • | | | 7-30 | 2.9 | 0 | 2.9 | - | • | • | - | | | 9.3 | 5.5 | - | | 0 | 5.5 | - | - | END OF PERC. 4 MI. ABOVE CERRITOS AVE. | | 9-10 | 2.9 | 0 | 2.9 | . 1 | | | - | | #### PERCOLATION LOSSES ON SAN DIMAS WASH BASED ON METER MEASUREMENTS & RECORDER STATIONS ### 1945-46 | DATE
1945-46 | SAN DIMAS
WASH 1 M1.
ABOVE
GRAND AVE. | FLOW 6
GRAND
AVENUE | LOSS
CFS | FLOW &
BEN LOMOND
AVENUE | LOSS
CFS | FLOW 6
CITRUS
AVENUE | LOSS
CFS | FLOW 6
CERRITOS
AVENUE | LOSS
CFS | FLOW 6
AZUSA
AVENUE | LOSS
CFS | REMARKS | |-----------------|--|---------------------------|-------------|--------------------------------|-------------|----------------------------|-------------|------------------------------|-------------|---------------------------|-------------|---| | 4-19 | 2.5 | 0 | 2.5 | | | | | | • | - | _ | | | 4-23 | 7.0 | 0 | 7.0 | • | - | - | - | • | • | - | - | END OF PERC. 50'
BELOW GRAND AVE. | | 4-25 | 13.2 | 0 | 13.2 | - | - | - | • | - | - | | - | END OF PERC. 650'
BELOW GRAND AVE. | | 4-26 | 14.8 | • | · | - | | .0 | 14.8 | • | •- | - |
• | END OF PERC. 1 MI.
BELOW CITRUS AVE. | | 5-2 | 8.0 | - | | 0 | 8.0 | - | - | + | • | - | - | END OF PERC. 400'
ABOVE BEN LOMOND A | | 5-13 | 7.5 | • | • | • | - | • | - | 0 | 7.5 | - | | END OF PERC. 1 MI.
BELOW CERRITOS AVE | | 5-21 | 9.4 | - | - | - | - | - | - | 0 | 9.4 | - | | END OF PERC. 1600'S
BELOW CERRITOS AVE | | 5-28 | 6.9 | - | • | - | | • | - | 0 | 6.9 | - | • | END OF PERC. 200*
ABOVE CERRITOS AVE | | 6-3 | 8,1 | • | - | • | • | • | - | | - | 0 | 8.1 | END OF PERC. 600'
BELOW AZUSA AVE. | | 6-11 | 9.0 | - | - | • | - | - | • | 0 | 9.0 | - | • | END OF PERC. 900'
BELOW CERRITOS AVE | | 6-18 | 10.9 | • | | • | - | 0 | 10.9 | - | - | - | - | END OF PERC. 1900
BELOW CITRUS AVE. | | 6-25 | 4.6 | 0 | 4.6 | - | | - | • | | - | - | - | END OF PERC. 300' | | 7-2 | 3.2 | 0 | 3.2 | • | - | - | - | • | • | - | • | END OF PERC. 340'
BELOW GRAND AVE. | | 7-9 | 3.5 | 0 | 3,5 | - | - | • | - | - | • | - | • | ENO OF PERC. 350'
BELOW GRAND AVE. | | 7-16 | 5.5 | 0 | 5.5 | • | | - | - | - | • | - | - | END OF PERC. 500' | | 7-23 | 4.8 | 0 | 4.8 | • | - | | - | • | • | - 1 | • | END OF PERC. 375' | | 8-19 | 3.8 | 0 | 3.8 | • | - | | • | - | • | - | - | END OF PERC. 400'
BELOW GRAND AVE. | | 9•3 | 5.7 | 0 | 5.7 | • | - | | - | - | - | | • | END OF PERC. 400'
BELOW GRAND AVE. | | 9-18 | 5,1 | 0 | 5.1 | • | | • | - | - | | - 1 | - | END OF PERC. 600'
BELOW GRAND AVE. | # PERCOLATION LOSSES ON WALNUT CREEK BASED ON METER MEASUREMENTS & RECORDER STATIONS #### 1945-46 | DATE | FLOW BELOW
PUDDINGSTONE
DAM | FLOW ABOVE
COVINA PIPE
LINE | LOSS
CFS | FLOW 6s
HIGHWAY
#99 | LOSS
CFS | FLOW &
BARRANCA | LOSS
CFS | FLOW &
CITRUS | LOSS
CFS | Flow &
Azusa
Avenje | LOSS
CFS | FLOW 6
LARK
ELLEN | LOSS
CFS | FLOW & GLENDORA AVENUE | LOSS
CFS | FLOW & | LOSS
CFS | FLOW 6
ORANGE | LOSS
CFS | REMARKS | |------|-----------------------------------|-----------------------------------|-------------|---------------------------|-------------|--------------------|-------------|------------------|-------------|---------------------------|-------------|-------------------------|-------------|------------------------|-------------|--------|-------------|------------------|-------------|--| | 4-23 | - | | | - | | 7.0 | - | - | - | 0 | 7.0 | - | - | - | - | - | - | | - | END OF PERC. 1000'
ABOVE AZUSA AVENUE | | 5-21 | - | | - | 3:4 | | - | | - | | | - | 0 | 3,4 | | - | | - | - | - | END OF PERC. 4 MI.
ABOVE LARK ELLEN | | 5-28 | - | | - | 2.8 | | - | - | • | | | | 0 | 2.8 | - | | - | ٠ | | - | END OF PERC. 400'
ABOVE LARK ELLEN | | 6-3 | | - | - | 4.3 | - | | - | - | - | - | | - | | 0 | 4.3 | | | ٠. | - | END OF PERC. 1000'
BELOW GLENDORA AVE. | | 6-11 | - | • | | 1,2 | - | - | - | 0 | 1.2 | | | - | | | - | - | | | | END OF PERC. 700'
ABOVE CITRUS | | 6-18 | • | - | - | 1.5 | - | - | - | 0 | 1.5 | _ | | | | _ | _ | | | | - | END OF PERC, 1100' | | 6-25 | - | - | | 2.1 | - | - | - | | | 0 | 2,1 | - | | _ | | | - | - | - | END OF PERC. 2000' | | 7-9 | • | - | - | 5.0 | ٠ - | - | - | - | - | | | 0 | 5.0 | - | - | - | • | - | | END OF PERC. 1 MI.
ABOVE LARK ELLEN | | 7-16 | | - | | 4.2 | • | - | - | - | | 0 | 4.2 | - | | - | - | | - | ٠. | | ABOVE AZUSA AVENUE | | 7-30 | - | • | • | .7.1 | | - | - | • | | • | • | 0 | 7.1 | - | - | - | - | | | END OF PERC. 100'
BELOW LARK ELLEN | | 8-6 | - | - | | 7.9 | • | - | - | - | | - | | 0 | 7.9 | - | | • | | | | END OF PERC. BOO'
BELOW LARK ELLEN | | 8-12 | 23.7 | 13.9 | 9.8 | 12.6 | 1,3 | 10.8 | 1.8 | - | | 3.8 | 7.0 | - | | 1.2 | 2.6 | 0 | 1.2 | - | | END OF PERC. 900'
BELOW SUNSET | | 8-19 | 18,1 | 12,1 | 6.0 | - | - | 10.9 | 1.2 | | | 3,0 | 7.9 | - | | 0.16 | 2.8 | 0 | 0.16 | | - | END OF PERC. 200'
BELOW SUNSET | | 8-26 | 22.6 | 17.4 | 5.2 | - | - | 11.6 | 5.8 | - | • | 7.2 | 4.4 | - | - | 2,9 | 4,3 | 1.9 | 1.0 | 1.4 | 0.50 | ABOVE PUENTE AVE. | | 8-27 | 24.1 | - | - | 18.6 | 5.5 | - | | - | • | - | | | - | 4.9 | 13.7 | - | | | | END OF PERC. 100'
BELOW BIG DALTON AVE. | | 9-3 | 22,1 | - | - | 15.8 | 6.3 | - | - | - | | - | - | - | - | | | - | - | • | , | END OF PERC, 900'
BELOW WILLOW | | 9-10 | 29,8 | • | - | 19.3 | 10,5 | - | - | | - | • | | - | - | - | | - | • | 0 | 10.5 | END OF PERC. 500'
ABOVE GRANGE | #### YEARLY DISCHARGE SUMMARY YEARLY DISCHARGE SUMMARY | | , | WATER YEAR E | NDING SEPT | EMBER 30. | | PEAK FLOWS | | | | | | | | |------|-------------|-----------------|-----------------|----------------|----------------|------------|-----|----------------|-----|-----|-------------|--|--| | YEAR | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F. | MO. | DAY | FLOW
C.F.S. | мо. | DAY | FLOW
CF5 | | | | 1930-31 12 89 0 0.93 675 4 26 648 | | |--|--| | 1930-31 12 89 0 0.93 675 4 26 648 1931-32 19 89 0 1.04 756 11 27 455 | | | ALHAMBRA EAST WASH at S.P.R.R. Main Line F102R
(Drainage area 6.85 square miles) | | | | | | | | | | | | | |---|------------|---|------|-------------|---|----------|------------|--|--|--|--|--| | 1930-31 7
1931-32 17 | 134
101 | 0 | 1.20 | 871
1010 | 4 | 26
27 | 930
625 | | | | | | | | | | | | near Short
rea 14.5 sc | | | | | F81 D- | R | |----------|-------|------------|-----------|----------|---------------------------|--------|----|------|-----|----------|-----| | 1929-30 | 1 | | 0 | | *635 | 3 | 14 | 1870 | | | | | 1930-31 | 1 | 226 | 0 | 2.05 | 1480 | 5 | 3 | 1530 | | 1 | | | 1931-32 | 15 | 220 | 0 | 2.68 | 1940 | 1 1 | 31 | 1120 | ! | | | | 1932-33 | 41 | 418 | 0 | 2.32 | 1680 | 1 | 19 | 1850 | ! | | | | 1933-34 | 41 | 1770 | 0 | 8,04 | 5820 | 1 1 | 1 | 4890 | | | | | 1034-35 | 52 | 219 | 0 | 3.29 | 2380 | 1 | 5 | 2280 | 1 | i | | | 1935-36 | 52 | 144 | 0 | 1.95 | *1420 | 2 | 12 | 1700 | | 1 | | | 1936-37 | 82 | 309 | 0 | 5.36 | 3880 | . 3 | 15 | 2470 | | ł | | | 1937-38 | 82 | 997 | 0 | 7.52 | 5520 | 3 | 2 | 3670 | 2 | 28 | 309 | | 1938:39 | 62 | 288 | 1 0 | 4.14 | 2990 | 1 | 5 | 1760 | 9 | 25 | 75 | | 1939-40 | 58 | 130 | 0 | 2.39 | 1730 | 2 | 1 | 912 | - | ł | | | 1940-41 | 38 | 219 | 0 | 7.81 | 5650 | 3 | 3 | 1470 | 1 | 1 | | | 1941-42 | 32 | 193 | 0 | 2.50 | 1810 | 12 | 10 | 1650 | | | | | 1942-43 | 38 | 893 | 0 | 8.38 | 6070 | 3 | 4 | 4480 | | i | | | 1943-44 | 31 | 454 | + | 5.65 | 4100 | 2 | 22 | 1860 | | 1 : | 1 | | 1944-45 | 31 | 199 | 0.1 | 3.11 | 2250 | 11 | 11 | 2220 | l . | t | İ | | 1945-46 | | 342 | 0.1 | 4.14 | 3000 | 12 | 22 | 1600 | | l | | | 1946-47 | | 345 | 0.1 | 5.20 | 3800 | 11 | 13 | 3810 | 1 | į l | ĺ | | | | | MEAN DAIL | Y 4.51 | | 1 | i | 1 | I | <u> </u> | | | NOTE: ST | ATION | AT VARIOUS | CATIONS | · SEE ST | ATION DESCRIE | PTION. | | | | | | | | | | | | at Nordho | | | | F152R | |-----------|----|-----|----|------|-----------|----|----|-------|-------| | 1939-40 | 59 | 21 | ٥ | 0.23 | 167 | 1 | 8 | 285 | | | 1940-41 | 39 | 290 | ٥. | 5.74 | 4150 | 2 | 20 | N.D. | 1 1 | | 1941-42 | 33 | 7.0 | 0 | 0.04 | 33 | 12 | 28 | 55 | 1 1 | | 1942-43 | 39 | 449 | 0 | 3.66 | 2640 | 1 | 22 | 1750 | | | 1943-44 | 32 | 326 | 0 | 1.68 | 1220 | 2 | 22 | 1600 | 1 1 | | 1944 - 45 | 32 | 39. | 0 | 0.23 | 167 | 2 | 2 | 282 | | | 1945-46 | | 73 | Ö | 0.45 | 323 | 12 | 21 | 11 40 | - I i | | 1946-47 | | 26 | ō | 0.32 | 230 | 12 | 25 | 290 | 1 1 | | | | | | | below Dev
ea 32.5 s | | | | P277-R | |---|----------------|----------------------------------|--------------------|--------------------------------------|--|-------------------------|----------------------------|-----------------------------------|--------| | 1942-43
1943-44
1944-45
1945-46
1946-47 | 42
35
35 | 3190
944
187
272
410 | 0
0
0•1
0 | 33.0
11.5
3.52
2.17
5.73 | 24,000
8270
2560
1580
4140 | 1
2
3
12
12 | 23
20
15
23
27 | 5640
1540
610
445
610 | | | | | | | | at Şawteil
rea squ | | | | | F388- | -R | |----------|-----|------------|------------|--------|---------------------------|------|----|-------|---|-------|----| | 1927-28 | 60 | | 0 | | *3930 | 5 | 8 | *1100 | | | | | 1928-29 | 204 | 1150 | 0 | 20.6 | 14900 | 3 | 10 | 4990 | 1 | | | | 1929-30 | 7 1 | 1130 | 0 | 18.6 | 13480 | 1 | 11 | 4460 | | | | | 1930-31 | 17 | 1500 | 0 | 25.6 | 18520 | 4 | 26 | 6280 | | | | | 1931-32 | 21 | 1780 | 0 | 30.0 | 21790 | 12 | 28 | 6130 | | Į. | | | 1932-33 | 44 | 1660 | 0 | 21.8 | 15810 | ı | 19 | 7000 | | | | | 1933-34 | 44 | 4310 | 0 | 28.5 | 20630 | 1 | 1 | 11300 | | | | | 1934-35 | 57 | 2190 | 0 | 34.4 | 24870 | 4 | 8 | 11200 | | | | | 1935-36 | 57 | 929 | 0 | 18.5 | *13460 | 2 | 12 | .8070 | 1 | 1 | | | 1936-37 | 84 | 2160 | 0 | 56.2 | 40680 | 12 | 30 | 8940 | 1 | ŀ | | | 1937-38 | 84 | 7330 | 3.6 | 72.5 | 52500 | 3 | 2 | 19000 | 2 | 28 | 1! | | 1938-39 | 64 | 3080 | 1.8 | 39.4 | 28490 | 12 | 17 | 9900 | 9 | 25 | | | 1939-40 | 61 | 1270 | 1,3 | 29.1 | 21110 | 2 | 3 | 9730 | 1 | ł | | | 1940-41 | 41 | 2680 | 3.1 | 93.0 | 67360 | 12 | 23 | 17310 | 1 | 1. | | | 1941-42 | 34 | 990 | 2.8 | 23.8 | 17250 | 12 | 10 | 7500 | 1 | 1 3 | | | 1942-43 | 44 | 4840 | 2.6 | 47.3 | 34240 | 1 | 22 | 13210 | | 1 1 | | | 1943-44 | 37 | 3010 | 3.4 | 45.4 | 3300C | 2 | 22 | 8800 | | | | | 1944-45 | 37 | 1200 | E 3.0 | 33.8 | 24450 | . 11 | 11 | 9380 | 1 | 1 | | | 1945-46 | - 1 | 1830 | 3,8 | 25.4 | 18380 | 12 | 22 | 7750 | 1 | | | | 1946-47 | | 1960 | 2.8 | 36.3 | 26300 | 12 | 25 | 9630 | 1 | i l | | | i | - 1 | 19 YEAR | MEAN DAILY | 36.B | | | | | 1 | | | | NOTE: ST | | T MAD LONG | OCATIONS. | err er | ATION DESCRIP | TION | · | · | | | | | | | B1G
([| DALTON
rainage | CREEK be | low Big D
8 square | alton (
miles) |)am | | F120F | 1
| |---|----------------------------|-------------------------------------|-------------------|--|--|-------------------------|--------------------------|---|-------|---| | 1940-41
1941-42
1942-43
1943-44
1944-45 | 45
37
46
39
39 | 66
2.8
103
35
13
5.0 | 0 0 0 0 | 3.99
0.32
4.40
1.60
1.16
0.76
0.75 | 2890
235
3180
1160
842
549
545 | 3
2
3
12
10 | 5
4
23
15
23 | 67
N.D.
111
56
34
34
30 EST | | | | | DAY-CFS DAY-CFS C.F.S. A.F DATON WASH at Mer (Drainage area 28.5 41 46 206 0 5.30 3844 42 38 42 0 1.01 72: 43 49 336 0 4.83 3504 44 42 448 0 2.23 1620 | | | ØER 3C | | | PE/ | K FLOWS | | | | |--------------------|--|-----|-----|--------|----------------|------|-----|----------------|-----|------|-------------| | YEAR | | | | | RUNDFF
A.F. | мо. | DAY | FLOW
C.F.S. | мо. | DAY | FLOW
CFS | | | | | | | | | | | F | 274R | | | 1940-41
1941-42 | | | 1 | | 3840 | 3 12 | 13 | 674
230 | | | | | 1942-43 | 49 | 336 | 0 | 4.83 | 3500 | 1 | 22 | 1230 | - 1 | - 1 | | | 1943-44 | | | - 1 | | 1620 | 2 | 22 | 2650
1740 | - 1 | 1 | | | 1944-45 | "" | 229 | 6 | 2.22 | 1610 | 12 | 23 | 1450 | | | | | 1946-47 | | 52 | أةا | 1.36 | 984 | 11 | 23 | 328 | T I | - 1 | | | |)31-32 31 964 0 14.6 10250 2 8 3910
392-33 55 108 0 3.59 2600 1 19 324
)333-34 55 707 0 4.25 3000 1 1 1520
304-25 69 296 0 13.3 9600 4 8 640 | | | | | | | | | F11 | B-R | |--|---|-------------------|---|--|-------------------------------|------------------|--------------|---------------------|-----|------|-------------| | 1930-31
1931-32
1932-33
1933-34
1934-35
1935-36
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1942-44
1944-45
1943-44 | 31
55
55 | 964
108
707 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 1.99
14.8
3.59
4.26
13.3
3.20
26.9
63.0
10.9
7.62
67.3
8.20
61.7
50.2
14.2
13.2 | 1440
10250
2600
3090 | 2
2
1
1 | 5
8
19 | 3910
324
1520 | 3 9 | 1 25 | 2480
400 | | | | | | | MILL CREI
rea 21.1 | | | | F112R | | |--------------------|-----------|-----|-----|------------|-----------------------|-----|---------|-------------|-------|--| | 1930-31
1931-32 | 145
70 | 1.3 | 0 | 0.19 | 139
2190 | 4 2 | 26
9 | 1.7
512. | | | | 1932-33 | 126 | 6.9 | ō | 0.40 | 294 | 1 | 19 | 20. | | | | 1933-34 | 126 | 58- | 0 | 0.43 | 308 | 1.1 | 1 1 | 179 - | 1 1 | | | | | | ABA | NDONED 11- | 26-34 | | | | | | | | | | | | - FOX CF
area 9.1 | | | h | FIIOR | |--------------------|----------|---------------------|--------|--------------|----------------------|-----|-----|-------------|-------| | 1930-31
1931-32 | 75
43 | 3. 9
285. | 0.04 | 0.32
3.46 | 235
2510 | 2 2 | 4 8 | 6.9 | | | 1932-33
1933-34 | 88
88 | 21.
89. | 0.01 | 0.78
0.98 | 565
710 | 1 | 19 | 115
215 | | | 1934-35
1935-36 | 80
80 | 29.
32. | + | 1.63 | 1180
775 | 10 | 18 | 314.
410 | | | 936-37 | 92
92 | 117 | + | 5.27 | 3810 | 12 | 27 | 270
N.D. | 1 1 | | | | ABANDONE | 2-7-38 | | | | | | | | | | | BIG TUJ | | EK below
age area | | | | | | F168R | |----------|----|--------|---------|------|----------------------|------|---------|---------|---|----|-------| | 1932-33 | 59 | 38 | 0.5 | 6.19 | 4480 | 1 | 19 | 58 | 1 | | | | 1933-34 | 59 | 15 | 0,2 | 5.93 | 4290 | 1 | 1 | 44 | 1 | 1 | 1 | | 934-35 | 66 | 339 | 0.6 | 14.9 | 10760 | 4 | 8 | `547 | 1 | | 1 | | 1935-36 | 66 | 40 | 0,2 | 7.53 | 5470 | 3.1 | 18 | 101 | 1 | 1 | 1 | | 1936-37 | 94 | 385 | 0.1 | 35.7 | 25860 | 2 | 16 | 385 | 1 | 1 | | | 1937-38] | 94 | i | | 1 | | 3 | 2 | E 33000 | | | N.D. | | 1938-39 | 68 | E 263 | 0.7 | 12,6 | 9110 | 12 | 23 | 424 | 9 | 25 | 2.6 | | 1939-40 | 66 | 285 | 0.2 | 9.92 | 7200 | 1 | 8 | 747 | | 1 | | | 940-41 | 50 | 1080 | 0,2 | 81,6 | 59100 | 2 | 21 | 1590 | | 1 | | | 941-42 | 40 | 47 | 1.0 | 10.7 | 7720 | 12 | 31 | 47 | | 1 | Į. | | 1942-43 | 53 | 6640 | 0.2 | 73.1 | 52910 | 1 1 | 23 | 17700 | 1 | i | Į. | | 943-44 | 45 | E 2300 | E 0.3 | 57.5 | 41400 | 2 | 22 | 3310 | j | 1 | | | 944-45 | 44 | 241 | 0.8 | 16.9 | 12240 | 1 11 | 13 à 14 | E 300 | 1 | 1 | | | 945-46 | | 491 | 0.6 | 17.1 | 12400 | 3 | 1 30 | 983 | ! | | | | 946-47 | | 460 | 0.7 | 17.7 | 12790 | 12 | 26 | 501 | 1 | 1 | 1 | | | | | | | INGA CREEK
lage area | | | | | F | 213R | |--|--|---|---|---|--|---|---|---|-----|------|-------------| | 1932-33
1933-34
1934-35
1935-36
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 62
62
72
72
98
98
70
67
52
42
55
47
46 | 488
634
354
150
423
E 13000
f 316
E 350
1260
62
E 8000
3320
320
698
644 | 1.1
0.9
2.6
2.4
1.0
2.5
3.5
1.6
4.4
1.2
2.3
4.4
4.9 | 10.5
10.6
20.5
10.5
50.1
116.
18.8
15.1
109.
14.8
105
79.9
24.0
23.7
26.2 | 7590
7700
14840
7640
36260
83960
13640
10990
78840
10690
76620
57990
17370
17160
18960 | 1
1
4
2
12
13
12
2
12
12
2
12
2
12
3
12
2
12
2
12
2
12
2
12
2
2
12
2
2
2 | 19
1
8
2
27
2
20
21
28
23
22
2
30
25 | 1390
1450
671
494
495
E 50000
380
N.O.
165
23000
4760
897
1390
745 | 3 9 | 1 25 | 1180
117 | | | | | WATER YEAR | ENDING SE | PTEMBER 30 |) | | | PEAK F | LOWS | | | |---|---------|-------------|-----------------|----------------|------------------|----------------------------|-----|-----|----------------|------|-----|------| | | YEAR | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CF | MEAN
S C.F.S. | RUNOFF
A.F. | MO, | DAY | FLOW
C.F.S. | MO. | DAY | FLOW | | _ | | | | | | en Oaks Bou
Ц8 square m | | | | F20B | - F | | | | 1931-32 | 26 | | | | *741 | | | N.D. | | | | | | 1932-33 | 66 | 562 | 0 | 6,22 | 4500 | 1 | 19 | 2260 | i | 1 1 | | | | 1933-34 | 66 | 909 | 0 | 5.20 | 3760 | 1 | 1 | 3750 | | 1 | | | | 1934-35 | 83 | 328 |]0 | 14.0 | 10116 | 4 | 8 | 615 | ļ | J I | | | | 1935-36 | 83 | 213 | 0 | 5.83 | 4220 | 2 | 12 | 628 | 1 | } | | | | 1936-37 | 101 | 496 | 0 | 49.8 | 35580 | | | N.D. | ļ | 1 | | | | | 101 | | 0 | Ì | • | 3 | 2 | E 54000 | i | | | | | 1938-39 | ĺ | [| 1 | į. | NO RECORD | | | | i | 1 | | | | 1939-40 | 69 | • | C | | • | | | | l | | | | | 1940-41 | 56 | 1050 | 0 | 115. | 83220 | 3 | 5 | 1200 | |] | | | | 1941-42 | 44 | 59 | 0 | 5.80 | 4190 | 12 | 30 | 59 | İ | 1 | | | | 1942-43 | 56 | E 1610 | 0 | 92.5 | 66970 | 1 | 23 | 1780 | İ | 1 1 | | | | 1943-44 | 49 | 985 | 0 | 60.3 | 43750 | 2 | 22 | 1100 | l | | | | | 1944-45 | 49 | 303 | 0 | 3.21 | 2330 | 2 | 5 | 510 | 1 | | | | | 1945-46 | l | 543 | l o | 3,81 | 2820 | 12 | 23 | 610 | 1 | | | | | 1946-47 | l | 255 | 0 | 9.47 | 6850 | 12 | 2,7 | 6 8 0 | ĺ | | | | | | 1 | | | Magnolia Bo
area, split | | ard | | FIO | 5R | | |---|--|--|---|--|---|---|---|--|-----|----|-------------| |
1930-31
1931-32
1932-33
1933-34
1934-35
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 38
28
70
70
86
86
104
104
72
71
58
45
51
50 | 12
0
12
0
3.3
14.
0.1
E 19
37.
16.
140
97
2.6
0.6 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.11
0.34
0
0.01
0.07
+
E 0.12
0.52
0.17
0.98
1.51
0.57
0.14
0.02 | NEGLIGIBLE 78 0 25 0 8.9 51 0.40 E 96 373 123 708 1090 413 103 18 | 12
1
2
2
1
2
12
12
2
2
12
12 | 28
1
12
6
21
28
28
22
20
2
21
26 | NEGLIGIBLE 46 0 145 0 15 53 N.D. 1.1 N.D. 125. 119 1350 460 16 2.1 | 9 | 25 | N.D.
0.5 | | | | TUJUNGA W | | | BRANCH at
rea, split | | a Bou | levard | Fig | 6-R | | |---------|-----|-----------|---|--------|-------------------------|-------|-------|--------|-----|-----|------| | 1930-31 | 34 | 24 | 0 | 0.13 | 91 | 2 | 3 | 56. | | | | | 1931-32 | 29 | 591 | 0 | 5,75 | 4170 | 2 | . 9 | 1380. | ľ | | | | 1932-33 | 71 | 127 | 0 | 0.57 | 413 | 1 1 | 19 | 429. | | ĺ | | | 1933-34 | 71 | 641 | 0 | 1.99 | 1440 | 1 1 | 1 | 3110. | - 1 | 1 | 1 | | 1934-35 | 76 | 81 | 0 | 0.73 | 528 | 1 1 | 5 | 352 | ł | | | | 1935-36 | 76 | 86 | 0 | 0.68 | 497 | 2 | 12 | 400 | 1 | İ | | | 1936-37 | 106 | 190 | 0 | 3.75 | 2720 | 2 | 6 | 661 | 1 | ì | Į. | | 1937-38 | 106 | | 0 | | | 3 | 2 | N,D, | 1 3 | 1 | 1880 | | 1938-39 | 73 | NO RECORD | ł | 1 | | 1 | | N.D. | 1 - | } ' | N.D. | | 1939-40 | 70 | E 472 | 0 | E 2.14 | E 1560 | 1 1 | | N.D. | 1 | İ | | | 1940-41 | 60 | '550 | 0 | 31.2 | E22570 | t l | | N.D. | ł | 1 | | | 1941-42 | 46 | 8.5 | 0 | + | 33 | 12 | 10 | 57 | 1 . | 1 | i . | | 1942-43 | 60 | 1220 | 0 | 30.3 | 21920 | 1 1 1 | 24 | 1460 | 1 | | l | | 1943-44 | 52 | E 630 | 0 | 28.0 | 20340 | 2 | 22 | 1540 | 1 | | | | 1944-45 | 52 | 80 | 0 | 0.73 | 532 | 2 | - 6 | 321 | į. | 1 | | | 1945-46 | i I | 231 | 0 | 1.16 | 841 | 12 | 24 | 357 | 1 | l | 1 | | 1946-47 | 1 | 148 | 0 | 0.66 | 478 | 12 | 28 | 593, | 1 | ł | 1 | | | | BROWNS | CANYON
(Drai | CREEK at
nage area | Devonshire
14.3 squar | Stree
e mii | t, Ch | atsworth | F2R | | | |---------|----------|--------|-----------------|-----------------------|--------------------------|----------------|-------|----------|-----|-----|----| | 1928-29 | 259 | 0 | 0 | 0 | • 0 | | | 0 | | | | | 1929-30 | 23 | 0 | 0 | 0 | j 0 | 1 | | , 0 | 1 | į. | | | 1930-31 | 46
33 | 5.0 | 0 | 0.77 | 554 | 4 | 26 | 7.7 | | l | | | 1931-32 | 33 | 80 | 0 | 0.96 | 693 | 2 | 9 | 152 | | | | | 1932-33 | | | 1 | 1 | NO RECORD | | | | | l | Í | | 1933-34 | 1 | | 1 | | NO RECORD | | | 1 | 1 | | f | | 1934-35 | - 1 | | 1 | | NO RECORD | | | l . | 1 | 1 | ì | | 1935-36 | | | 1 | 1 | ** | 1 | | N.D. | 1 | l | • | | 1936-37 | 109 | 85 | 10 | 0.61 | 439 | 2 | 14 | 140 | 1 | l | 1 | | 1937-38 | 109 | 595 | 10 | 2.92 | 2120 | 3 | 2 | £ 1100 | 3 | l ı | 94 | | 1938-39 | 74 | 8.5 | 1 6 | 0.10 | 75 | 12 | 18 | E 63 | 1 | l ' | | | 1939-40 | | | | | | | | 1 | | | | | | | | CALABAS
(Drai | AS CREEK
nage area | at Ventura
2.4 square | Boule | vard
s) | | F270R | |-----------|----|-------|------------------|-----------------------|--------------------------|-------|------------|------|-------| | 1939-40 | 72 | | | | * 0.30 | | | | | | 1940-41 | 61 | 65 | 0 | 1,49 | 1080+ | 2 | 20 | 551 | 1 | | 1941-42 | 47 | 0.3 | 0 | + | 1.2 | 12 | 28 | 5.6 | 1 1 | | 1942-43 | 61 | 34. | 10 | 0.55 | 4'02 | 1 1 | 23 | 445 | 1 | | 1943-44 | 54 | E 114 | 0 | 0.55 | 399 | 2 | 22 | 550 | 1 | | 1944 - 45 | 53 | E 2.5 | 10 | 0.01 | 7.2 | 2 | 2 | 20 | | | 1945-46 | | 4.3 | 10 | 0.02 | 16.9 | 12 1 | 21 | 30 | | | 1946-47 | 1 | 2.6 | 10 | + | 12.1 | 111 | 23 | 45.4 | 1 1 1 | | | | | | K at Highw
195 squar | | | | F108-R | | |--------------------|------|----------|-------------|-------------------------|----|----|--------------|--------|--| | 1945-46
1946-47 | 435- | REC
0 | ORD INCOMPL | ETE 3080. | 12 | 26 | N.D.
1440 | | | | | | | | K at Centi
rea 5.17 s | | | | F186R | | |--|------------------------------------|-------|------------------------------|---------------------------|---------|--------------------|----------------------------|-------|--| | 1932-33
1933-34
1934-35
1935-36 | 74 70
74 212
88 259
88 91 | 0 0 0 | 0.74
1.24
2.23
0.70 | 534
895
1620
509 | 1 1 3 2 | 19
1
2
14 | 297
570
1590
1170 | | | | YEAR | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F | MO. | DAY | FLOW
C.F.S. | мо, | DAY | FLOW | |---|---|--|---------------------------------------|--|---|---|--|---|-----|-------|------| | | | | COMPT (| N CREE | K near Gre | enleaf
quare n | Drive | | | -F378 | 3-R | | 1927-28
1928-29
1929-30
1930-31
1931-32
1932-33
1933-34
1934-35
1935-36
1936-37
1939-40
1941-42
1941-42
1944-44
1944-45
1945-46
1946-46 | 80
188
29
50
35
77
77
90
90
112
112
75
73
63
48
63
55
54 | 197
144
137
248
166
372
301
143
E 985
837
256
544
236
752
739
363
362
474 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3.13
3.48
3.31
4.43
2.45
3.53
4.02
7.12
7.35
22.7
10.1
11.8
15.6
12.7
11.0 | * 1230
2270
2520
2400
3220
1780
2560
4170
2920
* 6850
5150
5340
16400
7280
8560
11290
9210
7960
10080 | 3
3
3
4
1
1
1
4
2
2
3
9
2
12
12
12
11
12 | 5
10
14
26
31
19
1
8
8
12
6
2
25
3
3
10
22
25
10
22
20
11
23
23
23
23
23
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | • 240
924
580
678
757
740
960
850
824
1220
N.D.
2150
2660
1730
2050
2370
3010
2010
2930 | 3 | 1 | 1540 | | | | | | | at Dei Am
 110 squar | | | | | FHI | C-R | |-----------|-----|-------------|-----------|---------|----------------------------|------|----|--------|---|-----|-----| | 1929-30 | 24 | 69 | 0 | 0.96 | 699 | 1 | 15 | 91 | | | | | 1930-31 | 58 | 132 | 0 | 0.76 | 568 | 2 | 5 | 218 | | | 1 | | 1931-32 | 37 | 496 | 0 | 3.70 | 2690 | 2 | 9 | 799 | | i | | | 1932-33 | 80 | 130 | 0 | 0.63 | 457 | 1 1 | 30 | 283 | | 1 | ĺ | | 1933-34 | 80 | 1350 | 0 | 5.38 | 3890 | 1 | 1 | 2020 | | ł | | | 1934 - 35 | 96 | 569 | 0 | 5.33 | 3850 | 12 | 13 | 3190 | | 1 | | | 1935-36 | 96 | 172 | 0 | 1.60 | 1150 | 2 | 12 | 486 | | 1 | | | 1936-37 | 115 | 2760 | 0 | 18.9 | 13680 | 2 | 6 | 4190 | | ı | İ | | 1937-38 | 115 | 2770 | 0 | 20.8 | 15070 | 3 | 2 | 3610 | 3 | 1 | 194 | | 1938-39 | 77 | E 552 | 0 | 5.86 | 4250 | 9 | 25 | E 1660 | | , | 1 | | 1939-40 | 75 | 276 | 0 | 4.40 | 3190 | 2 | 3 | 827 | | 1 | | | 1940-41 | 65 | 1440 | 0 | 40.7 | 29500 | Q. | 28 | 2750 | | 1 | 1 | | 1941-42 | 50 | 92 | 0 | 2.15 | 1560 | 12 | 10 | 351 | | | | | 1942-43 | 65 | 1030 | 0 | 16.7 | 12070 | 1 | 23 | 1480 | | | 1 | | 1943-44 | 57 | 1850 | 0 | 16.6 | 12060 | 2 | 22 | 3550 | | | 1 | | 1944-45 | 56 | 185 | 0.3 | 5.24 | 3800 | - 11 | 12 | 488 | | 1 | | | 1945-46 | | 278 | 0.2 | 4.89 | 3540 | 12 | 23 | 920 | | 1 | ļ | | 1946-47 | | 96. | 0.1 | 3.40 | 2460 | 11 | 14 | 145. | | 1 | | | | | [[B YEAR] | MEAN DAIL | Y, 8.78 | | 1 | | | | 1 | | | | | | (Drai | nage are | a 56. squa | are mile | s) | | F265-R | |---|----------------------------|--------------------------------|---|--|--|-------------------------|---------------------------------------|--|--------| | 1940-41
1941-42
1942-43
1943-44
1944-45
1945-46
1946-47 | 67
52
67
58
57 | 250 +* 45 632. 991 104 195 263 | 0.3
0
2.0
4.6
6.5
6.0
5.6 | 44.6
4.93
16.8
26.2
12.5
12.3 | 32260
3570
12200
19020
9010
8890
10650 | 12
1
2
2
12 | 11
23
23
3
23
23
26 | 47
706
1020
176
231
325 | | | | | | DUME C
(Drain | REEK at
age are | Roosevelt
a 8.8 squa | Highw
re mil | (aty
(es) | | F53-R | | |---------|-------|-----|------------------|--------------------|-------------------------|-----------------|--------------|------|-------|--| | 1929-30 | 40 | 100 | 0 | 0.30 | 218 | 1 | 15 | 426 | | | | 1930-31 | 64 | 40 | 0 . | 0.18 | 127 | 2 | 4 | 205 | |
 | 1931-32 | 39 | 94 | 0 | 1.00 | 726 | 12 | 28 | 425 | | | | 1932-33 | 83 | 15 | 0 | 0.11 | 81 | 1 | 19 | 110 | 1 1 | | | 1933-34 | 83 | 839 | 0 | 3,13 | 2270 | 12 | 31 | 2750 | 1 1 | | | 1934+35 | 99 | 47 | 0 | 0.24 | 176 | 1 | 5 | 409 | 1 1 | | | 1936-36 | 99 | 26 | 0 | 0.28 | 202 | 2 | 14 | 206 | 1 1 | | | 1936-37 | 117 | 230 | 0 | 2,62 | 1900 | 2 | 6 | 624 | 1 1 | | | 1937-38 | 117 . | | | | ** | 3 | 2 | N.D. | | | | 1938-39 | 79 | 13 | Q | 0.04 | 31 | 9 | 25 | 115 | | | | 1939-40 | 77 . | 39 | 0 | 0.32 | 229 | 2 | 2 | 183 | 1 1 | | | 1940-41 | 69 | 230 | 0 | 9.39 | 6800 | 1 | 24 | 876 | 1 1 | | | 1941-42 | 53 | 0.4 | 0 | 0.04 | 28 | 12 | 28 | 2.7 | 1 1 | | | 1942-43 | 69 | 666 | 10 | 4.17 | 3020 | - 1 | 22 | 1440 | 1 1 | | | 1943-44 | 60 | 163 | 0 | 2.17 | 1570 | 2 | 20 | 627 | | | | 1944-45 | 59- | 11 | 0 | + | 23 | 2 | 2 | 65 | 1 1 | | | 1945-46 | | 23- | 0 | 0.09 | 68.2 | 12 | 23 | 142 | | | | 1946-47 | | 73. | 0 | 0.33 | 241 | | 20 | 490 | | | | | | | | WASH be | | F271R | | | | |---------|----|-------|-----|---------|------|-------|-------|-------|-----| | 1940-41 | 71 | E 211 | 0 | 8.40 | 6090 | 2 | 20 | 256 | | | 1941-42 | 54 | + | 0 | + | + | VAR. | TIMES | + | 1 . | | 1942-43 | 73 | 663 | 0 | 8.84 | 6400 | 1 1 | 23 | -1080 | 1 1 | | 1943-44 | 62 | 161 | 0 | 2.71 | 1970 | 3 | 14 | 268 | 1 1 | | 1944-45 | 62 | 17 | 0 | 0,14 | 101 | 1 2 | 2 | 26 | 1 1 | | 1945-46 | | 43 | 0 | 0.37 | 265 | 12 | 22 | 121 | | | 1946-47 | | 63. | 1 0 | 0.70 | 507. | 12 | 26 | 86 | | | | WA | TER YEAR E | NDING SEPT | EMBER 30 | | | | PEA | K FLOW! | 5 | | |------|-------------|-----------------|-----------------|----------------|-----------------|-----|-----|----------------|---------|-----|----------------| | YEAR | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | Ř UNOFF
A.F. | мю. | DAY | FLOW
C.F.S. | MO_ | DAY | FLOW
C.F.S. | | | | | | | t Ellis La
8,4 square | |) | | | F10 |)4-R | |-----------|-----|----------|-------------|--------|--------------------------|-----|----|--------|-----|-----|------| | 1930-31 | 69 | 58 | 0 | 0.43 | 314 | 4 | 26 | 359 | | | | | 1931-32 | 41 | 129 | 0 | 1.30 | 946 | 2 | 8 | 184 |]] | | | | 1932-33 | 85 | 187 | 0 | 0.78 | 564 | 1 1 | 19 | 399 | | | | | 1933-34 | 85 | 523 | 0 1 | 2.75 | 1990 | 1 1 | 1 | 2180 | ìi | 1 | | | 1934-35 | 101 | 72 | 0 | 0.75 | 543 | 1 | 5 | 609 | | - 1 | | | 1935-36 | 101 | 63 | 0 | 1,19 | 866 | 2 | 12 | 414 | 1 1 | - 1 | | | 1936-37 | 119 | 101 | 0 | 1.79 | 1300 | 12 | 27 | 400 | } | | | | 1937-38 | 119 | 724 | 0 | 5.76 | 4170 | 3 | 2 | E 1900 | 2 | 28 | -670 | | 1938-39 | 80 | 77 | 0 | 0.99 | 718 | 1 1 | 5 | 738 | 9 | 25 | 240 | | 1939-40 | 78 | 45 | 0 | 0.55 | 402 | 2 | 2 | 341 | | - 1 | | | 1940-41 | 72 | 268 | 0 | 7.66 | 5860 | 3 | 3 | 990 | | | | | 1941-42 | 54 | 49 | , 0 | 0.40 | 293 | 12 | 10 | 289 | | ļ | | | 1942-43 | 74 | E 885 | 0 | 9.82 | 7100 | 1 | 23 | 2280 | i | - 1 | | | 1943-44 | 63 | 224 | 0 | 2.27 | 1650 | 2 | 22 | 412 | | 1 | | | 1944 - 45 | 63 | 37 | 0 | 0.38 | 273 | 2 | 2 | 425 | | - 1 | | | 1945-46 | } | 105 | 0 | 0.70 | 509 | 12 | 23 | 286 | 1 | ļ | | | 1946-47 | 1 | 74 | ' 0 1 | 1.16 | 840. | 12 | 25 | 352 | 1 | - 1 | | | | 1 1 | 1.7 YEAR | R MEAN DAIL | Y 2.27 | | | ł | | | [| | | | l | A TUNA CREE
Drainage | K at Belmont C
area, 5,1 squ | ountry
are mi | Club
les) | | F28 | 7-R | |--------------------|------------|-------------------------|---------------------------------|------------------|--------------|------------|-----|-----| | 1945-46
1946-47 | REC
29. | ORD INCOMPLETE | .22 158 | 3
12 | 30
26 | 102
132 | | | | | | | | KILN WASH
ainage are | | | | | F149R | |---------|-----|------|---|-------------------------|------|-----|-------|-----|-------| | 1939-40 | 80 | 1.9 | 0 | 0.62 | 13 | 1 | В | 12 | T . T | | 1940-41 | 75 | 41. | 0 | 1.50 | 1080 | 2 | 17 | 318 | 1 1 | | 1941-42 | 55 | 1.6 | 0 | 0.03 | 20 | 12 | 10 | 6.3 | | | 1942-43 | 79 | 60 | 0 | 0.85 | 619 | l t | 22 | 300 | i ! | | 1943-44 | 68 | 65 | 0 | 0.53 | 382 | 2 | 22 | 288 | 1 1 | | 1944-45 | 67 | 7.0 | 0 | 0.11 | 77 | 2 | 1 2 1 | 50 | | | 1945-46 | - 1 | 12.0 | 0 | 0.14 | 104 | 12 | 21 | 93 | 1 1 | | 1946-47 | - 1 | 8,1 | 0 | 0.13 | 92. | 12 | 25 | 33, | | | | | L | TTLE D | ALTON CRE
ainage ar | EK above
ea 2.7 sq | Mouth u | of Car
iles) | yon | | F65 | B-R | |---------|-----|---------|---------|------------------------|-----------------------|---------|-----------------|-------|----|-----|-----| | 1928-29 | 44 | | 0 | | * 58 | 3 | 10 | . 5.8 | | Т | | | 1929-30 | 52 | 4.5 | 0 | 0,12 | 85 | 5 | 3 | 28 | | | 1 | | 1930-31 | 80 | 1.8 | 0 | 0.04 | 30 | 4 | 26 | 6.3 | Į. | | | | 1931-32 | 46 | 25 | 0 | 0.62 | 449 | 1 | 31 | 72 | t | | 1 | | 1933-33 | 91 | 7.6 | 0 | 0.10 | 75 | 1 | 19 | 25 | ļ | Į. | 1 | | 1933-34 | 91 | 97 | 0 | 0.67 | 482 | 1 | 1 | 201 | | i | | | 1934-35 | 104 | 26 | 0 | 0.68 | 495 | 4 | 8 | 69 | | ì | 1 | | 1935-36 | 104 | 19 | 0 | 0.64 | 465 | 2 | 11 | 118 | ļ | 1 | | | 1936-37 | 121 | 41 | 0 | 1.97 | 1430 | 12 | 31 | 140 | 1 | 1 | | | 1937-38 | 121 | 381 | 0 | 3.68 | 2660 | 3 | 2 | E 960 | 3 | 1 | 391 | | 1938-39 | 82 | 7.0 | 0 | 0.28 | 207 | - 1 | 5 | 36 | 9 | 25 | 3 | | 1939-40 | 81 | 13 | 0 | 0.32 | 231 | 1 | 7 | 63 | 1 | 1 | | | 1940-41 | 76 | 41 | 0 | 2.70 | 1950 | 3 | 4 | 73 | Į | 1 | i | | 1941-42 | 56 | 2.5 | 0 | 0.27 | 198 | 12 | 29 | 10 | ĺ | í | | | 1942-43 | 80 | 76 | 0 | 2.64 | 1910 | 1 | 23 | 182 | | | 1 | | 1943-44 | 69 | 97 | 0 | 1.24 | 900 | 2 | 22 | 198 | i | | 1, | | 1944-45 | 68 | 20 | 0 | 1.03 | 748 | 11 | 11 | 96 | | | į | | 1945-46 | ĺĺ | 57 | 0 | 0.72 | 519 | 12 | 21 | 111. | | ł | | | 1946-47 | . ! | 19 | 0 | 0.55 | 400 | 11 | 20 | 57. | | | | | | | 18 YEAR | MEAN DA | 1LY 1.02 | ĺ | 1 | | | Ì | 1 | | | | | | LITTLE F
(Drai | OCK CREE | āШ | L1R | | | | | | | |-----------|-----|--------|-------------------|----------|---------|------|------|-------|---|----|------|-----| | 1930-31 | 94 | 195 | 0 | 4.99 | 3610 | 4 | 26 | 430 | T | T | | | | 1931-32 | 51 | 830 | 10 | ÷ | * 16730 | 2 | 8 | 2200 | | | 1 | - | | 1932-33 | 99 | 56 | 0 | 5.77 | 4180 | 3 | 9 | 66 | | 1 | ł | - | | 1933-34 | 99 | 455 | 0 | 5.20 | 3770 | 1 | 1 | N.O. | ļ | 1 | Į. | | | 1934-35 | 107 | /16 | 0 | 24.4 | 17640 | 2 | 5 | 925 | ļ | 1 | 1 | | | 1935-36 | 107 | 127 | 0 | 4.57 | 3320 | 2 | 23 | 261 | ł | 1 | t | | | 1936-37 | 124 | 679 | 0 | 30.3 | 21950 | 2 | 6 | 1550 | ļ | 1 | 1 | | | 1937-38 | 124 | ŀ | 0 | | · | 3 | 2 | 17000 | ì | 1 | | | | 1938-39 | 84 | i | | } | • | 1 | | N.D. | 9 | 25 | 1100 | | | 1939-40 | 83 | 183 | 0 ' | 9.64 | 7000 | 1 1 | 8 | 555 | 1 | ĺ | | | | 1940-41 | 79 | 1730 | 0 | 71.3 | 51620 | 2 | 20 | 2240 | 1 | J | j | . 1 | | 1941-42 | 58 | 55 | + | 7.10 | 5140 | 4 | 14 | 92 | 1 | 1 | | | | 1942-43 | 82 | E 2730 | 0 | 49.5 | 35870 | 1 | 23 | 5700 | į | i | | | | 1943-44 | 71 | 736 | 0.3 | 49.6 | 35940 | { 2 | 22 | 1230 | ļ | ļ. | } | - 1 | | 1944 - 45 | 70 | 323 | C.1 | 12.8 | 9250 | 11 |] 11 | 1080 | 1 | | 1 | | | 1945-46 | - | 604 | l u | 16.7 | 12150 | 12 | 21 | 1100 | l | 1 | ì | | | | | | | | 15070 | 1 12 | 26 | 3180. | | | | | | YEAR | PAGE
NO. | MAX
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F. | мо. | DAY | FLOW
C.F.S. | мо. | DAY | FLC
C.F | |---------|-------------|----------------|-----------------------|-----------------------|--------------------|------------------|---------|----------------|-----|------|------------| | | | LITTL | E SANTA A
Drainage | AMITA CRE
area 2.1 | EK below
square | Sierra
miles) | Madr | e Dam | | FG71 | D-R | | 1928-29 | 12! | | 0 | | • 40 | 4 | .5 | * 6.0 | | | | | 1929-30 | 45 | 1.7 | 0 | 0.01 | 8.5 | 3 | 15 | 3,8 | ì | | | | 1930-31 | 85 | 2.1 | 0 | 0.01 | 7.8 | 4 2 | 26
9 | 9.0 | | | | | 1931-32 | 48 | 21
32 | o l | 0.29 | 211
93 | - | 19 | 38
90 | i | | | | 1932-33 | 94
94 | 8.0 | 0 | 0.13 | 83 | 12 | 31 | 39 | l | | | | 1933-34 | 110 | 12 | ö | 0.11 | 276 | 4 | 31 | 32 | | | | | 1935-36 | 110 | 6.5 | ŏ | 0.31 | 141 | 2 | ııı | 16 | i | | | | 1936-37 | 126 | 26 | ő | 1.16 | h35 | 12 | 27 | 109 | | 1 | | | 1937-38 | 126 | 192 | o l | 3.24 | 2350 | 3 | 2, | E 620 | 3 | 1 | 135 | | 1938-39 | 85 | 8.0 | ŏ i | 0.09 | 65 | 12 | 18 | 132 | ~ | , i | 13. | | 1939-40 | 84 | 10 | ő | 0.26 | 196 | 1 | 8 | 84 | | | | | 1940-41 | 80 | 42 | ŏ | 2.77 | 2000 | 4 | 4 | 75 | ŀ | ĺ | | | 1941-42 | 59 | 2.7 | ō l | 0.19 | 136 | 12 | 28 | 5.0 | | - 1 | | | 1942-43 | 85 | 208 | ō l | 5.26 | 3810 | 1 1 | 23 | 533 | | - 1 | | | 1943-44 | 74 | 51 | + | 1.04 | 755 | 2 | 22 | 69 | 1 | į | | | 1944-45 | 73 | 13 | 0 | 0.17 | 123 | 11 | - 11 | 56 | - 1 | - 1 | | | 1945-46 | | 21 | 0 | 0.24 | 172 | 12 | 23 | 60 | | | | | 1946-47 | | 21. | 0 | 0.62 | 446 | 11 | 13 | 55. | | | | | | - 1 | 18 YEAR | MEAN DAILY | 0.90 | 1 | | | 1 | 1 | | | | | | L | | | A CREEK a | | | enue | F267R | |---------|----|------|---|------|-----------|----|----|------|-------| | 1940-41 | 82 | N.D. | 0 | N.D. | N.D. | | | N.D. | | | 1941-42 | 61 | 6.5 | 0 | 0.16 | 117 | 12 | 28 | 60 | | | 1942-43 | 86 | 216 | 0 | 3.43 | 2480 | ı | 23 | 542 | - 1 1 | | 1943-44 | 75 | 67 | + | 0.55 | 390 | 2 | 22 | 202 | 1 1 | | 1944-45 | 74 | 24 | 0 | 0.20 | 144 | 11 | 11 | 175 | | | 1945-46 | | 35 | 0 | 0.30 | 212 | 12 | 23 | 188 | 1 1 | | 1946-47 | | 26 | 0 | 0.31 | 227. | 12 | 27 | 112 | 1 1 | | | | TUJUNĞA C
rainage a | | | | | F19R | | |--|--|--|---
--|---|-----|------|------| | 1928-29
1929-30
1930-31
1931-32
1932-33
1933-34
1934-35
1935-36
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 255
51
90 7-1
50 274
96 118
96 258
113 63
113 83
113 83
129 175
129 1300
87 40
88 148
83 534
62 30
88 592
76 48
96
48 96 | NEGLIGIBLE 0.08 2.57 0.71 1.12 0.63 1.28 1.24 0.70 1.24 14.6 0.27 10.2 8.04 0.76 0.80 0.98 | 2 2 2 1 1 1 2 2 2 3 3 1 1 2 1 1 3 1 1 1 1 | 4
9
19
1
1
13
2
14
2
9
8
4
2
2
3
22
11
30
20 | N.D.
N.D.
30
660
450
1360
89
653
964
E 8500
175
2090
1310
198
3700
4220
424
156
200 | 3 9 | 1 25 | 1140 | | | | | LIVE (
Dra | DAK CREEK
inage are | above Mo
a 2.6 squ | outh of
rare mi | Canyon
les) | | | FaiR | | |---------|-----|--------|---------------|------------------------|-----------------------|--------------------|----------------|-------|---|------|----| | 1927-28 | 50 | | 0 | | • 0.20 | 2 | 4 | . 0,1 | | | | | 1928-29 | 60 | 0 | 0 | 0 | 0 | | [] | ō | | 1 1 | | | 929-30 | 59 | υ | 0 | 0 | 6 | | 1) | 0 | | 1 1 | | | 930-31 | 98 | 0 | 0 | 0 | 1 0 | | li | 0 | | 1 1 | | | 1931-32 | 53 | 7.0 | 0 | 0.28 | 207 | 2 | 8 | 22. | | 1 1 | | | 932-33 | 101 | 0.06 | 0 | + | 0.15 | 1 | 20 | 0.2 | | i l | | | 933-34 | 161 | 19 | 0 | 0.32 | 228 | 12 | 29 | 35 | | l l | | | 934-35 | 116 | 0 | 0 | 0 | 0 | | | 0 | | 1 1 | | | 935-36 | 116 | 0.1 | 0 | + + | 0.20 | 2 | 12 | 0.6 | | 1 1 | | | 936-37 | 132 | 22 | 0 | 0,59 | 429 | 2 | 14 | 29 | | ! ! | | | 937-38 | 132 | 96 | 0 | 1.10 | 794 | 2 | 2 | 257 | 3 | 1 1 | 37 | | 938-39 | 88 | 0.1 | 1 0 | + | 0.60 | 9 | 16 | 0.9 | 9 | 25 | Ċ | | 939-40 | 88 | 0.7 | 0 | 0.01 | 9.5 | 1 | 7 | 3.8 | | | | | 940-41 | 85 | 27 | 0 | 1.05 | 763 | 3 | 5 | 28 | | 1 1 | | | 941-42 | 63 | 0 | 0 | 0 | | | | U | | 1 | | | 942-43 | 89 | 35 | 0 | 1.14 | 822 | 1 | 23 | 54 | | | | | 943-44 | 78 | 13 | Jo | 0.30 | 215 | 2 | 22 | 24 | | l i | | | 944-45 | 77 | 5.5 | 0 | 0.21 | 150 | 2 | 2 | 12 | | ĺ | | | 945-46 | 1 | 2.7 | 0 | 0.10 | 76 | 12 | 23 | 40 | | | | | 946-47 | i | 1.9 | l o | 0.05 | 38 | 1 | 1 | 1.9 | | | | | | | 19 YEA | R MEAN DAI | LY 0.27 | 1 } | | | | | | | | | | LOS A | | | ow Sepuli
157 squai | | | d | | F5B-R | | |---------|-----|--------|------|------|------------------------|-----|------|---------|---|----------|------| | 1928-29 | 216 | | | | •720 | 4 | 4 | 127 | | | | | 1929-30 | 80 | 143 | 0 | 1.72 | 1230 | 3 | 15 | 389 | | ! | | | 1930-31 | 99 | 652 | 0.06 | 5.09 | 3680 | 3 2 | 4 | 1300 | | | | | 1931-32 | 55 | 825 | 6.08 | 8.72 | 6330 | 2 | 8 | 2000 | | | | | 1932-33 | 103 | 1010 | 0.05 | 6.14 | 4440 | 1 | 19 | 1720 | | } | | | 1933-34 | 103 | 1910 | 0.03 | 7.65 | 5540 | 1 | 1 1 | 7380 | | | | | 1934-35 | 131 | 203 | + | 4.35 | 3150 | 1 | 5 | 886 | | ! | | | 1935-36 | 131 | 79 | 0.2 | 2.17 | 1576 | 2 | 1 12 | 286 | | 1 | | | 1936-37 | 134 | 1200 | 0.2 | 15.1 | 16920 | 2 | 14 | 2630 | | 1 | | | 1937-38 | 134 | 5870 | C.8 | | • | 3 | 2 | E 12000 | 3 | 1 1 | 3220 | | 1938-39 | 89 | 1180 | 1.8 | 17.9 | 12970 | 12 | 15 | 298C | 9 | 25 | 1330 | | 1939-40 | 89 | | 1,8 | 10.2 | 7430 | 1 | 8 | 2690 | | 1 | | | 1940-41 | | 3546 | 2.9 | 76.1 | 55120 | 2 | 26 | 6610 | | 1 1 | | | 1941-42 | 64 | 161 | 5.0 | 9.38 | 6790 | 12 | 28 | 1040 | | | | | 1942-43 | | 2370 | 5.0 | 45.7 | 33070 | 1 | 23 | 2710 | | | | | 1943-44 | | 4100 E | 5.5 | 48.5 | 35210 | 2 | 22 | 5060 | | i l | | | 1944-45 | 78 | | 7.5 | 14.3 | 10370 | 2 | 2 | 1000 | | 1 | | | 1945-46 | | 479 | 6.0 | 22.3 | 16120 | 12 | 21 | 1730 | | ! ! | | | 1946-47 | | 358 | 6.0 | 21.9 | 15840 | 12 | 26 | 881 | | 1 | | | VEARLY | DICCUARCE. | CHARLE | |--------|------------|--------| | | WAT | TER YEAR I | | TEMBER 30 | | | PE | AK FLOW: | 5 | | | |------|-------------|-----------------|-----------------|----------------|----------------|-----|-----|----------------|-----|-----|----------------| | YEAR | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F. | MO, | DAY | FLOW
C.F.S. | мо. | DAY | FLOW
C.F.S. | | | | | | IVER at Vin
400 square | | | | F12!, | ₹ | |--|----------------------------------|---|--|--|---|--|--|-------|---| | 1928-29 224
1929-30 60
1930-31 130
1931-32 57
1932-33 100
1933-34 100
1934-35 134
1935-36 132
1936-37 137
1937-38 137 | 998
1230
2450
288
91 | 4.1
3.9
0.6
1.7
1.3
2.2
2.1 | 18.0
23.0
17.6
11.6
16.0
8.65
5.59 | 13040
16660
• 8370
12830
8370
11560
6260
4060 | 11
3
2
2
1
1
1
2
2
3 | 14
15
4
6
19
1
5
12 | 427
231
1240
1630
2080
9140
1020
261
2770
8 37700 | | | NOTE: STATION AT VARIOUS LOCATIONS - SEE STATION DESCRIPTION | | | | LOS / | NGELES R
ainage a | IVER at Mar
rea_430 squ | iposa
are mi | Stree
les) | t | | F266- | R | |---------|----------|------|-------|----------------------|----------------------------|-----------------|---------------|---------------|-----|-------|-----| | 1938-39 | 91
92 | 986 | 8.0 | 38.7 | *20390
28050 | 1 | 21 | *1012
3950 | y | 25 | 620 | | 1940-41 | 89 | 5500 | 8.5 | 160. | 116000 | 3 | 4 | 8450 | | | | | 1941-42 | 67 | 358 | 14 | 49.1 | 35540 | 1,2 | 28 | 2290 | 1 1 | | J | | 1942-43 | 93 | 4440 | 11 | 136 | 97060 | 1 | 23 | 7520 | | | | | 1943-44 | 81 | 6050 | 14 | 113. | 82390 | 2 | 22 | 9040 | | | i | | 1944-45 | 80 | 904 | 14 | 40.7 | 29460 | 2 | 2 | 2840 | 1 | | 1 | | 1945-46 | i | 792 | 6.0 | 38.8 | 28070 | 12 | 22 | 2250 | 1 | | ĺ | | 1946-47 | | 500 | 4.0 | 36.3 | 26310 | 3.1 | 13 | 1220 | l i | | | | | LOS AN | | | | o Seco (ne
I square mi | | ton A | venue) | | F57C- | R | |-----------|--------|-------|---------|------|---------------------------|-----|----------|---------|-----|-------|-----| | 1929-30 | 67 | 312 | 0 | 2,29 | 1660 | 3 | 15 | 500 | | | | | 1930-31 | 123 | 927 | 0 | 5.48 | 3950 | 2 | 4 | 4540 | 1 | | | | 1931-32 | 60 | 2520 | 0 | 21.0 | 15240 | 2 | 8 | 3020 | | | | | 1932-33 | 111 | 2330 | 0 | 14.7 | 10640 | 1 | 19 | 5780 | | | | | 1933-34 | 111 | 5990 | 0 | 41.2 | 29810 | 1 | - 1 | 22000 | į | | | | 1934-35 | 117 | 568 | 0.1 | 17.3 | 12550 | 4 | 8 | E 2400 | | | | | 1935-3ศ | 117 | 322 | 0.4 | 7.94 | 5770 | 3 | 30 | 2540 | - 1 | | | | 936-37 | 139 | 1670 | 0.4 | 33.8 | 24470 | 2 | - 6 | 2410 | 2 | 14 | 241 | | 937-38 | 139 | 27900 | 0.6 | 183. | 132600 | 3 | 2 | E 58000 | 3 | 1 | 992 | | 1938-39 | 93 | 1950 | 3.8 | 58.5 | 4'2360 | - 3 | 5 | 3710 | 9 | 25 | 62 | | 1939-40 | 94 | 2070 | 6.0 | 54.5 | 39590 | 1 | 8 | 8900 | - ! | | | | 1940-41 | 92 | 6700 | 4.2 | 228. | 165000 | 2 | 20 | 11870 | - 1 | | i | | 1941-42 | 69 | 1170 | 22, | 75.7 | 54800 | 12 | 10 | 5260 | | | | | 1942 - 43 | 95 | 7120 | 15. | 172 | 124400 | 1 1 | 23 | 23900 | - 1 | | ! | | 1943-44 | 83 | 8020 | 25. | 151. | 109800 | 2 | 22 | 14600 | | | | | 944-45 | 82 | 1160 | 6.5 | 51.1 | 36990 | 2 | 2 | 4900 | - 1 | | | | 1945-46 | | 1880 | 3.4 | 49.6 | 35880 | 12 | 22 | 5240 | | | | | 946-47 | | 896 | 1.6 | 43.3 | 31330 | 12 | 22
25 | 5320 | | | | | | | | MEAN DA | | | | -7 | | | | | | NOTE: | STATION | ΑT | VARIOUS | LOCATIONS | - | SEE | STATION | DESCR | IPTION. | | |-------|---------|----|---------|-----------|---|-----|---------|-------|---------|--| | | | | | | | | | | | | | | | | | | VER at Fire
area 614 sc | | | | | F348- | R | |---------|-----|----------|----------|-------|----------------------------|-----|----|---------|-----|-------|------| | 1927-28 | 67 | | 0 | | • 6690 | 2 | 4 | +1120 | | | | | 1928-29 | 161 | 775 | 0 | 13.6 | 9830 | 11 | 14 | 2010 | 1 i | | | | 1929-30 | 72 | 813 | 0 | 13,4 | 9730 | 3 | 15 | 2210 | 1 1 | | 1 | | 1930-31 | 106 | 1560 | 1.4 | 18.6 | 13450 | 2 | 4 | 4360 | | | 1 | | 1931-32 | 62 | 265G | 0.4 | 35.3 | 25620 | 2 | 8 | 4780 | 1 1 | | 1 | | 1932-33 | 115 | 2900 | 0 | 23.5 | 17020 | 1 | 19 | 7070 | | | | | 1933-34 | 115 | 8550 | 0 | 52.9 | 38330 | 1 | 1 | 29400 | | | 1 | | 1934-35 | 126 | 1430 | 0 | 40.3 | 29170 | 1 | 5 | 10400 | 1 | | | | 1935-36 | 126 | 1040 | 0 | 20.5 | 14920 | 2 | 12 | 5730 | 1 1 | | | | 1936-37 | 144 | 3460 | 0 | 67.2 | 48630 | 12 | 30 | E 10000 | 1 1 | | | | 1937-38 | 144 | 40000 | 0 | 278 | 201300 | 3 | 2 | E 79000 | 3 | 1 | 1850 | | 1938-39 | 96 | 5090 E | . 0 | 108 | 78440 | 9 | 25 | 10800 | 1 1 | | 1 | | 1939-40 | 97 | 2410 | E14 | 80.5 | 58420 | 1 | 8 | 7610 | 1 [| | 1 | | 1940-41 | 96 | 7580 | 10 | 345 | 249500 | 2 | 20 | 14760 | i | | | | 1941-42 | 72 | 2030 | 27 | 97.8 | 70820 | 12 | 10 | 8210 | 1 1 | | | | 1942-43 | 97 | 10710 | 18 | 268 | 193700 | 1 1 | 23 | 27500 | | | 1 | | 1943-44 | 86 | 13020 | 38 | 249 | 180900 | 2 | 22 | 24750 | | | | | 1944-45 | 84 | 1980 | 16 | 91.0 | 65900 | 2 | 2 | 6970 | | | 1 | | 1945-46 | | 4000 | 8.4 | 95.8 | 69310 | 12 | 22 | 12500 | | | 1 | | 1946-47 | | 2850 | 14 | 99.9 | 72360 | 12 | 25 | 14870 | 1 1 | | | | | 1 | 9 YEAR M | AN DAILY | 105.2 | | 1 | | Į. | 1 1 | | L | NOTE: STATION AT VARIOUS LOCATIONS - SEE STATION DESCRIPTION, | | | | LOS | ANGELES RIVER at Pacific Coast Highway
(Drainage area, split) | | | | | | Find-R | | | |
--|--|---------------|--|---|--|---|---|--|---|--------|-------|--|--| | 1928-29
1929-30
1930-31
1931-32
1932-33
1933-34
1934-35
1935-36
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 98
100
99
75
100
88
87 | 6220
E2830 | 0.9
0.8
0.3
0
1.6
2.3
3.3
1.0
1.5
18
31
28
38
30
30
18
NAILY | 17.0
19.9
70.2
31.6
93.7
55.9
28.3
126
564
114
90.8
510
129
366
299
138
127
146
147 | *9340
12310
14400
50960
22890
67860
40470
91110
408000
52750
65930
369500
93390
264900
217400
100200
91790
105950 | 3 3 2 2 1 1 4 2 2 3 3 2 2 1 1 2 2 1 1 1 2 1 2 1 2 1 2 | 10
15
3
9
19
1
8
12
14
2
25
2
4
10
23
22
12
22
26 | *2870
1670
3700
8380
8710
37500
11000
10400
20500
E 99000
17300
8440
18170
10800
34000
11600
11800
12800
12800 | 3 | 1 | 23300 | | | |
 | WATER | YEAR END! | NG SEPT EM BER | ₹ 30 | PEAK FLOWS | | | | | | |-------------|-----------------|-----------------|-----------------------|----------------|------------|-----|----------------|-----|-----|----------------| | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F. | мо. | DAY | FLOW
C.F.S. | MO. | DAY | FLOW
C.F.S. | | | | (D | MALIBU CREE
rainage area | | | | | | Fjs | 30R | |--|-----|--|--|---|---|---------------------------------------|---|-----|------|-------------| | 1930-31
1931-32
1932-33
1933-34
1934-35
1935-36
1936-37
1936-37
1936-37
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 123 | 770 0.01 100 0.15 511 + 92 0 680 0 090 0.2 139 0 325 + 200 0.1 32 0.1 32 0.1 440 E 0.7 210 0.2 227 0.1 142 0.1 | 20.2
12.7
17.1
8.59
3.19
33.1
47.1
6.40
8.40
101.
2.52
65.8
41.6
5.87
5.24 | * 1920
14670
9190
12370
6220
2310
23940
34100
4630
6100
73220
1820
47600
30170
4240
3800
3820 | 2
2
1
1
2
2
3
12
2
2
12
12
12
2
2
11 | 4 9 19 1 23 14 2 20 28 22 22 22 30 13 | 743 3100 4460 9650 N.D. 147 2760 E 10000 3690 3620 140 12240 7700 516 506 820 | 3 9 | 1 25 | 5960
330 | | | MISSIO | N CREEK | (former)
(Draina) | y Rio Hond
je area 18. | lo Siough)
8 square | at Sar
miles] | Gabe | iel Boule | vard | F83 | R | |---------|--------|---------|----------------------|---------------------------|------------------------|------------------|------|-----------|------|------|----| | 1929-30 | | 20 | 14 | 17.0 | 12290 | 2 | 3 | 20 | | | | | 1930-31 | 187 | 37 | 12 | 16.3 | 11820 | 2 | 4 | 49 | ł | | | | 1931-32 | 90 | 37 | 13 | 16.7 | 12120 | 2 | 8 | 44 | | i | | | 1932-33 | 158 | 32 | 11 | 16.2 | 11720 | 1 1 | 29 | 51 | 1 | | | | 1933-34 | 158 | 84 | 7.6 | 12.5 | 9030 | 1 | 1 1 | 166 | Į. | | | | 1934-35 | 171 | 18 | 9.0 | 12.6 | 9140 | 4 | 8 | 32 | 1 | | | | 1935-36 | 171 | 26 | 9.5 | 13.5 | 9810 | 2 | 12 | 38 | | i I | | | 1936-37 | 182 | 51 | 10 | 15.0 | 10840 | 2 | 14 | 84 | ì | 1 3 | | | 1937-38 | 182 | | 15 | | * 14220 | | | N.D. | 3 | 1 1 | 91 | | 1938-39 | 120 | 77 | 19 | 22.5 | 16320 | 9 | 25 | 118 | 1 | l 'i | | | 1939-40 | 121 | 52 | 15 | 22.3 | 16210 | 1 1 | В | 74 | 1 | | | | 1940-41 | 124 | 86 | 17 | 25.1 | 18120 | 3 1 | 4 | 104 | 1 | | | | 1941-42 | 92 | 43 | 20 | 25.9 | 18740 | 12 | 10 | 68 | 1 | | | | 1942-43 | 120 | 101 | 19 | 24.0 | 17410 | 3 | 22 | 252 | Į. | | | | 1943-44 | 109 | 176 | 20 | 26.0 | 18850 | 2 | 22 | 336 | 1 | | | | 1944-45 | 91 | 53 | 18 | 24.9 | 18010 | 11 | 12 | 76 | i | | | | 1945-46 | | 52 | 17 | 21.6 | 15630 | 12 | 23 | 67 | | 1 | | | 1946-47 | | 45 | 15 | 19.7 | 14230 | 12 | 25 | 80 | 1 | | | | | · ·- | ML | Draina(| CREEK abov
je area [.g | e Sawpit
square r | Creek
niles) | , , | | | F22R | | | | |--|---|--|--|--|--|--|---|--|---|------|----|--|--| | 1927-28
1928-29
1929-30
1930-31
1931-32
1932-33
1932-34
1935-36
1935-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 44
105
94
149
73
129
142
142
157
103
105
78
104
92 | 0.8
2.8
2.6
3.0
14.5
17
40
18
11
18
11
18
15
8.5
21
1.8
E95
35
11
13
9.9
13
9.9
14
13
9.9
14
15
16
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | 0.05
0.02
0
0
0.01
0
0
0
+
+
0
0
+
+
+
+
+
+
0.03
0.01
0
0.02 | 0.11
0.08
0.08
0.06
0.25
0.12
0.24
0.29
0.63
1.98
0.21
0.19
1.75
0.32
0.19
0.13 | * 70
577
55
43
43
184
86
187
173
208
456
1430
155
138
680
81
1270
236
139
120
94 | 2
3
1
4
2
1
1
4
2
12
3
9
1
3
12
2
1
1
1
1
1
2
1
1
1
1
1
2
1
1
1
1 | 4
100
15
26
9
19
1
8
2
27
2
25
8
4
29
22
11 | N.D.
7-1
5-9
13
24
5-8
108
109
78
61
N.D.
23
68
68
68
2.6
N.D.
97
52
52
55
40 | 3 | 1 | 97 | | | | • | | | M DRAIN n
ea 4.5 sq | | | | | | FISSR | | | | |--|--|--|--|--|---|---|---|-----|-------|-----|--|--| | 1932-33 132
1933-34 132
1934-35 145
1934-35 145
1936-37 16
1937-38 16
1937-38 16
1939-40 107
1940-41 107
1941-42 80
1942-43 106
1942-43 106
1943-44 94
1944-45 94 | 108
56
48
44
306
55
52
128
31
147
88
38
55 | 0
0
0
0
0
0
0
0
0
0
0
0 | 0.60
0.54
0.42
0.75
1.56
0.80
0.68
2.21
0.31
1.18
0.70
0.34 | 433
392
307
539
1130
579
494
1600
228
855
508
249
324
322 | 1
1
2
10
3
1
1
3
12
2
2
2
2
12
12 |
1
5
2
18
2
5
7
4
10
22
22
22
22
22
26 | N.D.
554
429
369
383
E 1200
667
422
770
412
717
828
414
374
388 | 3 9 | 1 25 | 436 | | | | WE . D. W | DISCHARGE | CIMBIATOR | |-----------|-----------|-----------| | | | | | | | | | Cimer broom | | | | | | | | |------|------------|-----------------|-----------------|----------------|----------------|-----|-----|----------------|-----|-----|----------------| | | WAT | ER YEAR E | ND ING SER | TEMBER 30 | PEAK FLOWS | | | | | | | | YEAR | PAGE
NO | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F. | мо. | DAY | FLOW
C.F.S. | MO. | DAY | FLOW
C.F.S. | | | | | | RM DRAIN a
e area 9.6 | | | | ndo | Fj8jR | |---------|------------|------------|-------|--------------------------|-------------|--------|----------|-------------|-------| | 1931-32 | 75 | | 0 | 1 | * 1120 | 1 | 31 | 531 | | | 1932-33 | 133 | 125 | 0 | 0.82 | 592 | 1 1 | 19 | 713 | | | 1933-34 | 133 | 391 | 0 | 2.64 | 1910 | 1 | 1 | 1360 | | | 1934-35 | 148
148 | .114
55 | 0 | 2.28 | 1650
889 | i
2 | 14
14 | 1140
374 | | | 1936-37 | 163 | | . 0 | 1 | ** | l | | N.D. | | | 1937-38 | 163 | | 1 | Ì | •• | 3 | 2 | E 400 | ļ | | 1938-39 | 107 | 147 | 0 | 1,35 | 981 | 9 | 25 | 688 | 1 1 | | 1939-40 | 109 | 77 | 0.1 | 1,22 | 885 | 2 | 1 | 729 | i I | | 1940-41 | 108 | 204 | 0.1 | 5.64 | 4090 | 3 | 3 | 936 | | | 1941-42 | 81 | 102 | 0.1 | 1.33 | 962 | 12 | 10 | 521 | 1 1 | | 1942-43 | 107 | E 300 | E 0.1 | 3.60 | 2580 | 1 | | N.D. | 1 1 | | 1943-44 | 95 | E 323 | 0.1 | 3.30 | 2390 | 2 | 22 | 1040 | f I | | 1944-45 | 96 | 64 | E 0.1 | 0.85 | 768 | 11 | 11 | 506 | | | 1945-46 | l i | 92 | 0 | 1,19 | 865 | 12 | 22 | 384 | 1 1 | | 1946-47 | | 144 | 0.1 | 1.86 | 1350 | 111 | 13 | 1240 | 1 | | PACOIMA CREEK, Flume be | elow Pacoima Dam F.1188-R | |-------------------------|---------------------------| | (Drainage area 28.2 s | square mites) | | 1928-29 268 | 155 | | | | | | IMA WASH at
nage area 50 | | | | | | F16R | | | | | |---------|------|-----|---|-----------------------------|------|-----|----|--------|---|------|-----|--|--|--| | 1928-29 | 257 | | 0 | NEGLIGIOLE | | | | N.D. | | | | | | | | 1929-30 | 107 | 11 | 0 | 0,08 | 57 | ĺi | 11 | 70 | i | | | | | | | 1930-31 | 159 | 23 | 0 | 0.15 | 105 | 1 2 | 4 | 270 | 1 | 1 | | | | | | 1931-32 | 78 | 51 | 0 | 0.67 | 485 | 2 | а | 477 | 1 | 1 | | | | | | 1932-33 | 141 | 10 | 0 | 0.04 | 28 | l ī | 16 | 60 | 1 | 1 | | | | | | 1933-34 | 141 | 48 | 0 | 0.22 | 157 | 1 | 1 | 305 | İ | | | | | | | 1934-35 | 154 | 10 | 0 | 0.14 | 106 | 1 | 5 | 70 | 1 | 1 | | | | | | 1935-36 | 154" | 26 | 0 | 0.37 | 271 | 2 | 23 | 98 | | 1 | | | | | | 1936-37 | 166 | 44 | 0 | 0:49 | 356 | 2 | 6 | 159 | | 1 | | | | | | 1937-38 | 166 | 1 | 0 | | | 3 | 3 | E 2400 | 3 | 1 | 319 | | | | | 1938-39 | 110 | 53 | 0 | 0.52 | 377 | 12 | 15 | 258 | 9 | 25 | 34 | | | | | 1939-40 | 111 | 50 | 0 | 0.33 | 250 | 1 1 | 8 | 584 | 1 | | | | | | | 1940-41 | 112 | 309 | 0 | 10.6 | 7640 | 3 | 3 | 843 | 1 | 1 | 1 | | | | | 1941-42 | 83 | 9.0 | 0 | 0.05 | 34 | 12 | 10 | 57 | | | ĺ | | | | | 1942-43 | 110 | 431 | 0 | 9.24 | 6680 | 1 | 22 | 843 | | | | | | | | 1943-44 | 99 | 224 | 0 | 5.62 | 4080 | 3 | 1 | 355 | 1 | 1 | | | | | | 1944-45 | 99 | 104 | 0 | 0.61 | 294 | 2 | 2 | 649 | 1 | 1 | | | | | | 1945-46 | | 22 | 0 | 0.34 | 245 | 12 | 21 | 171 | | 1 | | | | | | 1946-47 | | 27 | 0 | 0.67 | 489 | 11 | 23 | 157 | | | 1 | | | | | | • | PUDD
(D) | NGSTON
ainage | E CREEK bel
area 32.3 | ow Puddi
square m | ngsto
iles) | ne Dam | 1 | | FHOR | | | | |---------|-----|-------------|------------------|--------------------------|----------------------|----------------|--------|-----------|---|------|-----|--|--| | 1927-28 | 55 | | 0 | | * 32 | .2 | 4 | • 0.6 | | | | | | | 1928-29 | 55 | 0.4 | 0 | 0.04 | 30 | 12
5 | 3 | 1.4 | | | | | | | 1929-30 | 112 | 0.6 | | 0.05 | 23 | | 26 | 0.9 | 1 | | ł | | | | 1930-31 | 165 | 0.3 | 10.0 | 0.03 | 81 | 4 2 | 9 | 15 | | | ł | | | | 1931-32 | 82 | 3.0 | 0.01 | 0.11 | 38 | 1 | 29 | 5.0 | | | l | | | | 1932-33 | 144 | 1,3 | 0 | 0.05 | 30 | 1 1 | 25 | N.D. | | | ! | | | | 1933-34 | 144 | | | | l * | | | | 1 | ļ | | | | | 1934-35 | 156 | 1.2 | 0,01 | 0.06 | 44 | 10 | 17 | 4.3
13 | | | i | | | | 1935-36 | 156 | 2.0 | 0.01 | 0.05 | 36 | 2 | | | | | | | | | 1936-37 | 168 | 6.1 | | 0.27 | 198 | 2 | 6 | 18 | | | | | | | 1937-38 | 168 | 99 | 0.1 | 6.66 | 4'810 | 3 | 7 | 104 | _ | | | | | | 1938-39 | 112 | 23 | 0.1 | 1.85 | 1330 | 10 | 30 | 25 | 9 | 25 | 3.0 | | | | 1939-40 | 113 | 1.0 | | 0.20 | 145 | 1 | 7 | 7.0 | | 1 | | | | | 1940-41 | 114 | 15.7 | | 2.47 | 1790 | 2 | 19 | 25 | | 1 | | | | | 1941-42 | 84 | 44 | 0.1 | 2,27 | 1640 | 12 | 3 | 91 | 1 | | | | | | 1942-43 | 112 | 141 | 0.05 | 4.23 | 3060 | 3 | 4 | 287 | } | | | | | | 1943-44 | 100 | 51 | | 1.54 | 1120 | 3 | 2 | 51 | ł | | | | | | 1944-45 | 100 | 6.2 | 0.2 | 0.55 | 394 | 2 | 2 | 9.8 | l | | | | | | 1945-46 | 3 | 30 | 0.1 | 3.92 | 2840 | 8 | 31 | 37 | l | | 1 | | | | 1946-47 | | 3.6 | 0.02 | 0,18 | 131 | 11 | 12 | 6.0 | l | 1 | } | | | | | | 13 YEAR | MEAN DA | ILY 1.87 | l | | | | | | | | | | | RIO HONDO DIVERSION below Santa Fe Dam
(Drainage area, 231 squame miles) | | | | | | | | | | |--------------------|---|------------|--------------|------------------|----------------|---|----------|------------|--|--| | 1943-44
1944-45 | 102
102 | 253 | 0
NO FLOW | 20.9
FOR YEAR | 15180 | 5 | 18-23 | 253 | | | | 1945-46 | 102 | 479
446 | 0 | 31.2
16.8 | 22610
12200 | 9 | 13
27 | 484
484 | | | | | WAT | ER YEAR E | NDING SE | TEMBER 30 | | | | PEAK | FLOW | s | | |------|-------------|-----------------|-----------------|----------------|----------------|-----|-----|----------------|------|-----|----------------| | YEAR | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S, | RUNOFF
A.F. | MO. | DAY | FLOW
C.F.S. | MO. | DAY | FLOW
C.F.S. | | | | | | | WER AZUSA
ea, split) | | | | | F19: | 2R | |---|---|--|---|--|--|--|---|--|-----|---------|-------------| | 1931-32
1932-33
1933-34
1934-35
1935-36
1935-36
1938-39
1938-39
1939-40
194C-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 84
147
158
158
170
170
113
114
116
65
113
103
102 | 937
2700
324
114
964
10500
191
224
2220
214
E 1300
502
112
267
279 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 5.25
11.2
11.3
4.68
38.6
241
2.17
5.01
113
2.73
14.7
15.9
1.90
18.0
11.8 | • 12710
3800
8100
8160
3400
27950
1570
3640
81450
1980
10680
11600
1380
13030
8560 | 1
1
4
2
2
3
1
1
3
12
1
2
1
1
2 | 20
1
8
11
20
2
5
7
4
10
23
23
23
23
23
27
28
2 | N.D.
5160
5860
604
391
€ 1030
€ 31000
680
288
4000
254
3500
1060
483
9 283 | 3 9 | 1
25 | 4000
130 | | | | RI | | | lission Bri
a, split) | dge | | | | Fo4 F | | |---------|-----|-----------|----------|---------|--------------------------|------|----|---------|-----|-------|--------| | 1928-29 | 83 | 586 | 6.6 | 22.0 | 15980 | 11 | 14 | 2400 | | | | | 1929-30 | 123 | 252 | 8.5 | 18.6 | 13430 | 3 | 15 | 1260 | 1 1 | | | | 1930+31 | 176 | 662 | 4.8 | 22.7 | 16410 | 2 | 3 | 4040 | 1 1 | | | | 1931-32 | 85 | 5090 | 3,3 | 65.6 | 47560 | 2 | 9 | 6320 | 1 | | | | 1932-33 | 150 | 1670 | 7.5 | 27.1 | 19650 | 1 | 19 | 4410 | 1 | | | | 1933-34 | 150 | 4690 | 3.3 | 40.0 | 28970 | 1 | 1 | 11800 | 1 | | | | 1934-35 | 162 | 885 | 8.5 | 40.4 | 29230 | 4 | 8 | 3560 | | | | | 1935-36 | 162 | 446 | 10. | 28.6 | 20700 | 2 | 12 | 2890 | | | | | 1936-37 | 174 | 989 | 9.5 | 70.3 | 50900 | 3 | 15 | 4600 | 1 1 | i | | | 1937-38 | 174 | E 12600 | 11 | 289 | 209300 | 3 | 2 | E 28000 | 3 | 1 | 567 | | 1938-39 | 115 | 1280 | 14 | 42.4 | 30650 | 12 | 18 | 5220 | 9 | 25 | 255 | | 1939-40 | 116 | 505 | 13 | 38.1 | 27660 | - 1 | 7 | 2380 | | | | | 1940-41 | 118 | 3490 | 16 | 180 | 130600 | 3 | 4 | 6570 | | | | | 1941-42 | 87 | 687 | 17 | 39.8 | 28810 | 12 | 10 | 4100 | 1 1 | | | | 1942-43 | 115 | 4650 | 20 | 82.2 | 59470 | 1 1 | 23 | 13200 | | i | | | 1943-44 | 105 | 2110 | 25 | 70.8 | 51390 | 2 | 22 | 4390 | 1 1 | | MEA | | 1944-45 | 104 | 657 | 18 | 44.6 | 32300 | - 11 | 11 | 4240 | 1 1 | | 4782 | | 1945-46 | | 1210 | 23 | 59.6 | 43160 | 12 | 22 | 3600 | 1 | | .,,,,, | | 1946-47 | | 1250 | 22 | 69.3 | 50150 | 11 | 13 | 11600 | 1 | | | | | | 19 YEAR ! | MEAN DAI | LY 65.8 | | | | | 1 1 | | | | | | (Dra | RUBIO | WASH at G
area [3.4 | iendon Wa
square m | ay
iles) | | | FE | 2C-R | |
---|---|--|---------------------------------------|--|--|--|--|--|-----|----------|-----------------------------| | 1929-30
1930-31
1931-32
1932-33
1933-34
1934-35
1935-36
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1944-45 | 143
194
92
161
161
173
173
185
185
122
123
126
93
124
113 | 81
107
124
234
684
136
802
250
122
200
130
697
393
152
244
233
18 YEAR | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1.46
1.54
2.05
1.53
3.57
2.44
1.75
3.87
5.77
3.29
2.37
8.14
2.11
6.23
4.40
2.12
2.54
3.17 | 1050
1110
1490
1110
2580
1770
1280
2800
4180
2370
1720
5890
1530
4520
3190
1540
1840
2300 | 3
2
11
1
12
10
2
12
3
1
1
3
12
3
12
3
12 | 14
327
16
31
17
22
27
2
5
7
3
10
4
22
11
22
13 | 661
1690
798
1510
2070
1680
1370
1180
E 2400
1720
1000
1940
1200
2780
1930
1780
1630
2650 | 2 9 | 28
25 | 1480
580
MEAN
2440 | | | | ١ | FEARLY DIS | CHARGE SUMMAR | Y | | |
 | |------|------------|-------------|------------|---------------|---|------|-------|------| | V.A. | TER YEAR E | NU ING. SEI | ntember 30 | | | PEA | FLOWS |
 | | AGE | MAX. | MIN. | MEAN | RUNOFF | | FLOW | | FLOW | | | | | | | K at Mouth
28.0 squar | | | | | F15 | ĮR. | |--------------------|-----------|------|----------|------|--------------------------|-----|-----------|------------|---|-----|------| | 1930-31
1931-32 | 199
94 | 263 | 00 | 10.7 | *201
7800 | 4 2 | 26 | 98 | | | | | 1932-33 | 164 | 33 | ŏ | 0.15 | 7800 | 1 4 | 8-9
19 | 405
167 | ļ | i | ĺ | | 1933-34 | 164 | 123 | ŏ | 0.13 | 630 | 1 | 19 | 200 | Í | | | | 1934-35 | 175 | 87 | ŏ | 9.43 | 6840 | 4 | à | 212 | Į | | | | 1935-36 | 175 | 50 | ŏ | 9.27 | 1640 | ż | 11 | 208 | ĺ | | | | 1936-37 | 187 | 211 | l o l | 31.2 | 22570 | 2 | 14 | 238 | 1 | | | | 1937-38 | 187 | 6620 | 0 | 58:4 | 42300 | 3 | 2 | E 23400 | 3 | 1 | 1220 | | 1938-39 | 124 | 148 | 0 | 1.98 | 1430 | 9 | 25 | 282 | 1 | | | | 1939-40 | 124 | E 78 | 0 | 3.89 | 2820 | . 1 | 8 | 286 | | | | | 1940-41 | 127 | 250 | 0 | 39.5 | 28570 | 3 | 12 | 368 | 1 | ļ | l l | | 1941-42 | 95 | 10 | 0 | 0.11 | 83 | 12 | 10 | 31 | 1 | 1 | | | 1942-43 | 128 | 1280 | 0 | 41.4 | 29990 | 1 | 23 | 3000 | J | | l . | | 1943-44 | 116 | 231 | 0 | 14.1 | 10280 | 2 | 22 | 490 | 1 | | 1 | | 1944-45 | 115 | 145 | 0 | 6.85 | 4960 | 11 | 11 | 430 | | | l | | 1945-46 | | 259 | 0 | 4.52 | 3270 | 12 | 23 | 550 | | | | | 1946-47 | } | 235 | MEAN DAI | 8.01 | 5800 | 12 | 26 | 362 | | l | | | | SAN DI | MAS WA
(Drain | SH below
age area | Puddingsto
6.0 squar | ne Di
e mil | versi
es) | on Dam | F2 | 216-R | |--------------------|-----------|------------------|----------------------|-------------------------|----------------|--------------|-----------|----|-------| | 1945-46
1946-47 | 22
9.8 | 0 | 0.34
0.67 | 247
483 | 4
12 | 4
27 | 42
9.8 | | | | | | SAN GABR
(Dr | IEL Riv
ainage | ER-WEST
area, 4 | FORK above
.4 square r | S. G.
niles) | Dam | No. 2 | F228R | |---|---------------------------------|-------------------|-------------------------|----------------------|--------------------------------|-------------------|--------------------|------------------------------------|-------| | 1933-34
1934-35
1935-36
1936-37
1937-38 | 174
237
237
191
191 | 403
121
470 | 0
0
0
+
STA | 15.1
5.78
26.3 | 10900
4200
19050
0NED | 1
4
2
12 | 1
8
12
27 | 1850
755
570
1220
N.D. | | | | SAN GABRI | EL-DEVI
(Draina | L'S CÀNYI
ge area, | ON CREEK at
15.4 squar | ove S
e mil | 6. G.
es) | Dam No. 2 | F227R | |---|------------------|--------------------------|------------------------------------|----------------------------------|------------------|-------------------|-----------------------------------|-------| | 1933-34 176
1934-35 188
1935-36 188
1936-37 194
1937-38 194 | 177
75
232 | 0
0
0
0
STAT | 8.18
2.49
12.4
ION ABANDO | *
5930
1810
8980
NED | 1
4
2
2 | 1
8
12
6 | 1560
288
204
367
N.D. | | | | | SAN GAB | RIEL RIV
ainage | ER-WEST
area, 4 | FORK below
1.0 square | S. G
miles | . Dam | No. 2 | F209R | |---------|-----|---------|--------------------|--------------------|--------------------------|---------------|-------|---------|-------| | 1933-34 | 178 | | | | | 1 | 1 | 4400 | | | 1934-35 | 240 | 662 | + | 27.2 | 19700 | 12 | 13 | 1260 | 1 | | 1935-36 | 240 | 43 | 0.2 | 9.76 | 7090 | 2 | 17 | 45 | | | 1936-37 | 196 | 577 | + | 46.4 | 33580 | 2 | 14 | 752 | 1 1 1 | | 1937-38 | 196 | 6620 | 0,7 | 81.4 | 58920 | 3 | 2 | E 25000 | 1 1 1 | | 1938-39 | 126 | 683 | 0.4 | 15.7 | 11360 | 9 | 25 | 1190 | | | 1939-40 | 126 | 141 | 0.6 | 12.9 | 9370 | 1 | 15 | 1240 | 1 | | 1940-41 | 129 | E1130 | 0.5 | 82.6 | 59810 | 2 | 22 | 1160 | 1 | | 1941-42 | 96 | 76 | 1.0 | 10.1 | 7320 | 11 | 3 | 90 | ļ | | 1942-43 | 132 | 4780 | 0.6 | 75.9 | 54930 | 1 | 23 | 7300 | 1 | | 1943-44 | 120 | 805 | 2.2 | 51.9 | 37700 | 2 | 22 | 1210 | 1 | | 1944-45 | 119 | 144 | 0.8 | 14.4 | 10410 | 11 | 20 | 157 | | | 1945-46 | | 602 | 0.8 | 22.8 | 16480 | 3 | 30 | 814 | | | 1946-47 | | 1110 | (0.1 | 28.0 | 20240 | 1 | 6 | 1240 | | | | | | | | T FORK abo | | | ork | Fg7 | R | | |---------|---------|------|------|------|------------|---|-----|------|-----|---|--| | 1929-30 | 197 | 129 | 0.2 | 10.8 | 7790 | 3 | 14 | 206 | | | | | 1930-31 | 231 | 366 | 0,05 | 9,31 | 6740 | 4 | 26 | 751 | 1 | 1 | | | 1931-32 | 100 | 2090 | 0.1 | 36.4 | 26420 | 2 | 8 | 2700 | 1 | | | | 1932-33 | 182 | 996 | 0.1 | 14.1 | 10190 | 1 | 19 | 2890 | | | | | 1933-34 | 182 | 1600 | 0.1 | 16.6 | 12050 | 1 | 1 1 | 4840 | 1 | ł | | | STATION | ABANDON | ED. | 1 | 1 | | l | 1 | 1 | 1 | ţ | | #### VEADLY DISCHARGE SHAMARY | PAGE MAX, MIN. MEAN RUNOFF FLOW | | |---|----------------| | YEAR NO. DAY-CFS DAY-CFS C.F.S. A.F. NO. DAY C.F.S. MO. DAY | FLOW
C.F.S. | | | | | | BEAR CREE
ea 27.9 s | | | i K | | FSGB-R | |--------|-----|------|---------|------------------------|--------|------|-----|---------|--------| | 929-30 | 166 | 76 | 0.1 | 10.6 | 7660 | - 5 | 3 | 108 | | | 930-31 | 245 | 279 | 0.1 | 6.22 | 4500 | 4 | 25 | 527 | | | 931-32 | 102 | 1090 | 0.2 | 22.8 | 16620 | 2 | 9 | 1510 | 1 1 | | 932-33 | 186 | 182 | 0.02 | 9.12 | 6600 | 1 | 19 | 566 | 1 | | 933-34 | 186 | 732 | 0 | 9.24 | 5470 | - 11 | 1 1 | 1600 | 1 1 | | 934-35 | 185 | | - | 1 1 | • | 1 | i i | N.D. | .1 1 | | 935-36 | 185 | 156 | 0.2 | 8.82 | • 6400 | 2 | 12 | 410 | | | 936-37 | 202 | 614 | 0.2 | 37.9 | 27440 | 2 | 14 | 736 | 1 1 | | 937-38 | 202 | | STATION | ABANDONED | | 3 | 2 | E 12500 | 1 1 | | | J HIT | (Drainag | e area | 18.8 squa | K above Na
re miles) | rrows | | | FggR | | |---|---|---|---|--|--|---------------------------------|-----------------------------------|--|------|--| | 1929-30
1930-31
1931-32
1932-33
1933-34
1934-35
1935-36
1935-37
1938-38 | 178
239
105
190
190
209
209
205
205 | 16
11
186
49
186
76
36
140 | 1.5
1.8
1.8
1.4
0.8
1.0
1.6 | 4.10
3.45
11.9
4.97
4.50
11.2
5.94
23.1 | 2970
2500
8600
3600
3260
8140
4310 | 5
4
2
1
1
4
2 | 3
26
8
19
1
8
2 | 18
16
223
126
276
111
85 | | | | 1927-28 | 18 | 704 | 1.6 | 17.9 | 15180 | 2 | 4 | 1620 | į | ļ | Į | |---------|-----|-----------|----------|---------|---------|-----|----|--------|-----|---|-----| | 1928-29 | 15 | 422 | 1 0 | 20.7 | 14960 | 4 | 4 | 775 | | 1 | 1 | | 1929-30 | 192 | 225 | 1.9 | 25.5 | 18470 | 3 1 | 15 | 301 | 1 | | 1 | | 1930-31 | 264 | 676 | 1.2 | 20.2 | 14630 | 4 | 26 | 1530 | ļ | 1 | 1 | | 1931-32 | 107 | 598 | 1.4 | 76.3 | 55360 | 2 | 9 | 3790 | 1 | | 1 | | 1932-33 | 193 | 1360 | 2.5 | 33.1 | 23990 | 1 | 19 | 3460 | | | 1 | | 1933-34 | 193 | 3340 | 1.5 | 34.5 | 24990 | 1 | 1 | 5320 | ļ | (| 1 | | 1934-35 | 225 | 1180 | 1.9 | 77.5 | 56110 | 4 | 8 | 1840 | i | | | | 1935-36 | 225 | 312 | 2.5 | 31.8 |
23070 | 2 | 12 | 752 | 1 | | 1 | | 1936-37 | 208 | 1640 | 2.7 | 133 | 96590 | 2 [| 14 | 2000 | 1 | ĺ | Ì | | 1937-38 | 208 | • | 13 | 237 | +171900 | 3 | 2 | E34000 | 3 | 1 | 346 | | 1938-39 | 128 | 1140 | 7.5 | 46.5 | 33660 | 9 | 25 | 2530 | 1 | | ļ | | 1939-40 | 129 | 369 | 6.5 | 38.2 | 27720 | 1 1 | 8 | 1220 | 1 | 1 | 1 | | 1940-41 | 132 | E2870 | 7.0 | 237 | 171400 | 2 | 20 | E3000 | ł | 1 | ì | | 1941-42 | 99 | 183 | 6.5 | 32.9 | 23810 | 12 | 29 | 288 | 1 | | | | 1942-43 | 134 | E11300 | 6.5 | 211 | 153000 | 1 | 23 | E20000 | ! | i | | | 1943-44 | 122 | 4000 | 19 | 144 | 104500 | 2 | 22 | 5760 | i | l | | | 1944-45 | 121 | 719 | 14 | 51.5 | 37250 | 11 | 11 | 3950 | Į | ļ | 1 | | 1945-46 | | 1830 | 8.0 | 65.3 | 47330 | 3] | 30 | 2620 | i | } | 1 | | 1946-47 | | 2270 | 7.6 | 83.0 | 50120 | 12 | 26 | 4150 | | ì | | | | | 20 YEAR I | MEAN DAI | LY BO.8 | 1 | | | (| l . | 1 | 1 | | | SAN 0 | GABRIEL
(Drai | RIVER-EA
nage are | ST FORK
å 58.2 s | above Catt
quare mile | ie Can
es) | yon | | P2R | | |---|------------------------------|---|--|--------------------------------------|---|-----------------------|-------------------------|----------------------------------|-----|--| | 1927-28
1928-29
1929-30
1930-31
1931-32 | 27
22
186
255
96 | 168
242
101
168
2520
STAT10N | 5.4
4.7
7.0
8.7
8.5
ABANDONED | 18.5
24.4
29.8
21.0
73.6 | 15680
17670
21540
15200
53410 | 2
3
5
4
2 | 4
10
3
26
8 | 267
448
122
267
3340 | | | | S. | AN GABRIEL RIV
(Drainage | ER-EAST F
area 78. | ORK below C
4 square mi | attle
les) | Canyo | on . | Fg6F | | |--|--|--------------------------------------|---|------------------|---------------------|-----------------------------------|------|--| | 1929-30 172
1930-31 222
1931-32 97
1932-33 166
1933-34 166 | 114 6.1
422 5.8
3650 10
148 5.8
2640 4.2
STATION ABANDONE | 34.3
26.3
93.5
29.4
32.4 | 24850
19020
67910
21260
23480 | 5
4
2
1 | 16
26
8
19 | 108
777
4700
310
4200 | | | | | | | | | ST FORK abo
8.2 square | | | | P48- | R | | |---------|-----|---------|----------|---------|---------------------------|-----|------|--------|------|----|-------| | 932-33 | 170 | | | | 18990 | | 19 | 335 | | | | | 1933-34 | 170 | 6210 | 4.5 | 47.3 | 34230 | L . | 1 1 | 8500 | 1 | 1 | | | 1934-35 | 198 | 638 | 4.5 | 85.4 | 61840 | 4 | 8 | 1080 | 1 | 1 | 1 | | 1935-36 | 198 | 428 | 8.0 | 40.7 | 29590 | 2 | 111 | 1290 | 1 | 1 | | | 1936-37 | 214 | 1440 | 9.0 | 148 | 107400 | 2 | 14 | 2180 | 1 | 1 | 1 | | 1937-38 | 214 | E10000 | 20 | 208 | 150800 | 3 | 1 2 | E46000 | 3 | 1 | 4660 | | 1938-39 | 133 | 303 | 14 | 43.6 | 31590 | 12 | 18 | 716 | 1 | 1. | 1.000 | | 1939-40 | 132 | 430 | 14 | 42.0 | 30500 | 1 | 1 8 | 1360 | | | 1 | | 1940-41 | 136 | 1110 | 12 | 183 | 132400 | 2 | 20 | 1870 | 1 | 1 | 1 | | 1941-42 | 101 | 130 | 12 | 34.9 | 25230 | 8 | 1 10 | 349 | ì | 1 | | | 942-43 | 137 | E 5800 | 111 | 160 | 116100 | 1 | 23 | 25000 | Į | 1 | } | | 1943-44 | 125 | 1290 | 21 | 113 | 81900 | 2 | 22 | 2410 | 1 | 1 | 1 | | 944-45 | 123 | 693 | 20 | 72.9 | 52750 | 11 | 111 | 2810 | | | 1 | | 945-46 | | 1520 | 19 | 71.8 | 52000 | 12 | 21 | 2760 | | 1 | 1 | | 1946-47 | | 1160 | 13 | 66.6 | 48300 | 12 | .26 | 1900 | 1 | 1 | 1 | | ļ | | 14 YEAR | MEAN DAI | LY 94.1 | | 1 | 1 | 1 | 1 | 1 | 1 | YEARLY DISCHARGE SUMMARY | | WAT | ER YEAR EN | DING. SEPT | EMBER 20 | | Γ | | PE | AK FLOW | s | | | | WATE | R YEAR END | ING SEPT | EMBER 30 | | | | PEAK | FLOWS | | | |------|-------------|-----------------|-----------------|----------------|----------------|------|------|----------------|---------|------|-------------|---|------|-------------|-----------------|----------|----------------|----------------|------|-----|----------------|-------|-------|-------------| | YEAR | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F. | MO. | DAY | FLOW
C.F.S. | мо, | DAY | FLOW
CFS | | YEAR | PAGE
NO. | MAX.
DAY-CFS | | MEAN
C.F.S. | RUNOFF
A.F. | MO, | DAY | FLOW
C.F.S. | MO. | , DAY | FLOW
CFS | | , | | SAN | APRIEI | CIVED 0 | er Roberts | Dala | 51.4 | 100 | | Fase | a P | , | | | CAI | L CABOLI | . 0176 | F | 11.0 | | | | | | | | | SAN C | | | ar Roberts
a 201 squar | | | ion | F23: | 3R | |-------------------------------|-------------------|-----------------------|----------------------|--------------|---------------------------|-----|---------|----------------------|------|----| | 1934-35
1935-36
1936-37 | 212
212
222 | 2580
706
STATIO | 7.5
12
ABANDON | 176.
73.6 | 127100
53410 | 4 2 | 8
12 | 4850
1530
N.D. | | | | | | | | | VER at Edis
, 202 squar | | | | F28Ř | |---------|-----|-----------|----------|----------|---|---------|-----|-------|------| | 1927-28 | 4 | . 916 | 5,2 | 47.6 | 34430 | 2 | 4 | 1830 | | | 1928-29 | 1 | 60C | 3.5 | 49.9 | 36160 | 3 | 10 | 990 | | | 1929-30 | 204 | 587 | 10 | 64.8 | 46830 | 5 | 3 | 799 | 1 1 | | 1930-31 | 204 | 1250 | tt | 49.3 | 35690 | 4 | 26 | 2900 | | | 1931-32 | 110 | 7530 | 11 | 182 | 132600 | 2 | 9 | 9110 | | | 1932-33 | 199 | . 2420 | 7.6 | 67.3 | 48710 | 1 | 19 | 7550 | 1 1 | | 1933-34 | 199 | 10700 | 5.5 | 86.9 | 62910 | 1 | 1 | 18000 | | | 1934-35 | 192 | 2580 | 7.5 | 176 | 127400 | 4 | 8 | 4770 | 1 1 | | 1935-36 | 192 | 663 | 12 | 73.2 | 53180 | 2 | | 1330 | | | 1936-37 | 224 | 3490 | 12 | 289 | 207900 | 2 | 14 | 4240 | | | | | | MORRIS | | CORD IS EQUAL
IORMAL AZUSA C
I 351746 | | | ION. | | | 1937-38 | 1 | 29584 | 32 | 1 | | | 1 | | 1 | | 1938-39 | ı | 1247 | 19 | | 68431 | | 1 |] | 1 1 | | | SUB | SEQUENT R | ECORD IS | EQUAL TO | NORMAL FLOW A | T DAM # | 1 . | | | | 1939-40 | • | 1056 | 20 | 1 | 1 58642 | 1 | 1 | 1 1 | 1 1 | | 1940-41 | | 4518 | 20 | | 308374 | } | i | 1 1 | 1 1 | | 1941-42 | l | 391 | 18 | | 49128 | | | | | | 1942-43 | | 17105 | 20 | | 271612 | - 1 | 1 | | 1 1 | | 1943-44 | | 7861 | 43 | 1 | 185683 | 1 | 1 | | - } | | 1944-45 | | 1602 | 29 | 1 | 93540 | 1 | 1 | 1 1 | 1 | | 1945-46 | | 3543 | 27 | 1 | 97924 | - 1 | 1 | 1 | | | 1946-47 | | 3477 | 21 | | 107687 | | | | | | S | AN GABR | IEL-AZUS | | T at weir
equiated | | 1 Gab | riel | Dam No. | 1 | F25 | OR | |-----------|---------|----------|------------|-----------------------|--------|-------|------|---------|----|-----|-----| | 1934-35 | 183 | | | i | *36610 | | | | | | | | 1935-36 | 183 | 109 | . 0 | 42.1 | 30540 | |] | | | | | | 1936-37 | 227 | 94 | 0 | 27.3 | 19740 | | 1 1 | | | | 1 | | 1937-38 | 227 | 105 | 0 | 15.4 | 11160 | | 1 1 | | | | | | 1938-39 | 138 | 103 | 0 | 5.91 | 4280 | | | | | | i | | 1939-40 | 135 | 94 | 0 | 47 4 | 34440 | | | | ļ. | | Į. | | 1940-41 | 141 | 110 | 0 | 23.8 | 17220 | | | | | | | | 1941-42 | 104 | 92 | 0 | 55-2 | 39940 | 8 | 27 | 112 | | | 1 | | 1942-43 | 139 | 106 | 0 | 44 6 | 32250 | 5 | 24 | 127 | | | | | 1943-44 | 128 | 97 | 0 | 59.3 | 43050 | t | 4 | 165 | | | ĺ | | 1944-45 | 126 | 142 | 0 | 81.5 | 59050 | | 1 | | | ĺ | | | 1945-46 | | 139 | 0 | 56.3 | 47930 | 2 | 5 | 139 | 2 | 8 | 139 | | 1946 - 47 | | 138 | 0 I | 73.2 | 52990 | - 1 | 1 1 | 195 | | | | | | | 12 YEAR | R MEAN DAT | LY 45.2 | | | | | | 1 | 1 | | | | SAN GA | | USA CONDU
Regulated | ∏ at Gard
flow) | ia C | anyon | | F2 | 20R | |---------|-----|--------|------------|------------------------|--------------------|------|-------|----|-----|-----| | 1932-33 | 208 | | | | | | | | | | | 1933-34 | 208 | 86 | 0 | 27.3 | 19770 | | | | 1 1 | | | 1934-35 | 178 | 94 | 6.2 | 64.3 | 46570 | | ļ | | 1 1 | İ | | 1935-36 | 178 | 86 | 9.1 | 40.7 | 29500 | | | | | 1 | | 1936-37 | 228 | 93 | + | 29-0 | 21030 | | | | 1 1 | | | 1937-38 | 228 | 94 | + | 16.4 | 11910 | | | | 1 | | | 1938-39 | 138 | 0 | 0 | 0 | 0 | | | | | 1 | | 1939-40 | 136 | 90 | E + | 32.7 | 23760 | | | | 1 1 | | | 1940-41 | 142 | 89 | + | 23.2 | 16820 | | | | l i | i | | 1941-42 | 105 | 91 | + | 53.0 | 38360 | VAR. | TIMES | 91 | | | | 1942-43 | 140 | 94 | 0.1 | 36.6 | 26510 | VAR. | TIMES | | | ı | | 1943-44 | 129 | 94 | + | 56.9 | 41310 | 7 | 14- | | | | | 1944-45 | 127 | 94 | 1 + 1 | 59.2 | 42910 | | | 1 | | - 1 | | 1945-46 | | 92 | 1 + | 55-0 | 39820 | 4 | 29 | 91 | 1 1 | i i | | 1946-47 | | 92 | 0.1 | 64.7 | 46900 | VAR. | TIMES | 92 | l i | - 1 | | | } i | 14 YEA | R MEAN DAI | LY 39.9 | | | | | | | | | | SAN | GABRIEI
near Mo | outh of S | DUARTE TUNNE
San Gabriel
ated Flow) | L DIVERSI
Canyon | ON |)N \$ 100 A-R | | | |---------|------|-----------|--------------------|-----------|---|---------------------|-----|---------------|-----|----| | 1918-19 | 1 | 31 | 0 | 1,2 | 865 | | | | | | | 1919-20 | 1 | 38 | l ó | 4.7 | 3420 | | | | | l | | 1920-21 | | 44 | Ġ. | 3.8 | 2750 | | | | | | | 1921-22 | ł | 34 | 0 | 6.5 | 4710 | | | | | | | 1922-23 | 1 | 38 | o o | 2.7 | 1950 | 1 | 1 | 1 | | i | | 1923-24 | | 26 | 0 | 1.0 | 718 | | | | | | | 1924-35 | ! | 9.9 | 0 | 0.1 | 40 | | | | | ļ | | 1925-26 | i | 54 | 0 | 4.8 | 348G | 1 1 | | i | | l | | 1926-27 | | 56 | ۰ ا | 6.5 | 4750 | | | | | | | 1927-28 | ļ | 0 | Ü | o o | 0 | | 1 | | 1 |] | | 1928-29 | i | 20 | G G | 0.4 | 257 | 1 1 | 1 | | Ì |) | | 1929-30 | | 54 | υ | 5.0 | 3640 | | | | | | | 1930-31 | | 42 | | 1.5 | 1120 | | 1 | | | ĺ | | 1931-32 | | 86 | 0 | 19.1 | 13840 | i i | 1 | i | 1 | | | 1932-33 | | 69 | 0 | 8.7 | 6330 | | 1 | | İ | | | 1933-34 | 1 | 81 | 0 | 9.0 | 6540 | | | 1 | | | | 1934-35 | Į. | 82 | | 24.2 | 17520 | 1
| 1 | 1 | | i | | 1935-36 | 1 | 85 | 0 | 17.7 | 12830 | 1 | | i | i i | ļ | | 1936-37 | | 88 | 0 | 42.3 | 36640 | | 1 | 1 | | | | 1937-38 | į. | 86 | 0 | 38.4 | 27780 | | (. | 1 | | ١. | | 1938-39 | | 80 | 0 | 33 4 | 24150 | 1 1 | | 1 | | | | 1939-40 | | 76 | 0 | 35.0 | 25380 | | i | 1 | | | | 1940-41 | 144 | 77 | 0 | 31.5 | 22.810 | | | ļ | į. | | | 1941-42 | 107 | - 66 | 0 | 6 13 | 4430 | | 1 | | Į. | | | 1942-43 | 142 | 69 | 0 | 14 8 | 10726 | 1 | | 1 | 1 | | | 1943-44 | 132 | 74 | 0 | 13.9 | 10100 | ! | | 1 | l | | | 1944-45 | 131 | 75 | 0 | 37.8 | 27 35 0 |] | | 1 | ĺ | | | 1945-46 | J | 65 | i | 21.0 | 15236 | | 1 | 1 | | | | 1945-47 | 1 | | 0 | 0 | ا | | 1 | 1 | | | | | 1 29 | YEAR MEAN | DAILY 13 | 5 | 1 | 1 1 | 1 |) | 1 | 1 | | | | SAI | | | at Foothil
230 square | | | 1 | | F190 | К | |--|--|--|---|--|--|--|--|--|-----|---------|------------| | 1931-32
1932-33
1933-34
1934-35
1935-36
1936-37
1937-38
1939-40
1940-41
1941-42
1942-43
1943-44
1944-45
1945-46 | 114
215
215
204
204
231
231
139
137
145
108
143
133
132 | 2530
3150
448
159
1610
220
388
4090
312
E10400
2750
844
1190
3000 | 0 | 15.7
20.3
81.7
21.1
162
15.0
13.7
304
5.52
318
163
22.9
58.1 | *76220
11400
14690
59220
15300
117400
*
0850
9980
220100
3990
230200
116300
116300
47520 | 1
4
2
2
3
1
5
3
4
1
2
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 19
1
8
2
19
2
5
25
4
20
23
22
23
22
23 | N, D. 10000 5550 1080 572 2050 2050 267 400 345 11400 1670 13200 | 3 9 | 1
25 | 2530
62 | | | | SAN | GABRIE
(| L RIVER a
Drainage | it Valley [
area split | ouleva
:) | rd | | F2613-K | |------------------|-----|-------|-------------|-----------------------|---------------------------|--------------|-----|--------------|---------| | 936+37
937-38 | | | | | :. | | | N.D.
N.D. | | | 938-39 | 141 | 125 | 0.4 | 8.00 | 5790 | | - { | N.D. | 1 | | 939-40 | 138 | € 125 | 0.2 | 1.82 | 1320 | 1 | 8 | N.D. | 1 1 | | 940-41 | 147 | 1300 | 0.2 | 73.9 | 53500 | | | N.D. | | | 941-42 | 109 | 4.0 | 0 | 2.15 | 1560 | | - 1 | N.D. | 1 1 | | 942-43 | 147 | 8000 | 0 | 221 | 150300 | 1 | 23 | 9350 | 1 1 | | 943-44 | 137 | 2720 | 0.6 | 83.0 | 50290 | 2 | 22 | 5950 | 1 1 | | 944-45 | 135 | 650 | 0.1 | 10.5 | 7570 | | l l | N D. | | | 945-46 | - 1 | 990 | · b | 11.9 | 8640 | 12 | 23 | 1470 | | | 946-47 | [| 2440 | 0 | 30.3 | 21940 | ĺ | - 1 | N.D. | | | | | SAN G | ABRIEL
(Dra | . KIVER at
iinage are | Beverly E
a split) | lou le v | rd | | | F2631 | ę. | |---------|-----|-------------------|----------------|--------------------------|-----------------------|----------|------|--------|----|-------|------| | 1928-29 | 71 | 93 | 0 | 3.94 | 2850 | 3 | 10 | 397 | | ļ | Γ | | 1929-30 | 161 | 152 | 0 | 4.83 | 3490 | 1 i | 1 11 | 726 | | i | | | 1930-31 | 217 | 106 | 0 | 3.44 | 2490 | 2 | 4 1 | 404 | | ĺ | 1 | | 1931-32 | 116 | 1620 | 0 | 18.0 | 13060 | 2 | 9 | 3830 | | | 1 | | 1932-33 | 221 | 286 | 0 | 4 • 20 | 3040 | 1 | 29 | 1450 | | Į. | 1 | | 1933-34 | 221 | 5580 | 0 | 23.4 | 16950 | 1 | 1 1 | 22000 | | i | i | | 1934-35 | 246 | 746 | 0 | 16-8 | 12 190 | 10 | 1.7 | 5400 | | | 1 | | 1935-35 | 246 | 355 | 0 | 6.32 | 4590 | . 2 | 12 | 3400 | 1 | ļ | ł | | 1936-37 | 236 | 2440 | 0 | 1 1 | •34240 | 1 2 | 14 | 6970 | į. | | 1 | | 1937-38 | 236 | 11400 | 0 | 131 | 94810 | 3 | 2 | E22700 | 3 | 1 | 7920 | | 1938-39 | 142 | 672 | 0 | 34.1 | 24620 | 9 | 25 | 2110 | 1 | l . | 1320 | | 1939-40 | 139 | 544 | 0 | 27.8 | 20180 | 1 2 | i | 2110 | į | { | Į. | | 1940-41 | 149 | 2700 | 0 | 139 | 100900 | 3 | 4 | 5830 | 1 | ! | 1 | | 1941-42 | 111 | 149 | 0 | 39.5 | 28630 | 12 | 10 | 412 | i | | 1 | | 1942-43 | 148 | 10500 | 0 | 289 | 209580 | 1 1 | 23 | 14810 | | i | | | 1943-44 | 139 | 5350 | 0 | 144 | 104200 | 2 | 22 | 14060 | | 1 | 1 | | 1944-45 | 136 | 744 | 0 | 58,7 | 42520 | 11 | 12 | 4210 | | 1 | l | | 1945-46 | | 1560 | 0 | 45.9 | 33990 | 12 | 23 | 4660 | | | | | 1946-47 | | 2810
10 YEAR M | 6 | 52.7 | 45420 | 12 | 30 | 3240 | | 1 | I | | | | SAN L | | nage area | Florence split) | Avenue | | | F282R | |-----------|-----|-------|-----|-----------|-----------------|--------|----|-------|-------| | 1933-34 | 225 | | 0 | | | | | N,D, | | | 1934-35 | 222 | 718 | 0 | 6,50 | 4700 | 1 10 | 17 | 5850 | 1 1 | | 1935-36 | 222 | 414 | 0 | 2.42 | 1750 | 2 | 12 | 3400 | | | 1936-37 | 240 | | | | | 1 | | N D. | 1 1 | | 1937-38 | 240 | | 1 | 1 | •• | 1 | | ND. | 1 1 | | 1938-39 | 144 | 325 | 0 | | +2540 | 9 | 25 | 1380 | | | 1939-40 | 141 | 271 | 0 | 2,61 | 1900 | 1 1 | 8 | 1150 | 1 1 | | 1940-41 | 151 | 2390 | Q | 105 | 75780 | 3 | 4 | 5630 | 1 1 | | 1941-42 | 113 | 117 | 0 | 18.7 | 13570 | 12 | 10 | 413 | 1 1 | | 1942-43 | 150 | 9190 | 0 | 257 | 186420 | 1 | 23 | 14000 | 1 1 | | 1943-44 | 141 | 4860 | 1 0 | 110 | 79930 | 1 2 | 22 | 15960 | | | 1944 - 45 | 138 | 806 | 0 | 36.1 | 26110 | 111 | 12 | 4020 | 1 1 | | 1945-46 | | 1505 | 0 | 22.8 | 16480 | 12 | 23 | 4370 | | | 946-47 | | 2880 | 0 | 36.2 | 27650 | 12 | 31 | 3510 | 1 1 | | | | | | | | YEARI | Y DISCHAR | GE SUMMAR | ť | | | | | | | | | | | | |---|--|---|---|--|---------|---------|-------------|--|--|---|--|--|--|--|--|--|--|-------|----------|-------------| | | YEARLY | DISCHARGE SLAMMARY | | | | | | | | | | | | SCHARGE SUN | MARY | | | | | , | | WA PAGE | TER YEAR ENDING SEPTEMBE | R 30
EAN RUNOFF | <u> </u> | FLOW PEA | K FLOWS | | FLOW | | | PAGE | R YEAR EN | MIN. | MEAN | RUNOFF | ┢ | | PEAK
FLOW | FLOWS | | FLOW | | YEAR NO. | | F.S. A.F. | MO. DA | | МО. | DAY | CFS | YE | AR | NO. | DAY-CFS | DAY-CF | | A.F. | мо. | DAY | C.F.S. | MO | DAY | CFS | | | SAN GABRIEL RIVER a
(Draina) | at Spring Stree
ge area split) | t, Long Be | each | · | Fugf | 1 | | | | (| SANTA
Draina | CLARA RIV
ge area 3 | ER at High | way g
miles | S
) | | | F92B | -R | | 1927 - 28 | 0 0 0 0 1270 0 9 1770 0 1 4860 0 17 463 0 3 222 0 1 14500 0 122 265 0 0 122 | .29 2380
.64 1190
.7 13510
.50 1080
.02 1450
.0 65890
.0 10830
.175100
.4 72200
.4 12590
.4 12590
.3 24100 | 2 9
1 20
1 0 17
2 12
2 14
3 2
12 19
2 3
3 13
12 11
1 23
2 22
2 22
2 22
1 2 19 | 0
0
0
0
2250
15000
3390
4560
27000
956
1400
4830
277
14600
15000
1910
3300
2740 | 3 9 | 1
25 | 7370
620 | 19
19
19
19
19
19
19
19
19
19
19
19
19
1 | 29-30
30-31
31-32
32-33
33-34
35-36
36-37
37-38
39-40
40-41
41-42
42-43
44-45
45-46 | 219
290
122
233
233
259
254
254
254
151
148
161
120
158
149 | 83
291
739
90
448
82
113
471
6370-£
435
79
3450
167
5420
110
137
110
137
18 YEAR |
0.2
0.1
0.1
0
0.01
+
0
0.3
0.3
0.3
0.4
2.0
2.2
0.4
1.0 | 1.10
2.61
5.69
0.69
2.21
1.51
2.19
6.69
37.2
14.4
2.16
32.3
65.2
68.6
15.3
8.99
15.4°
LY 18.9 | 793
1890
4260
488
1600
1090
1590
29900
10410
1570
41320
23400
47170
47770
11050
6440
11150 | 3
2
2
1
1
1
2
12
3
12
2
3
12
2
3
12
2
3 | 15
7
9
19
1
53
27
2
15
1
4
28
22
2
2
30
26 | 193 1
2310
2090
618
3870
608
833
3410
524000
4620
475
5050
22200
317
500
1620 | 3 9 | 25 | 1570
550 | | | SAN JOSE CREEK
(Drainage area | at Workman Mil
a 85.0 square m | | | | FUSR | | | | | | SA)
(Dra | WPIT CREE | K below Sa
a 3.3 squa | wpit i | Dam
les) | | | F278R | | | 1928-29 77
1929-30 212
1930-31 282
1931-32 120
1932-33 228
1933-34 228
1933-35 249 | * 35 0 100 0 1 92 0.08 0 547 0.06 5 192 0.01 1.2950 0 10 | * 310
.13 821
.73 531
.55 4030
.47 1070 | 3 10
1 15
2 4
2 9
1 29
1 10 | * 77
264
323
1540
825
13100
2450 | | | | 19
19
19 | 41-42
42-43
43-44
44-45
45-46
46-47 | 122
160
151
148 | 1.3
E 186
50
8.0
21.0 | 0 0 0 0 | 0.04
3.95
0.92
0.40
0.20
0.45 | 30
2860
666
290
169
329 | 3
1
2
11
12
12 | 14
23
22
12
23
26 | 2.6
284
67
18
36
26 | | | | | 1934-35 249
1935-36 249
1936-37 244
1937-38 244 | | .92 1390
.3 9600 | 2 12
2 14
3 2 | 1010
4070
9350 | 3 | 1 | 2900 | ſ | | -, | | SAWPI
(Drai | T WASH | above Arro | w High
are mi | iway | | · 1 | 194R | | | 1938-39 148
1938-40 145
1940-41 156
1941-42 117
1942-43 154 | 499 0.3 4
246 0.2 4
1320 0.7 31 | .76 3440
.15 3020
.4 22730
.43 3930 | 9 25
2 1
2 28
1 2 10
1 23 | 1950
1570
2500
180
8040 | | · | | 193 | 2-33
3-34
4-35 | 237
237
261 | 7.5
11
STAT | O
O
ION ABAN | 0,04
0.07
DONED | 26
••
51 | 1 4 | 19 | 22
N.D.
45 | | | | | 1943-44 145
1944-45 142
1945-46 | 2090 1.4 16.
238 2.0 9. | | 2 22
11 11
12 23 | 6000
1480
1390 | | | | | | | | SEPUL | VEDA CRE | EK at Char | nock F | load | | F | 185R | | | 1946-47 | 250 1.2 7.
18 YEAR MEAN DAILY 9 | .04 5100 | 1 2 26 | 833 | | | | | 2-33 | 238 | 255 | (Drain | 3.01 | 25.7 squa | re mil | 29 | 834 | 1 | 1 | | | | SANTA ANITA CREEK bel
(Drainage area I | low Big Santa Ai
10.8 square mile | nita Dam
es) | | | FIIGR | | 193
193 | 3-34
4-35
5-36 | 238
262
262 | 426
226
202 | 0 | 3.51
4.08
4.03 | 2540
2950
2920 | 12
4
2 | 31
8
12 | 1150
1560
1810 | | | | | 1927-28 34
1928-29 111
1929-30 17
1930-31 28
1931-32 24
1932-33 52
1933-34 52
1933-34 52
1934-35 253
1936-37 247 | 9-0 0.2 1.
3.6 0.2 1.
8.5 0.2 1.
94 0.3 5.
373 0.1 3.
90 0.1 5. | .61 1160
.73 1260
.33 964
.60 1160
.34 3880
.2020
.67 2800
.51 3990
.48 2530
.9 7920 | 2 5
9 11
4 12
2 20
12 28
1 1
2 16
2 15 | 16
10
3.6
9.0
112
N.D.
431
53
N.D. | . 2 | 20 | 53 | 193
193
193
194
194
194
194 | 3-37
7-38
3-39
3-40
3-41
1-42
2-43
3-44
1-45
5-46 | 257
257
153
150
163
123
163
154
150 | 256
291
373
177
740
295
170
434
328 | 0
0
0
0
0
+
0.1
+
0.1
0.3
+ | 2.99
3.83
13.0
2.75
6.30
5.55
3.97
5.15
5.88 | 2170
2780
9460
1990
4560
4030
2870
3740
4260 | 2
3
9
2
12
12
1
2
11
12 | 14
2
25
2
23
28
22
22
21
22
11
22 | 1980
E 3100
1080
1890
3010
2200
2220
1940
1460
1900
2100 | | | | | 1937-38 247
• INDICATES RUNC | FF FROM SANTA ANITA DAM | | Anita Coas | <u> </u> | | F260R | | | | | SYCAMO | RE UPP | ER STORM | DRAIN abov | re Sol | way St | reet | F | 43R | | | | (Drainage area) | 12.9 square mile | | 174 | | 12001 | | 192 | | 88
238 | 13 | 0 | 1.07 | • 63
77 | 2 | 3 10 | * 25 | 5 | 8 | • 25 | | 1936-37 249
1937-38 249 | STATION ABA | | 2 15 | N.D. | 3 | | 800 | 1929
1930
193 | -30
-31 | 226
299
125 | 24
6.3
12 | 0 . | 0.22
0.06
0.57 | 160
40
415 | 3 2 2 | 14 4 9 | 62
24
20 | | | | | | SANTA ANITA WASH at
(Drainage area 17. | | | | | F260B | -R | 1933
1933
1934 | -33
-34 | 268 | | | 0.5 | 110 | ` | | 58
N.D.
N.D.
N.D. | | | | | 1938-39 150
1939-40 147
1940-41 158
1941-42 119 | 58 0 I
262 0 17 | .32 1680
.46 1050
.9 12920
.96 694 | 1 5
1 8
3 4
12 29 | 128
248
482
65 | 9 | 25 | 47 | 1935
1936
1937
1938 | -36
-37
-38
-39 | 268
-155
 | 5.5 | 0 | 0.19 | 139 | 3 | 30 | 252
N.D.
N.D. | 9 - | -25 | 6,3 | | 1942-43 157
1943-44 148
1944-45 146
1945-46
1946-47 | 92 0 2
182 0 2 | 1.9 21670
1.46 6140
1.13 1540
1.04 1480
1.44 2490 | 1 23
2 22
6 25
12 23
12 29 | 3800
747
225
350
289 | | | | 1940
1941
1942
1943 | -41
-42
-43
-44 | 166
125
165
156 | 9.5
90
48
7.0 | 0 0 0 | 0.14
1.19
0.15
1.57
0.55
0.15 | 100
864
110
1140
389
107 | 12
1
2
11 | 1
10
22
22
21 | 55
N.D.
119
340
172
89 | | | , | | | SANTA ANITA WASH I
(Drainage area 18 | below Arrow Hig
8 3 square mile | hway
s) | | | F 93F | | 1945
1946 | -46
-47 | | 3.7
27.3 | 0 | 0.07 | 54
122 | 2
12 | 3
25 | 89
175 | | | | | 1932-33 232
1933-34 232 | 0. | 1.20 870 | 1 1 | N.D.
399 | | | | | | | SYCAM | ÖRE LÖV
(Draina | VER STORM | DRAIN at
6.2 square | Adams
miles | Square
s) | | | FHHR | | | 1933-34 232
1934-35 256
1935-36 256
1936-37 252 | 70 0 0 | 0,27 193
0,22 156
2,90 2090 | 4 8
2 16
12 16 | 197
31 | | | | 1927 | -29 | 94
244 | *73 | 0 | | *103
*253
353 | 2 | 3
14 | *34
904 | | | | | 1937-38 252 | STATION A | ABANDONED . | | N.D. | | | | 1920
1930
1931
1933
1934
1935
1936
1937
1944
1944
1944
1942 | -31
-32
-33
-34
-35
-36
-37
-38
-39
-40
-41
-42
-43
-44 | 231
304
127
242
242
266
259
259
156
156
167
126
158 | 51
14
35
46
366
65
31
50
68
33
200
58
205
152, | 00000000000++00 | 0.49
0.26
0.84
0.39
2.49
1.53
1.37
0.81
4.51
0.64
3.02
1.99
0.65 | 353
190
911
283
1780
1110
**
1760
**
992
585
3260
463
2180
1440 | 5 2 11 1 3 12 3 1 1 2 2 2 | 3
3
27
19
1
5
30
27
2
5
7 | 51
212
191
401
1150
591
607
365
2800
314
492
N.D.
434
757
782
249 | 2 9 | 20
25 | 547
314 | | | WAT | ER YEAR EN | DING SEPTE | MBER 30 | | | _ | PEA | K FLOW | | | |---|---------------------------------|------------------------------------|-----------------|--|------------------------------------|--------------------------|--|-----------------------------|--------|-----|--------------| | YEAR . | PAGE
NO. | MAX.
DAY-CFS | MIN.
DAY-CFS | MEAN
C.F.S. | RUNOFF
A.F. | мо | DAY | FLOW
C.F.S. | MO. | DAY | FL OV
CFS | | | | тном | at | EK SPREAD
Thompson (
e area 3. | Creek Da | n | | | | F27 | 6R | | 1940-41
1941-42
1942-43
1943-44
1944-45 | 168
127
167
159
155 | 11
+
14
2.6
1.2
2.4 | 0 0 0 | 0.48
+
0.44
0.05
0.03
0.007 | 345
+
317
37
18
4.8 | 4
VAR.
2
2
3 | 1
TIMES
24
26
26
26
23 | 19
+
21
3.8
2.3 | | | | | | | THOMPSON CREEK below Thompso
(Drainage area3.7 squa | F32B-R | |--|------------|--|--------| | 1943-44
1944-45
1945-46
1946-47 | 160
156 | NO FLOW FOR YEAR | | | | | | | ve Mouth o
3.0 square | | | | | F514 | R | |--|---|--|--|--|---|---|---|---|------|------| | 1929-30
1930-31
1931-32
1932-33
1933-34
1935-36
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1942-44
1944-45
1945-46 | 237
310 186
129 409
245 542
245 542
245 190
270 130
270 270
261 413
261 3270
158 183
155 183
169 E
1100
161 E 1110
161 E 1110
165 E 1110 | 0.01
0.02
0.01
0
0
+
+
+
+
+
0.1
0.1
0.2 | 0.97
4.94
3.09
8.87
1.88
2.05
9.13
21.2
2.86
26.2
0.75
12.0
9.60
1.51
1.93 | * 547
705
3590
2240
6420
1360
1490
6620
15310
**
2063
18940
8720
6970
1090
1390 | 3
2
1
12
1
2
3
3
2
2
12
1
2
1
2
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
1
2
1
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 1 | 340
386
1250
1430
4510
1200
528
1130
E 9300
N.D.
1280
E 8700
385
2200
964
905
567 | 2 | 28 | 6630 | | | | | | | L at Este
22.4 squ | | | | F252R | | | | |-----------|------|-----------|-----------|------|-----------------------|----|----|--------|-------|----|------|--| | 1928-29 | 232 | * 15 | 0 | | *140 | 4 | 4 | * 56 | 1 | | 1 | | | 1929-30 | 242 | 14 | 0 | 0.04 | 274 | 5 | 3 | 80 | | | i | | | 1930-31 | 317 | 8.4 | 0.01 | 0.20 | 145 | 4 | 26 | 46 | | | | | | 1931-32 | 131 | 39 | 0.1 | 0.98 | 713 | 2 | 9 | 145 | 1 | | | | | 1932-33 | 249 | 42 | 0.1 | 0.41 | 295 | 1 | 19 | 391 | 1 | | | | | 1933-34 | 249 | | 0 | į | ** | | | N.D | ŀ | | | | | 1934-35 | 273 | * 85 | 0 | 1 | *620 | 1 | 5 | *1020 | | | | | | 1935-36 | 273 | 33 | 0 | 0.64 | 463 | 3 | 30 | *1100 | | | | | | 1936-37 | 264 | | 0 | | *1560 | 12 | 27 | 768 | | 1 | | | | 1937-38 | 2611 | 1500 | 0 | 7.52 | 5450 | 3 | 2 | E 4400 | 2 | 28 | 1390 | | | 1938-39 | 159 | 78 | 0 | 1.96 | 1420 | 1 | 5 | 520 | 9 | 25 | 320 | | | 1939-40 | 157 | 60 | + | 1.97 | 1430 | 1 | 8 | 533 | | | | | | 1940-41 | 171 | 357 | + | 10.2 | 7370 | 2 | 19 | 1120 | | | 1 | | | 1941-42 | 130 | 81 | 0.8 | 2.98 | 2160 | 12 | 10 | 440 | | | 1 | | | 1942-43 | 171 | 1020 | 0.3 | 12.0 | 8690 | 1 | 23 | 3570 | 1 | | 1 | | | 1943-44 | 163 | 998 | 0.2 | 6,95 | 5040 | 2 | 22 | 3160 | 1 | | | | | 1944-45 | 159 | 181 | 0.6 | 2.77 | 2010 | 2 | 2 | 1520 | 1 | | 1 | | | 1945-46 | | 135 | 0.3 | 2.66 | 1930 | 12 | 22 | 816 | 1 | | 1 | | | 1946 - 47 | | 234 | 0 | 2.68 | 1940 | 12 | 25 | 1860 | ĺ | 1 | 1 | | | | | 10 YEAR N | MEAN DAIL | 5.17 | [| | | | 1 | | 1 | | | | | | | | it Covina
99.0 squ | | | | | F47R | | |-----------|-----|-------------|-----------|---------|-----------------------|-----|-----|------|---|------|------| | 1928-29 | 38 | * 55 | 0 | 1 | * 112 | 3 | 10 | *302 | | 1 | | | 1929-30 | 247 | 87 | 0 | 0.72 | 526 | 1 | 11 | 900 | 1 | 1 | | | 1930-31 | 322 | 25 | 0 | 0,29 | 210 | 2 | 4 | 123 | } | | | | 1931-32 | 133 | 365 | 0 | 3.88 | 2820 | 2 | 9 | 1780 | | i | | | 1932-33 | 252 | 129 | 0 | 0.73 | 530 | 1 | 19 | 748 | | 1 | | | 1933-34 | 252 | 1770 | 0 | 8.71 | 6310 | 1 1 | 1 | 8060 | | 1 | | | 1934-35 | 277 | 321 | 0 | 2.66 | 1920 | 10 | 17 | 2340 | | | | | 1935-36 | 277 | 291 | 0 | 2.29 | 1670 | 2 | 12 | 2450 | | | 1 | | 1936-37 | 266 | 611 | 0 | 5.94 | 4300 | 2 | - 6 | 1980 | | | 1 | | 1937-38 | 266 | 2580 | 0 | 17.4 | 12610 | 3 | 2 | 4290 | 3 | 1 | 3450 | | 1938-39 | 161 | 146 | 0 | 1.40 | 1010 | 12 | 18 | 751 | 9 | 25 | 284 | | 1939-40 | 158 | 173 | 0 | 1.27 | 923 | 1 | 7 | 1870 | | 1 | | | 1940-41 | 173 | 561 | 0 | 10.1 | 7300 | 3 | 13 | 2680 | 1 | Į | 1 | | 1941-42 | 131 | 52 | 0 | 0.30 | 216 | 12 | 10 | 223 | 1 | 1 | | | 1942-43 | 172 | 1190 | 0 | 14.0 | 10140 | 1 | 23 | 4380 | | | • | | 1943-44 | 164 | 1010 | 0 | 4.26 | 2930 | 2 | 22 | 4220 | | 1 | ł | | 1944-45 | 160 | 358 | 0 | 2.09 | 1510 | 11 | 11 | 3210 | | l | ł | | 1945-46 | l | 620 | 0 | 3.80 | 2750 | 12 | 23 | 2430 | | l | ŀ | | 1946 - 47 | | 100 | 0 | 1.26 | 910 | 11 | 23 | 610 | 1 | | 1 | | | l | 18 YEAR | MEAN DAIL | LY 4.51 | | 1 | | | 1 | l | l . | - INDICATES RECORD INCOMPLETE. INDICATES RECORD NOT COMPUTED. INDICATES ESTIMATED. N.D. INDICATES NOT DETERMINED, DUE TO INSUFFICIENT DATA. INDICATES 0,05 C.F.S. OR LESS. # DAMS, DEBRIS DAMS AND DEBRIS BASINS ### **FOREWORD** The District operated and maintained fourteen dams, four debris dams, and twenty-three debris basins during the 1945-46 and 1946-47 water years. The Los Angeles District, Corps of Engineers, War Department, operated and maintained Hansen Dam on the Tujunga Wash, Sepulveda Dam on the Los Angeles River, the partially completed Santa Fe Dam on the San Gabriel River and the Rio Hondo, and Haines Debris Basin. Pertinent data relative to the District's flood control and water conservation dams, debris dams, and debris basins are presented in the three following tabulations. ### FLOOD CONTROL AND CONSERVATION DAYS | | <u>Dam</u> | Data
Compl | e of
etion | Orig | y for | Original Storage at Spwy. A.F. | Date of
Latest
Survey | Latest Storage at Spwy. 1 A.F. | Orainage
Area | |-----|----------------------|---------------|---------------|------|---------|--------------------------------|-----------------------------|--------------------------------|------------------| | 1. | Pacoima | Feb. | 1929 | | 1919 | 6060 | Dec. 1944 | 4714 | 28.2 | | 2. | Big Tujunga No. 1 | July | 1931 | | 1928 | 6240 | June 1944 | 4235 | 82.3 | | | Devil's Gate | June | 1920 | | 1933 | 4601 | Dec. 1943 | 2504 | 31.9 | | 4. | Eaton Wash | Feb. | 1937 | Jan. | 1936 | 956 | 1946 | 674(2) | | | 5. | Big Santa Anita | Mar. | 1927 | | 1923 | 1376 | Jan. 1947 | 728(2) | | | | Sawpit | June | 1927 | | 1923 | 476 | Dec. 1943 | 322 | 3.3 | | 7. | San Gabriel No. 2 | Apr. | 1934 | Jan. | 1936 | 12298 | Sept.1947 | 10634(2) | | | 8. | San Gabriel No. 1 | July | 1939 | | 1938(3) | 53344 | Nov. 1945 | 44342 | 163.5*(| | 9. | Big Dalton | Aug. | 1929 | | 1935(4) | 1053 | Oct. 1944 | 952 | 4.5 | | 10. | San Dimas | Sept. | 1922 | | 1919 | 1496 | Nov. 1944 | 1042 | 16.2 | | | Puddingstone Div.*** | July | 1928 | | 1929 | 1 4 8 | Sept.1944 | 112 | 2.6 | | | Puddingstone | Jan. | 1928 | | 1915 | 17398 | Jan. 1941 | 17190 | 11.0** | | | Live Oak | Nov. | 1922 | | 1919 | 250 | May 1938 | 228 | 2.3 | | 14. | Thompson Creek | Mar. | 1928 | Oct. | 1932 | 812 | Jan. 1943 | 612(5) | | | TO | [AL | | | | | 106508 | | 88289 | 408.8 | ^{*}EXCLUSIVE OF DRAINAGE AREA ABOVE SAN GABRIEL DAM NO. 2 ^{**}EXCLUSIVE OF DRAINAGE AREA ABOVE LIVE OAK, SAN DIMAS, AND PUDDINGSTONE DIV. DAMS. ^{***}TEMPORARY STORAGE: FUNCTIONS PRIMARILY TO DIVERT FLOW. ⁽¹⁾ DRAINAGE AREA CORRECTED TO LATEST AVAILABLE U.S.G.S. TOPOGRAPHY. ⁽²⁾ CORRECTED TO LATEST SURVEY. ⁽³⁾ BASED ON A PARTIAL SURVEY PRIOR TO MARCH 2, 1938 AND EXTRAPOLATIONS. ⁽⁴⁾¹⁹³⁵ IS DATE OF FIRST COMPLETE SURVEY. ORIGINAL RECONNAISSANCE SURVEY WAS IN 1923. EARLIER PUBLICATIONS SHOW STORAGE BASED ON VOLUMETRIC COMPUTATIONS WITH EXTRAPOLATIONS BASED ON THE 1923 SURVEY. ⁽⁵⁾LOSS IN STORAGE DUE TO LOWERING SPILLWAY LIP IN JANUARY 1942. | DE | 3R | ľ | S | D. | A | MS | |----|----|---|---|----|---|----| | | | | | | | | | Debris Dam | Date of Completion | Drainage
Area in
Sq. Mi. | Maximum
Debris
Capacity
Cu. Yds. | Capacity at
Beginning
of 1946-47
Season-Qu.Yds. | - | on Cu.Yds. | |--|--|----------------------------------|--|--|--------------------------------------|---| | Sunset Verdugo Rubio Sierra
Madre | Nov. 1929
Mar. 1935
Apr. 1944
Feb. 1928 | 0.44
10.01(1)
1.26
2.39 | 17,500
151,700(2)
143,900
81,200(3) | 12,800
112,900
139,600
70,300(3) | 140
Unknown
Unknown
Unknown | Negligible
Unknown
680
Unknown | | TOTALS | | 14.10 | 394,300 | 335,600 | | | ### DEBRIS BASINS | Debris | | Date o | | Drainage
Area in
Sq.Mi. | Maximum Debris Capacity Ou.Yds. | Capacity at
Beginning
of 1946-47
Season-Cu.Yds. | Approx.
Deposition 1945-46 | | |---|---|--|--|---|--|---|-------------------------------|---| | 2. Van 3. Nic 4. Sto 5. Bra 6. Sch 7. Dun 8. War 9. Shi 10. Eag 11. Pic 12. Sno 13. Hal 14. Spa 15. Hay 16. Par 17. Lin 18. Wes 19. Fer 20. Fai 21. Las | hols ugh nd oll smuir d elds le kens ver ls rr adise coln t Ravine n r Oaks Flores adena C.C. | Apr. Nov. Jan. Nov. Aug. Oct. Dec. Jan. Oct. Nov. Feb. Oct. June Jan. Dec. Dec. Apr. | 1945
1937
1941
1935
1945
1936
1937
1936
1935
1937
1936
1944
1936
1935
1935
1935
1935 |
8.63
1.08
0.94
1.65
1.03
0.66
0.84*
0.27*
0.61
1.84*
0.23*
1.06*(4)
0.84
0.20
1.05(5)
0.50
0.25
0.30
0.21
0.45
0.65
0.57 | 50,300(2)
5,400
32,200
103,700
72,500(2)
30,900
122,200
6,700
46,600(2)
71,900
116,500(2)
37,700(2)
104,000(2)
9,900
39,800(2)
13,200(2)
40,800(2)
49,600(2)
32,900(2)
28,500(2)
61,600(2)
12,900
10,200 | 23,900
4,800
26,800
92,900
68,400
30,900
98,700
5,500
43,700
60,200
90,200
22,600
71,100
36,200
13,200
39,000
44,000
26,200
23,600
57,900
12,900
9,400 | 13,870 | 6,860
30
5,650
Negligible
140
680
1,560
Unknown
20
400
1,100
Unknown
4,460
Negligible
1,550
1,610
610
220
660
480
1,400
Negligible | | TOTALS | es (6) | June | | | ,100,000
158,600(2) | 130,700 | Negligible | 920 | ⁽¹⁾ EXCLUDES 5.49 SQUARE MILES OF DRAINAGE AREA CONTROLLED BY DEBRIS BASINS DESIGNATED BY *. ⁽²⁾ DESIGN CAPACITY ENLARGED BY CLEANOUT. ⁽³⁾ DOES NOT INCLUDE DEBRIS CAPACITY ABOVE SPILLWAY ELEVATION. ⁽⁴⁾ INCLUDES WEBBER CANYON. ⁽⁵⁾ INCREASE DUE TO CONSTRUCTION OF ADDITIONAL INLET STRUCTURE. ⁽⁶⁾ OWNED AND OPERATED BY CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY. ### **PURPOSE** Dams in the Los Angeles County Flood Control District serve two purposes, the primary purpose being flood control, the secondary, conservation. Proper flood control operation precludes any appreciable conservation storage during the storm season as flood control demands that a maximum amount of storage capacity be kept in reserve. Conservation of flood waters by percolation in natural channels and off-channel spreading grounds is accomplished by regulated releases of storm waters. Debris dams and debris basins serve primarily for the purpose of controlling detritus from their respective drainage areas. ### **OPERATION** The major portion of available storage is kept in reserve during the winter season to enable the District to store or detain peak flood flows until valley runoff has receded sufficiently to allow the discharging of the storm waters from the mountains. The storage of inflows for conservation purposes is usually commenced when the threat of the winter flood season is passed. The stored water is then released in such a manner as to be used directly for irrigation or percolated to the ground water supply. Reclaiming of valuable storage capacity is effected by sluicing from the District reservoirs to the limit of available and safe channel capacity below the dams when runoff and storage conditions permit. The following tabulation shows the amount of debris removed from Dams, by sluicing and excavation during the 1945-46 and 1946-47 seasons. | Dams | 1945-46 Cu. Yds. | 1946-47 Cu. Yds | |-------------------|------------------|-----------------| | Devil's Gate | 8,809 (1) | 81,400(1) | | Devil's Gate | 14,242 (2) | 15,251 (2) | | San Gabriel No. 1 | 170,000 (1) | | | San Gabriel No. 2 | 142,800 (1) | 60,339 (1) | | Santa Anita | 0 | 70,700 (1) | | Facoima | 0 | 28,300 (1) | | Total Cubic Yards | 335,851 | 255,990 | ⁽¹⁾ BY SLUICING ⁽²⁾ BY EXCAVATION: FROM RECORDS FURNISHED BY CITY OF PASADENA ### RECORDS The daily storage and flow records at fourteen of the District dams are summarized on the Dam Operation Record sheets. The sheets show: - 1. Reservoir water surface elevations based on the United States Geological Survey datum used for the design and construction of the dam. Water stage recorder graphs or interpolations from staff gage readings are obtained and recorded as of midnight of each day. - 2. Storages in acre feet based on topographic surveys taken following important changes in reservoir beds. These changes consist primarily of debris inflow during large storms and debris removal by sluicing or mechanical means. - 3. Inflows in cubic feet per second are usually calculated from storage change and known outflow. When outflow is not known, the inflow may be determined from gaging station records or interpolated between measurements. - 4. Outflows in cubic feet per second are mean daily valve and/or spill-way discharge. These are determined from gaging station records, known valve openings and rating curves, or from storage change and known inflow. - 5. In some instances, total monthly and yearly evaporation and percolation losses have been computed and are indicated on the Dam Operation Records. Discrepancies between outflow and storage losses at certain dams were attributed to percolation and evaporation losses and are shown as total monthly and yearly losses. For San Gabriel Dams No. 1 and No. 2 reservoirs, total monthly evaporation losses are shown as determined from measurements made on floating evaporation pans. In those cases where no allowances were made for evaporation, the amounts are necessarily included in the flow values. Accuracy of the flow records computed from storage records is dependent on the frequency with which storage data are revised to keep in step with physical change in reservoirs. Percentage of error is in direct proportion to the error in water surface areas through the range at which the flows were computed; normally the error is small. ### COMPLETE ANNUAL RESERVOIR OPERATION SUMMARY A summary table showing total annual inflow, outflow, storages, and extremes for each of the fourteen District dams for each year of record is included in this report on page 383. ## RESPONSIBILITY The compilation of the records and assembly for publication during 1945-46 and 1946-47 was under the immediate supervision of H. A. van der Goot and W. E. Cole, assisted by F. H. Mellen. Office work was under the direction of W. J. Wood, Assistant Chief, Hydraulic Division. Determination of storage and releases during both floods and normal or percolation flows for channels and spreading grounds, drawdown for sluicing operations, channel capacities and conditions, measuring inflows and outflows and notification of parties affected by releases was under the direction of Finley B. Laverty, Chief, Hydraulic Division. The operation and maintenance, such as mechanical operation of valves, maintenance and construction of various structures for dams, debris basins and spreading grounds and access thereto was under the supervision of R. D. Reeve, Chief, Operation and Maintenance Division. ### PACOIMA | | | | | ecord of | | | PACOIMA | | _ | | LO:
FLOC | S ANGELE | ON RECOR
S COUNTY
OL DISTRIC
DIVISION | т | | | | |----------|--------------------|---------------------|--------------------|----------------------------|----------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--|---------|----------------------|---------------------|----------| | In
On | 1,850 | IIII GAILL | | | | .ior ine i ear | Ending Sepie | mner 30, 15.75 | ł., | | | | Continuou | s Water | Stage Recorder | Au | | | Dra | inage Area. | 28.2 | Square Miles | . Capacity of I | Reservoir1 | 714.4 Ac. | Ft. at Spillw | ay Elev | 950.0 Ft. as | of De | ecember , | <u>1941 Y</u> Surve | ey Gage Helg | hts | Read Dail | <i></i> | | | ļ | | осто | BER | | | NOVE | MBER | | | DECEM | BER | | | JA | NUARY | | _ | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Fi | C. F. S.
Inflow | C. F. S.
Outflow | | | | | | _0 | | | | 0.5 | 0.5 | | <u></u> | O . | 0 | 1849.4 | 694 | | 0.1 | 7 | | | | ļ | 0.1 | 0.1 | | | 0.5 | 0.5 | | - 6 | 9 | 0 | 18501 | 708 | | 0.1 | Ŧ | | 1 | | | 0.1 | 0.1 | | | 0.5 | 0.5 | | | 0 | 0 | 1850.8 | 722 | | 0.1 | - - | | | | | 0.2 | 0.2 | | | 0.5 | 0.5 | PL C | -0 | 0 | 0 | 18520 | 746 | | 0.1 | - | | 1 | | | 0.2 | 0.2 | | | 0.5 | 0.5 | - 3 | ž | 0 | ō , | 1852.4 | 755 | | 0.1 | | | | | | 0.3 | 0.3 | | | 0.4 | 0.4 | æ | a | 0 | 0 | 18529 | 765 | | 0.1 | | | | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | 9.0 | 0 | 0 | 18533 | 773 | | 0.1 | | | | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | - E | 0 | <u> </u> | 1853.8 | 784 | | 0.1 | -1 | | _ | | | 0.4 | 0.4 | | <u> </u> | 0.4 | 0.4 | | - # | <u> </u> | <u> </u> | 18542 | 792 | | 0.1 | | | _ | | | 0.4 | 0.4 | | | 0.5 | 0.5 | | | 0 | <u> </u> | 1854.6 | 801 | | 0.1 | -1 | | | | | 0.5 | 0.5 | | | 0.5 | 0.5 | 17713 | 0.1 | 10.05 | 0 | 1854.9 | 807 | | 0.1 | | | | - | 9 | 0.5 | 0.5 | ···· | | 0.4 | 0.4 | 1771.8 | 0 1 | 0.03 | <u>ŏ</u> | 1855.5 | 820 | | 0.1 | \dashv | | - | | | 0.5 | 0.5 | - 5 | - 8 - | 0.4 | 0.4 | 17724 | 0.2 | 0.05 | ŏ | 1855.9 | 829 | | 0.1 | - | | - | -8- | 0 | 0.5 | 0.5 | - 9 | | 0.2 | 0.2 | 17731 | 03 | 0.05 | ŏ | 18562 | 835 | | 0.1 | ᅱ | | - | <u>a</u> | a | 0.5 | 0.5 | | - 8 | 0~ | 0 7 | 1773.8 | 0.4 | 0.05 | ō | 1856.4 | 839 | | 0.1 | ᅦ | | - | | - | 0.5 | 0.5 | 9 | - 8 | Ö | Ō | 17743 | 0.5 | 0.05 | ō | 1856.7 | 846 | | 0.1 | 7 | | - | | ± . | 0.5 | 0.5 | * | 0 | 0 | 0 | 1774.8 | 0.6 | 0.05 | 0 | 1857.0 | 852 | 9 3.1 | 01 | | | | | • | 0.5 | 0.5 | | . 5 | 0 | 0 | 1775.4 | 0.7 | (0.1 | 0 | 18573 | 859 | | 01 | \equiv | | | | | 0.5 | 0.5 | | | 0 | 0 | 1786.8 | 111 | 5.1 | 0 | 1857.5 | 863 | | 0.1 | | | | | | 0.5 | 0.5 | | | 0 | 0 | 18189 | | | o o | 1857.8 | 870 | | 0.1 | _ | | <u> </u> | | | 0.5 | 0.5 | | | 0 | 0 | 18394 | | | 0 | 1858.0 | 874 | | 0.1 | | | L | | | 0.5 | 0.5 | | ļ | 0 | 0 | 18431 | 5762 | 4 4 .8 | 12.5
29.5 | 18583 | 881 | | 0.1 | - | | ļ | | | 0.5 | 0.5 | | ļ | 0 | 0 | 1842.7 | | 25.9 | | 18585 | 886 | | 0 1 | ᅰ | | | | | 0.5 | 0.5 | | | 0 | - 0 | 1844.6 | | 18.7 | 151 | 1858.8
1859.0 | 892 | | 01 | 1 | | | | | 0.5 | 0.5 | | | Ö | ŏ | 18459 | | 121 | ŏ |
18592 | 901 | | 01 | \neg | | - | | | 0.5 | 0.6 | | | ŏ | 0 | 18469 | 6458 | 9.4 | - ŏ | 18594 | 906 | | 0.1 | \dashv | | - | | | 0.6 | 0.6 | | | Ö | ŏ | 18479 | 665.0 | 9.7 | Ö | 18595 | 908 | | 0.1 | - | | | | | 0.5 | 0.5 | | 1 | 1 | | 1848.7 | 680.6 | 7.8 | ŏ | 1859.7 | 913 | | 01 | - | | FAL | | | 12.8 | 12.8 | | 1 | 7.0 | 7.0 | | | 4002 | 571 | | | 1203 | 31 | ヿ | | Ac. E | Ft. | | 25.4 | | | | 13.9 | | | | 794.0 | | | | 238.6 | 107 | | | Ac. | VM. | | | 25.4 | | | | 139 | l | | | 113.3 | ļ | | - 6.1 | 15 | | | Dall | ly inflow | | <u>0.6</u> | | | | 0.5 | | l | | 144.6 | | | | 7.8 | 14 | | | Dali | y inflow | | 0 | | | | 0 | | ļ | 256 | 0 | | ļ | | 2.3 | | 0 | | age (| Change | <u> </u> | | | | N | OTE: Gage Hel | ohts and Stores | res as of Midnight | 680.6 | ~ | | <u> </u> | | + 2325 | + 91 | | | | | | | | | | | Acre Feet | or midnight | on Day Show | | S COLLECTED | DW | | COMPUTATIONS | ⅓ Xe | _ | | | S. Elev. | 1929.8 | feet | | | | 4.3 | Acre Feet | | | | | Dam Te | | Gage Hts. copied Fi | ckd. | Di | | | s. Elev.
k Inf. | 1770 ± | | on VAR 10L
S. from 7:30 | | | to 8:00 | | 0.400.440 | | L. L. M | | Hydrogr | | Storage applied F | | 127 | | | k Outf. | 564 | | 8. from 6:00 / | | 3/30/46 | | P.M. on | 3/30/46
2/5/46 | | L. J. Ti | JKNER. | Hydrogr | | Inf. & Outf. comp.Fh | | 72 | | | | 241 | | CTION IN RES | | c/ 3/40 | | | | | | | | | | JHE 7/ | | | | | | | OD OR PRORAT | | OUNTS | | | | | | | | | | 3/1L // | ., 4 | | | -4-1131 | ALLOWANCE N | u cus FFRI | THE OW PROPERTY | | | | | | | | | | | | | _ | | 1860 922 2 | | | | | | | | | | | | LO
FLO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISIO | т | | | | |--|------|----------------|------------|------|----------------|--------------|---------------|----------------|-----------------|-----------------|---------------|-----------|------------|--|-------------|-----------------|------------|-----| | | Ĉ | On Cacoliii | a callyon. | | | | or ide iear i | anding Septem | mber 30, 19.41 | 2. | | | | Continue | us Water S | tace Recorder. | Au | | | FEBRUARY | _ | | | | | | | | - 14 | 250 0 | | | ***** C. * | | | - | | | | Cape Storage Cape | D | Prainage Area. | | | a. Capacity of | Heservoir4.7 | | | ay Elevl. | 250.10F1. as | | | Tatt Salve | y Gage He | | | . ¥ | _ | | Storage Inflow Outflow Height I | 1 | | FEBRU | ARY | | | MARG | CH | | | APR | IIL. | 1 | | M | AY | | - 1 | | 1860 922 2 | · - | Gage
Height | | | | | | | | | | | | | | | | ٦ | | 1861 4 952 1 15 2 0 1 184 4 5 60 3 2 4 0 1 190 5 2348 0 64 1 0 1 1 122 5 3 349 7 3 6 6 0 5 2 183 8 6 975 4 11 8 11 8 1 1 184 5 6 10 4 2 2 5 0 1 190 5 2 2 7 1 4 1 1 1 1 1 1 1 1 | ill' | 18599 | 917.6 | 2.4 | 0.1 | 1844.0 | | | | | | | 0.1 | 1928.8 | 3470 | 4 17.0 | 0.3 | | | 1965.2 975.4 11.6 | 2 | | | 2.4 | 0.1 | | | | | | | | 0.1 | | | | | | | 1835.2 730.6 13.6 13.7 1845.0 610.4 2.5 0 1909.5 25.7 3 41.5 01 1929.7 518.9 6.3 0.5 1835.6 50.2 2 14.8 13.0 1845.3 616.0 (2.2 0.1 1911.5 2615.4 44.6 0.1 1929.7 3518.9 6.3 7.2 1835.1 43.3 2 6.3 41 1845.5 619.7 2.2 0.1 1913.4 2701.1 4.3 0.1 1929.5 3508.1 6.0 10.3 1835.7 451.9 4.4 0 1845.7 623.4 2.2 0.1 1913.4 2701.1 4.3 0.1 1929.5 3508.1 6.0 10.3 1835.7 451.9 4.4 0 1845.7 623.4 2.2 0.1 1913.4 2701.1 4.3 0.1 1929.5 3491.9 5.8 8.6 1835.7 451.9 4.4 0 1845.7 623.4 2.2 0.1 1913.4 2701.1 4.3 0.1 1929.2 3491.9 5.8 8.6 1836.8 469.4 4.0 0 1846.3 634.5 63.0 0.1 1918.4 2955.3 2.4 5.0 1.9 1929.1 348.6 5.5 7.8 1837.7 484.0 3.9 0 184.6 5.6 63.3 3.0 0.1 1918.4 2955.3 2.4 5.0 2.1 1929.0 348.11 5.6 9.5 1837.7 484.0 3.9 0 184.6 5.6 63.3 3.0 0.1 1920.3 30.9 2.2 6.0 2.1 1928.7 34.65.1 5.5 9.6 1837.7 484.0 3.9 0 184.6 9.6 64.5 3.0 0.1 1920.3 30.9 2.0 2.0 2.9 2.8 7.5 7.5 8.5 9.5 1838.6 4.98.9 3.9 0 184.6 9.6 5.5 5.5 0.0 0.1 1920.3 30.9 2.0 2.0 2.9 2.8 3.4 5.5 9.5 1838.6 4.98.9 3.9 0 184.7 6.5 5.5 5.5 0.0 0.1 1920.3 30.9 2.0 2.0 2.9 2.8 3.4 5.5 9.5 1838.6 4.98.9 3.9 0 184.7 6.5 6.5 2.2 0.0 1.9 2.5 3.0 2.0 2.0 2.9 2.8 3.4 3.5 3.0 | I | 1861.4 | | 15.2 | | | | | | | | | | | | | | | | 183.4.6.1 | | | | | | | | | | | | | | | | | | _ | | 1835.7 43.1 44.2 5 6 6 7 7 2 2 0 1 1913.4 2701.1 4 3 3 0 1 1929.5 350.8 1 6 0 1 1835.7 431.9 4 4 0 1845.9 6 6 7 2 1 1916.2 2851.1 3 3 0 1 1929.3 439.7 3 5 9 9 1 1845.9 6 6 7 3 1 1916.2 2851.1 3 3 0 1 1929.3 439.7 3 5 9 9 9 1 1846.4 6 6 6 6 6 6 6 6 6 | 4 | | | | | | | | | | | | | | | | | _ | | 1835.7 1 442.5 | ╟ | | | | | | | | | | | | | | | | | _ | | 1835.77 | ∦- | | | | | | | | | | | | | | | | | _ | | 183.6.2 2.5.9.6 4.0 0 184.6.1 63.0.8 2.1 0.1 191.7.4 288.8.2 28.9 0.1 192.0.1 148.6.5 5.7 8.8 183.6.8 4.9.4 4.0 0 184.6.3 63.4.5 1.0 0.1 191.8.4 293.6.3 24.5 0.2 192.9.0 3.48.1.1 15.6. 9.2 183.7.2 4.75.9 4.0 0 184.6.3 63.4.5 1.0 0.1 191.8.4 293.6.3 24.5 0.2 192.9.0 3.48.1.1 15.6. 9.2 183.7.2 4.75.9 4.0 0 184.6.3 63.8.3 3.0 0.1 191.9.4 298.5.2 24.8 0.2 192.8.9 34.75.8 1.5.5 9.6 183.7.2 4.75.9 0 184.7.3 653.5 1.0 0.1 191.9.2 0.3 30.9.9 6.2 2.6 0.2 192.8.7 3.46.5 1.5.5 9.6 1.6 3.7.2 4.7.5.9 0 184.7.3 653.5 1.0 0.1 192.0 3 30.9.9 6.2 2.6 0.2 192.8.7 3.46.5 1.5.5 9.6 1.6 3.8.2 4.9 2.2 3.9 0 184.7.6 65.9 2.2 9 0.1 192.1 30.6 9.5 20.3 0.2 192.8.7 3.46.5 1.5.5 9.5 1.6 3.9.2 2.9 0.1 192.1 30.6 9.5 20.3 0.2 192.8.7 3.46.9 1.5 5.9 5.1 1.6 3.9.2 2.9 0.1 192.1 30.6 9.5 20.3 0.2 192.8.7 3.46.9 1.5 5.9 5.1 1.6 3.9.2 2.9 0.1 192.1 30.6 9.5 20.3 0.2 192.8.7 3.46.9 1.5 5.9 5.1 1.6 3.9.2 2.9 0.1 1.9 1.9 1.9 1.0 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | ╬ | | | | | | | | | | | | | | | | | _ | | 1 1 1 1 1 1 1 1 1 1 | ╢ | | | | | | | 2.1 | | | | | 0 1 | 10201 | 7491 | 1 2 5 | | | | 1837.2 | t | | | | | | | 130 | 0.1 | | | | | | | | | | | 183 7.7 | r | | | | | | | 3.0 | | | | 24.8 | | | | | | _ | | 1838 2 492 2 3.9 0 1847.6 659.2 2.9 0.1 1921.1 3069.5 20.3 0.2 1928.6 3459.7 5.5 9.5 1839.7 517.3 3.9 0 1847.6 659.2 2.9 0.1 1921.9 310.99 20.6 0.2 1928.4 3449.0 5.5 9.5 1839.7 517.3 3.9 0 1848.1 668.9 2.0 0.1 1922.6 3145.4 18.1 0.2 1928.2 3438.3 5.4 9.5 1840.1 524.0 3.9 0 1848.4 674.7 3.1 0.1 1923.8 3207.0 15.7 0.2 1928.1 3433.0 5.4 9.5 1840.1 524.0 3.9 0 1849.8 702.3 14.0 0.1 1923.8 3207.0 15.7 0.2 1927.9 3422.9 5.3 9.5 1840.9 557.7 3.9 0 1849.8 702.3 14.0 0.1 1923.8 3207.0 15.7 0.2 1927.9 3422.9 5.3 9.5 1840.9 557.7 3.9 0 1859.8 702.3 14.0 0.1 1924.4 32581 15.9 0.2 1927.7 3411.7 5.1 9.5 1841.3 544.6 (3.4 0 1851.5 736.7 8.3 0.1 1925.8 3511.2 11.3 0.2 1927.6 3406.4 4.8 9.4 1641.7 551.6 3.4 0 1851.5 736.7 8.3 0.1 1925.8 3511.2 11.4 0.2 1927.6 3406.4 4.8 9.4 1641.7 551.6 3.4 0 1852.5 746.9 5.3 0.1 1925.8 3511.2 11.4 0.2 1927.6 3406.4 4.8 9.4 1641.7 551.6 55.6 3.4 0 1852.5 746.9 5.3 0.1 1925.8 3511.2 11.4 0.2 1927.2 3385.1 4.6 10.3 1642.4 563.8 3.3 0 1852.5 757.3 5.3 0.1 1925.8 3511.2 11.4 0.2 1927.2 3385.1 4.6 10.3 1642.4 563.8 3.3 0 1852.5 757.3 5.3 0.1 1925.8 3511.2 11.4 0.2 1927.2 3385.1 4.6 10.3 1642.6 570.9 3.5 0 1852.5 7476.0 4.3 0.1 1925.8 3531.2 11.4 0.2 1927.2 3385.1 4.6 10.3 1642.6 570.9 3.5 0 1853.8 784.4 4.4 0.1 1927.5 3390.4 9.9 0.3 1926.8 3563.9 4.4 10.5 1643.7 586.9 2.6 0 1853.8 784.4 4.4 0.1 1927.5 3390.4 9.9 0.3 1926.8 3563.9 4.4 10.5 1643.7 586.9 2.6 0 1853.8 784.4 4.4 0.1 1927.5 3400.4 9.9 0.3 1926.8 3563.9 4.4 10.5 1643.7 586.9 2.6 0 1854.8 98.7 7.7 7.6 0.1 1925.8 5350.4 9.9 0.3 1926.8 353.7 5.4 2.1 0.5 1643.7 586.9 2.6 0 1854.8 98.7 7.7 7.6 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.5 0 1.1 1925.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 | ľ | | | | | | 645.8 | 3.0 | 0.1 | | | | | | | | | _ | | 1839 c | ľ | | | | 0 | 18473 | | | | | | | | | | | | | | 1839 2 50 8 3 9 0 1847
665 0 3 0 0 1 1922 6 3145 4 18 1 0 2 1928 3 3 8 3 5 4 9 5 1840 1 524 0 3 9 0 1848 1 668 9 2 0 0 1 1923 3 2070 15 7 0 2 1928 1 3433 0 5 4 9 5 1840 1 524 0 3 9 0 1849 8 702 3 14 0 0 1 1923 8 32070 15 7 0 2 1928 1 3433 0 5 4 9 5 1840 9 5 3 7 7 3 1 1 1 1923 8 32070 15 7 0 2 1927 3 3 4 2 9 5 3 9 5 1840 9 5 3 7 7 3 0 0 1850 7 7 2 4 9 2 0 1 1924 9 3 264 1 15 3 0 2 1927 3 4 1 7 5 1 9 5 1841 1 3 3 4 4 4 8 9 4 4 4 4 4 4 4 4 4 | ľ | | | 3.9 | | | | | | | | | | | | | | | | 1840 | T | | 508.9 | 139 | | | | 3.0 | | | | | 0.2 | 19282 | 3438. | 3 5.4 | 9.5 | | | 1840 5 5 5 0 0 1849 8 702 3 14 0 0 1 1924 3 3258 1 15 9 0 2 3277 3411 7 5 1 9 1 1 1 1 1 1 1 1 | I | 1839.7 | | | | | | | | | | | 0.2 | 19281 | 3433 | 5 4 | | _ | | 1840 9 52777 | il. | | | | | | | | | | | | | | | | | | | 18413 544 & 34 | L | | | | | | | | | | | | | 1927.7 | 3411 | 51 | | _ | | 1841.7 531.6 3.4 0 1852.0 746.9 5.3 0.1 1925.8 3311.2 11.4 0.2 1927.2 2395.1 4.6 10.3 1842.0 565.8 3.4 0 1852.5 757.3 5.3 0.1 1926.2 3332.3 10.9 0.3 1927.0 3374.5 4.5 10.3 1842.0 563.8 3.3 0 1853.0 767.6 5.3 0.1 1926.5 3353.4 10.8 0.3 1926.8 3353.4 4.3 10.3 1642.8 570.9 3.3 0 1853.8 776.0 4.3 0.1 1926.5 3353.4 10.8 0.3 1926.8 3353.4 4.3 10.5 1843.1 576.2 (2.7 0 1853.8 784.4 4.4 0.1 1927.5 3369.2 10.1 0.3 1926.6 3353.4 4.3 10.5 1843.4 581.5 2.7 0 1854.2 792.8 4.3 0.1 1927.5 3406.4 9.3 0.3 1926.5 3337.5 4.2 10.5 1843.7 586.9 2.6 0 1854.9 807.7 76.0 0.1 1927.5 3406.4 9.3 0.3 1926.3 3327.0 4.0 10.3 1843.7 1843.1 1843.7 1343.7 0.1 1928.5 3438.3 82.0 0.3 1925.9 3316.5 3.8 9.9 1855.8 826.9 9.8 0.1 1927.9 3422.9 8.6 0.3 1925.9 3316.5 3.8 9.9 1835.8 826.9 9.8 0.1 1928.5 3458.3 82.0 0.3 1925.5 3306.0 3.5 9.6 1835.8 1844.7 331.7 0.1 1928.5 3458.3 82.0 0.3 1925.7 3306.0 3.5 9.6 1835.8 | 1 | 18409 | 537.7 | | | | | | | | | | | | | | | _ | | 1842 0 556 8 3 4 | 1 | | | | | | | | | | | | | | | | | _ | | 1842.4 253.8 33 | 1 | | | | | | | | | | | | % % | | | | | | | 1842 570 5 5 5 5 5 5 5 5 5 | ╬ | | | 3.4 | | | | | | | | | | 19270 | 33743 | 1 4 5 | | | | 1843 576 2 7 0 | ŀ | | | | 8 | 18534 | | | | | | | | | | | | | | 1843 4 58 1.5 2.7 0 1854 2 792 8 4.3 0.1 1927 5 3406 4 9.3 0.3 1926 1 227 0 40 10 10 10 10 10 10 | ╬ | | | | | | | | | | | | | | | | | - | | 184 185 18 185 18 185 18 185 18 18 | ╬ | | | | | | | 4.3 | 0.1 | | | | | | | | | _ | | 1855.8 826.9 9.8 0.1 1928.2 3438.3 82 0.3 1925.7 2306.0 25 9.5 9 | ŀ | | | | | | | | 0.1 | | | | | 10250 | 3316 | 3 3 | | - | | 1831.5 1434.7 331.7 O.1 1928.5 3454.4 7.0 0.3 1925.4 3290.3 3.3 10.7 | ╫ | 1042. | 3002 | | | 1855.8 | 8269 | 9.8 | 0.1 | 19282 | 34383 | 8.2 | | | | | | | | TAL 1439 308.4 | ll: | | | | | 1881.5 | 1484.7 | 331.7 | | 19285 | 3454 A | 7.0 | 0.3 | 1925.4 | 3290 | | 10.7 | _ | | ACFT. 16.75 16.11.6 17.6 18.11.6 17.6 18.11.6 18.1 | ľ | | | | | 1892.5 | | | | | | | | | | | 112 | | | TAC FF | T | AL | | 1439 | 308.4 | | | | 2.6 | | 1 | 8125 | 5.8 | | | 1602 | 2535 | _ | | 15 2 33 1 7 104 1 7 0 35 2 8 24 2 0 7 0 2 0 7 0 2 8 | | | | 2854 | | | | 272.6 | | L | | 16116 | | | | | 455 | 5 9 | | 2 | | | | | 611.7 | | | | 5.2 | | | | 11.5 | <u> </u> | | | | | | # 1 26.7 5 # 1 26.7 5 # 1 26.0 0 # 1 26.7 5 # 3 26.2 # 1 26.7 5 # 3 26.2 # 1 26.7 5 # 3 26.2 # 1 26.7 5 # 3 26.2 | | | | | | | | | | <u> </u> | | | | | | | 3.3 | | | NOTE: Gag Helgels and Storage as of Midnight on Day Shown | | Dally Inflow | | 2.4 | | | | 2.0 | | <u> </u> | 4 - 00 - | 7.0 | | | | 2,8 |
 _ | | W. S. Elev. 1929 8 feet on 5/6/46 Storage 3524.3 Acre Feet RECORDS COLLECTED BY COMPUTATIONS ckd. W. S. Elev. 1770 ± feet on VARIOUS DAYS Storage NECLICIBLE Acre Feet L. MODRE Dam Tender Gage His. copied Figh. APK 5/2 Feak Int. 564 C.F. S. from 7:30 A.M. on 3/30/46 to 8:00 A.M. on 3/30/46 L. J. TURNER Hydrographer Storage applied Figh. APK 5/2 Feak Out: 241 C.F. S. from 6:00 A.M. on 2/5/46 to 2:00 P.M. on 2/5/46 Hydrographer Int. & Out. comp. Fram. APK 3/2 | ag | ge Change | <u> </u> | | | · | 12675 | VMP: Care Mair | rhts and Stores | | | | | | -185 | L | | | | W. S. Else V. 1770 ± feet on VARIQUS DAYS Storage NEGLIGIBLE Acre Feet L. L. MOORE Dam Teeder Gage His copied Fiew APK 5/2 Feek Int. 564 C. F. S. from 7:30 A.M. on 3/30/46 to 8:00 A.M. on 3/30/46 L. J. TURNER Hydrographer Storage applied First APK Peek Cutt. 524 C.F. S. from 6:00 A.M. on 3/30/46 L. C.F. S. from 6:00 A.M. on 2/5/46 to 8:00 A.M. on 2/5/46 Hydrographer Jack Court comp. Friend APK S. C.F. S. from 6:00 A.M. on 2/5/46 to 8:00 | | | | | | | | | | e se or widnigh | t on Day Brow | | | | T a | | | _ | | Peak Inf. 564 C.F.S. from 7:30 A.M. on 3/30/46 to 8:00 A.M. on 3/30/46 to 2:00 P.M. on 2/5/46 No. on 3/30/46 to 2:00 P.M. on 2/5/46 2 | | | | | | | | | | | l | | | | | | | _1 | | Feak Outs. 241 C.F.S. from 6:00 A.M. on 2/5/46 to 2:00 P.M. on 2/5/46 Hydrographer Ind. & Outs. comp. FHM APK 5/ | | | | | | | | | | | | | | | under G | sge Ats. copied | CHM APK 5/ | /2: | | | | | | | | | | | A+W+ | | ├ ── | L. J. Tu | RNER | | raphae Y | orage applied | | - 7 | | | | | | | | | | 2:00 | P.M. Off | - 2/5/46 | <u>'</u> | | | Hydroj | . april 1 1 | a. a can comp. | | | ### PACOIMA (contid) | F. C. D | ist. Form 680 Revie | nd 500 [1/44 | | | | | | | | | | | | | | | | |---------|----------------------|-------------------|----------|-------------------|---|------------------|------------------|-----------------|------------------------|----------------|------------------|------------------------|------------------------------------|----------------|----------------|-----------------------|----------| | | | | | | | | | | | | DAM | OPERATI | ON RECO | RD | | | | | ١, | D-15- C W-1 | ght in feet and (| ~~~~*I | . Damend of | | PAC | OIMA | Dr | | | L | OS ANGELE | SCOUNTY | - | | | | | 1 ' | Dani Gage IIe. | Ant in teet end . | Operano: | 1 114CO1 W | *************************************** | | | | | | FLC | OD CONTR | OL DISTRIC | т | | | | | Ι, | | | | | | | | _ | _ | | | | DIVISION | | | | | | | On | coima Cany | | | | for the Year E | nding Sept | ember 30, 19.1 | 16. | | | | | | | Air | | | | | | | | | | | | | | | | | | age Recorder | | | | 1 | Orainage Area | 28.2 8 | quare Mi | iles. Capacity of | f Reservoir | 17.1 H. H. Ac. 1 | t. at Spills | way Elev | 50.0 Ft. as | of | ecember | 19 Ա Ա Տև Ր | vey Gage Hei | ghis | Read Dail, | y | | | | | JUNI | E | | | JUI | .Y | | 1 | AUG | UST | | 1 | SEPT | EMBER | | 1 | | 3 | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | 3 | | 1"1 | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | 1 " | | 1 | 19247 | 30537 | 12.0 | 114 | 19178 | 29073 | 0 | 4.6 | 1909.6 | 25315 | 0 | 8.2 | 18973 | 2030 3 | 0 | 7.9 | 1 | | 2 | | 32329 | 1.9 | 109 | | 29025 | ō | 4.6 | | 2514.0 | ŏ | 8.7 | 18969 | | | 7.8 | 2 | | 3 | | 32173 | | 10.6 | | 2893.0 | O | 4 .6 | 1908.8 | 2496.7 | 0 | 8.2 | 18965 | | | 7.8 | 3 | | 4 | 1923.6 | | 1.4 | 10.5 | 19173 | 2883.4 | 0 | 4 .6 | 19084 | 24794 | 0 | 8.4 | 18961 | | | 7.8 | 1 | | 5 | 19233 | 31813 | 1.2 | 105 | 19171 | | 0 | 4.5 | 19080 | | Q | 8.3 | 1895.7 | 19705 | | 7.8 | 5 | | 6 | 19229 | | 1.1 | 10.5 | 19170 | | | 4.5 | | 2449.4 | o | 8.3 | 18952 | | 0 | 7.9 | _ 6 | | 7. | 1922.5 | | 10 | 10.5 | | 28595 | _ 0 | 4.5 | | 24323 | 0 | 8.3 | 1894.8 | | | 7.8 | 7 | | 8 | 19221 | | 0.8 | 10.5 | 1916.6 | 28500 | <u> </u> | 4.5 | 19069 | | | 8.0 | 1894.4 | | | 7.8 | _ 8 | | | 1921.7 | | 0.8 | 10.5 | | 2840.6 | <u> </u> | 4.5 | 1906.6 | | 0 | 5.5 | 1894.0 | | | 7.8 | | | 10 | 19214 | | 0.7 | 105 | 19162 | | 0 | 4.5 | 19063 | | 0 | 6.8 | 18935 | | | 7.8 | 10 | | 11 | 19212 | | 0.7 | 4.5 | 1916.0 | | - 0 | 4.5 | 1905.9 | | 0 | 7.9 | 18931 | | | 7.8 | 12 | | 18 | 19212 | | 0.7 | 22 | 1915.8
1915.6 | | - 0 | 4.4 | 1905.5 | | - 0 | 79 | 1892.7 | | | 7.8 | 13 | | 14 | 1921.0 | | 0.6 | 4.9 | | 27935 | - 5 | 4 4 | 19051 | | | 7.9 | 18922 | | <u> </u> | 7.7 | 14 | | 15 | | | 0.5 | 4.9 | 19153 | | 0 | 4 4 | 19043 | | ŏ | 7.9 | 18914 | | 1 0 | 7.8 | 15 | | 16 | 19205 | | 0.5 | 4.8 | 1915.1 | | - 0 | 4.4 | 19039 | | . 0 | 7.9 | 18909 | | | 7.8 | 16 | | 17 | 19203 | | 0.5 | 4.8 | 1914.9 | | <u> </u> | 4.4 | 19035 | | 0 | 7.9 | 1890.5 | | | 5.8 | 17 | | 18 | 19201 | | 0.4 | 4.8 | 1914.7 | | . 0 | 4.4 | 19031 | | 0 | 7.9 | 18903 | | | 4 3 | 18 | | 19 | 19199 | | 0.4. | 4.8 | 1914.5 | | 0 | 4.4 | 1902.7 | | 0 | 7.9 | 18900 | | | 4.3 | 19 | | 20 | 19197 | | 4 | 4.8 | 19143 | 27424 | 0 | 4.4 | 19023 | | 0 | 7.9 | 18898 | | | 4.3 | 20 | | 21 | 1919.6 | | 0.4 | | 19141 | | 0 | 4.4 | 19019 | | 0 | 8.0 | 1889.5 | | <u> </u> | 4.3 | 21 | | 22 | 1919.4 | | 0.3 | 4.7 | 19139 | | 0 | 4.4 | 1901.5 | | 0 | | 18893 | | 0 | 4.3 | 22 | | 23 | 19192 | | 0.3 | 4.7 | 1913.7 | 2714.8 | | 7.4 | 19011 | | <u> </u> | 8.0 | 18891 | | Q | 4.3 | 23 | | 24 | 19190 | | 0.3 | 4.7 | 19133 | | 0 | 9.8 | 1900.7 | | 0 | 8.0
7.9 | 18888 | | <u> </u> | 4.3 | 24 | | 26 | 1918.9 | | 0.3 | | 1912.4 | | - ŏ | 9.8 | 18999 | | - 8 | 79 | 18886 | | 0 | 4.3 | 25 | | 27 | 1918.7 | | 0.2 | 4.6 | 19119 | 26333 | - 6 | 112 | 1899.5 | | - ö - | 79 | 18883 | | 0 | 4.3 | 26
27 | | 28 | 1918.4 | | 0.2 | 4.6 | 1911.4 | | - 0 - | 112 | 1899.0 | | ŏ | 7.8 | 1887.8 | | ŏ | 4 3 | 28 | | 29 | 19182 | 2926 6 | 0.2 | 4.6 | 19109 | 2588.6 | - 0 | 9.8 | 1898.6 | | ŏ | 7.9 | 1887.5 | | T 8 | 4.3 | 29 | | 30 | 19180 | | 01 | | 1910.4 | 25665! | ō | 104 | 18982 | | 0 | 7.9 | 18873 | | | 4.3 | 30 | | 31 | <u> </u> | | | 1 7 | 1910.0 | | 0 | 8.4 | 1897.8 | | 0 | 7.9 | | A.M. 1 JH. SH. | | 1 | 31 | | TOT | | 2 | 03 | 198.0 | | | 0 | 184.3 | | | 0 | 2451 | | | 0 | 186.6 | 1 | | Inf. A | | 4 | 0.3 | | | | 0 | | | | 0 | | | | 0 | 4.59 | 9.6 | | Outr. | | | | 392.7 | | | | + (2.4) | ļ | | | + (13.5) | | 3701 | + (6.1) | 2904,4 +12 | 22.01 | | | Daily Inflow | | 0.5 | | | | 0 | | ļ | | 0 | | | | 0 | 331. | 7 | | Mean | imum
Daily inflow | | 01 | | | | 0 | | | | 0 | | | | 0 | 0 | | | Btorag | re Change | -3524 | | | ll | -368.0 | mr. C Wo | labte and Stone | ges as of Midnigh | -499.7 | | | ! | -3763 | | +1672. | و | | | | | | | | | | Acre Feet | ges and or accoming it | . On Day Shown | | OS COLLECTED | 770 | 1.00 | | Yearly T | | | | V. S. Elev. | 1929.8 | fee | | | orage 3524 | | Acre Feet | | | | | Dam Te | | MPUTATIONS | ckd. I
HM APK 5/22 | Date | | | eak Inf. | .1770. ± | | F. S. from 7:30 | LOUS DAYS SI | orage NFGLIG | | | 0/04/4- | | | MOORE | Hydrog | ender Gag | rage applied F | | 2/47 | | | eak Outf. | 564
241 | C 1 | F. S. from 6:00 | A.M. On | 3/30/46 | | P.M. on | 3/30/46
2/5/46 | | L. J. | TURNER | Hydrog | | & Outf. comp. | JHL 7/21 | 747 | | | | DICATES TOTAL | | | | -/ -/ | | | | | | | | | vonip. | - JUL 1/21 | 141 | | | | DICATES TOTAL | | | | | | | | | | | | | | | | | J | | | | | | | | | | | | | Mark Committee Committee Committee | | | | | | I | | | **** | ********** | | | | | | | | | | | | | | | D | aily Gage Hei | ght in feet an | d Operation l | Record of | | PACOIN | 1A | | m | | LO | S ANGELE | ON RECOR | _ | - · · · - · · · | | | |----|---|--|--------------------|---------------------|----------------|---------------------|--------------------|---------------------
-------------------|---------------------|--------------------|---------------------|----------------|---------------------|-----------------------------|--|----| | I | Paco | іла Сапуо | 1 | | | for the Year I | Ending Septer | nber 30, 19 11 | 17 | | HYI | PRAULIC | DIVISION | | | | | | c |)n | JANE TO STATE OF THE PARTY T | | | | | and Depres | | •• | | | | Continuou | s Water Ste | ge Recorder. | Au | | | D | rainage Area. | 28.2 | Square Mile | e. Capacity of | Reservoir47 | 14.4Ac. 1 | Ft. at Spillwa | y Elev19 | 50.0Ft. as | of | ecember | 191414 Ѕигv | ey Gage Heig | hts Rea | ad Daily | | | | Т | | OCTO | BER | | | NOVEM | BER | | [| DECEM | BER | | İ | JANU | ARY | | 7 | | - | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | | 1 | 18871 | | 10.5 | 4.6 | | | 0 | 0 | 1864.4 | | 122 | 0 | 1880.4 | | | 0 | 1 | | 1 | 1886.9 | | 0.4 | 4.3 | | | 9 | - 0 | 18652 | 10429 | 9.8 | 0 | 1882.5 | | | 0 | -# | | ╫ | 1886.7
1886.4 | | 0.4 | 4.3 | 1771.8 | 0.1 | 0 1 | 0 | 1866.7 | 1062.6 | 10.0 | 0 | 18843 | | | 0 | -# | | ╬ | 18861 | | 10.1 | 4.3 | 1775.5 | 0.7 | 0.3 | ŏ | | 10952 | 7.6 | ŏ | 1887.4 | | | 0 | + | | ⇈ | 18858 | | 0 | [43] | 17779 | 1.5 | 0.4 | Ö | | 11230 | 14.0 | 0 | 18852 | 1602.7 | | c 60.1 | 7 | | | 18856 | | O | 4.3 | 1779.8 | 2.4 | 0.4 | ō | | 1151.0 | 141 | 0 | | 1197.4 | | 12264 | | | | 18853 | | . 0 | 4.3 | 17818 | 3.9 | 0.8 | 0 | | 11715 | 104 | | 1853.7 | 782.3 | | 2302 | | | Г | 18850 | | 0 | 4.3 | 17830 | 5.1 | 0.6 | Ō | 18709 | 1187.0 | 7.8 | 0 | 1832.6 | 404.3 | | c 210.6 | | | L | 18848 | 15896 | 0 | 43 | 17844 | 7.0 | 0.9 | 0 | 1871.5 | 1202.6 | 7.8 | 0 | 1804.6 | 930 | | ¢1760 | | | L | 18845 | | 0 | 4.3 | 1786.0 | 9.6 | 1.3 | 0 | | 12183 | 7.5 | Q | 17954 | 3.7.8 | (17.6 | 454 | _ | | L | 18842 | | 0 | 4.3 | 17882 | 14.1 | 23 | 0 | | 12342 | 73 | 0 | 1788.6 | 14.8 | | 28.2 | | | L | 1884 0 | | | 4.3 | 17930 | 28.0 | 7.0 | 0 | 18732 | | 7.3 | 0 | 17888 | 15.4 | | 15.4 | _ | | 1 | 1883.7 | | | 4.3 | 17980 | 50.4 | 113 | <u> </u> | 1873.7 | | 7.1 | Q | 17969 | 44.8 | | 0 | -1 | | L | 18835 | | | 4.3 | 18008 | 66.9 | 8.3 | <u> </u> | 18742 | 12743 | ووك | | 18016 | 72.1 | | 1 0 | 4 | | ₽ | 18833 | | (0.5 | 4.3 | 18022 | 76.1 | 4.7 | Ŏ | 1874.4 | 12798 | Γ 6 .8 | c 4.0 | 18052 | 97.5 | | 0 | -# | | | 18830 | | <u>loz</u> | 4.3 | 18031 | 822 | 3.0 | Ŏ | 18713 | 1197.4 | 6.5 | 481 | 18082 | 121.5 | | 9 | # | | | 1882.7 | | 0 | c 43 | 1803.8 | 87.2
93.0 | 2.6 | 0 | 1857.7 | 868.3
574.4 | 6.2 | 1721 | 18109 | 1450 | | 9 | 4 | | | 1882.5 | 14510 | - 0 | 321 | 18272 | 327.6 | 118.3 | - 0 | 18269 | 323.6 | | c132.0 | 18154 | 1674 | | | 4 | | | 1880 4
1870 5 | | 0 | 1383 | 1834.7 | 4363 | 54.8 | 0 | 1827.7 | 334.4 | (5.6 | 0136.0 | 18174 | 209.0 | | 0 | + | | | 18583 | | 0 | 148.7 | 18382 | 4922 | | ŏ | 1828.6 | 346.8 | 5.5 | | 18191 | 227.5 | | 1 8 | | | | 1843.0 | 574.4 | ŏ . | 154.9 | 18462 | 632.7 | 282
70.8 | ŏ | 18293 | | t 5 5 | ŏ | 1820.8 | 2471 | | - ŏ | 1 | | | 18212 | | -0 | 162.7 | 1851.8 | 742.8 | 55.5 | ŏ | 1830.5 | 373.5 | 8 5 | ŏ | 1822.4 | 2662 | | 16 | -# | | | 17820 | 4.0 | ŏ | c1249 | 18552 | 8141 | 35.5 | ŏ - | 18359 | 455.0 | 411 | ŏ | 1823.8 | 283 4 | 8.6 | _ ŏ | -1 | | 7 | Reservoi | r down | ō | (0.5 | 1857.6 | 8661 | 263 | o | 18522 | 751.0 | 1493 | 0 | 18251 | 299.9 | 8.3 | 0 | 1 | | r | to inspe | | 0 | | 1859.5 | 908.6 | 21.4 | 0 | 1860.6 | 933.6 | 92.0 | 0 | 18263 | 315.6 | | 0 | 1 | | r | sluice g | | 0 | 0.4 | 1861.0 | 942.8 | 172 | 0 | 1865.7 | 10801 | 739 | 0 | 1828.6 | 346.8 | 171 | 1.4 | ٦Ì | | Г | | | 0 | | 18623 | 9731 | 153 | Ó | 1871 4 | 1200.0 | 60.4 | 0 | 18302 | 369.2 | | 8. \$ | 7 | | ĺΞ | | | 0 | | 1863.4 | 9992 | 132 | 0 | 18751 | 12989 | 499 | 0 | 1831.7 | 390.9 | | 0 | 7 | | L | | | 0 | 0 | | | | | 1878.0 | 13802 | 41.0 | 0 | 18329 | 408.8 | | 0 | I | | T/ | | | 2.2 | 845.6 | | | 503.8 | 0 | ļ | | 702.4 | 5103 | | | 506.8 | 996.5 | | | | Ft.
c. Ft. | | 4.4 | | | | 9993 | | ļ | | 3932 | | | | 0052 | 34.02 | | | | num
ally leflow | | | 16772 | | | | | [| | | 10122 | | | 9765 | 4665 | | | | | | 0.6 | | | | 1183 | | | | 1493 | | | | 35.7 | 149 | | | D | ally laffew
Change | | | | | 0000 | | | l | | 5.5 | | | 5.74 | 8.0 | - 0 | | | -8 | Change | 16729 | | | | - 9992
NO | TE: Gage Heig | hts and Storag | es as of Midnight | - 381.0 | | | ! | - 971 A | | - 1264 | | | - | 7 m | | feet | | 140 000 | | | Acre Feet | or mongh | on Day Bullet | | S COLLECTED | DV | 1 000 | | 1.07 | | | | S. Elev. 18 | 88.0 | feet | on 1/6. | | rage 169 | 6.7 | Acre Feet | | | | | Dam Ten | | IPUTATIONS
e Hts. copied | | Da | | | | 92 | | | DO NOON on 1 | | to 1:00 F | | 11 /00 /40 | | L. L. MOORI | | Hydrogra | | | LT JHL 12/ | 4 | | | | 82
37 | | | DA.M. on 1 | | to 1:00 1 | on on | 11/20/46 | | L. J. TURNI | | Hydrogra | | & Outf. comp. | LT JHL | | | | RKS ** | | | MONTHS DURI | | ///4/ | | | | | F. E. STUNE | JEN | nydrogra | price (Int. | a oau, comp. | LT JHL | | | ~ | *************************************** | NO STURM | A JETERAL | MOUTTING DOK! | NO IEAR | | | | | | | | | | | | | ### PACOIMA (contid) | Daily Gage Hei | thi in feet and Operation F | ecord of | 4 | PACO | IMA | Dar | m. | | LO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC | | | | | |-------------------------|-------------------------------------|---------------------|---|---------------------|--------------------|---------------------|---------------------|---------------------|--------------------|---------------------|-----------------------------------|---------|--------------------|---------------------|-----| | In Paco | ima Canyon | | *************************************** | for the Year | Ending Septe | mber 30, 19k | 7. | | | | DIVISION | 1 | Stage Recorder | Au | | | _ | 00.0 | | | | | 105 | | | | | | | • | | - | | Drainage Area. | 28.2 Square Mile | . Capacity of | Heservoir4./ | .4.4Ac. | rt. at Spillw | ay Elevi.H.I | U.UFi. as | of Dece | moer, | 19,44 Surv | ey Gage Hel | ghis | wead haill | | | | | FEBRUARY | | | MAR | CH. | | | APRI | I. | | | | MAY | | - 1 | | Gage
Height | Acre Ft. C. F. S.
Storage Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Fi | | C. F. S.
Outflow | | | 18341 | 427.0 9.2 | 0 | 1841.6 | 549.8 | [49 | 4.6 | 1836.6 | 4662 | (4.6 | 5.9 | 1819.8 | 235 | 5 (1.4 | 6.8 | _ | | 1835.2 | | 0 | 1841.7 | 551.6 | 4.9 | 4.6 | 1836.4 | 463.0 | 4.6 | 5.9 | 1818.8 | 224 | 2 1.3 | 6.8 | | | 18362 | | 0 | 1841.7 | | 4.9 | 4 .5 | 1836.2 | | 4.5 | 5.9 | 1817.8 | | | 6.8 | | | 18372 | | | 1841.7 | | 4.9 | 4.5 | 18360 | | <u> </u> | 6.0 | 1816.7 | | | 6.8 | | | 18381 | | o | 18418 | | 4.9 | 4.5 | 1835.7 | | 4.0 | 6.0 | 1815.6 | | | 5.8 | | | 18390 | 505.5 7.6 | 0 | 1841.8 | | 14.8 | 4.4 | 1835.4 | | 3.6 | 6.0 | 18145 | | | 6.8 | | | | | C 1.5 | 1841.6 | | 4.5 | 4.5 | 1835.0 | 4409 | 3.3 | 6.0 | 18133 | | | 6.8 | | | 18400 | 5223 72
5257 70 | C 4.7
C 5.3 | 1841.7 | | 3.8 | 3.0 | 1834.7 | | 2.9 | 6.0 | 18120 | | | 6.8 | | | 18402 | | 6 7 3 | 18420 | | 3.7 | 2.4 | 18339 | | 2.7 | 6.0 | 1809.6 | | | 6.3 | | | 1841.6 | | C 3.1 | 18421 | | 3.6 | 3.0 | 1833.4 | | r2.5 | 6.1 | 18085 | | | 5 5 | | | 1841.7 | | 6.0 | 1842.0 | | 3.5 | 4.8 | 1832.8 | 4073 | 2.4 | 6.2 | 18073 | | | 5.8 | | | 1841.7 | 551.6 6.4 | 5.9 | 18415 | | 3.5 | 7.0 | 18322 | 3983 | 2.4 | 6.4 | 18061 | | | 5.7 | | | 1841.8 | | 5.9 | 18411 | | 3.4 | 6.9 | 1831.6 | | 2.3 | 6.4 | 1804.6 | | 0 0.8 | c 6.6 | | | 1841.8 | | 6.0 | 1840.7 | | 3.3 | 7.0 | 1831.0 | 380.7 | 2.3 | _6.4 | 18031 | 82 | 2 0.8 | 63 | | | 1841.8 | | 6.0 | 1840.2 | | 3.2 | 71 | 1830.7 | 376.4 | 2.3 | 3.8 | 1801.6 | 72 | 1 0.8 | 6.1 | | | 18418 | 5533 59 | 6.0 | 1839.7 | 5173 | 3.1 | 7.1 | 1830.0 | 366.3 | 2.3 | 6.6 | 18002 | 63 | | 5.4 | | | 1842.0 | 556.8 5.8 | 3.6 | 18392 | | 3.0 | 7.2 | 18293 | 356.5 | 22 | 6.6 | 1798.8 | | | 5.5 | | | 18422 | 5603 5.7 | 4.9 | 1838.8 | | (2.9 | 7.2 | 1828.6 | 346.8 | 2.2 | 6.8 | 1796.8 | | | 5.8 | _ | | 18421 | | 6.4 | 1838.5 | | T 4.6 | 7.1 | 1827.8 | | 2.1 | 6.8 | 1794.0 | | | 5.7 | ᅴ | | 18419 | | 6.3 | 16383 | | 4.4 | 7.1 | 18272 | | 0.5 | 6.8 | 1790.9 | 21 | | 5.5 | - | | 18418 | 5533 [52 | 6.1 | 18381 | | 4.2 | 7 1 | 18265 | | 1.9 | 6 .B | | | 8. 0 | 4.9 | _ | | 1841.7 | | 6.1 | 1837.7 | | 4.0 | 7.1 | 1825 £ | 13030 | 1.9 | 6.8 | | | 0.8 | 3.6
0.8 | _ | | 1841.6 | 549.8 4.7 | 5.4 | 1837.4 | | 4.0 | 5.7 | 18251 | 2999 | 1.8 | 6.9 | | | 10.7 | 0.6 | | | 1841.6 | 549.8 4.6
549.8 4.6 | 4.6 | 18371 | 4678 | 3.8 | 5.5 | 1823.8 | 1 5 3 ± 0 | 1.7 | 6.8 | | | 10.7 | 1.4 | - | | 1841.6 | 549.8 4.6 | 4 .6 | 1836.4 | | 3.7 | 5.9 | 18231 | 2747 | 1.6 | 6.8 | | | 1 .7 | 1.8 | _ | | 1841.6 | 549.8 4.6 | 4.6 | 1836.7 | | 8.5 | 6.0 | 18223 | | 1.6 | 6.8 | | - | 1.3 | 1.6 | | | -041.0 | | 7.0 | 1836.9 | | 7.6 | 6.0 | 18215 | 2554 | 1.5 | 6.8 | | | - d ă | 2.9 | | | | | | 1836.9 | | 6.0 | 6.0 | 1820.7 | | 113 | 6.6 | | | o ã | 13 | _ | | | | | 1836.7 | | 4.4 | 6.0 | | | | | | | (0.8 | 0 | | | TAL | 178.7 | 107.6 | | | 133.8 | 1751 | | | 77.8 | 189.7 | | | 27.B | 150. | 5 | | Ac. Ft. | 354.4 | | ! | | 265.4 | | ļ | | 1543 | | | | 551 | 4 2 3
5 9 0 | 1 | | Ac. Ft. | | 2134 | | | | 347.3 | I | | | 3763 | | | 2985 | | | | Axiroum
Daily Inflew | 9.2 | | ļ | | 8_4 | | I | | 4.6 | | | | 1.7 | 14 | | | Inimum
Dally Inflew | 4.6 | | | - 2 | 2.9 | | ļ | | 1.5 | | ļ | 0.45 | 0.7 | 1 | 0 | | ige Change | +141.0 | | L | - 82 O | YES: Care He | phts and Stores | res as of Midnight | - 221.9 | | |
<u> </u> | -243 | | -167 | | | | 1888.0 feet | | /4= 54 | | | Acre Feet | on an or arrounding | I Day BillOWI | | S COLLECTED | . DV | | COMPUTATIONS | | ** | | W. S. Elev. ** | 1888.0 feet | on 1/6 | | | 0 | Acre Feet | | l | | | Dam T | | Gage Hte. copied | ckd. | . D | | Peak Inf. | | | O NOON on | | to 1:00 P | | 1/20/46 | | ., L. MOORI | | Hydrog | | | LT JHL 1:
LT JHL | 2/1 | | Peak Outf. | | | :30 A.M. on | | to 1:00 P | on on | 1/ EV/ 40 | | . E. STUNI | | Hydrog | | Inf. & Outf. comp. | | | | MARKS [| INDICATES TOTAL FOR P | | | | | | | · | , c, 3,0NI | ***** | > og | | a cau. comp. | JAL | _ | | | COMPUTED FROM MEAN IN | | | | | | | | | | | | | | _ | | | NO STORAGE SEVERAL MO | | | | | E MADE FOR | | | | | | | | | | | | | | | ecord of | | PACOIMA | | | | | Lo
FLO | DPERATION S ANGELES DO CONTRO DE CON | COUNTY | т | | | | |-------------|-------------------------|--------------|--------------------|---------------------|----------------|---------------------|--------------------|------------------|-----------------|--|--------------------|--|----------------|----------|---------------------|----------|-----| | lr
O | Pace | ima Cany | on | | | for the Year | Ending Septe | mber 30, 1947 | <i>!</i> | | , , | | | | | | | | _ | _ | | | | | | | | | | | | Continuo | us Water | Stage Recorder | .Au | | | D | rainage Area | 28.2 | Square Miles | . Capacity of | Reservoir | 7.1.UAc. | Ft. at Spillw | ay Elev195 | O.OFt. a | of Dec | ember | 19.44. Surve | y Gage Hei | ghts | ead Daily | | | | 1 | | 117 | NE | i i | | Tri | LY | 1 | | A 170 | JUST | | MIC | er | PTEMBER | | | | - | | | | | | | | | | -, | | | | | | | - | | 1 | Gage
Height | Acre Ft. | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S. | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S. | Gage
Height | Acre F | | C. F. S. | ı | | ╫ | 11018110 | | 0.8 | 0 | | | 0.8 | 8.0 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | + | | | 0.8 | 0.6 | | ļ ——— | 0.7 | 0.7 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | + | | | 0.8 | 3.0 | | 1 | 0.7 | 0.7 | | 1 | 0.4 | 0.4 | | | 0.4 | 0.4 | 1 | | 1 | Dry | | 0.8 | ão. | | | 0.7 | 0.7 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 1 | | | 0.6 | 0.8 | | | 0.7 | 0.7 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | | | - | 0 B | 0.8 | | | 0.7 | 0.7 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | | | 2 | 0.8 | 0.8 | | | 0.6 | 0.6 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | | | 3 | 0.8 | 0.8 | | | 0.6 | 0.6 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 1 | 0 | 40 | 0.8 | 0.8 | | | 0.6 | 0.6 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | | | 2 . | 0.8 | 0.8 | | | 0.6 | 0.6 | | | 0.4 | 0.4 | | | 0.4 | 0,4 | | | Ţ | | - 8 | O.B. | 0.8 | | | 0.5 | 0.5 | | 1 | 0.4 | 0.4 | | L | 0.4 | 0.4 | | | Ŧ | | 5 5 | 0.8 | 0.8 | | | 0.5 | 0.5 | | L | 0.4 | 0.4 | | | 0.4 | 0.4 | | | - | 5 | P # | 0.8 | 8.0 | | | 0.5 | 0.5 | | | 0.4 | 0.4 | | | 0.4 | 0,4 | | | 1 | | , o | 0.8 | 0.8 | | 1 | 0.5 | 0.5 | | 1 | 0.4_ | 0.4 | | | 0.4 | 0.4 | | | JL | j j | ! જ | 0.6 | 0.8 | | | 0.4 | 0.4 | | ļ | 0,4 | 0.4 | | | 0.4 | 0 A | _ | | | | - 2 | 0.8 | 0.8 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | ī | 5 | w & | 8,0 | 0.8 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.3 | 0.3 | | | Т | 8 | a ≱ | 0.8 | 0.8 | | | 0.4 | 0 .4 | | | 0.4 | 0.4 | | L | 0.4 | 0.4 | | | | ě | o - | 0.8 | 8.0 | | | 0,4 | 0.4 | | | 0.4 | 0.4 | | | 0.3 | 0.3 | | | JL. | | ÷ ÷ | 0.8 | 0.8 | | | 0.4 | 0.4 | · | | 0.4 | 0.4 | | | 0.3 | 0.3 | _ | | Т | | > | 0.8 | 8.0 | | | 0.4 | 0.4 | | 1 | 0.4 | 0.4 | | | 0.3 | 0.3 | | | · | | [투 | 8.0 | 8.0 | | <u> </u> | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.3 | 0.3 | _ | | L | | | 0.8 | 0.8 | | | 0.4 | 0.4 | | - | 0.4 | 0,4 | | | 0.2 | 0.2 | _ | | L | 2 | 2 | 8.0 | 8. 0 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.3 | 0.3 | _ | | L | | | 0.9 | 0.9 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.3 | 0.3 | _ | | | | | 0.9 | 0.9 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.3 | 0.3 | | | L | | | 0.9 | . 0.9 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.3 | 0.3 | _ | | L | | | 9.0 | 0,8 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | Ш | | . _ | | | 8.0 | 0.8 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | | - | 0.4 | 0.4 | _ | | | | | 8, 0 | 0.8 | | <u> </u> | 0.4 | 0.4 | | | 0.4 | 0.4 | | | 0.4 | 0.4 | _ | | | | | | | | | 0.4
15.5 | 15.5 | | | 12.4 | 12.4 | | <u> </u> | 109 | 109 | _ | | T | .Ft: | | 24.3 | 25.5 | | | | 122 | | <u>'</u> | | 154 | | 1 | | 4 3 5 6 | إلى | | | c.Ft. | | 482 _ | 50.6 | | | 30.7 | 30.7 | | | 24.6 | 2.4.6 | | | 21.6
21.6 | 6028 | | | | mum
ally inflow | · | 0.9 | | | | 8.0 | | | | 0.4 | | | | 0.4 | 149 | | | n D
Hint | mum
ally Inflow | | 0.8 | | | | 0.4 | | | | 0.4 | | | | - ŏ 2 | 170 | | | | ally Inflow
e Change | -25 | 0,0 | | | 0 | <u> </u> | | | | | | | | | - 1672 | | | w.g. | e Change | | | | | | OTE: Gage He | ghts and Storage | se as of Midnie | ht on Day Show | | | | | | Tearly | | | | | | feet | | /45 | | | Acre Feet | | 7 | | S COLLECTED | DV | т Т | COMPUTATIONS | | _ | | | . S. Elev. | 1888.0 | feet | on 1/6 | /4/ 50 | orage 16 | 96.7 | Acre Feet | | | | | Dam T | Candar | Gage Hts. copied | ckd. | D | | | eak Inf. | 282 | | | O NOON on | | | | 11 (00 (15 | · | L, L. MOOR | | Hydrog | | Storage applied | | | | | eak Inf. | 282 | C.F. | S. from AT 11 | U NOON ON | 1/7/47 | to 1:00 P | on | 11/20/46 | | L. J. TURN | | Hydrog | | Inf. & Outf. comp.L | | | | | | | | | | 1/1/4/ | | - Oil | | · | F. E. STUN | DEN | nydrog | rebuer | a Outr. comp.[| | | | ML | anna ** | NO STORAGE | SEVERAL MO | NTHS DURING | YEAR | | | | | | | | | | | APK 1/1 | 10 | ### BIG TUJUNGA | InBl.g. | | | Record of | | BIG TUJUN | GA | Da | m #1 | | FLOC | D CONTRO | S COUNTY | | | | | |-----------------------------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|---------------------|----------------------|---------------------|--------------------|---------------------|-----------| | | .Tujunga_C | eu kou | | | for the Year E | inding Septe | mber 30, 19) | 46 | | HIL | RAULIC | DIVISION
Continuo | | ge Recorder | Au | | | Drainage Area | 82.3 | .Square Mile | s. Capacity of | Reservoir 42 | 35.3 Ac. F | t, at Spillw | ray Elev.229 | 0.0 Ft. as | of | June , | 1 4 44_Surve | | | | | | | | OCTO | BER | | | NOVEM | BER | | | DECEM | IBER | į | | JANU | ARY | | T. | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | 7 | | | 15013 | 17 | 9.5 | 22252 | 9693 | (5.0 | 13.8 | 2205.4 | 507.0 | 4.5 | 3.5 | 22149 | 7099 | 14.1 | 11.8 | 1 | | | 14871 | 1.8 | 9.5 | 2224.4 | 947.4 | 4.0 | 13.6 | 22054 | 5070 | 3.5 | 3.5 | 22151 | 714.5 | 141 | 11.8 | _ 2 | | | 14695 | 1.8 | 9.6 | 2223.7 | 928.5 | 2.5 | 134 | 2205.5 | 508.9
510.8 | 4.4 | 3 .4
3 .4 | 22153
22154 | 7192 | 142 | 11.8
11.9 | | | | 14381 | 1.8 | 9.4 | 2222.1 | 8861 | 2.1 | 130 | 2205.7 | 512.7 | 4.3 | 3.4 | 22154 | 7216 | 12.0 | 12 0 | + 5 | | | 14243 | 1.8 | 9.3 | 22214 | 8680 | 13.8 | 12.8 | 2205.8 | 514.7 | 4.4 | 3.4 | 22154 | 721.6 | 121 | 12 1 | 6 | | 7 22395 | 1410.7 | 1.8 | 9.2 | 2220.8 | 852.6 | 3.8 | 12.6 | 2205.8 | 514.7 | 3.4 | 3.4 | 22153 | 7192 | 11.0 | 12.2 | 7 | | | 13970 | 1.8 | 9.1 | 2220.0 | 832.4 | 3.8 | 12.5 | 2205.9 | 516.6 | 4.4 | 3.4 | 22153 | 7192 | 123 | 123 | 8 | | 0 22383 | 13835 | 1.8 | 9.0 | 22193 | 815.0
797.8 | 3.8 | 12.5 | 2206.0 | | 4.5
3.5 | | 22151 | 7145 | 10.0 | 12.4 | | | | 13567 | 11.9 | 8.8 | 22178 | 7784 | 3.5 | 12.5 | 22061 | 5205 | 4.6 | 3.6
 2214.8 | 707.5 | 11.4 | 12.5 | 11 | | | 13401 | 1.9 | 8.8 | 22171 | 761.6 | 3.5 | 12.4 | 22061 | 520.5 | 3.6 | | 2214.6 | 703.0 | 101 | 12.5 | 19 | | 3 2237.0 | | 1.9 | 8.8 | 2216.4 | 745.0 | 3.5 | 12.4 | 22062 | | 4.5 | 3.6 | 22143 | 6961 | 9.0 | 12.4 | 18 | | 2236.6 | | 1.9 | 8.8 | 2215.5 | 7262 | 3.4 | 12.4 | 22062 | 522.4 | 3.6 | | 2214.1 | 691.5 | 9.9 | 12.4 | 14 | | | 1300.7 | 1.9 | 8.8 | 22149 | 691.5 | 2.8 | 12.4 | 22063 | 524.4 | 4 .6 | 3.6 | 22139 | 6869 | 10.0 | 123 | 15 | | 2235.8 | | 0.8 | 8.8 | 22141 | 675.5 | 2.8 | 119 | 22065 | 5263 | 4 .5
4 .5 | | 2213.7 | 682.4 | 101 | 123 | 16 | | 2235.0 | | 1.9 | 8.8 | 2212.6 | 6574 | 2.8 | 11.6 | 2206.6 | 5303 | 4.4 | | 22132 | 671.0 | 9.9 | 12.2 | 18 | | | 1239.6 | 1.9 | 12.0 | 2211.8 | 6395 | 2.8 | 11.4 | 2206.7 | 5322 | 4.4 | 3.4 | 2212.8 | 6619 | 91 | 13.7 | 19 | | 22336 | | 19 | 13.8 | 2211.0 | 621.8 | 2.7 | 112 | 2206.8 | 5342 | 4.4 | | 22123 | 650.7 | 9.1 | 1 4 .7 | 20 | | 22328 | 11925 | (2.6 | 139 | 22102 | 604.4 | (2.5 | 109 | 2217.7 | 776.0 | 1253 | | 2212.0 | 6439 | 8.4 | 11.9 | 21 | | 22321 | | 2.7 | 14.0 | 2209.4 | 5873 | 2.5 | 109 | 2225.0 | 963.8 | 397.7 | | 2211.8 | 639.5 | 9.6 | 11.8 | 22 | | | | 2.7 | 142 | 22085 | 568.5 | 2.5 | 109 | 2225.8 | 986.0 | 3102 | | 2211.5 | 6329 | 8.4 | 11.7 | 23 | | 2230.6 | | 2.7 | 14.4 | 2207.7 | 5522 | 2 4 | 10.9 | 22162 | 7403
6710 | 771 | | 22112 | 6262 | 8 3
9 5 | 11.7 | 24
25 | | 22291 | | 2.7 | 14.4 | 2206.2 | 52241 | 2.9 | 10.9 | 2212.0 | 6439 | 30.4 | | 2211.0 | 621.8 | 8.0 | 8.0 | 26 | | 22283 | | 2.7 | 143 | 2205.4 | 507.01 | 3.2 | 109 | 2212.7 | 659.7 | 242 | | 22115 | 632.9 | وو | 4.3 | 27 | | 22275 | | 2.7 | 142 | 22052 | 5031 | 4.0 | 6.0 | 2213.5 | 677.8 | 21.0 | | 2212.0 | 6439 | 9.8 | 4.3 | 28 | | 2226.8 | | 4 .0 | 141 | 22052 | 5031 | 3.5 | 3.5 | 22141 | 691.5 | 18.7 | 11.8 | 2212.5 | 6552 | 10.0 | 4.3 | 29 | | 22264 | | 8.3 | 14.0 | 22053 | 5051 | 4 .5 | 3.5 | 22145 | 700.7 | 164 | 11.8 | 22129 | 6642 | 8.9 | 4 3 | 30 | | 2225.8 | 986.0 | 763 | 139
3452 | | ——- | 971 | 339.6 | 2214.7 | | 14.1 | | 22133 | 6732 | 3201 | 4 3
33 6 4 | 81 | | . Ac. Ft. | | 1513 | 3435 | <u>-</u> | 1 | 92.6 | 229.0 | <u>-</u> | | 2307.6 | 10053 | | | 6349 | 328 | | | tř. Ac. Ft. | | | 6847 | | | | 6736 | | | | 21074 | | | 667.2 | 413 | źŝ | | Maximum
des Daily Inflow | <u> </u> | 8.3 | | | | 50 | | | | 397.7 | | | | 142 | 39 | | | Misimum
on Dally luflew | l | 1.7 | | | | 21 | | | | 3 .4 | | | | 8.3 | | 1.7 | | orage Change | -5333 | | | | -480.9 | Pr. Cama Wai | abte and Stone | te as of Midnight | 2002 | | | | -321 | | - 84 | | | IX. W. S. Elev. | | feet | on o // | . / so Stor | | | Acre Feet | i i | on Day bhown | | COLLECTED | DV | Loon | PUTATIONS | ½ Yes | | | | 2288.2 | feat | on 6/1 | | rage 503. | | Acre Feet | | n. | J. ROBERTSO | | Dam Te | | Hts. copied L | | Date 7/47 | | | 2310 | | S. from 8:00 | A.M. on 3 | | 9:00 | | 3/30/46 | | TURNER | <u> </u> | Hydrog | | age applied L | | ",41 | | x. Peak Outf. | 983 | C. F. 1 | S. from 8:00 | P.M. on 3 | /30/46 · t | | on | | *** | | | Hydrog | | & Outf. comp. L | | 57 | | | | | | R EVAPORATION | | | | | | | | | | | | | | [IND | ICATES TOTA | L FOR PERIO | OD OR PRORA | TED DAILY AMO | UNTS | | | | | | | | | | | | | Daily Gage Height in feet and Operation Record of Big Till UNISA Dam #1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION | | |--|---| | The Right Northead Capacity of Reservoir 1235. 3. Ac. Ft. at Spillway Elev. 2280. 0. Ft. as of 1916. Servey Gage Heights Read Daily Store North Continuous Water Stage Recorder 1917. 1 | C.F.S.
Outflow
5.9
5.9
5.9 | | The Big Tulunga Canyon For the Year Ending September 30, 18, 18 Surpey The North The Year Ending September 30, 18, 18 Surpey | C.F.S.
Outflow
5.9
5.9
5.9 | | Description | C.F.S.
Outflow
5.9
5.9
5.9 | | Trainage Ares 82.3 Square Miles Capacity of Reservoir 1235.3 A.C. Fi. at Spillway Elev. 2280.0 Fi. as of June 1811 Survey Gage Height Read Daily Register 1280.0 Fi. as of June 1811 Survey Gage Height Read Daily Register 1812 Heigh | C.F.S.
Outflow
5.9
5.9
5.9 | | Drainage Ares S2.3 Square Miles Capacity of Reservoir 1/235.3 Ac. Ft. at Spillway Elev. 2290.0 Ft. as of | C. F. S.
Outflow
5 9
5 9
5 9
5 9 | | February C.F.S. | C.F.S.
Outflow
5.9
5.9
5.9
5.9 | | Gage | 0utflow
5 9
5 9
5 9
5 9
5 9 | | Height Storage Inflow Ditflow Height Storage Inflow Ditflow Ditflo | 0utflow
5 9
5 9
5 9
5 9
5 9 | | 2214 | 5 9
5 9
5 9 | | 2218 4 793 0 | 5.9
5.9
5.9 | | \$ 2220 1 834 9 25 6 4 5 2225 0 963 8 92 5 0 2267 5 2693 0 104 5 179 0 2283 8 3768 2 130 6 2212 862 9 187 4 6 2225 6 980 4 92 5 0 2262 7 2425 2 90 0 225 0 2284 0 3782 7 121 6 1 2212 0 883 5 160 0 4 6 2225 6 980 4 92 5 0 2262 6 2419 9 71 3 74 0 2284 1 3790 0 111 7 1218 9 805 2 148 5 70 2225 9 988 7 92 5 0 2262 6 2419 9 71 3 74 0 2284 1 3790 0 111 8 2213 0 666 4 139 80 0 2226 2 997 2 93 5 0 2266 5 3256 7 8 75 4 0 8 2284 2 3797 3 111 1 1 2214 1 6615 1 125 26 0 2226 5 1005 7 9 3 5 0 2267 2 2675 6 55 1 0 8 2284 4 3812 0 111 1 2214 1 6915 1 132 0 6 2226 7 1011 3 78 5 0 2271 5 2932 9 38 0 0 8 2284 4 3813 9 110 11 1214 1 6915 1 132 0 6 2227 1 1025 5 9 3 5 0 2271 5 2932 9 38 0 0 8 2284 7 3833 9 110 11 11 1214 1 6915 1 132 0 6 2227 1 1025 5 9 3 5 0 2271 5 2932 9 38 0 0 8 2284 9 3848 6 119 12 2214 1 6915 1 132 0 6 2227 1 1039 9 122 5 0 2273 6 3066 1 33 1 0 8 2285 2 3870 7 119 13 1216 7 752 1 101 3 0 2288 1 1051 4 106 0 1 9 4 5 0 2275 3 3177 7 30 8 0 9 2285 5 3870 7 119 12 2217 3 766 4 115 4 3 2228 4 1060 1 9 4 5 0 2275 3 3177 7 30 8 0 9 2285 5 3870 7 119 12 2217 8 10 7832 1 30 4 5 2228 8 1071 8 7 9 5 0 2275 3 3177 7 30 8 0 9 2285 5 3870 7 119 12 2218 6 7978 1 20 4 7 2228 8 1071 8 7 9 5 0 2276 1 3231 2 279 0 9 2285 5 3893 0 10 8 2285 5 3893 0 10 8 2218 6 7978 1 20 4 7 2228 8 1071 8 7 9 5 0 2276 1 3231 2 279 0 9 2285 5 3893 0 10 8 2218 6 7978 1 20 4 7 2228 8 1071 8 7 9 5 0 2276 8 3278 5 248 0 9 2285 5 3893 0 10 3 12 2216 8 825 1 13 5 5 0 2233 1 1071 8 7 9 5 0 2276 8 3278 5 248 0 9 2285 5 3893 0 10 3 12 2216 8 825 1 13 5 5 0 2233 1 1071 8 7 9 5 0 2276 8 3278 5 248 0 9 2285 5 3 3873 7 10 8 2228 6 3 395 5 2 10 2 2228 6 825 5 1 3 8 2 2 2 2 1 8 8 8 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5.9
5.9 | | 2221 2 862 9 187 | 5.9 | | 2213 | | | 7 22189 8052 1 4 8 570 22259 9887 92 50 22653 25678 754 0.8 22842 37973 1 1 1 8 22118 6608 1 329 8000 22262 9972 9 3 50 226678 26778 555 1 0 8 22844 38120 1 1 1 1 1 22118 6608 1 25 260 22265 1005.7 9 3 50 22689 27749 50.9 0.8 22845 3819.3 1 1 0 22118 6608 1 25 260 22265 1005.7 9 3 50 22689 27749 50.9 0.8 22845 3819.3 1 1 0 22118 6608 1 25 20 0.6 22267 10113 7 8 50 22715 2932 9 38.0 0.8 22845 3819.3 1 1 0 22118 1 6915 1 2 2 0.6 22269 10170 7 9 5 0 22715 2932 9 38.0 0.8 22849 3848 6 1 1 9 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 5.9 1 | | 2213 0 6664 | 5.9 | | 2211 | | | 10 | | | 12 2214 1 6915 132 0 6 22269 10170 79 50 22715 2932 9 38.0 0.8 2284 9 3848 6 [19] 12 22151 7145 122 0 6 22277 10255 9 3 50 22726 30020 357 0 8 2285 13863 3 119 13 22161 738.0 125 0 6 22277 10399 12 2 50 22736 3066 1 33 1 0 8 2285 2 3870 7 119 14 22167 752 1 101 3 0 2228 1 10514 108 50 2274 4 3118 2 271 0 8 2285 2 3870 7 119 15 22173 7664 115 43 2228 4 1060 1 94 50 2275 3 1177 7 30.8 0 9 2285 5 3873 0 118 16 22173 7664 115 43 2228 4 1060 1 94 50 2275 3 1177 7 30.8 0 9 2285 5 3873 0 118 17 2218 0 7832 13.0 4 5 2228 6 1066 0 8 0 50 2276 1 3231 2 279 0 9 2285 6 3900 4 10.3 18 2219 1 810 1 11 1 49 2229 3 1086 5 10.3 29 2277 4 3319 3 214 0 9 2285 8 3915 2 10.3 18 2219 1 810 1 11 1 49 2229 3 1086 5 10.3 29 2277 4 3319 3 2 14 0 9 2285 8 3915 2 10.3 18 2210 1 8349 112 50 2231 1140 4 280 0 8 2277 8 0 3 6 2 2 2 8 6 2 3 9 4 5 0 10.3 18 2220 1 8349 112 50 2231 1140 4 280 0 8 2278 6 3 4015 2 2 1 0 9 2286 6 3 9 5 5 0 10.3 18 2221 1 860 3 10 1 5 0
2234 1 123 3 13 5 0 8 2278 6 3 4015 2 1 7 0 9 2286 6 3 9 5 5 5 10.6 18 2221 1 860 3 10 1 5 0 2234 1 123 3 13 5 0 8 2278 1 3 4 4 2 9 [19] 7 0 9 2286 6 3 9 5 5 5 10.6 18 2222 1 860 3 10 1 5 0 2234 1 123 3 13 5 0 8 2279 2 3 4 2 9 [19] 7 0 9 2286 6 3 9 5 5 5 10.6 18 2222 1 860 3 10 1 5 0 2234 1 125 3 1 1 5 5 0 8 2279 2 3 4 2 9 [1] 7 5 0 2235 7 3 10.6 1 10.5 1 | 5.9 | | 12 | | | 13 | | | 18 | | | 18 2217 5 7664 115 43 22284 106601 94 50 22753 317777 308 0.9 22855 38930 118 2218 0 7832 1300 455 22286 10660 80 50 22761 32312 279 0.9 22856 39000 (103 11 2 11 2 11 2 11 2 11 2 11 2 11 2 1 | | | | | | 17 2218 6 7978 120 4.7 22288 10718 79 50 22768 32785 248 09 22858 39152 103 18 2219 6 8225 113 50 2231 1 1140 4 280 08 2278 6 3360 3 21.6 09 2286 2 3945 0 103 22 220.1 8349 112 50 2231 1 1140 4 28.0 08 2278 6 3360 3 21.6 09 2286 2 3945 0 103 22 220.7 850.1 12.7 50 2233 3 1206 1 16.4 08 2279 2 3442 9 19.7 09 2286 5 3967 5 10.6 2221.1 8603 10.1 50 2233 3 1206 1 16.4 08 2279 2 3442 9 19.7 09 2286 5 3967 5 10.6 3 2221.6 8732 1 15.5 50 2235 1 16.9 08 <th< td=""><td></td></th<> | | | ## 2219 | | | ## 2219 6 8225 11 3 5 0 2231 1 1140 4 28 0 0 8 2278 6 3 3 6 0 3 21 6 0 9 2286 2 3 945 0 10 3 0 2 220 1 8349 11 2 5 0 2232 3 1177 1 19 3 0 8 2278 6 3 3 6 0 3 21 7 0 9 2286 5 3 952 5 10 2 2 2 2 0 7 850 1 12 7 5 0 2233 3 1206 1 16 4 0 8 2279 2 3 442 9 19 7 0 9 2286 5 3 3952 5 10 2 2 2 2 1 850 3 10 1 5 0 2234 1 1233 3 135 0 0 8 2279 7 3 447 6 18 5 0 8 2286 7 3 982 5 10 6 6 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4.4 | | 22 22 0 1 83 4 9 1 1 2 5 0 22 3 2 3 11 7 7 1 1 9 3 0 8 22 7 8 6 3 4 0 1 5 2 1 7 0 9 22 8 6 5 3 9 5 2 5 1 0 2 2 2 2 0 7 8 5 0 1 12 7 5 0 22 3 3 3 1 2 0 6 1 16 4 0 8 22 7 9 2 3 4 4 2 9 (19 7) 0 9 22 8 6 5 3 9 5 6 7 5 (10 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3.7 | | 12 2 2 2 0 7 8 5 0 1 1 2 7 5 0 2 2 3 3 3 1 2 0 6 1 1 6 4 0.8 2 2 7 9 2 3 4 4 2 9 1 9 7 0 9 2 2 8 6 5 3 9 6 7 5 1 0 6 2 2 3 4 1 2 3 5 1 0 6 1 1 6 4 0 8 2 2 7 9 7 3 4 7 7 6 1 8 5 0 8 2 2 8 6 7 3 9 8 2 5 1 0 6 8 2 2 1 6 8 7 3 2 1 1 5 5 0 2 2 3 5 1 1 2 6 5 1 1 6 9 0 8 2 2 8 0 1 3 5 0 5 4 1 7 5 0 8 2 2 8 6 7 3 9 8 2 5 1 0 6 8 2 2 8 6 7 3 9 8 2 5 1 0 6 8 2 2 8 6 7 3 9 8 2 6 7 3 9 8 2 8 7 8 9 9 7 5 1 0 5 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 | | | ## 2221 | 3.7 | | # 22216 8732 115 50 22351 12651 169 08 22801 35054 175 08 22869 39975 105 22220 8835 102 50 22368 12942 154 08 22806 535404 167 08 22879 04050 105 22224 8940 103 50 22368 13204 145 14 22810 35684 158 08 22872 40202 105 22222 9 9072 117 50 22373 13368 13.6 52 22814 35966 158 08 22872 40202 105 22223 9 9172 117 50 22373 13368 13.6 52 22814 35966 158 08 22873 40278 82 22223 9 9072 117 50 22373 13368 13.6 52 22814 35966 158 08 22874 40202 105 22223 9 9173 104 50 22373 13368 13.6 52 22814 35966 158 08 22874 40203 105 22223 9 9174 90 50 22373 13368 13.6 52 22814 35966 158 08 22874 40203 105 22223 9 9258 104 50 22375 13504 117 50 22819 36319 157 08 22874 40505 82 22223 6 9258 104 50 22375 1354 1319 10 22823 36604 157 08 22877 40581 81 22712 29142 3278 4910 32829 37033 157 59 22878 40657 81 22712 29142 3278 4910 32829 37033 157 59 22879 40733 81 228713 29142 3278 4910 32829 37033 157 59 22879 40733 81 228713 29142 3278 4910 32879 40733 81 228715 29142 3278 4910 32879 40733 81 228715 29142 3278 4910 32879 40733 81 228715 32879 | 3.7 | | # 2222 0 8835 10 2 50 2236 0 1294 2 15 4 0 8 2280 6 354 0 4 16.7 0 8 2287 0 4005 0 10.5 0 2222 4 894 0 10.3 50 2236 8 1320 4 14.5 1.4 2281 0 3568 4 15.8 0.8 2287 2 4020 2 10.5 0 2222 4 894 0 10.3 50 2237 3 1336.8 13.6 5.2 2281 4 3596 6 15.8 0.8 2287 3 4027 8 62 0 2222 2 907 2 11.7 5.0 2237 7 1350 1 11.7 5.0 2281 9 3631 9 15.7 0.8 2287 3 4027 8 62 0 2223 2 915 1 9.0 5.0 2237 7 1350 1 11.7 5.0 2281 9 3631 9 15.7 0.8 2287 4 4035 4 82 0 2223 6 925 8 10.4 5.0 2283 8 1376 8 14.5 1.0 2282 3 3660 4 15.7 0.8 2287 6 4050 5 82 0 2287 8 4020 2 10.5 0 10. | 3.7 | | 22 22 4 8940 10 3 5 0 22368 1320 4 14 5 14 22610 3568 4 158 08 2287 2 4020 2 10 5 2223 9 907 2 117 50 2237 3 13368 13 6 5 2 2281 4 3596 6 158 0 8 2287 3 4027 8 8 2 2223 9 151 9,0 50 2237 7 1350 1 117 50 2281 9 2631 9 15.7 0.8 2287 4 4035 4 8 2 2223 9 151 9,0 50 2237 7 1350 1 117 50 2281 9 2631 9 15.7 0.8 2287 4 4035 4 8 2 2223 6 925 8 10 4 50 2235 5 1376 8 14 5 10 2282 3 3660 4 15.7 0.8 2287 6 4050 5 8 2 227 12 223 6 925 8 10 4 50 2237 9 1154 4 2470 2282 6 3681 8 15.7 2 3 2287 7 4058 1 6 1 227 12 223 2 91 154 4 2470 2 228 2 3703 3 157 5 9 2287 8 4065 7 8 1 | 3.7 | | ## 22229 9072 117 50 22373 13368 13.6 52 22814 35966 15.8 0.8 22873 40278 82 22232 9151 90 50 22377 13501 11.7 50 22819 36319 15.7 0.8 22874 40354 82 2223.5 9258 10.4 50 22385 13768 14.5 1.0 2282.5 3660.4 15.7 0.8 2287.6 4050.5 82 28 28 28 28 28 28 28 28 28 28 28 28 | 3.7 | | 22 2 3 6 9 2 5 8 10 A 5 0 2 2 3 8 5 1 3 7 6 8 1 4 5 1 0 2 2 8 2 3 5 6 0 A 1 5 7 0 8 2 2 8 7 6 4 0 5 0 5 8 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3.7 | | 22 2 3 6 9 2 5 8 10 A 5 0 2 2 3 8 5 1 3 7 6 8 1 4 5 1 0 2 2 8 2 3 5 6 0 A 1 5 7 0 8 2 2 8 7 6 4 0 5 0 5 8 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3.7 | | # | 3.7 | | ss | | | ss | 3.7 | | | 3.7 | | | 3.7 | | TOTAL 3908 2634 1868 8445 13743 9765 374 | | | | | | 1674.5 1936.9 298.7 1154.4 186.9 15.7 | | | Males and the street 9.0 7.8 15.7 8.1 | | | torage Change | + 2554 | | NOTE: Gage Heights and Storages as of Midnight on Day Shown | % Year | | EX. W. S. Elev. 2288.2 feet on 6/11/46 Storage 4096.3 Acre Feet RECORDS COLLECTED BY COMPUTATION | S ckd. Date | | in. W. S. Elev. 2205.2 feet on 11/28/45 Storage 503.1 Acre Feet D. J. ROBERTSON Dam Tender Gage His. copied | LT JHL 8/7/ | | tax Peak Int. 2310 C.F.S. from 8:0C A.M. on 3/30/46 to 9:00 A.M. on 3/30/46 L. TURNER Hydrographer Storage applied | | | tax. Peak Outf. 983 C. F. S. from AT 8:00 P.M. on 3/30/46 to on Hydrographer Inf. & Outf. comp | | | REMARKS NO ALLOWANCE MADE FOR PERCOLATION OR EVAPORATION | LT JHL 8/7/ | | INDICATES TOTAL FOR PERIOD OR PROBATED DAILY AMOUNTS | LT JHL 8/7/ | | | LT JHL 8/7/ | #### BIG TUJUNGA (contid) | Daily Gage He | eight in feet and Operation | Record of | | BIG TU. | JUNGA | | n #1 | | LO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC | | | | |------------------------|-------------------------------------|---|----------------|--------------|--------------------|------------------|------------------|-----------------|--------------------|-------------------|-----------------------------------|---------------------|-------------------|------------| | In Big | Tujunga Canyon | | | for the Year | Ending Septe | mber 30, 194 | 3. | | HYE | RAULIC | DIVISION | | | Δ., | | | | | | | | | | | | | | | age Recorder | | | Drainage Are | a 82.3 Square M | iles. Capacity of | Reservoir 423 | 15.3Ac. | Ft. at Spilly | ray Elev. 229 | 0Ft. as | of | June , | 1914 Surv | ey Gage Hei | ghtsfl | ead Daily | | | 1 | JUNE | | i | TIT | LY | | | AUG | IIST | | A | SEPT | EMBER | | | <u> </u> | | | | Acre Ft. | | | | Acre Ft. | | | L | | C.F.S. | C.F.S. | | Gage
Height | Acre Ft. C. F. S.
Storage Inflow | C. F. S.
Outflow | Gage
Height | Storage | C. F. S.
Inflow | C. F. S. | Gage
Height | Storage | C. F. S.
Inflow | C.F.S.
Outflow | Cage
Height | Acre Ft.
Storage | Inflow | Outflow | | \$ · · | | | | | | 1 9 9 | 22502 | | 1.0 | f1 4 9 | | 11223 | |
(9.7 | | 2278 0 | 40809 53 | 3.7 | 2285.5 | 38781 | 2.3 | 9.9 | 22495 | 1789.8 | 0.0 | 149 | 2229.9 | | | 9.7 | | | 40809 53 | 3.8 | 22851 | | | 9.9 | 22488 | 17604 | 0.9 | 14.8 | 22293 | 1086 | 1.0 | 9.7 | | | 4000.9 5.3 | 3.8 | 2284.8 | | | 9.9 | 22481 | 17315 | 0.9 | 14.8 | 2228.8 | 1071 5 | 10 | 9.7 | | 22381 | | 3.8 | 2284.6 | | | 9.9 | 22475 | | 1.0 | 14.8 | 22282 | | | 18.6 | | | 4088.6 (4.6 | 3.8 | 2284.4 | | | 9.9 | 22468 | | 1.1 | 1149 | 2227.6 | | | 79.3 | | | 4088.6 4.6 | 3.8 | 2284.1 | | | 66 | | 1651.2 | 1.1 | 14.8 | 22271 | | | 9.3 | | | 40963 4.6 | 3.8 | 2281.8 | | 1.8 | 80.9 | | 1624.0 | 1.0 | 14.8 | 2226.5 | | | 93 | | | 4096.3 4.6 | 3.8 | 2277.6 | | | 147.0 | 2244.7 | 1597 1 | 1.0 | 14.8 | 22259 | 988.7 | | 93 | | 2288.2 | | 3.8 | 22733 | | 1.8 | 147.7 | | 15706 | 10 | 14.8 | 2225.3 | 972. | | 93 | | | 4096.3 3.8 | 3.8 | 2268.6 | | 1.7 | 149.4 | 22433 | | 0.8 | C14.0 | 2224.7 | 955.6 | | (9.3 | | 22982 | | 3.8 | 2263.5 | | 1.5 | 1472 | | | 1.0 | 140 | 2224.1 | 9392 | | 9.3 | | 22882 | | 3.8 | 2260.7 | | | 80.5 | 2241.9 | | 1.0 | 13.9 | 22235 | 9232 | | 9.3 | | | 40963 3.8 | 3.8 | 2260.4 | | | 123 | 22411 | | 1.0 | 13.9 | 2222.8 | 904 | | 9.2 | | | 40963 38 | 3.8 | 22600 | | | 11.5 | | | 0.8 | 13.8 | 22222 | 8 8 8 8 | | 9.2 | | | 40886 (2.5 | 3.8 | 2259.6 | | | 11.5 | 2239.6 | | 1.0 | 112.5 | 2221.6 | 873.2 | | 193 | | | 4088.6 2.5 | 3.8 | 22591 | | | 1 4 .5 | | 1390.2 | 1.0 | 12.5 | 22210 | 857.7 | | 93 | | | 40886 2.5 | 3.8 | 2258.5 | | | 163 | 22381 | | 0.8 | 125 | 22203 | 8400 | | 93 | | | 40809 25 | 4.9 | 2258 0 | | 1 5 | (16.0 | | | 0.8 | 12.5 | 2219.7 | | | 9.3 | | | 40733 25 | 7.0 | 2257.4 | | | 15.9 | | | 1 0 | | 22190 | 8074 | | 19.8 | | | 4065.7 2.5 | 7.0 | 2256.9 | | | 15.9 | 2236.5 | | 1 0 | | 22184 | 793.0 | | (81 | | | 4050.5 2.5 | 9.8 | 22563 | | 11.1 | 15.8 | 22360 | 1294.2 | 1.0 | 9.5 | 2217.8 | 778 | | 8.1 | | | 40278 2.5 | 12.6 | 2255.7 | | | 15.8 | 2235.5 | | 0.8 | | 22172 | 764.0 | | 81 | | | 4005.0 2.5 | 12.6 | 2255.2 | 2044.6 | | 15.7 | | 1258.7 | 0.8 | 9.5 | 2216.6 | 749.8 | | 8.1 | | | 39900 25 | 12.6 | 2254.6 | 20163 | | 15.7 | | 1242.8 | 0.8 | 9.4 | 22161 | 738.0 | 1.0 | 8.0 | | | 3967.5 2.5 | 112 | 2254.0 | 19882 | 12 | 1.5.6 | 2233.8 | 1223.8 | 8.0 | (9.4 | 2215.6 | 726 | 1.0 | 7.2 | | | 3952.5 2.5 | 9.9 | 2253.4 | | 1.0 | 15.5 | | 12081 | 8.0 | | 22151 | 7145 | | 7.2 | | 22862 | 3945.0 2.5 | 9.9 | 2252.8 | | | 15.4 | 2232.7 | 1189.4 | 9, 0 | 9.4 | 2214.6 | 703.0 | 1.1 | 72 | | | 39300 2.5 | 9.9 | 2252.1 | 19021 | | 153 | 2232.2 | 1174.0 | 1.0 | 9.4 | 22141 | 691.5 | 1.7 | 72 | | 2285.8 | 39152 24 | 9.9 | 2251.5 | 1875.7 | 8.0 | 15.2 | 2231.6 | 1155.6 | 1.0 | 9.4 | 2213.6 | 680. | 1.9 | 7.2 | | | | | 2250.8 | 18451 | 1.0 | 15.0 | 2231.1 | 1140.4 | 1.0 | 9.4 | | | | | | TAL | | 165.5 | | | 47.2 | 1090.9 | | | 28.9 | 3842 | | <u> </u> | 319 | 264.0 | | c. Ft | 209.5 | | | | 93.6 | | | | 573 | | | | 63.3 | 1154 | | Ac. Ft. | | 3679 | | | | 21638 | | | | 7620 | }- | | 523.6 | 12382 | | Dally Inflow | | | | | 2.3. | | | | 1.1
0.8 | | ļ | | 11 | 1154 | | Inimum
Dally Inflow | 2.4 | _ | | | 8, 0 | | l | | 8. 0 | | | | 8.0 | | | age Change | T-138.1 | | _ | 20701 | | | L | -704.7 | | | Ļ | - 460. | 5 | - 839 | | MACOT HOUSE I TO | | | | | The second second | ights and Storag | es as or Midnig) | nt on Day Shows | | | | | | Yearly T | | | 88.2 fe | et on 6/1 | 1/46 St | | 96.3 | Acre Feet | | | | S COLLECTED | | | DMPUTATIONS | ckd. I | | | 205.2 fe | et on 11/2 | 8/45 St | orage 50 | 03.1 | Acre Feet | | | D. J. ROBEF | TSON | Dam T | | ige Hts. copied | LT JHL 8/7 | | | C. | F. S. from 8:00 | A.M. on | 3/30/46 | to 9:00 | A.M. on | _3/3C/46 | ! | L. TURNER | | Hydrog | | orage applied | LT JHL 8/7 | | . Peak Outf. Q | 983 C. | F.S. from 8:00
F.S. from AT 8:
RCOLATION OR | 00 P.M. on | 3/30/46 | to | on | | L | | | Hydrog | rapher In | if. & Outf. comp. | LT JHL 8/7 | | | ALLOWANCE MADE FOR PE | RCOLATION OR | EVAPORATION | | | | | | | | | | | | | | NDICATES TOTAL FOR P | | | | | | | | | | | | | | | INF | OW FOR JULY, AUG. & : | SEDT COMBUTE | D EDOM CTA | 111 V . O. | | | | | | | | | | | | Daily Gage Heig | ht in feet and Operation R | ecord of | ······································ | BIG TUJU | NGA DAM | Der | n . | | LO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC | _ | | | |----------------------------|----------------------------|---|--|---|----------------|-----------------|--------------------|--------------|------------|-------------|-----------------------------------|-----------|-------------------|--------------| | In Big 1 | Fujunga Canyon | | | for the Year I | Ending Septer | mber 30. 1947 | 2 | | | | DIVISION | ı | tage Recorder | Αu | | | an 2 | | 3100 | | | | | | 1 | NN 6 | Connuo | B Water 5 | rage necorder | | | Drainage Area | 82.3 Square Miles | . Capacity of | Reservoir 423 | D.s.dAc. 1 | Ft. at Spillwa | ay Elev. ZZSC | Ft. as | of | June , | 19 44 Sul v | ey Gage Heig | htsne | ac carry | | | T T | OCTOBER | | | NOVEM | | 1 | | DECEM | BER | i | | JAN | UARY | | | Gage | Acre Ft. C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C.F.S. | Gage | Acre Ft. | C. F. S. | C.F.S. | | Height | Storage Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | | 2213.6 | 680.1 6.4 | 6.4 | 2201.8 | 440.6 | 2.7 | 5.8 | 2212.4 | 652.9 | 7 25.0 | 19.4 | | 564. | | 95.0 | | 22133 | 6732 2.9 | 6.4_ | 22015 | 4353 | 2.7 | 5.8 | 2212.8 | 661.9 | 24.6 | | | 624. | | 32.0 | | 22131 | 668.7 4.2 | 6_4 | 22011 | 4283 | 2.7 | 5.8 | 22130 | 666.4 | 23.0 | | | 566 | | 74.0 | | 2212.8 | 661.9 2.9 | 6.4 | 2.200.B | 4230 | 2.7 | 5.0 | 22132 | 671.0 | 22.0 | | | 530 | | 66.0 | | 2212.4 | 652.9 [2.0 | 6.4 | 8.00SS | 4230 | 2.7 | 3.2 | 22132 | | 35.0 | | | 593: | | 18.8 | | 22120 | 643.9 2.0 | 6.4 | 8 00 2 2 | 4230 | <u> </u> | 3.2 | 22145 | 7262 | 32.8 | | | 648 | | 18.8 | | 22116 | 635.1 2.0 | | 2200.9 | 4248 | 4.2 | | 2215.6 | | 24.8 | 20.0 | | 689 | | 18.6 | | 22112 | 6262 20 | 6.4 | 22010 | | 42 | | 2216.0 | 735.6 | | | | | | 18.8 | | 22107 | 6153 2.0 | 6.4 | 22010 | 426.5 | 3.4 | 3.4 | 22161 | 738.0 | 212 | | | 756 | | 18.8 | | 22103 | 606.6 2.0 | 6.8 | 22011 | 428.3 | 4.3 | | 22161 | 738.0 | 200 | | | 783 | | | | 22098 | 595.8 2.0 | 6.8 | 22014 | | 6.4 | | 2216.0 | | 18.8 | 20.0 | | 807 | | 18.9 | | 22093 | 585.2 2.0 | 7.2 | 2205.9 | | 471 | 5.2 | 2215.9 | 7333 | 182 | 19.4 | | 829 | | 19.0 | | 22089 | 576.7 1.9 | 7.2 | 2235.7 | | 4462 | 590 | 2215.6 | | r 16.4 | | | | | 191 | | 2208.4 | 5664 19 | 7.2 | 2230.4 | 11192 | 89.6 | | 22153 | 7192 | 1.5.8 | | | 868 | | 192 | | 22080 | 5582 19 | 6.8 | 22182 | | 363 | | 22150 | 712.2 | 15.4 | | | 880 | | 193 | | 2207.8 | 554.2 4.8 | 6.8 | 22051 | 520.5 | 25.0 | | 2214.6 | 703.0 | 1.4.8 | | | 891. | | 19.4 | | 2207.4 | 546 1 r 3.6 | 6.8 | 2206.8 | 534.2 | 20.9 | | 22142 | 693.8 | 14.7 | 19.4 | | 901 | | 19.4 | | 22071 | 5401 3.0 | 6.8 | 22071 | 5401 | 209 | | 2213.8 | | 143 | | | 909 | | 19.4 | | 2206.7 | 532.2 2.8 | 6.8 | 2207.4 | 546.1 | | | 22133 | 673.2 | 13.8 | | | | | 19.4 | | 22063 | 524.4 2.4 | 6.4 | 2222.5 | 896.7 | 269.8 | 93.0 | 22132 | 671 d | 13.6 | | | 923. | 0.52 | 19.4 | | 2205.8 | 514.7 122 | 6.4 | 22123 | 650.7 | r 93.5 | 212.0 | 22132 | 671.0 | 132 | 12.0 | 2222.0 | 883. | 5 120.5 | 39.0 | | 2205.4 | 507.0 2.2 | 6.4 | 2208.4 | 566.4 | 51.9 | 100.0 | 22133 | 6732 | 129 | 12.0 | 22199 | 829. | 9 19.5 | 49.0 | | 2205.0 | 499.3 2.2 | 6.4 | 8.8555 | 1071.8 | 280.7 | 26.0 | 2213.4 | 6732
6755 | 122 | 12.0 | 2217.6 | 773. | 6 189 | 48.0 | | 2204.6 | 491.8 2.2 | 6.0 | | 1214.4 | 117.8 | | 22142 | 693.8 | 212 | | | 716. | | 47.0 | | 22042 | 4843 22 | 6.0 | 2231.4 | 11495 | 673 | | 2226.4 | | 273.8 | 118.0 | | 657. | | 46.0 | | 2203.8 | 476.8 2.2 | 6.0 | 22282 | | 51.0 | | 22400 | | 6742 | | | | | 46.0 | | 2203.5 | 4713 32 | | 22243 | 944.7 | 42.8 | | 2238.6 | | 292.0 | | 22081 | 560. | | 36.0 | | 2203.2 | 465.8 3.1 | 5.8 | | 842.5 | 35.4 | | 2237.0 | | 1642 | 191.0 | | | | 19.4 | | 22029 | 460.8 31
460.3 (2.8 | | 2215.2 | 716.9 | 28.7 | | 22313 | 11466 | 1031 | | | | | 19.4 | | 22025 | 4531 2.7 | | 2211.7 | 637.3 | 26.9 | | 2222.8 | 904.5 | 839 | | 22104 | | | 18.8 | | | 447.7 2.7 | 5.B | | ر ، ر د | | - · · · · · | 22110 | | | | | | | 18.8 | | 22022 | | | | | 10100 | 17152 | | 021.0 | 21109 | 2127.6 | | 012. | 956.4 | 959.7 | | OTAL | 82.4 | 199.6 | | · | 35917 | |)——— <u> </u> | | 4204.6 | | · | | 18970 | | | . Ac. Ft.
tr. Ac. Ft. | 163.4 | 395.9 | · | | | 34020 | l | | 42046 | 42200 | | | 18970 | 9856
9921 | | Meximum
as Dally Inflew | | وددر | · | | | | I | | 674.2 | | | | | 674 | | | 6.4 | | } | | 4462 | | | | | | | | 60.0 | | | Minimum
on Dally Inflow | 1.9. | | | | 2.7 | | l | | 122 | | | | 16.6 | 1 | | rage Change | -232.4 | | !: | + 189 5 | OTD: Core Heli | ohte and Stores | es as of Midnight | -15.5 | | | ļ | 6 . | 5 | -64 | | | | *************************************** | | 21772 17172 1717 1717 1717 1717 1717 17 | | | ce as or minulight | On Day Brown | | | | | | 1/4 Year | | x. W. S. Elev. | 2248.5 feet | on 6/8 | | rage 1748 | | Acre Feet | | | | S COLLECTED | | | OMPUTATIONS | ckd. D | | 1. W. S. Elev. | 2200.8 feet | | | orage 423 | .0 | Acre Feet | | | J. ROBERTS | | Dam T | | age Hts. copied | JHL APK | | x. Peak Inf. | 1690 C. F. | S. from 11:00 | A.M. on | 11/13/46 | to 11:30 A | A.M. on | 11/13/46 | L. L. | J. TURNER | | Hydrog | | storage applied | JHL APK | | x. Peak Outf. | 501. C.F. | S. from 12:0 | O_NOON_ on : | 12/25/45 | to 1:00 P | M. on | 12/26/46 | | | | Hydrog | rapher 1 | nf. & Outf. comp. | JHL APK 1/2 | | EMARKS (I | DICATES TOTAL FOR PE | | | | | | | | | | | | | | | | ALLOWANCE MADE FOR | | | | | | | | | | | | | | #### BIG TUJUNGA (contid) | r | Daily Gage H | elghi in feet an |
d Operation R | ecord of | | BIG TU | JUNGA | De | m | | LO | | ON RECC
S COUNTY
OL DISTRIC | | | | |------|----------------------|---|--------------------|---|----------------|---------------------|------------------|---------------------|-------------------|---------------------|------------------|--------------------|-----------------------------------|---------------------|--------------------|---------------------| | I | Dn | ig Tujungs | Canyon | *************************************** | , | for the Year | Ending Septe | mber 30, 19.4 | 7. | | HYE | DRAULIC | DIVISIO | | ge Recorder | A., | | I | rainage Are | 82.3 | Square Miles | . Capacity of | Reservoir42 | 35_3Ac. | Ft. at Spillw | ay Elev. 229 | 0.0 Ft. as | of Ju | ne , | 19 <u>111</u> Surv | | | | | | Т | | PEBRU | ARY | | | MAR | СН | · | | APR | IL | | | MA | Y | | | 3 | Gage
Height | Acre Pt.
Storage | C. F. S.
Inflow | C. F. S.
Cutflow | Gage
Height | Acre Ft.
Storage | C.F.S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C.F.S.
Inflow | C.F.S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | 1 | 22108 | 617.5 | [210 | 18.8 | 22090 | 578.8 | | 13.0 | | 1158.7 | (129 | 1.0 | 2245.0 | | (7.5 | 3.8 | | 2 | 2210.9 | 6196 | 19.7 | 188 | 25035 | 583.1 | | 12.5 | 2.232.4 | 1180 8 | 12.9 | 10_ | 2245.2 | 1616.2 | 7.2 | 3.8 | | | 22110 | 621 B | 1190 | | 22094 | 5873 | | 12.5 | | 1205.0 | 129 | 1.0 | 2245.4 | 16240 | 7.0 | 3.5 | | | 22110 | 621.8 | 18.8 | | 2209.7 | 593.7 | | 12.5 | | 12301 | 12.6 | 1.0 | 2245.5 | 1627.9 | 6.9 | 3.5
3.4 | | | 22110 | 619.6 | 118.5 | | 22102 | 604.4 | | 12.5 | | 1271.6 | 11.5 | 0.9 | 2245.7 | 1635.6 | 6.6 | 3.4 | | | 22109 | 619.6 | 181 | | 22103 | 606.6 | 140 | 12.5 | 22359 | 1291.0 | 1111 | 0.9 | 2245.8 | 1639.5 | 6.4 | 3.4 | | | 2210.8 | 617.5 | 175 | 19.4 | | 608.8 | 1.3.8 | 12.5 | 2236.5 | 1310.6 | 10.8 | 0.9 | 2246.0 | 16472 | 6.3 | 3.4 | | | 2210.7 | 615.3 | 190 | | 2210.5 | 611.0 | 13.6 | 12.5 | | 13302 | 105 | 0.9 | 2246.1 | 16512 | 6.2 | 3.4 | | | 22109 | 6196 | 21.6 | | 22106 | 613.1 | 13.4 | 12.5 | 2237.7 | 13501 | 100 | 0.9 | 22462 | | 6.2 | 3.4 | | | 22109 | 519.6 | 200 | | 22111 | 624.0 | | 8.1 | 22382 | | 9.1 | 0.9 | 2246.4 | 1663.1 | 6.1 | 3.4 | | | 22107 | 6153 | (19.2 | | 22122 | 648.4 | 132 | 0.7 | 2238.7 | | 용,6 - | e. 0
e. 0 | 2246.5 | 16671 | 6.0 | 3.4 | | | 2210 6 | 6131 | 18.6 | | 22133 | 6984 | 130 | 0.7 | | 13970 | 8.4 | 0.9 | 2246.7 | 16750 | 6.0 | 3 .4 | | ╬ | 22102 | 6044 170 200 22 | | | | 721.6 | | 0.7 | 22399 | | 8.3 | 0.9 | 2247.0 | 1686.9 | 5 <i>9</i> | 3.4 | | -11- | 22099 | 5980 | r16.8 | 194 | 2216.4 | 745.0 | | 0.7 | 22403 | | r 8.2 | 0.0 | | 1691.0 | 5.7 | 3.4 | | | 2209.8 | 595.8 | 162 | | 2217.4 | 768.8 | 122 | 0.8 | | 1452.0 | 8.1 | ر و و | | 16950 | 1 5.5 i | 3 ,4 | | | 2209.6 | 591.6 | 155 | | 22183 | 7905 | 12.1 | 0.8 | | 1465.9 | 8.1 | 0.9 | 22473 | 16991 | 5.5
5.3
4.9 | 3.5 | | | 22093 | 5852 | 15.3 | 17.8 | | 812.6 | 120 | 0.8 | 2241.4 | | 8.1 | 3.0 | 22474 | | 4.9 | 3 .5 | | | 22090 | 5788 | 150 | 178 | | 8400 | 14.8 | 0.9 | | 1483.6 | 8.1 | 50 | 2247.4 | 1703.1 | 4.5 | 3.5 | | | 2208 2 | 5706 | 145 | 17.8 | | 875.8
904.5 | 190
155 | 1.0 | | 14942 | 10.0 | 4.4
3.5 | 2247.5 | | 4 .6 | 3.5 | | -15- | 22083 | 5544 | 140 | | 22228 | 931.2 | 14.4 | 1.0 | 2242.5 | 1515.7 | 9.5 | 3.5 | 2247.5 | 1707 2
1711 2 | 4.4 | 3 .5
3 .5 | | | 2207.8 | 5542 | 1145 | 15.0 | 2224.8 | 9583 | | 0.9 | 2242.8 | 15265 | 9.4 | 3.5 | 2247.6 | 17112 | 4.4 | | | | 22080 | | 15.0 | 130 | 2225.6 | 980.4 | 13.5 | 0.9 | 22431 | 1537.4 | 9.4 | 3.5 | 2247.7 | 1715.3 | 4.2 | 3.5
3.5 | | | 22083 | 5644 | 155 | 130 | 22263 | 1000.0 | | 0.9 | | 15522 | 111 | 3 .8 | 2247.7 | 17153 | 4.0 | 3 .5 | | | 2208.5 | 568.5 | 16.0 | 13.0 | 22272 | 10255 | 11.7 | 0.9 | | 1566.9 | 110 | 3 .8 | 2247.8 | 17193 | 4.5 | 3.5 | | 1. | 8.8055 | 574.7 | 163 | 13.0 | | 10572 | 170 | 1.0 | 2244.2 | | 10.2 | 3 .8 | 2247.8 | 1719.3 | 4 .5 | 3 .5 | | ╢ | | - | | | 22293 | 1086.5 | [15.0 | 10 | 2244.5 | 1569.6 | 9 .6 | 3.8 | 22479 | | 4.5 | 3 .5 | | - | | | | | 22301 | | 13.7 | 1.0 | 2244.8 | 1 200 3 | 8.8 | 8. 5 | 2248.0 | | 4.5 | 3.5
3.5 | | IL. | AL | | 482.9 | 5034 | <u> </u> | *** | 4331 | 151.0 | | r | 2973 | 62.1 | 40.0 | 1,2,4 | 171.6 | 107.8 | | ۸c | .Ft. | <u> </u> | 9578 | | | | 859.0 | | | | 589.7 | | | | | | | | ic. Ft. | | | 998.5 | | | | 2995 | | | | 1232 | | | 340.4
213.8 | 1260
1155 | | | imum
selfy Inflow | | 21.6 | | | | 190 | | | | 12.9 | | | | 7.5 | 67 | | 111 | mum
ally leflew | 1 | 14.0 | | | | 11.7 | | | | 8.2 | | | | 4 .0 | | | ag | e Change | -40.6 | | | !: | + 559 6 | YTE: Gage Heis | phis and Stores | es as of Midnight | + 466.5 | | I | | + 126.5 | | + 104 | | - 19 | V. S. Elev. | 2010 5 | feet | 00.046.5 | | | | Acre Feet | or serunigh | 2007 BIIOWII | | 9 COLLECTED | PV | 1 000 | PUTATIONS | % Yea | | | . S. Elev. | 2248.5 | feet | on 11/6 | | rage 1748. | | Acre Feet | | | J. ROBERTS | | Dam T | | | ckd. 1
HL APK | | | eak Inf. | 1690 | | from 11:00 | | | to 11:30 | | 11/13/46 | | J. TURNER | NUN. | Hydrog | | | HL APK | | | eak Outf. | 501 | C. F. 8 | from 12:00 | | | to 1:00 | P.M. on | 12/26/46 | | J. JAMER | | Hydrog | | Outf. comp. J | | | | ARKS [| | | | RORATED DAIL | | | | | | | | | | | | | | | NO ALLOWAN | CE MADE FOR | PERCOLATI | ON OR EVAPOR | ATION | Da | | | LO
FLO | S ANGELE | ON RECOR
S COUNTY
OL DISTRICT
DIVISION | г | | | | |------|---------------------|-----------|--|-----------------|---------------|-----------------|----------------|-----------------|-------------------|--------------|------------------------|------------------|---|----------|--------------------|--------------|-----------| | C | Dn | | ************************************** | | | TOT ING I GAT I | ruging septe | mber 30, 19H | .4. | | | | Continuou | Water St | age Recorder | Au. | | | ъ | esinene Aves | 82.3 | Smure Mile | . Capacity of | Reservoir 12 | 35.3 Ac.1 | Ft. at Spiller | ev Elev. 22 | 900 0 Ft as | ال کم | une. | 10 libi Surve | ey Gage Heig | | | | | | Ĩ | | JUL | | | | JUI | | | | AUG | | 10.444 0 - 1 - 1 | , cage many | | EMBER | | | | ŀ | | Acre Ft. | C.F.S. | C.F.S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. |
 | Acre Ft. | C.F.S. | C.F.S. | | | ij. | Gage
Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Gage
Height | Storage | Inflow | Outflow | ŀ | | | 2248.0 | | r 4.5 | 3.5 | 22461 | | C 1.8 | 4,8 | 2239.0 | 1393.6 | [14 | 5.5 | | 1101. | | 5.8 | | | 1 | 22481 | 1731.5 | 4.5 | 3.5 | 2245.9 | | 1.8 | 4 .8 | 22387 | | 1.1 | 5.5 | 2229.5 | | 4 1.0 | 5 .8 | | | - - | | 1735.7 | 4.5 | 3.5 | 2245.8 | | 1.8 | 4.8 | | 1373.4 | 11 | 5.8 | 2229.1 | | | 5.8 | | | - - | | 1739.8 | 4.5 | 3.5 | 2245.6 | | 1.7 | 4.8 | 22381 | | 11 | 5.8 | 2228.8 | | | 5.8 | | | ╬ | 22483 | | 4.5 | 3.5 | 22454 | | 1.7 | 4.8 | 2237.8 | | 11 | 5.8 | 2228.5 | | | 5.8 | | | - - | 2248.4 | | 4.5 | 3.5 | 22452 | | 1.6 | 4 .8 | 2237.5 | | 1.1 | 5 .8 | | 1054. | | 5.8 | | | -1 - | | 17439 | 4.3 | 3.5 | 22451 | | 1.6 | 4.8 | 2237.2 | 1 2 2 3 5 | 1.1 | 5 .8
6 .0 | | 1042 | | 5.8
5.8 | \exists | | - - | | 17481 | 3.8 | 3.5 | 2244.9 | | | 5.2 | | | | | | 1034 | | 5 .8
5 .8 | -1 | | í | 2248.5 | | 3.8 | 3 .4 li | 2244.6 | | 1.5 | 5.5
5.5 | 2236.6 | 1313.8 | +1:1: | 6.0 | 22272 | | | 5.8 | | | ŀ | 2248.5 | | 3.2 | 3.2 | | 15782 | 1.4 | 5.5 | 2236.0 | | 111 | 6.0 | 2226.5 | | | 5.8 | | | 1- | | 17481 | 3.0 | 3.0 | 2243.9 | | 1.4 | 5.5 | 2235.8 | | 111 | 6.0 | 2226.2 | 997. | | 5.5 | | | - - | 2248.4 | | 2.8 | 4 2 | | 1559.5 | 1.4 | 5.8 | 22355 | | + 1 1 1 | 6.0 | 2225.9 | 988 | | 5.5 | | | ١. | 22483 | | 2.5 | 4.5 | | 15522 | 1.4 | 5.8 | 2235.2 | | - | 6.0 | 2225.6 | 980 | | 5.5 | Н | | - | 22483 | | 2.3 | 4.5 | 22432 | | 1 3 | 5.8 | 2234.9 | | 111 | 6.0 | 2225.5 | 972. | | 5.5 | | | ⊩ | 2248 0 | | (23 | 4.5 | 2243.0 | | 13 | 5.8 | 2234.6 | | 1.0 | 6.0 | 2224.9 | 961 | | 5.5 | | | F | | 17234 | 2.2 | 4.5 | 2242.7 | 1522.9 | 113 | 5.8 | 2234.3 | | 1.0 | 6.0 | 2224.6 | 952 | | 5.5 | | | - | 2247.8 | | 2.2 | 4.5 | | 1515.7 | 13 | 5.8 | 2234.0 | | 1.0 | 5.0 | 2224.3 | 944. | | 5.5 | | | 1- | 2247.6 | 17112 | 2.2 | 4.5 | | 1508.5 | 13 | 5.8 | 2233.7 | | 1.0 | 6.0 | 2224.0 | 936. | | 5.5 | | | H | 2247.5 | | 2.2 | 4.5 | | 1497.7 | 1 1 3 | 5.8 | | 12113 | 1.0 | 80 | 2223.7 | 928 | | 5.5 | | | ⊩ | 2247.4 | | 2.2 | 4.5 | 2241.8 | | 13 | 5.8 | 22331 | | 1.0 | 5.8 | 22233 | 917. | | 5.5 | | | H | 22473 | | 2 2 | 4.8 | 22415 | | 1 3 | 5.8 | 2232.8 | | 1.0 | 5.8 | 2223.0 | 909. | | 5.5 | Н | | H | 22471 | | 2.2 | 4.8 | | 1473.0 | 13 | 5.8 | 2232.5 | | 1.0 | 5.5 | 2222.7 | 901 | | 5.2 | | | ŀ | 2247.0 | | 2.2 | 4.8 | 2241.0 | | 1.2 | 5.8 | | 1174.0 | 1.0 | 5.5 | 22223 | 891. | | 5.2 | ,-1 | | - | 22469 | | 2.2 | 4.8 | 2240.8 | | 1.2 | 5.8 | | 1164.8 | 1.0 | 5.2 | 22220 | 883. | | - 5.2 | ıH | | ۲ | 2246.8 | | 2.1 | 5.0 | 2240.5 | | 1.2 | 5.8 | 2231.6 | | 1.0 | 5 2 | 2221.7 | 875. | | 5.2 | | | | 2246.6 | | 21 | 5.0 | 2240.2 | | 12 | 5.8 | | 1146.5 | 1.0 | 5.5 | 2221.4 | 868 | | 5.2 | H | | | 2246.5 | | 2.0 | 4.8 | 2240.0 | | 11 | 5.8 | 2231.0 | | 1.0 | 5.5 | 2221.0 | 857. | | 5.2 | Н | | | 2246.4 | | 1.9 | 4 .8 | 2239.8 | | 11 | 6.1 | 2230.7 | | 1.0 | 5.5 | 2220.7 | 850. | | 5.2 | П | | 1- | 22462 | | 1.8 | 4 .8 | 2239.5 | | 11 | 5 .8 | 2230.4 | 11192 | 1.0 | 5.5 | 22203 | 840. | | ž ž | | | ı | | | | | 22392 | | 111 | 5.8 | 22301 | | 1 0 | 5.8 | | _ = | | | - | | 'n | AL. | <u> </u> | 883 | 124.8 | | | 42.9 | 1713 | | | 32.5 | 178.8 | | | 29.7 | 165.9 | d | | ic | . Ft. | - | 75.1 | | | | 85.1 | | | | 64.5 | i | | | 58.9 | 1298 |
| | | c. Ft. | | | 2475 | | | | 339.8 | ļ | | | 354.6 | | | 3291 | 1282 | | | D | mum
aDy Inflow | L | 4.5 | | | | 1.8 | | | | 1.1 | | | | 1.0 | 67 | | | ni. | must
ally inflow | | 1 .8 | | | | 1.1 | | | | 1.0 | | | | 0.9 | | (| | g | e Change | -723 | | | | -254.7 | | | | - 290 Z | | 1 | | -270 | | + 15 | 5 | | _ | | | | | | NO | TE: Gage Hei | ghts and Stores | es as of Midnight | on Day Shown | | | | | | Yearly T | To | | V | 7. S. Elev. | 2248.5 | feet | on 6/8 T | 0 6/12/47 Sto | rage 1748 | 8.1 | Acre Feet | | | RECORD | COLLECTED | BY | CO | MPUTATIONS | ckd, I | D | | | . 8. Elev. | 2200.8 | feet | on 11/6/ | 46 Sto | rage 423.0 | | Acre Feet | | D. J | ROBERTSO | Y | Dam Ter | | ge Hts. copied J | | | | P | eak Inf. | 1690 | C. F. | 8. from 11:00 | A.M. on 1 | 1/13/46 | to 11:30 | | 11/13/46 | | URNER | | Hydrogra | pher St | orage applied J | HL APK | _ | | | eak Outr. | 501 | C, F. | 8. from 12:00 N | 00N on 12 | /26/46 | to 1:00 F | | 12/26/46 | | | | Hydrogra | pher In | f. & Outf. comp. J | | 23 | | W. | CRKS (| INDICATES | TOTAL FOR | PERIOD OR P | RORATED DAIL | Y AMOUNTS | | | | | | | | | | | | | - | | | | | ON OR EVAPOR | | | | | | | | | | | | - | #### DEVIL'S GATE | C. DIE | i, Ferm OSA Revise | d 500 11/44 | | | | | | | | | | | | | | | | |--------------|-----------------------|---------------------|------------------|------------------------|----------------|---------------------|--------------------|---------------------------------------|--------------------|---------------------|--------------------|---------------------|----------------|-------------------|--------------------|---------------------|-----------------| | | | | | | | | | | | | | | ON RECO | RD | | | | | I | Daily Gage Hei | ghi in feet an | d Operat | ion Record of | | DEVIL | S GATE | Da | m. | | | | S COUNTY | _ | | | | | | | | | | | | | | | | | | OL DISTRIC | | | | j | | 1 | n Arr | oyo Seco | | | | for the Year | Ending Septe | mber 30, 19.1 | 6 | | HYL | DRAULIC | DIVISION | | | | | | , | Jn | | | | | | | | | | | | Continuo | ıs Water | Stage Recorder. | Au | | | Ι | rainage Area | 31.9 | .Square | Miles. Capacity of | Reservoir25 | 04.1Ac. | Ft. at Spillw | ay Elev. 1.05 | 4.0 Ft. ss | of Decer | nber , | 1913 Surv | ey Gage Heig | his | Read Dall | <i></i> | | | _ | | осто | BER | | | NOVEM | BER | | | DECEM | IBER | | | JA | NUARY | | | | A | Gage
Height | Acre Ft.
Storage | C. F. S
Inflo | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre F
Storage | | C. F. S.
Outflow | | | 1_ | 9892 | | 0 | | | | 0 | 0 | | | 0 | 0 | 10093 | . 0 | | 0 | 1 | | 2 | : | } | _ 0 | | | | 0 | <u>Q</u> | | | <u> </u> | _ 0 | 10093 | 0_ | | | 2 | | 8 | | | 0 | 8 | | | 0 | 8 | I | | 0 | <u> </u> | 10098 | <u> </u> | | , ŏ | B | | 5 | | | 0 | - 0 | | | 0 | 0 | | | 0 | <u> </u> | 1009.7 | - 0 | | 0 | | | 6 | | | 0 | | | <u> </u> | 0 | 0 | | | - 8 | 8- | 10094 | <u>u</u> | | 0 | - 6 | | 7 | | f | ŏ | ŏ | | | 0 | ó | | | ŏ | Ö | 10093 | ö | | 0 | 7 | | 8 | | | 0 | . 0 | | - | 0 | 0_ | | | 0 | . 0 | 10091 | Ŏ | | O. | 8 | | 9 | | | 0 | 0 | | - = - | | 0 | | | Ō | 0 | 10089 | | 0 | 0 | | | 10 | | | 0 | | | | 0 | 0 | = | <u> </u> | <u> </u> | 0 | 10087 | | 0 | <u> </u> | 10 | | 11 | ā | - 8 | 0 | | <u>ĕ</u> | | 0 | 0_ | - 5 | | 0 | 0 | 1008.6 | | <u> </u> | <u>Q</u> | 11 12 | | 12 | | | 0 | | | -3 | 0 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | - 2 | 8 - | 0 | 1008.4 | | 0 | 0 | 13 | | 14 | | - 6 | 0 | 0 | | 2- | 0 | 0 | = | 4 | 0 | ŏ | 10083 | | - 8 | 8 | 14 | | 15 | | 8 | ŏ | - | | 0 | ŏ | ŏ | | | ŏ | o - | 10082 | _ | 0 | 0 | 15 | | 16 | | 9 | 0 | O | 07- | 8 | 0 | ō | - 63 | 0 | Ö | Ö | 10081 | 9 | 0 | 0 | 16 | | 17 | | Ż | 0 | o o | | 2 | i o | 0 | | # | 0 | 0 | 10081 | | 0 | Ö | 17 | | 18 | | | 0 | 0 | | ž. | 0 | 0 | | | Ô | 0 | 10079 | | Ó | 0 | 18 | | 19 | | | _ 0 | _ 0 _ | | - 0, | 0 | 0_ | | | 0 | 0 | 1007.8 | _ = | 0_ | 0 | 19 | | 20 | | | 0 | | | ļ | <u> </u> | 0 | 10101 | | 0 | 9 | 1007.7 | | <u> </u> | 0 | 20 | | 21 | | } | - 8 | 8 | | ļ | 0 - | 0 | 10191 | 89.9 | 45.3 | 0 | 10075 | | 0 | - 8 | 21 | | 23 | | | 0 | | | | - 6 | 1 0 | 10264 | 3525 | 3203 | 2720 | 1007.4 | - 8 | 0 | 0 | 23 | | 24 | | | ŏ | ŏ | | | - 6 | ŏ | 1025.6 | 3199 | | 60.0 | 10072 | ~~~ | 0 | 1 0 | 24 | | 25 | | | ŏ | ō | | | ŏ | ŏ | 10214 | | | 900 | 10070 | | 0 | i č | 25 | | 26 | | | 0 | 0 | | | 0 | 0 | 1009.6 | 0.2 | | *820 | 10069 | - 0 | 0 | O | 26 | | 27 | | | 0 | 0 | | | 0 | 0 | 1009.6 | 0.2 | 0 - | 0 | 1006.8 | | 0 | 0 | 27 | | 28 | | | 0 | 0 | | | <u> </u> | <u> </u> | 1009.6 | 0.2 | | 0 | 1006.7 | | 0 | 0 | 28 | | | Small poo. | Storage | 0 | 0 | ļ | ļ | 0 | 8- | 10096 | 0.2 | | 0_ | 10065 | | <u></u> | 0 | 29 | | 30 | | Negligib | e 0 | - 8 | | | <u> </u> | ļ | 1009.6 | 0.2 | | 0 | 10064 | | - 8 | 1-8- | 80 | | 31
TOT | AT. | | - 8 | - | | | 0 | 0 | 1009.6 | 0.2 | 685.7 | | 10062 | | - 8 2 | 8 - | 81 | | Inf. A | | | - 8 | | | | | <u> </u> | | | 3601 | | ì ' | | 0.4 | | 60.5 | | Outr | Ac. Tt. | 1 | | . 0 | | | | | | | 3428 | + (173) | <u> </u> | | + (0.6) | | | | Mean
Mean | dmus
Daily inflow | | 0 | | <u> </u> | | 0 | | ļ | | 3203 | | | | 0.2 | | 203 | | | limum
Dally Inflew | | 0 | | | | 0 | | <u> </u> | | ő | | İ | | 0 | 1 | 0 | | Store | re Change | 0 | | | l | 0 | YTH. Care Hal | white and Store | ges as of Midnight | + 0.2 | | | Ų | -0 | 2 | + | 0 | | | W o W | | | feet on 4/2/ | 91 | | | Acre Feet | or prioringin | on Day Brow | | S COLLECTED | DV | | COMPUTATIONS | 14 Y | | | | V. S. Elev. | 989.2 ± | | | | orage 13. | 41,1 | Acre Feet | | | K. M. | | Dam To | | Gage Hts. copied | | Date
12/9/46 | | | | 909.2 ± | | | | 12/22/45 | | | 12/22/45 | | T. E. | | Hydrog | | Storage applied | | 12/9/46 | | | Peak Outf. | 389 | | C. F. S. from 2:30 | | | | P.M. on | | | | | Hydrog | | Inf. & Outr. comp. | | 11/3/47 | | REM | ARKS + SLUIC | | | | | | | | | | | | | | | | 1/26/48 | | | | | LOSS D | UE TO EVAPORATE | ON AND PERCO | LATION | Daily Gage He | royo Seco | | | DEVIL'S GA | | | | | | LO:
FLOC | S ANGELE
D CONTRO | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | | |------------------------------|---------------------|---|---------------------|-------------------|---------------|--------------------|---------------------|------------------|---------------------|--------------------|----------------------|---|---------------------|--------------------|------------------|----------| | In Ar | 10,00 0000 | | | | or the Year L | nding Septe | mber 30, 19,41 | 1. | | | | Continue | Watan Sta | ge Recorder | Δu | | | | | | | | -1 | | | | | | | | | - | ., | | | Drainage Area | | Square Miles | . Capacity of | Reservoir25 | UHAc. F | t. at Spillw | ay Elev1.0. | 54Ft. as | of | emper | 19.43 Surv | ey Gage Hel | ghts Keac | | | - | | | FEBRU | ARY | | ì | MARC | H | | 1 | APR | <u></u> | | | MA | Y | | 1 . | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft. | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Cutflow | Gage
Height | Acre Ft.
Storage | C. F. B.
Inflow | C. F. S. | 1 | | 1 1006.0 | | 0 | 0 | 10199 | 112.9 | 0 | 0 | 10423 | I | 50.7 | 0 | 10351 | | 0 | 0 | | | 2 1005.8 | T | 0 | o _ | 1019.8 | 1100 | ŏ | ŏ | 1042.8 | | 39.5 | ŏ | 10349 | | ŏ | ŏ | 2 | | 3 10199 | 1129 | 58.0 | ō | 10197 | 1072 | _ 0 | Ö | 1042.8 | | 17.8 | o | 1034.8 | | ŏ | ŏ | - 8 | | 10213 | 1582 | 24.4 | 0 | 1019.7 | 107.2 | _ o | 0 | 1042.5 | 1306.9 | 4.5 | 0 | 1034.6 | 735.7 | 0 | 0 | 4 | | 5 1021 3 | | 1.5 | 0 | 1019.6 | | 0 | 0 | 10421 | | 0 | 0 | 1034.4 | | 0 | 0 | | | 6 10212 | | 0 | | 1019.6 | | 0 | 0 | 1041.8 | | 2.8 | 0 | 10343 | | 0_ | 0 | 6 | | 7 10211 | | 0 | 0 | 10195 | | 0 | 0 | 1041.7 | | 11.8 | 0 | 1034.1 | | 0 | 0 | 7 | | 8 1021.0 | | 0 | 0 | 1019.5 | 1014 | 0 | Q | 10413 | | <u> </u> | 0 | 10339 | | 0 | 0 | 8 | | 9 1021.0 | | 0 | 0 | 10194 | 98.5 | 0 | | 10409 | 1173.5 | Ò | 0 | 1033.7 | | 0 | 0 | • | | 0 10209 | | 0 | <u>o</u> | 1019.4 | 98.5 | | 0 | 10405 | | 0 | 0 | 10336 | | 0 | o | 10 | | 1 1020.8 | | 0 | 0 | 10193 | 95.6 | o | 0 | 10401 | | Q I | o i | 1033.4 | | 0 | 0 | 11 | | 2 1020.7 | | 0 | <u>o</u> | 10192 | 92.8 | | 0 | 1039.8 | | 0 | Ó | 10332 | | 0 | 0 | 12 | | 1020.7 | | 0 | 0 | 10193 | 95.6 | _ 0 | 0 | 10395 | | ō | Q | 10331 | | 0 | 0 | 18 | | 1020.6 | | 0 | <u> </u> | 10193 | 95.6 | | . 0 | 10392 | | 0 | 0 | 10329 | | 0 | 0 | 14 | | 5 1020.6 | | 0 | <u> </u> | 10192 | 92.8 | o | 0 | 10389 | | 0 | 0 | 10328 | | 0 | 0 | 16 | | 6 10205 | | 0 | 0 | 10192 | 92.8 | 0 | 0 | 1038.6 | | 0 | 0 | 1032.6 | | 0 | Q | 16 | | 7 1020.5 | | 0 | | 10191 | 89.9 | 0 | 0 | 10383 | | 0 | 0 | 1032.4 | | Q | 0 | 17 | | 8 1020.4 | | _ 0 | <u> </u> | 10191 | 89.9 | 0 | 0 | 1038.0 | | _ 0 | 0 | 10323 | | 0 | 0 | 18 | | 9 1020.4 | | 0 | 0 | 1020.6 | 1350 | 24.0 | 0 | 1037.8 | | 0 | 0 | 10321 | | 0 | _ 0 | 19 | | 0 10203 | | <u> </u> | 0 | 10212 | 154.7 | 115 | 0 | 1037.5 | | Q | <u> </u> | 1032.0 | | 0 | 0 | 20 | | 1 10203 | | | <u> </u> | 10213 | 1582 | 3.2 | 0 | 10373 | | | 0 | 10319 | | 0 | 0 . | 21 | | 2 10202 | | 0 | <u> </u> | 10212 | 154.7 | | 0 | 10370 | 884.9 | 0 | 0 | 1031.7 | | 0 | 0 | _22 | | 3 10202 | | 0 | <u> </u> | 1021.1 | 1513 | 0 | Q | 1036.8 | 871.9 | <u> </u> | <u>Q</u> | 10316 | | 0 | 0 | 28 | | 10201 | | <u> </u> | <u> </u> | 10211 | | <u> </u> | 0 | 1036.6 | 858.8 | 0 | O | 1031.4 | | 0 | 0 | 24 | | 10200 | | <u> </u> | 0 | 10210 | |
ŏ | 0 | 10364 | 845.8 | 0 | <u>ŏ</u> . | 10313 | | 8 | 0 | 25 | | 0.020.0 | | 0 | 0 | 10209 | 144.6 | 0 | 0 | 10361 | | <u>o</u> | 0 | 10312 | | . 0 | Ŏ | 26 | | 10199 | | - 8 | <u> </u> | 10209 | 144.6 | 4 .8 | 0 | 10359 | | 8 | 0 | 10311 | | 0 | - 8 | 27
28 | | 10133 | - 1 4 B - | | | 10221 | 13601 | 19.0 | 0 | 1035.5 | 7891 | - 8 - | - 0 | 1030.8 | | 8 | 8 | 28
29 | | 0 1 | + | | | 10390 | | | ŏ | 10353 | | - 6 | - ŏ | 1030.6 | | ŏ | - ŏ - | - A0 | | 1- | | l — — — — — — — — — — — — — — — — — — — | | 1041.5 | 1222 8 | 1146 | ŏ | 10000 | 110.5 | | | 10305 | 5282 | ŏ | ~~~ | 31 | | TOTAL | | 53.9 | O. | | | 612.4 | o o | | 1 | 1271 | 0 | | - N U N | ŏ | ~~~ | →=== | | f. Ac. Ft. | 1 | 166.4 | | · · · · · · · · · | | 2147 | | · . | 1 | 252.1 | | · · · · · · | | ŏ | 295 | 9 3 .7 | | att. Ac. Ft. | | | (536) | | | | (1047) | | | | (698.0) | | 0 + | (248.7) | 1342 8+(1 | 122 5 | | Meximum
less Dally Inflew | L | 58.0 | | | | 4353 | | | _ | 50.7 | | | | 0 | | 353 | | Minimum
ean Daily Inflow | | 0 | | | | 0 | | | | 0 | | | | 0 | | 0 | | orage Change | +112.9 | | | T. | 11099 | | | | -4459 | | | | 248.7 | | + 5% | 2 B S | | | | | | | NO. | TE: Gage He | | es as of Midnigh | t on Day Shows | | | | | | % Ye | MIT | | ax. W. S. Elev. | 1042.9 | feet | on 4/3 | 1/46 Sto | rage 1341. | .1 | Acre Feet | | | RECORD | COLLECTED | BY | | APUTATIONS | ckd. | Date | | in. W. S. Blev. | 989.2 4 | | on VAR i C | SUS DAYS Sto | rage (| <u> </u> | Acre Feet | | | K, M, Y | ORK | Dam T | | e Hts. copied p | HM APK | 12/9/ | | ax. Peak Inf. | 1040 | C. F. E | 3. from 7:30 | | | to 8:00 A | | 12/22/45 | | T. E. M | | Hydrog | | rage applied F | HM APK | 12/10 | | ax. Peak Outf. | 389 | C. F. 8 | . trom 2:30 | P.M. on 12 | /23/45 | to 3:00 P | M. on | 12/23/45 | 1 | | | Hydrog | rapher Inf. | & Outf. comp. F | HM JHL | 11/4/ | | REMARKS / \ | INDICATES TO | T | | RATION AND PE | | | | | | | | | | | | 1/26/ | ### DEVIL'S GATE (cont'd) | | | ight in feet and | | | | IL'S GATE | *************************************** | Da | | | LO
FLO | S ANGELE | ON RECC
S COUNTY
OL DISTRIC | er . | | | | |---|----------------------|--|--------------------|---------------------|--|---------------------|---|--|--------------------|--|--------------------|---------------------|-----------------------------------|---------------------|--------------------|---------------------|-----| | I | nA! | royo Seco | | | | for the Year I | Ending Septe | mber 30, 19.1 | 6. | | HYE | DRAULIC | DIVISIO | | 5 . 1 | A., | | | | | 21.0 | | | Reservoir25 | O) | | 10 | 5)1 0 - | | | 310 S | | | age Recorder | | | | | Prainage Area | | | L Capacity of | HeservoirZ.U | | | ray Elev | 04.U. Ft. as | | | 1943 541 | Vey Gage He | | | | | | | | JUN | Ę | | | JUI | LY | | 4 | AUG | UST | | i | SEPT | EMBER | | | | Ì | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. B.
Outflow | | | 1 | 10304 | 523.7 | 0 | 0 | 10265 | 356.6 | O | 0 | 10231 | 222.4 | 0 | 0 | 10203 | 125.4 | 0 | 0 | | | 2 | 10302 | 514.6 | 0 | 0 | 1026.4 | 3525 | 0 | 0 | 10230 | | Q | ō | 10203 | 125.4 | O | 0 | | | | 10301 | 510.0 | 0 | 0 | 1026.3 | 348.4 | 0 | 0 | 10229 | 215.0 | 0 | 0 | 10202 | 1222 | 0 | 0 | | | | 10299 | 5011 | 0 | o | 10261 | 3401 | 0 | Ō | 1022.8 | | 0 | 0 | 10201 | 1190 | 0 | 0 | _] | | | 1029.7 | 492.4 | 0 | <u> </u> | 10260 | 3360 | 0 | Q | 1022.7 | | 0 | 0 | 10201 | | 0 | 0 | _ | | | 1029.6 | 488.0 | o l | <u> </u> | 1025.9 | 332.0 | | 0 | 1022.6 | | 0 | Q | 10200 | | <u>o</u> | <u>Q</u> | | | | 10295 | 483.7 | 0 | 0 . | 1025.7 | 3239 | 0 | 0 | 10225 | | 0 | 0 | 10199 | 1129 | <u> </u> | 0 | _ | | | 10293 | 474.9 | | 0 | 1025.6 | 3199 | - 8 - | | 10224 | 196.8 | 0 | o . | 1019.9 | 1129 | <u>Q</u> | 0 | | | | 10292 | 470.5 | 0 | 0 | 1025.5 | 315.9 | | | 10223 | 1932 | 0 | 0 | 1019.8 | 110.0 | 0 | 0 | | | | 10291 | 466.2 | - 0 | - 8 | 1025.4 | 307.8 | 6 | ŏ − | 10222 | | ò | 0 | 1019.7 | | 1 0 | 0 | | | | 1029.0 | 4533 | ŏ | <u> </u> | 10252 | 303.8 | - ö | | 10221 | | 0 | | 1019.6 | | 0 | | _ | | | 1028.7 | 4490 | -0 | | 10251 | 299.7 | - 8 - | +—გ | 1022.0 | 1 2 2 3 | · 8 | | 1019.6 | | + | 0 | | | | 1028.6 | 444.7 | | 0 | 1025.0 | 295.7 | ŏ | 5 | 1021.8 | | 8 | ŏ | 10195 | | | - 0 | | | | 1028.4 | | | | | | ŏ , | | 1021.8 | | 0 | - <u>0</u> | 1019.4 | | 1 0 | <u> </u> | | | | 10283 | 4362 0 0 10248 2879 | | | | | | - 6 | 1021.7 | | 0 | | | | 0 | 0 | | | | 10281 | 4319 0 0 1024.7 2839
423.4 0 0 1024.6 280.0 | | | | | | | 1021.6 | 1 6 9 5 | - 8 | | 10193 | 92.8 | 0 | 0 | | | | 1028.0 | 4191 | ă | ~~~~ | 1024.5 | 2761 | 0 | - 6 | 1021.5 | | 0 | - ö | 10192 | 92.8 | 0 | 8 | | | | 10279 | 4149 | ŏ | 0 | 1024.4 | 272.2 | - ŏ - | - ŏ | 1021.4 | | - ŏ | 0 | 10191 | 89.9 | ŏ | | | | | 1027.8 | 410.7 | | ŏ | 10243 | | <u>ŏ</u> | 1 - 5 - | 10213 | | ŏ | 0 | 10191 | 870 | 1 0 | ă | | | | 1027.6 | 5023 | ŏ | ŏ | 10242 | | ŏ | ŏ | 10212 | | 0 | | 10190 | 87.0 | 1 0 | ŏ | | | | 10275 | 3982 | Ö | ō | 10241 | 260.4 | . 0 | Ö | 10211 | 151.3 | 0 | ŏ | 1018.9 | 84.5 | ŏ | - ŏ - | | | | 1027.4 | 394.0 | ŏ | ŏ | 1024.0 | | 0 | - - | 10210 | 1478 | ŏ | ŏ | 1018.9 | 84.5 | ŏ | ŏ | | | | 10273 | 389.8 | Ö | Ö | 10239 | 252.7 | ō | 0 | 10209 | | ŏ | | 10188 | 82.1 | Ö | Ö | _ | | | 10272 | 385.6 | Ö | Ō | 1023.8 | 2489 | 0 | 0 | 10208 | 1414 | ō | . 0 | 1018.7 | 79.6 | Ŏ | ŏ | | | r | 1027.0 | 3772 | 0 | 0 | 1023.7 | 245.1 | 0 | Ö | 10208 | 141.4 | 0 1 | 0 | 1018.6 | 772 | 0 | Ö | | | [| 1026.9 | 3731 | 0 | Q | 1023.6 | 2413 | 0 | 0 | 1020.7 | 1382 | 0 | . Q | 1018.6 | 772 | Ō | 0 | _ | | Ľ | 1026.8 | 369.0 | 0 | 0 | 10235 | 237.6 | Ō | 0 | 1020.7 | 1382 | 0 | 0 | 10185 | 74.7 | 0 | 0 | _ | | | 1026.7 | 364.8 | 0 | 0 | 10234 | 233.8 | 0 | 0 | 10205 | 135.0 | 0 | | 10185 | 74.7 | 0 | 0 | | | L | 1026.5 | 360.7 | 0 | 0 | 10233 | 230.0 | 0 | 0 | 10205 | 131.8 | 0 | 0 | 1018.4 | 722 | 0 | 0 | _ | | L | | <u> </u> | 0 | 0 | 10232 | 2262 | ò | 0 | 10204 | 128.6 | o l | <u> </u> | ļi | ļ | ļ | | _ | | | AL
. Ft. | | 0 1 | | <u> </u> | | | 1 0 | | <u>' </u> | <u>ŏ</u> | 0 | - | | <u> </u> | 0 | _ | | | . Ft.
.c. Ft. | | | (167 A) | | | | (134.5) | | | 0 | (976) | l | | (56.3) | 299 | | | | inum
inity faflow | | 0 | | | | 0 T | | | | 0 | 4 | l | | - +56-51 | 1342.8+(1 | | | | RUM
Jally Inflow | 1 | ŏ | | <u> </u> | | ŏ | | | | | | | | 0 | | -0 | | | e Change | -167.5 | | | | -1345 | - | | | -97.6 | | | | -564 | <u>_</u> | + 7 | | | ė | | | | | <u>. </u> | | TE: Gage Hei | ghts and Storas | ree as of Midnight | on Day Shown | | | | | | Yearly | | | V | V. S. Elev. | 1042.9 | feet | on 4/3 | 1/46 Sto | rage 1341_ | 1 | Acre Feet | dans season and | | RECORD | S COLLECTED | BY | l co | MPUTATIONS | | D | | | , S. Elev. | 989.2 ± | feet | ON VARIO | US DAYS Stor | rage n | | Acre Feet | | | K.M. YO | ORK . | Dam T | | re Hta. copied Fi | | 12 | | | eak Inf. | 1040 | C. F. 8 | 3. from 7:30 | | | to g:nn | А.м. оп | 12/22/45 | | T. E. M | MOON | | rapher Sto | rage applied F | | 12 | | | eak Outf. | 389 | C. F. 8 | . from 2:30 | P.M. on 1: | 2/23/45 | to 3:00 | P.M. on | 12/23/45 | | | | Hydrog | | & Outf. comp.r | | 11 | | M | ARKS () | | TAL LOSS I | | ORATION AND F | | | | TE/ EU/ 40 | | | | | | | APK I | | | | | | | | , | | | | | | | | | | | | 44. | | | ally Gage Heig | | | | | | L'S GATE | Da | | | LC
FLO | S ANGELE | ON RECC
S COUNTY
OL DISTRIC
DIVISIO | er . | | | | |--------|--------------------------|---------------------|--------------------|---------------------|----------------|---------------|--------------------|-----------------------|-------------------|---------------------|--------------------|---------------------|--|-------------|--------------------|----------------|-------| | 0 | n . | | | | | | | | • | | | | Continue | us Water | Stage Recorder | A.u | | | D | rainage Area | 31 | Square Miles | L Capacity of | Reservoir250 |]), [Ac. | Ft. at Spillw | ay Elev1054 | .0Ft. as | of De | эсельег | 19.113. Surv | ey Gage He | ights | Read daily | | | | 1 | | OCTOR | ER | | 1 | NOVE | MBER | | | DECEN | MBER | | | JA | NUARY | | | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft. | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Fi | CES | C. F. S. | | | 1 | 1018.8 | 82.1 | 5.8 | 0 | 10176 | 54.6 | 0 | 0 | 1008.0 | | 0 | 0 | 1008.0 | | C-20 | 32.0 | | | | 1018.8 | 82.1 | 0.8 | 0 | 1017.5 | 52.7 | 0 | 0 | | -0 | 0 | ō | | | 270 | 27.0 | | | | 10189 | 84.5 | _ 2.0 | 0 | 1017.4 | 50.7 | . 0 | 0 | | E.C. | 0 | 0 | | ラト | ര്⊒ മദ ∩ | 23.0 | | | | 1018.8 | 82.1 | 0 | 0 | 10173 | 488 | 0 | 0 | | 0, | 0 | 0 | | _ <u></u> | 130 | 13.0 | | | | 10187 | 79.6 | 0 | 0 | 10173 | 4.8.8 | <u> </u> | Q | 1008.0 | | Q | 0 | | C/J | | 0 | | | | 1018.7 | 79.6 | - ŏ | <u> </u> | 10172 | 4.6.8 | 0 | 0 | 10159 | 271 | 14.0 | 0 ! | | | 0 | 0 | | | | 10186 | 772 | 0 | 9 | 10172 | 4.6.8
60.5 | 7.5 | - 6 | 1017.6 | 5 4 .6
5 8 .5 | 146 | 0 | <u> </u> | | 0 | 0 | | | | 1018.5 | 74.7 | ŏ | 0 | 10179 | 60.5 | r 0.2 | | 1017.6 | 54.6 | 8. 8 | 0 | | + | | - 0 | | | | 1018.5 | 7 4 .7 | 0 | ŏ | 1017.8 | 58.5 | \
o ~ | ŏ | 1017.4 | 50.7 | | - 6 | | | | - | | | | 1018.4 | 72.2 | - ŏ | ŏ | 10183 | 69.8 | 6.4 | ŏ | 10172 | 46.8 | 0 | 8 | | | 1 0 | 1 6 | | | | 10183 | 69.8 | ō | ō | 10231 | | 781 | ŏ | 10171 | 443 | | ŏ | | | | | | | | 10183 | 69.8 | Ö | 0 | 10311 | 555.7 | 1944 | 22.2 | 1017.0 | 42.9 | ō | Ö | | | - ă | - ŏ | | | 4 | 1018.2 | 673 | 0 | 0 | 1030.7 | | 65.7 | 71.0 | 1017.0 | 429 | ŏ | 0 | | - 8 | ō | ŏ | | | | 10182 | 673 | 0 | 0 | 1028.6 | | 25.7 | | 1017.0 | 429 | 0 | Ö | | _ 2 | Ō | 0 | | | | 10183 | 69.8 | 2.0 | - 0 | 10255 | | 4.7 | 68.1 | 10169 | 414 | 0 | 0 | | | 0 | 0 | | | | 10182 | 673 | 0 | 0 | 1024.4 | | 0.4 | 19.6 | 1016.8 | 40.0 | 0 | 0 | | = | 0 | 0 | | | | 10182 | 673 | 0 | 0 | 1024.4 | | L O | 0 | 1016.8 | 40.0 | 0 | 0 | | - S | 0 | | | | | 10181 | 649 | 0 | 0 | 10243 | 2683 | 0 | 0
32.8 | 1016.7 | 38.5 | 0 | 0 : | | | 0 | 0 | | | | 10181 | 649 | Ö | 0 | 10332 | 6591 | 235.7 | | 1016.6 | 38.5 | 0 | 0 | | | | 0 | | | | 1018.0 | 62.4 | 8 | | 10309 | | 51 2
19.6 | | 1016.6 | 37.0 | 0 | 0 | | | | 0 | - | | | 1018.0 | 60.5 | 0 | | 1027.4 | | 84.6 | | 1016.5 | 35.6 | 0 | | | | 0 | 0 | -+ | | | 10179 | 60.5 | 0 | ŏ | 10204 | | 1272 | 158.8 | 1017.0 | 429 | 4.5 | - ŏ | | | | - | | | | 1017.8 | 58.5 | <u> </u> | ő | 1008.0 | 4000 | 253 | | 10304 | 523.7 | 2461 | | | | | | - | | | 1017.8 | 58.5 | ŏ | ō | 1000.0 | | 0.55 | | 1024.6 | 280.0 | 2849 | 406.2 | | —— <u> </u> | | 0 | | | | 1017.8 | 58.5 | o | 0 | | | 14.0 | | 1019.0 | | 1974 | | 1008.0 | | 0 | | | | | 1017.8 | 58.5 | 10.7 | 0 | | | 0 | 0 | 1008.0 | | 118.0 | 161.6 | 10132 | 6.1 | | | | | | 1017.7 | 56.6 | 0.6 | 0 | | | 0 | ō | | | 72.0 | 720 | 10153 | 20.6 | | ŏ | | | | 1017.7 | 56.6 | 0 | 0 | 1008.0 | ō | Ö | Ö | | | 50.0 | 50.0 | 10152 | 19.6 | 0 | 0 | | | | 1017.6 | 54.6 | 0 | 0 | | | | | 1008.0 | | 40.0 | 40.0 | 10151 | 18.5 | | 0 | | | NOTA: | | | 119 | 0 | | | 8633 | 851.4 | | | | 1023.6 | | <u> </u> | 1062 | 95.0 | | | f. Ac. | | | 23.6 | 4131 | | | 17123 | | | | 20713 | | | | 210.6 | 401 | | | | NM Inflow | | 5.8 | - (8 T -2) | | | 1688.7 | - 1 10 1) | ~ ~ | | | + (411) | | 188.4 | + (3.8) | 3907.4 | | | Minim | lly inflow
lly inflow | | 0 | | | | 235.7 | | | | 284.9 | | | | 320 | | 4.9 | | orege | tly laffew
Change | -17.6 | | | | -54.6 | | | | 0 | | | | + 18.5 | | - 5 | | | | | * • • • | | | | | OTE: Gage Hei | this and Storag | es as of Midnight | on Day Show | n | · | | | | | Year | | x. W | 8. Elev. 103 | 13.8 | feet | on 11 | /21/46 Sto | rage 691 | | Acre Feet | | | | S COLLECTED | BY | | COMPUTATIONS | | Dat | | | | 8.0 - | feet | | OF YEAR Sto | | | Acre Feet | | | K. M. YORK | | Dam T | | Gage Hts. copied | JHL APK | | | | ak Inf. 128 | | | | | | to 10:0 | O P.M. DR | 12/25/46 | | | | | | Storage applied | JHL APK | 12/20 | | | ak Outf. 61 | | | | | | | O A.M. on | 12/27/46 | · | ALTER MINER | | Hydrog | | Inf. & Outf. comp. | JHI APK | 12/30 | | EMA | | | | | ORATED DAILY | ******* | | | | | are | | | | | TOLK OLD | 1.64 | ### DEVIL'S GATE (cont'd) | | irt. Form 688 Review | · | | | | | | | | | | | ION RECO | RD | | | | |----------|--------------------------------------|---------------------|--------------------|---------------------|---------------|-----------------|--------------------|---------------------|--------------------|---------|--------------------|---------------------|--|---------------------|-----------------------------|-------------|----------| | | Daily Gage Held | ght in feet an | d Operation R | ecord of | | DEV. | LL'S GATE | Dı | um. | | FLO | DD CONTR | ES COUNTY
OL DISTRIC | | | | | | | In Arr | oyo Seco | | | | for the Year | Ending Septe | mber 30, 19 | 7 | | HYI | DRAULIC | DIVISION | | • | | | | 1 | | | | | 050 | | | 105 | N 0 | n | acamher | ua Sur | | | iage Recorder
lead daily | A.U | ł | | | Drainage Area. | | | . Capacity of | Reservoir2.00 | | | ay Elev. 100 | 4.0 Ft. as | | | 19 | Gage Hei | | | | | | à | | FEBRU | | | Gage | MAR
Acre Ft. | | | ļ | APR | | | ļ | Acre Ft. | C.F.S. | C. F. S. | - 3 | | ٩ | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Height | Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | Inflow | Outflow | JL | | 1_ | 10151 | | 0 | _ 0 | 1008.0 | | 0 | 0 | 1008.0 | | 0 | 0 | 10080 | | 0 | 0 | - 1 | | 2_ | 10150 | | 9 | 0 | | | 0 | 0 | ļ | | 0 | _ <u>o</u> _ | / | | 0 | 0 | +:1 | | - 1 | 10149 | | - | 0 | | | 0 | 0 | | | 0 | 0 | ļ <u> </u> | | - 0 | 0 | 1 . 1 | | 5 | 10148 | | 0 | 0 | | | 0 | 0 | | ·· | 0 | 0 | 1 | | 0 | ŏ | 5 | | - 8 | | | 0 | _0_ | | | 0 | Ö | L | | 0 | _ 0 | | | 0 | 0 | 6 | | 7 | | 151 | _ 0 | 0 | | | . 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 8_ | 10146 | | _ 0 | <u> </u> | | | 0 | .0 | ļ | | 0_ | Q | 1 | | | 0 | - 8 I | | P_ | 10080 | | 138 | 8.02 | <u> </u> | | 0 | 9 | l | | 0 | <u> </u> | 1 | | - 0 | o | 10 | | 10 | | | 0 | | | | 0 | 0 | } | | 0 | 0 | - | | - 8 | 0 | 111 | | 12 | | | - 8-1 | 0 | | | 0 | 0 | <u> </u> | | 0 | 0 | 1 | | 9 | | 12 | | 13 | | | 0 | Ö | | · · | 0 | ŏ | | 9 | 0 | ŏ | i | 0 | - 3 1 | ~~~~ | 13 | | 14 | | | 0 | ō | | - | . 0 | ō | | ۵ | Ö | 0 | | | 0 | Ö | 24 | | 15 | | | 0 | Ō | | === | 0 | 0 | | į o | ō | 0 | | | 0 | 0 | 15 | | 18 | | | 0 | 0 | | | 0 | 0 | | | 0 | 0_ | | | 0 | 0 | 16 | | 17 | | | 0 | 0 | | | <u>Q</u> | ļ <u>0</u> | <u> </u> | 9 | 0 | 0_ | -8- | _ = | 9 | 0 | 17 | | 18_ | | | 0 | 0 | - 2 - | 9 | 0 | 0 | - a | ž_ | 0 | 0 - | <u> </u> | - 2 | 0 | 0 | 18 | | 19 | | | 9 | 0 | | | 0 | 0 | | 3 | 0 | 0 - | ├ <u>=</u> | 65 | - 8 | - 0 | 19
20 | | 20
21 | | | - 6 | - 0 | | | 0 | 8 | <u> </u> | - 3 | - 5 - | 0 | | 8 | 8 | | 21 | | 22 | í | <u> </u> | ŏ | ŏ | v. | 5 | ő | 0 | 5 | 3 | ŏ | ŏ | - 5 | - 6 | 0 | ŏ | 22 | | 23 | | | 0 | Ö | | St | ō | 0 | | S | 0 | Ō | 1 | - + | 0 | 0 | 28 | | 24 | | - 6 | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | 24 | | 25 | | - 6 | 0 | 0 | | | 0 | <u> </u> | | | 0 | 0 |] | ļ <u>.</u> | 0 | 0 | 25 | | 26_ | | | 0 | 0 | | | 0 | Q. | | | 0 | 0 | ļ | | 0 | | 26 | | 27 | 1000 | , is | <u> </u> | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | - 0 | 27 | | 28
29 | 1008.0 | <u> </u> | 0 | <u> </u> | | | - 0 - | 0 | 1 | | 0 | 0 | | <u> </u> | - 6 1 | 0 | 28 | | 30 | | | | | | | 0 | 0 | 1 | | - 0 - | - 6 | 1 | | ŏ | - 6 - | 30 | | 31 | | | | | | | ŏ | 0. | | | <u> </u> | · · · · | 1 | | - ŏ | ŏ | 81 | | | TAL | | 13.8 | 8.08 | | | 0 | 0 | | | 0 | 0 | | | 0 | | | | | Ac. Ft. | | 274 | | | | | | <u> </u> | | 0 | | | | 0 | 4045 | | | Outr | AC. Tt.
eximum
Daily Inflew | | | + (4.6) | | | | | <u> </u> | | | 0 | 1 | | - 0 | 3948.7+(1) | | | Meet | Daily Inflew | <u> </u> | 138 | | | | - 0 | | | | 0 | | 1 | | 0 | 284 | 9_ | | Mean | lalmum
Bally Inflaw
age Change | -185 | 0 | | ļ | ~~~ | | | f | | | | 1 | 0 | | -72 | <u> </u> | | - 5002 | rigo Cimerigo | -18.5 | | | | | OTE: Gage He | ghts and Stora | ges as of Midnight | | 'n | | _0 | | | % Yes | | | Max | W. S. Ellev. | 1033 B | feet | on 11/ | 21/AC Sto | rage 691 | | Acre Feet | | | | S COLLECTE | D BY | | OMPUTATIONS | ckd. 1 | Date | | | W. S. Elev. | 1008 | foot | on MCS | T OF YEAR St | | | Acre Feet | | к. | . M. YORK | | Dam T | ender G | age Hts. copied JH | L APK 12/5 | 30/47 | | Max | Peak Inf. | 1280 | C. F. | 5. from 9:30 | P.M. on | 12/25/46 | to 10:00 | | 2/25/46 | | E MOON | | Hydrog | rapher S | torage applied JH | I APK ' | ,, | | | Peak Outf. | 610 | C. F. | s. from 3:30 | A.M. on | | to 4:00 | A.M. on | 12/27/46 | | | | Hydrog | rapher I | nf. & Outr. compuH | L APK 12/3 | 30/47 | | RE | MARKS () | INDICATES | S LOSSES DU | E TO PERCOL | ATION AND EV | APORATION | * | Drainag Ga Helei | | | Square Miles | | Reservoir 25 | | Ft. at Spillw | | | _ | | | Continuo | 12 Water Sta | age Recorder | .Auu | |------------------|---------------------|----------------------------|--------------------|------------|--------------|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|---------------------|----------------|---------------------|--|---------------------| | Ge Hel | age
sight
OSO | JUI
Acre Ft.
Storage | C. F. S.
Inflow | C. F. S. | Gage | | | ny Elev. 10 | 54.0 Ft. us | _ | | | | | | | | Ge Hel | age
sight
OSO | JUI
Acre Ft.
Storage | C. F. S.
Inflow | C. F. S. | Gage | | | LY LIEVI.D. | | D | ecamber | 10 Ma Sur | vev a w | Read | d daily | | | Hei 100 | OS.O | Acre Ft.
Storage | C. F. S.
Inflow | | | J U | | | | | | 10 | Gage Hei | | | | | Hei 100 | OS.O | Btorage | Inflow | | | | | | | | UST | | | | EMBER | | | | S . | 0 | | | Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | | S . | | 0 | _ 0 _ | 10080 | | 0 | 0 | 10080 | | 0 | . 0 | 10080 | | 0 | , | | | | | | o o | | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | | | 0 | Ö | | | 0 | 0 | | | o | -0 | | | 0 1 | _ 0 | | | | | _ 0 | . 0 | | | | | | | Q | . 0 | | | 0 | . 0 | | | | | 0 | | | | | 0 | | an a magazina | | | the state of | and conject to page | | 0 | | | = | , <u>a</u> | 0 | 0 | <u></u> | | 0 | Q | | | 0 | | | | 0 | <u> </u> | | | - | 2.2 | 0 | 0 | | | | | | | o | | | | 0 | 0 | | | 19 | | _ 0 | 0 | | <u> </u> | 0 | <u> </u> | | | Q | | | | 0 | | | | | 850 | _ • | | • | | 0 | 0 | | | _0_ | <u> </u> | | | 0 | <u> </u> | | | S | <u> </u> | -
0 - 1 | 0 | | | | 0 | | | _ و | | | | 1 0 | <u> </u> | | | | | <u> </u> | 0 | | | <u>o</u> | <u> </u> | | | 0 | 0 | <u> </u> | | 0 | Ŏ. | | | | | 0 | 0 | - | | 0 | 0 | <u></u> | <u></u> | 0 | 0 | _ ة | | 0 | <u>0</u> ` | | | | | ا و | <u> </u> | | | | 0 | | | 0 | Q | <u> </u> | —— <u>š</u> | 9. | <u>o</u> | | | | | _ 0 | _ 0 | <u> </u> | | | Ö | <u> </u> | | 0 | . 0 | | | 0 | Ö | | | | | | | | 3 | | <u> </u> | <u>e</u> | - 8 - | 0_ | | <u>-</u> | | - 9 | 0 | | | | | 0 | <u> </u> | | | <u>o</u> _ | o o | | | <u> </u> | <u> </u> | 9 | | 1 9 1 | Ö | | | | | 0 | 0 | - 5 | 2 | | Ŏ | % | <u> </u> | 0 | 0 | | ≥ | 9 | <u>o</u> | | | >- | | | <u> </u> | <u>v</u> | | 0 | Ŏ | 2 | | <u> </u> | Ŏ | <u> </u> | | g | <u>o</u> | | _ | | | _ o | - 0 | <u>~</u> | | 0 | 0 | | | 0 | 0 | | | 8 | ŏ | | | | | <u> </u> | | | | | 0 | | | 0 | | | - | 0 | Ö | | | =- | | <u>ŏ</u> | 0 | | | 0 | 2 | iI———— | ······ | - 0 | | } - | | 8 | 0 | | | 2 | - ž | <u>−</u> §− | 0 | L | | 0 | 0 | | | 0 | - 0 | r — I | | <u>0</u> | - 8 | | | | | <u> </u> | | | | | 0 | | | 0 | - 8 | | | 8 | - 6 | | | 8 | <u>9</u> | 0 | - 0 | | | 0 | - 8 - | I | | 0 | 0 | \vdash | | | 0 | | | = | · · | - 6 | | | | 0 | | (| | 0 | 0 | | | 3 | | | | - | | - 6 | 0 | | | ŏ | <u> </u> | | | 8 | - 6 | | | 1 6 l | 8 | | | | z | - 8 | ŏ | | — | - 6 | ŏ | | | ő | | | | + 6 - | - 6 | | <u> </u> | + | | 0 | | | - | ĕ | ŏ | | | ŏ | - - - | | | 1 8 | 8 | | | + | | - 6 | -6 | | | | - ŏ- | i | | - 6 | ŏ | | | 1 0 1 | ŏ | | | | | v _ | | | <u> </u> | | - ŏ- | | | 0 | ŏ | | | | ,— <u> </u> | | CAL | | | 0 | 0 | | | - 8 | 1 0 | | | - 0 | ŏ | | | | 0 | | c. Pt. | | | - 6 ' | | | | | |) | | Ö | | (| • | | 4045 | | Ac. Ft. | | | | 0 | | | | 0 | | | | 0 | | | <u> </u> | 3948.7+(| | Daily Infl | | | _0_ | | | | 0 | | | | 0 | _ | | | ŏ | 284 | | Delly lati | law | | 0 | | | | Ō | | | | 0 | | i . | | o | 0 | | ge Chan | | 0 | | | | 0 | | | | 0 | | | | _ 0 | | - 72 | | | | | | | | N | TE: Gage Hei | ghts and Storag | se as of Midnight | on Day Show | | | - | | | Yearly' | | W. S. Ele | ev. in | 33.8 | feet | on 11 | /21/46 St | rage 691 | | Acre Feet | | | RECORD | S COLLECTED | BY | CO | MPUTATIONS | ckd. | | W. S. Ele | | 08.0 - | feet | on MOST | OF YEAR St | | | Acre Feet | | | . M. YORK | | Dam Te | | ge Hts. copied JH | L APK 12/3 | | Peak Inf | | 80 | C. F. i | from 9: | 30 P.M. on | 12/25/46 | to 10:0 | O P.M. on | 12/25/46 | | . E. MOON | | Hydrog | apher Sto | rage applied 114 | II APK | | Peak Ou | atf. 6 | 10 | C. F. s | S. from 3: | 30 A.M. on | 12/27/46 | | C A.M. on | | | | | Hydrog | apher Inf | & Outf. comp. | HL APK 12 | | MARKS | | | S LOSSES DI | | LATION AND E | | | | | | | | | | | | | | felght in feet ar | | | | | DAM OPERATION RECORD LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION | | | | | | | | | | | |----------------------|---------------------|--------------------|---------------------|----------------|---------------------|--|---------------------|--------------------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|---| | In E | aton Mash | | | | for the Year | Ending Sep | tember 30, 19.14 | €. | | НҮІ | DRAULIC | | | tage Recorder | Au | | | Drainage Ar | 9.48 | Square Mile | . Capacity of | Reservoir6 | 07-14Ас. | Ft. at Spill | way Elev. 88 | 7.5 Ft. es | of | October, | , <u>19 Ա</u> Ա Sur | vey Gage Hei | ghts | lead Daily | | | | | OCTOBER | | | | NOVE | MBER | | | DECEN | MBER | | [| JAN | UARY | | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | _ | | | | 0 | 0 | | | 0 | 0 | | | 0 | Q | 860.2 | 59.4 | 0 | 0_ | | | | | o | _ م | | + | 0 | <u> </u> | ļ | | 0 | 0 | 8599 | 572 | 0 | 0 | _ | | | | <u> </u> | <u> </u> | - | | <u> </u> | 0 | ļ | ļ | 0 | 9 | 859.7 | 55.7 | <u> </u> | 9 - | _ | | | | 0 - | 0 | | | - 0 | - 8 | | | ŏ | 0 | 859.5
859.3 | 54.3 | 0 | 8 - | _ | | | | 0 | 0 - | | 1 | 1 0 | 1 0 | ļ | | Ö | 0 | 8591 | 51.4 | 0 | 0 | - | | | -+ | i a | 0 | _ | 1 | ŏ | 0 | 1 | | - 6 | ŏ | 858.9 | 50.0 | 0 | 8 | - | | | -1 | o _ | ŏ | | 1 | Ŏ | 0 | | | Ö | Ö | 858.7 | 48.7 | ŏ | ŏ | _ | | | - I | 0 | Ō | | | 0 | Q | | 9 | 0 | 0 | 85 8.5 | 47.4 | 0 | 0 | | | | | 0_ | . 0 | | | | 0 | | - 2 | 0 | 0 | 8583 | 461 | Q | 0 | _ | | | | <u> </u> | 0 | | + | 0 | - 0 | <u> </u> | | <u> </u> | 0 | 8581 | 44.8 | 0 | <u>o_</u> | _ | | ح | | | 0 | | - 8 | <u> </u> | 0 | | (V) | 0 | 0 | 857.9 | 43.5 | 0 | 0 | | | <u> </u> | | 0 | 0 | | | 0 | 0 | l | 2- | 8- | 0 | 857.8 | 429 | 0 | 0 | | | <u>.</u> | | 0 | 0 | | | 0 | - 0 | l | | - 0 | - 8 | 857.6
857.4 | 41.6 | 1 0 | 8 | _ | | - | - 6 | 0 | 0 | | - in | 0 | - 0 | i | | 0 | 0 | 857.2 | 391 | 1 0 | 8 | _ | | | - | 0 | 0 | | - 2 | ŏ | ŏ | 1 | | ŏ | ŏ | 857.0 | 379 | 0 | 1 6 | | | - | | 0 | o l | | * | ŏ | ŏ | | | Ö | ă | 8569 | 373 | ŏ | ŏ | _ | | 9 | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | 856.7 | 362 | 0 | O | _ | | | | | | | | 0 | . 0 | | | 0 | 0 | 8565 | 35.0 | | 0 | | | | _ | 0. | 9 | | + | - 0 | 9 | 854.7 | 25.5 | 13.4 | 0 | 8564 | 34.4 | 0 | 0 | _ | | | | 9 | o | | + | 0 | 0 | 8631 | 829 | 739 | 430 | 856.2 | 333 | 0 | 0 | _ | | | | 0 | 0 | | | 0 | 1 8 | 868.9 | 143.6
73.5 | 2.0 | 25.0
35.0 | 856.0
855.9 | 321 | 0 | 0 | _ | | | | ŏ | 8 | | | 0 | ŏ | 862.1 | 744 | 1.3 | 0 0 | 855.7 | 30.5 | 1 8 | 0 | _ | | | | 0 | ő | | | 0 | o o | 861.8 | 71.9 | 0 | 0 | 855.6 | 30.0 | 0 | ŏ | _ | | | 1 | ŏ | ŏi | | | Ŏ | ő | 861.5 | 69.5 | ő | Ö | 855.4 | 29.0 | 1 8 | - ö | _ | | | | Ö | 0 | | T | 0 | 0 | 8612 | 67.0 | 0 | Ô | 855.3 | 28.5 | Ö | 0 | | | | | 0 | 0 | | | 0 | 0 | 860.9 | 6.4.7 | 0 | 0 | 855.1 | 27.4 | 0 | 0 | Ξ | | | _ | 0 | 0 | | | 0 | 0 | 860.6 | 62.4 | 0 | 9 | 855.0 | 26.9 | 0 | 0 | _ | | | | 0 | 9 | | + | 0 | - 0 | 8604 | 60.9 | 1507 | 0. | 854.8 | 25.9 | 0 | 0 | _ | | AL
c. Ft. | | <u> </u> | | | | | <u> </u> | | | 2989 | 103.C | | | 0 | 29 | - | | Ac. Ft. | | | - 0 | | | | | | | 2043 + | 13371 | | 0 | + (34.9) | 204 34/0 | ٠ | | daum
Daily Inflow | | 0 | | | | 0 | | | 739 | -,,- | | | 0 | | 7 3 | | | mum
Dally laflew | | Ö | | | | - 0 | | | | 0 | | | | ō | | č | | e Change | - 0 | | | | 0_ | | | | +609 | | | | -350 | | +2 | 7 | | | | | | | N | OTE: Gage H | | ces as of Midnight | t on Day Show | | | | | | 1/2 Ye | | | W. S. Elev. | 871 | feet | on 12/2 | | orage 17 | | Acre Feet | | | RECORD | S COLLECTED | | | DMPUTATIONS | ckd. | ī | | V. S. Elev. | 843 ± | feet | | OUS DAYS St | | | Acre Feet | | | | BELD ING | Dam T | | age Hts. copied F | | 1 | | eak Inf. | 284 | | from 5:00 | | 12/23/45 | | O A.M. on | | <u> </u> | T. E. M | IOON | Hydrog | | orage applied [| | | | Peak Outf | 121 | | S. from 3:30 | | 12/22/45 | | О Р.М. ОП | 12/22/45 | | | | Hydrog | rapner L | f. & Outf. comp. | FHM APK | | | anna. | 1 INDICATE | S TOTAL LOS | DUE TO PER | COLATION A | NU CYAPORAL | UN | | | | | | | | | | | | Daily Gage Height in feet and Operation Record of In Eaton Wash | | | | | EATON WAS | | | _ | DAM OPERATION RECORD
LOS ANGELES COUNTY
FLOOD CONTROL DISTRICT
HYDRAULIC DIVISION | | | | | | | | | | |---|-------------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|--|---------------------|--------------------|-------------------|----------------|---------------------|--------------------|---------------------|--------|--| | On | | o lie | C Wile. | . Canadity of | Reservoir F | 107 N & 1 | Ft at Satil— | Flav 99 | 27 5 Ft sa | of Oc | toher | 10111 Sueva | | | ge Recorder | | | | | Drainage Area 9.48 Square Miles Capacity of FEBRUARY | | | | Capachyon | 1100011011 | MAR | | ay move to | 14.2.4 | APRI | | 18440017 | ., Gays He. | | i. | | | | | | age
ight | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C.F.S.
Qutflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | 1 | | | | 4.7 | 25.5 | 0 | 0 | 852.6 | 16.4 | 0 | 0 | 869.2 | 147.4 | 1.2 | 0 | 858.7 | 48.7 | 0 | 0,000 | ٠ | | | | 4.5 | 24.5 | o o | 0 | 852.5 | 161 | Ö | ŏ | 868.5 | | 01 | ŏ | 858.5 | 47.4 | Ö | Ö | 1 : | | | 8.5 | | 362 | 6.6 | 0 | 8524 | 15.7 | 0 | Ô | | 1305 | 0 | Ö | 858.3 | 461 | 0 | 0 | 7 2 | | | | 6.5 | 35.0 | 0 | _ 0 | 8522 | 14.9 | _0 | 0 | 8671 | 122.6 | 0 | 0 | 8581 | 44.8 | 0 | 0 | | | | | 6.3 | 33.8 | 0 | _ 0 | 852.1 | 14.6 | _0 | 0 | | 1162 | 0 | 0 | 857.9 | 435 | 0 | Q | - | | | 8.5 | 6.1 | 32.7 | 0 | 0 | 8519 | 139 | <u> </u> | 0 | | 110.8 | 0 | 0 | 857.7 | 422 | 0 | 0 | 4-1 | | | 8.5 | 5.9 | 31.6 | 0 | o | 851.7 | 13.3 | <u>Q</u> | 0 | 865,5 | | 0 | <u> </u> | 857.5 | 41.0 | 0 | <u>o</u> | - - 1 | | | | 5.8 | 31.1 | _0 | | 851.4 | 12.3 | 0 | 0 | 8651 | | | 0 | 8573 | 39.8 | 0 | | | | | | 5.6 | 300 | | <u> </u> | 851.2 | 11.7 | o | 0 | 864.7 | 97.8 | 0 | | 8571 | 38.5 | 0 | 0 | | | | | 5.5 |
29.5 | _ 0 | | 8511 | 114 | <u> </u> | <u> </u> | 864.3 | 940 | o o | _ 0 | 8569 | 37.3 | <u> </u> | <u> </u> | 1 | | | | 5.3 | 28.5 | 0 | | 850.9 | 10.8 | <u> </u> | <u> </u> | 864.0 | 911 | <u> </u> | - 8 | 8567 | 362 | 0 | 0 | -⊩i | | | 8.5 | | 274 | _ 0 | 0 | 850.7 | 103 | 0.3 | 0 | 863.6 | 87.5 | 0 | 0 | 8565
8563 | 35.0 | 0 | | | | | | 5.0 | 26.9 | 0 | | 850.6 | | 0.2 | 0 | | 84.7 | 0 | - <u>v</u> | 8561 | 32.7 | 0 | - 0 | | | | | 4.8 | 25.9 | 0 | 0 | 850.5 | 100 | | 0 | 863.0 | 79.5 | 0 | 0 | 8560 | 32.1 | 0 | o o | ⊢i. | | | 8.5 | | 25.5 | 0 | 0 | 850.1 | 8.7 | 0 | ä | 862.4 | 769 | 0 | 0 | 855.8 | 31.1 | 0 | ŏ | 1 | | | 85 | 4.5 | 24.0 | 0 | 0 | 8499 | 8.1 | 0 | ŏ | 8621 | 74.4 | 0 | 0 | 855.1 | 27.4 | 0 | 3.2 | - -i | | | | 4.2 | 23.1 | 0 | 0 | 849.7 | 7.9 | 0 | O | 861.8 | 71.9 | O | ō | 8533 | 192 | ŏ | 9.0 | - I | | | 85 | | 22.6 | 0 | 0 | 851.7 | 114 | 2.0 | 0 | 861.6 | 703 | 0 | ō | 8532 | 18.7 | ŏ | O. | 1 | | | | 3.9 | 216 | 0 | 0 | 8516 | 112 | .0.1 | ō | 861.3 | 67 B | O. | 0 | 851.8 | 13.6 | Ö | 3.0 | 2 | | | | 3.8 | 21.3 | 0 | 0 | 851.4 | 10.8 | 0 | 0 | 8611 | 662 | 0 | 0 | | * 71 | 0 | 2.2 | 7 2 | | | | 3.6 | 20.5 | o I | 0 | 851.3 | 10.5 | 0 | 0 | 860.8 | 63.9 | 0 | o | | 71 | 0 | Ö | 2 | | | | 3.5 | 20.0 | ŏ | ò | 8511 | 101 | _ 0 | 0 | 860.6 | 62.4 | 0 | 0 | | 7.0 | 0 | 0 | 2 | | | 8.5 | 3.4 | 1.9.5 | 0 | 0 | 8510 | 99 | _ 0 | 0 | 860.3 | 60.2 | 0 | Q | | 6.9 | 0 | o | 2 | | | 8.5 | 3.2 | 18.7 | | | 850.8 | 9.5 | | 0 | 860.1 | 58.7 | 0 | _ 0 | | 6.8 | Q | 0 | 3 | | | | 3.1 | 1.8.3 | 0 | _ 0 | 850.6 | 9.2 | o | 0 | 859.8 | 56.5 | 0 | 0 | | 6.7 | 0 | 0 | | | | | 3.0 | 17.9 | 0 | Q | 850.4 | 8.8 | 0 | 0 | 859.6 | 55.0 | <u> </u> | <u> </u> | | 6.5 | 0 | 0 | | | | 85 | 2.8 | 172 | 0 | 0 | 8503 | 8.5 | 0 ~ | 9 | 859.4 | 53.6 | 0 | 0 | | 6.4 | 0 | 0 | | | | | | | | | 851.7 | 13.3 | 2.7 | - 0 | 8592 | 52.1 | 0 | - 0 | | 6.3 | 8 | - | | | | ļ | | | | | 869.8
869.8 | 148.6 | 77.4
17.6 | 8.9 | 859.0 | 50.7 | <u> </u> | | | S. 6
1. 6 | - 8- | - 0 | | | | TAL | | | 6.6 | | 609.8 | 155.0 | 1063 | 133 | | | 13 | 0 | | | 6.5 | 174 | _ 3 | | | Ac. Ft. | | | 13.1 | | | | 1989 | <u> </u> | | <u> </u> | 2.6 | | | 0 | (12.9) | 513.5+(12 | | | | Ac. Ft. | | | | (21.8) | | | | (34.7) | | | | (1069) | | | (230) | 2652+1259 | | | | aximum
Dally Infl | | | 5.6 | (L L L) | | | 77.4 | (2) | | | 1.2 | (2007) | | | 0 | 77 | | | | Delly teff | | | 0 | | | | 0 | | | | 0 | | | | Ö | Ó | | | | age Chang | | -8.7 | X | | + | 1378 | | | | -104.3 | | | | -44.6 | | | 1 | | | | | | | | | NO | TE: Gage Hei | | es as of Midnigh | t on Day Shown | | | | | | % Yes | er | | | W. S. Ele | v. | 871.1 | Çect | on 12/ | 23/45 Stor | age 173 | 6 | vcte test, | | | RECORD | S COLLECTED | ву | COF | APUTATIONS | ckd. | Date | | | W. S. Ele | | 843 ± | feet | | OUS DAYS Stor | | | Acre Feet | | ļ | HAROLD B | FLDING | Dam T | | e Hts. copied F | M APK 1 | 12/1 | | | Peak Inf | | 284 | C. F. S | from 5:00 | A.M. on 12 | 2/23/45 | വ: ക | A.M. on | 12/23/45 | 1 | T. E. MO | ON ' | Hydrog | rapher Stor | rage applied F | HM APK | - | | | . Peak Ou | | | | .from 3:30 | | 2/22/45 | Hydrog | | & Outr. comp. F | | | | | | | | | | ### EATON (contid) | Daily Gage Height in feet and Operation Record of EATON WASH Dam | | | | | | | | | | DAM OPERATION RECORD
LOS ANGELES COUNTY
FLOOD CONTROL DISTRICT | | | | | | | | | | |--|-------------------|---------------------|--------------------|-------------------|----------------|---------------------|--------------------|--|------------------|--|--|---|----------------|--|---|---------------------|--|--|--| | In
Or | Eator |) Wash | | | | for the Year | Ending Septe | ember 30, 19.14 | 3 | | HY | DRAULIC | | | Stage Recorder. | A.u. | | | | | | | | | | | | | | | ^ | | WW 6 | | | Read Daily | ./3.4 | | | | | Dr | ainage Are | 9.45 | Square Mile | s. Capacity of | 607.4 Ac. | Ft. at Spillw | of | clober | , 19.44 Surv | ey Gage He | ights | teau Daisy | | | | | | | | | 1 . | | JUNE | | | | JU | LY | _ | | AUG | GUST | | | SE | PTEMBER | | | | | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C.F.S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S. ·
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre F
Storage | | C. F. S.
Outflow | | | | | ╬~ | | | 0 | 0 | | 1 | 0 | 0 | | | 0_ | Ö | | | 0 | ō | | | | | 1 | | | 0 | 0 | | | 0 | Ó | | | 0 | 0 | | | O. | 0 | | | | | | | | 0 | 0. | | | 0 | 0 | | | 0 | 0 | L | - | 0 | 0 | | | | | | | | <u> </u> | | <u> </u> | | 0 | 0 | | ļ | 0 | | ļ | | <u></u> | <u> </u> | | | | | ⊩ | | | 0 | 0 | ļ. <u></u> | | <u> </u> | | <u> </u> | | 9 | <u> </u> | | - | <u> </u> | - 0 | | | | | ⊩ | | | <u> </u> | 9 - | | | o | 0 | | | 0 | 0 | | | | 0 | | | | | ⊩ | | | 0 | <u> </u> | | + | | 0 | | | 0 | - 0 | ļ | ļ | 0 | - 8 | | | | | - | | | 0 | 0 | h | | 0 | 0 | ··· | | 0 | 0 | · | + | \ \ \ \ \ | 0 | | | | | | | | 0 | <u> </u> | | | ŏ | 0 | | | 0 | 0 | | · | - ŏ | 0 | | | | | 1 | | _ | 0 | 0 | | | . 0 | 0 | | 1 | ŏ | 0 | <u> </u> | <u> </u> | Ö | Ö | | | | | \vdash | | | .0 | 0 | | | ō | Ŏ | | 0 | T 0 | 0 | | Φ. | | Ö | | | | | - | | 8 | 0 | o | | 5 | Ō | Ō | 2 | ۵ | 0 | ا م | | 9 | i o | 0 | | | | | | ~ 2 | + | 0 | 0 | <u> </u> | | . 0 | 0 | | - 0 | 0 | Q | | | Ō | 0 | | | | | | | ā. | 0 | Q | <u> </u> | | 0 | 0 | <u> </u> | = | 0 | 1 0 | | | - 0 | 0 | | | | | C | | _ = | 0 | | - 25 | | 0 | <u> </u> | <u> </u> | <u>\$</u> | 0 | | ځ | | Q | 0 | | | | | Ľ | <u>×</u> | | 0 | <u> </u> | | | <u>o</u> | <u> </u> | | | 0 | 0 | 9 | _و | Q | 0 | | | | | _ | - \$ | - E | 0 | <u>o</u> | 8 | ļ | - 0 | ļ <u>o</u> | - Se | | 0 | o | & | ļ # | | 0 | | | | | ļ | <u>a</u> | | 0 | 0 | | | 0 | 0. | | <u>- ₹</u> - | - 0 | 0 | | + | 0 | | | | | | ⊩ | | | 0 | 0 | <u> </u> | 1 | 0 | 0 | · | | 0 | 0 | | | 1 0 | 1 6 | | | | | - | · | | 0 | Ö | | | Ö | , ŏ | | | - ö | ŏ | | 1 | - | 0 | | | | | \vdash | | | 0 | ŏ | | - | ÷ŏ | ŏ | | | 0 | ŏ | l | 1 | - - - - - - - | ŏ | | | | | - | | | 0 | ŏ | | | Ö | Ö | | T | Ö | . 0 | · | T | ō | 0 | | | | | ~~ | | | Ö | 0 1 | | | | 0 | | | Q | 0 | i | | ō | 0 | | | | | Г | | | 0 | 0 ' | | 1 | 0 | 0 | | | 0 | 0 | L | 1 | 0 | 0 | | | | | Ľ. | | | 0 | 8 | | | <u> </u> | 0 | | ļ | 0 | 0 | | <u> </u> | o | 0 | | | | | Ĺ. | | | 0 | | l | | <u> </u> | 0 | | ļ | 0 | 0 | L | ļ | | 0 | | | | | | | | 0 | 0 | ļ.——— | | 0 | | | | 0 | | ļ | + | | 0 | | | | | _ | | | 0 | L U | <u> </u> | | . 0 | | | | 8 | 8 | | | | 1 | | | | | Ļ | | | 0 | 0 | | | 0 | 0 | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | - | | | 0 | | | | | ra: | | | - 6 | ' ' i | | | - <u>0</u> | | í——— | | 0 | | | • | ŏ | 513.5+(12.9 | | | | | Ac | . Ft. | | 0 | + (4.5) | | | 0 | + (1.2) | l | | | + (0.2) | | 0 | + (0.2) | 265.2 + (261 | | | | | exin
Da | ium
Ily Inflow | | 0 | ,, | | | ō_ | | 1 | | Ŏ | | | | 0 | 77.4 | | | | | | um
Ily Inflow | | 0 | | | | 0 | | H | | 0 | | | | 0 | 0 | | | | | age | Change | - 4.5 | | | | -12 | | | | - 0 z | | | | -02 | | -0 | | | | | | | | | | | | OTE: Gage He | | es as of Midnigh | t on Day Show | | | | | | Yearly To | | | | | | S. Elev. | 871.1 | feet | | | Storage 173 | | Acre Feet | | <u>-</u> | | S COLLECTED | | | COMPUTATIONS | ckd. D | | | | | | S. Elev. | 843 ± | feet | | OUS DAYS | | | Acre Feet | | | | BELDING | Dam ' | | Gage Hts. copied F | | | | | | | ak Inf. | 284 | | | | 12/23/45 | |) A.M. on | 12/23/45 | | Τ. Ε. Ι | WOON | | | Storage applied | APK 5/6 | | | | | | sk Outf. | 121 | | | | 12/22/45_ | to 7:00 |) P.M. on | 12/22/45 | 1 | | | Hydro | grapher | Inf. & Outf. comp. | APK 5/6 | | | | | MA | RKS (|) INDICATES | | | | DODATION | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | (|) INDICATES | LUSS DUE | IU PERCOLATI | IUN AND EVAL | PURATION | Das | | DAM OPERATION RECORD LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION | | | | | | | | | |-----------------|----------------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|-------------------|--|--------------------|---------------------|-----------------|---------------------|--------------------|---------------------|----------|--| | In
On | Ε. | aton Wash | | | | for the Year E | Ending Septem | mber 30, 19.14 | 7. | | | KAULIC | | | ge Recorder | Au | | | | | _ | 0.110 | | | Reservoirfif | 211 | | Tr. 00 | 7 | . 1 | | | | | . | | • | | | Drai | nage Area | . S | Square Miles | . Capacity of | Reservoir | AG. 1 | I. at Spulw | A Flaar 98 | (Fi. as | otJ | une, | 19.H.Z., SUTVE | y Gage Hei | hisR | NO DELLY | | | | | - | | OCTO | BER | | ì | NOVEM | BER | | | DECEM | BER | 1 | | JANU | ARY | | ĺ | | | <u> </u> | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre
Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | 7 | | | . | The Barr | | 0 | 0 | | | 0 | . 0 | 8611 | 532 | 0 | 0 | 859.9 | 4 5 .2 | 2.6 | 0 | \dashv | | | 2 | | ļ | 0 | ő. | | | ŏ | 0 | 860.9 | 51.8 | ŏ | ŏ | 860.0 | 45.8 | 11 | 0 | 7 | | | 1- | | | ō | 0 | | 1 | 0 | Ō | 860.7 | 50.5 | 0 | ō | 860.0 | 45.8 | 0.5 | 0 | | | | 1 | | | 0 | 0 | | | ō | 0 | 8.60.6 | 49.8 | 0 | ŏ | 859.9 | 452 | 0.2 | 0 | _ | | | 1- | | | o_ | ō | | | . 0 | . 0 | 860.4 | 48.5 | . 0 | ō -i | 859.8 | 445 | 0 | o o | _ | | | | | | 0 | | | | 0 | 0 | 8603 | 47.8 | 0 | 0 1 | 859.8 | 445 | 0 | 0 | _ | | | | | | 0 | 0 | 842 | 0 | 0 | . 0 | 8601 | 46.5 | 0 | 0 | 859.8 | 445 | Ō | 0 | _ | | | | | | 0 | 0 | 8501 | 8.0 | 1.4 | 0 | 8599 | 45.2 | 0 1 | Q | 859.7 | 439 | 0 | 0 | | | | | | I | 0 | 0 | 849.6 | 0.5 | 0.9 | 0 | 859.8 | 44.5 | 0 1 | 0 | 859.6 | 432 | 0 | 0 | _ | | | | | | . 0 | | 8493 | 0.4 | 0.4 | | 859.6 | 432 | 0 | | 859.5 | 426 | 0 | 0 | | | | L_ | | <u> </u> | 0 | | 8500 | 0.7 | 1.0 | 0 | 859.5 | 42.6 | 0 | 0 | 8593 | 413 | 0 | | _ | | | L. | | - u - | 0 | 0 | 853.6 | 143 | 9.8 | 0 | 859.3 | 41.3 | 0 | 0 | 8592 | 40.7 | 0 | | | | | ļ | | | | | 867.2 | 1079 | _66.B | 130 | 8591 | 400 | 0 | | 8591 | 4.0.0 | 0 | 0 | | | | <u> </u> | | | | 0 | 876.0 | | 4.0 | <u> </u> | 859.0 | 39.4 | 0 | | 859.0 | 394 | _ 0 | 0 | _ | | | ╙ | - | | 0 | | 8661 | 958 | | o | 858.8 | 38.2 | 0 | 0 | 858.8 | 382 | ο. | Ω. | _ | | | <u> </u> | ě. | | 0 | 0 | 8654 | 8.8.8 | 0 | | 858.7 | 37.6 | 0 | | 858.7 | 376 | . 0 | | _ | | | <u> </u> | | <u> </u> | 0 | 0 | 864.8 | 83.0 | 0 | 0 | 858.5 | 36.5 | 0 | | 858.5 | 3.6.5 | 0 | 0 | | | | _ | | | 0 | 0 | 864.2 | 77.5 | . 0 | 0 | 858.4 | 35.9 | 0 | o | 858.4 | 359 | 0 | 0 | _ | | | ļ | <u> </u> | 9 | o | | 863.8 | 74.0 | 0 | <u> </u> | 8582 | 34.7 | 0 | o l | 858.2 | 3.4.7 | 0 | <u> </u> | | | | ļ | ·σ | <u> 55</u> | 0 | | 873.1 | 204.6 | 739 | 0 | 8580 | 33.5 | 9 | <u> </u> | 8581 | 341 | 0 | 0 | _ | | | I | | - ō - | 0 | — ŏ — | 872.4 | 190.4 | 9.0 | 9.2 | 8579 | 330 | 0 | <u> </u> | 857.9 | 330 | <u> </u> | O O | _ | | | i | | * | 0 | Ŏ. | 8711 | | 0 | 6.3 | 857.7 | 31.9 | - 8 | <u> </u> | 857.8 | 32.4 | . 0 | O O | | | | ļ | | | 0 | 0 | 868.5 | 1239 | 113 | 27.0 | 857.6 | 31.4 | 0.3 | 0 | 857.6 | 314 | 0 | 0 | _ | | | | | | | <u> </u> | 8633 | 69.8 | 3.2. | 29.0 | 857.5
866.5 | 309 | 37.6 | 9 | 857.5 | 309 | | | _ | | | ļ | | | 0 | 0 | 861.8 | 582 | 1.8 | 6.7 | 8623 | 1001
619 | | 1.7 | 857.3 | 29.8 | 0 | 0 | _ | | | - | | | ö | | 861.6 | 56.8 | 1.0 | ŏ | 8651 | 85.8 | 46.7 | 63.0 | 857.2
857.1 | 293 | 8 | - 6 | _ | | | ⊩ | | - | 8 | | 861.5 | 561 | - 0 | - 6 | 863.0 | 673 | (24.0 | 31.0 | 857.7 | 319 | 2.0 | - 5 | _ | | | | | | - 6 | - 8 | 861.4 | 553 | 0 - | - 6 | 857.4 | 363 | 142 | 28.0 | 857.7 | 319 | 0.4 | - ŏ - | _ | | | ∦— | | | ŏ | <u> </u> | 8612 | 539 | ŏ | _ ŏ_ | 855 <i>9</i> | 23.0 | 100 | <u> </u> | 857.5 | 30.9 | 0 7 | - ŏ | _ | | | I | | | ŏ | | | | | | 859.4 | 42.0 | 51 | ő | 8574 | 303 | ŏ | 0 | _ | | | TAL | | | 0 | ŏ | | | 1845 | 912 | | | 1835 | | - · · · · · · · | | 6.8 | 1 0 | _ | | | Ac. Ft | | | ŏ. | | | | 3660 | | | | 364.0 | | | | 135 | 7.4 | 7 | | | . A.c. 7 | | | | .0 | L | | | (131.1) | | | 3265 | (494) | - | '0 ± | (25.2) | 507-4+(20 | ā | | | | intlow | L | 0 | | | | 739 | | | | 46.7 |] | | | 2.6 | 7 | | | | inimum
Delly | Inflow | | 0 | | | | 0 | | | | 0 | | | | 0 | | - | | | | nange | 0 | | | | + 539 | | | | 119 | | | | - 11.7 | | + 3 | Ć | | | | | | | | | NO | TE: Gage Heig | | es as of Midnight | on Day Shown | | | | | | ⅓ Yes | | | | W.S | Elev. | 873.4 | feet | | /21/46 Sta | rage 211. | 1 | Acre Feet | | | RECORDS | COLLECTED | BY | CON | SPUTATIONS | ckd. | L | | | w.s. | Elev. | 842 ± | feet | on PAR | OF YEAR Sta | orage 0 | | Acre Feet | | н | . BELDING | | Dam Te | | e Hts. copied | JHL APK 4 | 4/ | | | Peak | Inf. | 286 | C. F. S | 8. from 10:00 | A.M. on | 11/13/46 | | A.M. on | 11/13/46 | | . E. MOON | | Hydrog: | | | JHL APK | | | | . Peak | | 86.4 | C. F. 8 | 3. from 2:30 | A.M. on | 12/26/46 | | A.M. on | | | | | Hydrogr | apher Inf. | & Outf. comp. | JHL APK 4 | 4/ | | | MARI | - 7 | | | | RORATED DAIL | | | | | | | | | | | | _ | | ## EATON (contid) | F. C. Dist. Ferm 418 Revise Daily Gage Hei | | d Operation R | ecord of | | EATON | WASH | Das | m. | | LC | OPERATIONS ANGELES | COUNTY | | | | | |---|---------------------|--|---------------|----------------|---------------------|---------------|---------------------|------------------|---------------------|--------------------|--------------------|----------------|----------|-------------------|---------------------|-------| | In Eato | n Wash | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | for the Year I | Ending Septe | mber 30, 19.4 | 7 | | | DRAULIC | DIVISIO | 4 | Stage Recorder | Au | | | Drainage Area. | 9.48 | Square Miles | L Capacity of | Reservoir 65 | L.IAc. 1 | Ft. at Spillw | ay Elev88 | 7Ft. as | of | упе | , 19. 47 Surv | ey Gage Hel | ghts Res | ad Dally | | - | | | FEBRU | JARY | | | MAR | CH | | | APR | IIL | 1 | | | МАЧ | | 1. | | Gage
Height | Acre Ft.
Storage | C.F.S.
Inflow | C.F.S. | Gage
Height | Acre Ft.
Storage | C. F. S. | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S. | Gage
Height | Acre Fo | | C. F. S.
Outflow | - 2 | | 1 8572 | 293 | 0 | 0 | 852.6 | 110 | 0 | 0 | 849.9 | 4.9 | 0 | 0 | 847.6 | 2 . | | 0 | 1 | | 2 857.0 | 282 | 0 | Ö | 852.4 | 10.4 | ō | ŏ | 8499 | 4.9 | 0 | 0 | 847.6 | 123 | 9 0 | 0 | 2 | | 3 856.9 | 27.7 | O | 0 | 8522 | 9.5 | 0 | 0 | 8499 | 4.9 | 0 | 0 | 847.5 | 2.5 | | 0 | 8 | | 4 856.7 | 26.8 | _ 0 | 0 | 852.0 | | <u> </u> | 0 | 849.8 | 4.8 | 0 | 0 | 847.5 | 123 | | | | | 5 856.6 | 26.3 | <u> </u> | | 851.8 | 8.3 | 0 | 9 | 849.5 | 4.8 | Q | 0 | 8475 | 2 | 9 0 | 0 | | | 856.4 | 25.3 | <u> </u> | Q | 851.7 | 8.0 | 0 | 0 | 849.8 | 4 .8 | 0 | 0 | 847.4 | 2. | 6 O | 0 | ⊩: | | 7 856.2 | 24.4 | - 9 - | 0 | 851.5 | 7.8 | | 0 | 849.7 | 4.7 | - 0 | 1 8 1 | 8474 | 2.1 | | | | | 8 8561 | 239 | | <u> </u> | 851.3 | 7.1 | 0 | - 8 - | 849.7
849.6 | 4 .6 | 8 | + - 8 - 1 | 847 A | 2 1 | 8 0 | - 8 | ° | | 8561 | 23.9 | 0.4 | 0 | 851.1
851.0 | 6.9 | - ŏ | - 6 | 849.5 | 4.6 | | 1 6 1 | 8474 | 2 . | | 1 0 | 10 | | .10 <u>8559</u> | 23.0 | 1 0 1 | Ö | 850.8 | 6.4 | 0 | 0 | 849.4 | 4.5 | 0 | 1 0 | 8474 | 2.1 | 8 0 | Ö | 11 | | | 22.6 | - 0 | 0 | 850.6 | 6.1 | ŏ | - ŏ | 8493 | 4.4 | ŏ | i ŏ | 8473 | 2 . | | ŏ | 12 | | | 20.9 | 0 | 0 | 850.4 | 5.8 | ŏ | ŏ | 8492 | 4.3 | ŏ | ŏ | 847.3 | 2. | 7 0 | 0 | 18 | | 13 855.4
14 855.3 | 20.5 | 0 | Ö | 8503 | 5.6 | <u>0</u> | Ö | 849.0 | 41 | ő | i o i | 8473 | 2. | | Ö | 14 | | 15 855.1 | 19.6 | 0 | 0 | 8503 | 5.5_ | - O | 0 | 848.9 | 4.0 | o o | 0 | 8472 | 2 4 | | o o | 15 | | 16 855.0 | 192 | 0 | 0 | 850.2 | 5.4 | ō | 0 | 848.8 | 3.9 | 0 | 0 | 847.2 | 2.6 | | 0 | 18 | | 17 854.8 | 18.5 | O | 0 | 8502 | 5.4 | 0 | 0 | 848.6 | 3.7 | 0 | 0 | 8472 | 2 / | | 0 | 17 | | 18 854.6 | 17.8 | ō | 0 | 850.1 | 5.3 | 0 | ō | 848.5 | 3.7 | 0 | o i | 8471 | 2.0 | | Ö | 18 | | 19 854.5 | 17.4 | 0 | 0 | 8501 | 5.2 | ō | 0 | 848.4 | 3.6 | 0 | 0 | 8471 | 2.4 | | 0 | 19 | | 20 854.3 | 15.7 | 0 | . 0 | 850.0 | 5.1 | 0 | 0 | 8483 | 3.5 | 0 | 0 | 8471 | 2.4 | | Ò | 20 | | 21 854.1 | 160 | >⊷ 0 | 0 | 850.0 | 5 1 | 0 | 0 | 848.2 | 3.4 | 0 | Q | 847.0 | 2.5 | 5 0 | 0 | 91 | | 22 853.9 | 15.3 | 0 | 0 | 8499 | 5.0 | . 0 | 0 | 8481 | 3.3 | 0 | 0 | 847.0 | 2.5 | | 0_ | 22 | | 23 853.7 | 14.6 | 0 | Q | 8499 | _ 5.O. | 0 | 0 | 8481 | 3.3 | 0 | 0 | 847.0 | 2.5 | | 0 | 28 | | 24 8535 | 140 | 0 | 0 | 849.8 | 4.9 | | 0 | 8480 | 3.2 | 0 | 0 | 847.0 | 2.5 | | _ O | 24 | | 25 * 853.3 | 132 | _ 0 _ | | 849.8 | .49_ | 0 | Q | 8480 | 3.2 | 0 | ! 0 | 846.9 | 2. | | 0 | 25 | | 26 8531 | 12.5 | 0 | <u> </u> | 849.8 | 4.8 | <u> </u> | 0 | 8479 | 3.1 | 0 | 9 | 846.9 | 2 / | | 0 | 26 | | 27 48529 | 12.1 | 0 | <u> </u> | 849.8 | 4.8 | 0 | 0 | 847.8 | 3.1 | 0 | 9 | 846.8 | 2. | | 0 | 27 | | 28 852.7 | 11.6 | 0 | 00 | 849.8 | 4.8 | (0.3 | 8 | 847.8 | 3.1 | 8- | 0 | 846.7 | 2 . | | 8 | 28 | | 29 | | | | 8499 | 4.9 | 0 2 | - 8 | 847.7 | 3.0 | 8 | 1-8-1 | 846.6 | 2 2 | | + | 30 | | 30 | | | | 8499 | 4.9 | | - 6 | 041.1 | 3.0 | ļ | | 846.5 | 2 2 | | | 31 | | TOTAL | | 0.5 | 0 | 0493 | 4.5 | 0.5 | ŏ | | | 0 | Ö | .0702 | ~ ~ - | ŏ | - 6 | | | Inf. Ac. Ft. | | 1.0 | | | · | 1.0 | | | | ' ŏ | | | | | | 5.5 | | Outf. Ac. Ft. | | | + (196) | | | o o | + (7.7) | | | . ō | + (2 0) | | | 0
+ (0.8 | 507.4+0 | (235. | | Maximum
Man Daily Jaffre | | 0.4 | | | | 0.3 | | | | . 0 | | | | 0 | | 739 | | Minimum
Mean Dally Intlew | | 0 | | | | 0 | | | | Õ | | | | 0 | | 0 | | Storage Change | -18.7 | | | | - 6.7 | | | | - 1.9 | | | | -0.8 | | | 2.2 | | | | | | | NC | TE: Gage Hei | ights and Storag | ts as of Midnigh | on Day Show | n . | | | | | % Y | | | Max. W. S. Elev. | 873.4 | feet | on 11 | /21/46 St | rage 21 | 1.1 | Acre Feet | | | | DS COLLECTED | BY | | COMPUTATION | ckd. | Date | | Min. W. S. Elev. | 842 ± | feet | on PART | OF YEAR Sta | orage | 0 | Acre Feet | | | BELDING | | Dam T | | Gage Hts. copied | JHL APK | 4/14/ | | Max. Peak Inf. | 286 | | 9. from 10:00 | | 11/13/46 | | O A.M. on | | Т. | E. MOON | | Hydrog | | Storage applied | | 4/15, | | Max. Peak Outr. | 86.4 | | 8. from 2:30 | | | to 10:0 | O A.M. on | 12/26/46 | · | | | Hydrog | rapher | Inf. & Outf. comp | JHL APK | 4/16/ | | REMARKS (| INDICATE | S TOTAL FOR | PERIOD OR | PRORATED DAI | LY AMOUNTS | | | | | | | | | | | | | | | | | ATION AND EV | | | | | | | | | | | | | | | PIT W.S. | ELEV. USED | , STORAGE I | N PIT AND RE | SERVOIR * | * RESERVOI | R DRY, STOR | AGE IN PIT O | NL Y | 1 | | | | | | | If ACF | | - | | | | | | | | | | Lo
FLO | OPERATIONS ANGELES
OD CONTRO DRAULIC 1 | COUNTY | CT | | | | |---|---------|----------|------|--------------|---------------|------------------|-------------|---------------|-----------------|-------------------|---------------------|-----------|--|-----------|-------------------|--------------------|----------|-------------| | Gage Acre Pt C.F.B. C. | On | | | | | | IOF IN I DA | Entitle pays | mber ou, 10.31 | 1 | | | | Continu | ous Water | Stage Recorder | Au | | | Mark Mark C.F. B. C | Orain | age Area | 9.48 | Square Miles | . Capacity of | Reservoir66 | I.IAc. | Ft. at Spillw | ray Elev. 887. | .5 Ft. as | of Ju | n.e | . 1947Surve | y Gage He | ights | ReadOs | 11.y | | | Height Shornge Inflow Dufflow Height Shornge Inflow Outflow Inflow Outflow Inflow Outflow | | | 101 | NE | 1 | | 10 | LY | | | | UST | | | | | | ľ | | B.4.5, 5 2, 2 0 0 B.4.5, 0 1, 2 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | Acre Ft.
Shorage | | | | Acre F
Storage | t. C.F.S. | | | | 846 A | - Y 0 W | | | 0 | 0 | 845.0 | 1.2 | 0 | 0 | A 8433 | A 0 A | 0 | 0 | | | 0 | 0 | | | SA 6 3 | | | | Q | | 8450 | 1.2 | | | * 8432 | 0.3 | | | | | | | _ | | St. | | | | | | | | | | L | | | | | | | | | | Sept. Sept | | | | | | | | | | 1 | | | | | | | | -∦- | | 846 3 19 0 0 844 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | ļ | | | | | + | | | - | | S + G 1 + 9 | | | | | | | | | | I | | | | | 1 | | | | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | | 1.9 | Ō | | | 1.0 | Q | | | | | | | | Ō | | | | 8 4 6 0 1 .6 0 0 8 4 4 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | ļ | | | | | | | | | | \$\frac{3}{6} \frac{7}{9} \frac{7}{17} \frac{7}{0} \frac{0}{0} \frac{84}{4} \frac{4}{4} \frac{0}{9} \frac{0}{0} \frac{0}{0} \frac{1}{0} \fr | | | | | | | | | | | | | | | + | | | - | | Start Star | | | | | | | | | | ļ | | | | | + | | | -+ | | State 1.7 | | | | | | | | | | ļ · | | | | | | | | -1: | | R4 5 8 | | | | | | | | | | | | | Ö | | | | | -1 | | R4 5 7 | | | | | O | | | . 0 | O | 8 | 9 | | 0 | | | 0 | 0 | | | 84 5 6 1 6 0 0 84 4 2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 1.6 | 0 | | | | | | 1 | 0 | | | 0 | + | | | | | 8 4 5 6 1 6 0 0 8 4 4 2 0 8 0 0 0 8 4 4 2 0 8 0 0 0 8 4 4 2 0 8 0 0 0 8 4 4 2 0 8 0 0 0 8 4 4 2 0 8 0 0 0 8 4 4 2 0 8 0 0 0 8 4 4 2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | ξ | | | | _ | | St S S S S O O S 4 2 O S O O O O O O O O | | | | | | | | | | <u> </u> | | | | | ¥ - | | | -4 | | State Stat | | | 1.5 | | | | | | | | | | | | + | | | | | 0 | | | | | | | | | | | | | | | | | | | | 845 | | | | | | | | | | · | | | | | + | | | | | St 5 3 | | | | | | | | | | 1 | | | | | | | | - 1 | | 84 5 3 | | | | | 0 | | | | ō | | | .0 | 0 | | | | 0 | | | S4 5 2 | | | | | 0 | | | | 0 | | | 0 | 0 | | | | | | | Start 1 5 0 0 8 4 3 7 0 5 0 0 0 0 0 0 0 0 | | | 1.3 | | | | | | | | | | | | | | | | | 8451 1.3 0 0 843.6 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | ļ <u>.</u> | | | | | | | | _# | | | | | | | | | | | | l | | | | | | | | -43 | | TAL | | | | | | | | | | | | | | | | | | -1 | | TAL | 8 | 454 | | | | | | | | ļ | | | | | | | | | | Ac PT | PAT | | | | 0 | <u> </u> | | | | | | | | | | 0 | 0 | —ŀ, | | Ac. Ft | | | | | | | | ō | | <u> </u> | | | | | | | | 5 3 | | Satir lefts | Ac. F | ¥. | | 0 | 4 (0 g) | | | | + (10) | | | | + (0.4) | | | | 507.4+(2 | 38.1 | | Daily inference COS | Baily I | Inflow | | | | | | | | | <u> </u> | | | | | | | 735 | | NOTE: Cage Heights and Storage as of Midnight on Day Shown N. S. Elev. 873_4. fect on 11/21/46 Storage 211_1 Acre Feet RECORDS COLLECTED BY COMPUTATIONS okd. W. S. Elev. 973_4. fect on PART OF YEAR Storage 0 Acre Feet H. SELDING Dam Tender Gage Bits. copied 314 APR | Dally I | | | 0 | | | | 0 | | · | - 0 / - | 0 | | | | 0 | <u> </u> | 0 | | .W. S. Elev. 873.4 feet on 11/21/246 Storage 211.1 Acre Freet RECORDS COLLECTED BY COMPUTATIONS ckd. W. S. Elev. 873.4 feet on PART OF YEAR Storage 0 Acre Freet H. SELDING Dam Tender Gage Ha. copied JHL APK | ge Ch | ange | -09 | | | | | OTTE: Care V | white and Stone | mes as of Mideleh | | | | | 0 | | - | 0 | | W.S. Ellev. 947 + feet on PART OF YEAR Storage O Acre Feet H. EELDING Dam Tender Gage Has copied JHL APK | | | | | | | | | | e es or arrupigu | L OI DEY SHOW | | De COLLECTED ! | v | | COMPLETATION | | | | | | | | fect | on - 11/ | | | | | | | | | | Tander | | | Dat
4/14 | | | | | | | | OF YEAR SE | 1 /10 /4C | to 11.0 | | 11/12/46 | H- | E MOON | | | | | JHL APK | | | Peak Int. 285 C.F.S. from 10:00 A.M., on 11/13/46 to 11:00 A.M., on 11/13/46 T. E. MOON Hydrographer Storage applied JH. APK Feek Out: 86.4 C.F.S. from 2:30 A.M., on 12/26/46 to 10:00 A.M., on 12/26/46 11/13/46 T. E. MOON Hydrographer Int. & Out. comp. JHL APK | | | | C.F. | S. from 0.00 | A Manual Control | 1/13/45 | to 10:0 | O A M OR | 12/26/46 | <u> </u> | E. MOUN | | | | Inf. & Outf. comp. | | 4/16 | ## BIG SANTA ANITA | | thi in feet and Operation R | | | BIG SANTA | | Da | _ | | LO
FLO | S ANGELE | ON RECO
s county
of distric
DIVISION | т | | | |----------------------------|-------------------------------------|---------------------|----------------|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|---------------------|---|--------------------|---------------------|---------------------| | On San | ta Anita Canyon | | | for the Year E | nding Septe | mber 30, 19.,4 | ä. | | | | | | Singe Recorder | Au | | Drainage Area. | 10.8 Square Miles | . Capacity of | Reservoir69 | 6.9 Ac. F | t. at Spillw | Elevl.3 | 18.0Ft. as | of | May | <u>19 կկ Surv</u> | ey Gage Hei | jhts | Read Daily | | | | OCTOBER | | | NOVEM | BER | | | DECEM | BER | | | JA | YRAUN | İ | | Gage
Height | Acre Ft. C. F. S.
Storage Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | 1 12575 | 1830 (12 | 1.3 | 12604 | 1981 | 1.7 | 12 | 12654 | 225.8 | 1.9 | 13 | 12580 | 185 | 5 5.6 | 3.3 | | 1 12575 | 1830 12 | 1.3 | 1260.6 | 1992 | 1.7 | 1.2 | 1265.6 | 227.0 | 1.9 | 1.3 | 12590 | | | 3.3 | | 3 1257.5 | 1830 12 | 1_3 | 1260.7 | 199.7 | 1.6 | 12 | 1265.7 | 227.6 | <u> 1 4 </u> | 1.3 | 1260.0 | | | 3.4 | | 12574 | 1825 12 | 1.3 | 1260.9 | 200.8 | 1.6 | 1.3 | 12659 | 228.7 | 1.6 | 1.3 | 1260.8 | 200 | | 3.4 | | 5 12574
8 12574 | 1825 12
1825 13 | 13 | 12612 | 202.4 | 1.9 | 1.3 | 12662 | 2305 | 1.9 | 1.3 | 1261.7 | | | 3.4 | | 12574 | | 1.3 | 12615 | 204.0 | 21 | 1.3 | 12663 | 2311 | 1.6 | 1.3 | 12621 | | | 3 4 | | 12574 | 1825 13 | 1.3 | 12618 | 205.6 | 21 | 13 | 1266.5 | 2323 | 1 9 | 13 | 12623 | 208 | 4 42 | 3.4 | | 12574 | 1825 13 | 1.3 | 12620 | 206.7 | 1.8 | 1.3 | 1266.6 | 2329 | 1.6 | 1.3 | 12625 | 209. | 5 3.8 | 3.4 | | 12575 | 1830 15 | 1.3 | 12622 | | 19_ | 1.3 | 1266.8 | 2341 | 2.0 | 1.3 | 1262.6 | | | 3.4 | | 1 1257.6 | 183.5 1.6 | 13_ | 12623 | 208.4 | 1.6 | 13 | 12669 | 234.7 | 1.6 | 1.3 | 1262.8 | | | 3.4 | | 2 1257.8 | 184.5 1.8 | 1.3 | 12625 | | 1.9 | 1.3 | 12671 | 235.9 | 1.9 | 1.3 | 1262.8 | | | 3.4 | | 12579 | 1850 16 | 13 | 1262.7 | 210.6 | 1.8 | 1.3 | 12672 | 236.5 | 1.6 | 1.3 | 1262.8 | | | 3.5
3.5 | | 1258.0 | 185.5 1.5
186.0 1.6 | 13 | 1262.8 | 2111 | 1.6
1.6 | 1.3 | 12673 | 2371 | 1.0 | 1.3 | 1262.7 | | | 3.5 | | 12581 | 1865 15 | 13 | 12631 | 212.8 | 1.8 | 13 | 1267.7 | 2395 | 1.9 | 1.3 | 1262.7 | | | 3.6 | | 12583 | 1871 1.6 | 13 | 12633 | | 1.9 | 13 | 1267.8 | 2401 | 1.6 | 13 | 1262.6 | | | 3.6 | | 12585 | 1881 18 | 13 | 1263.6 | 215.6 | 71.9 | 13 | 12679 | 240.7 | 1.6 | 1.3 | 12625 | | | 3.6 | | 9 1258.6 |
1886 16 | 1.3 | 1263.7 | 2161 | 1.9 | 1.3 | 1268.0 | 2413 | 1.6 | 1.3 | 1261.0 | | | 7.5 | | 0 1258.7 | 1891 15 | 1.3 | 1264.0 | 217.8 | 1.8 | 1.3 | 12681 | 2419 | 1.6 | 1.3 | 1257.5 | 183 | | 12.7 | | 1 1258.8 | 189.7 1.6 | 1.3 | 12641 | | 1.8 | 1,3 | 1,276.8 | 299.5 | 502 | 212 | 1253.8 | | | 124 | | 12589 | 1902 15 | 1.2 | 1264.2 | | 1.6 | 1.3 | 12724 | 2692 | | 1789 | 12500 | | | 122 | | 3 1259.0 | 190.7 1.4 | _12_ | 12643 | 219.5 | 1.6_ | 1,3 | 12627 | 210.6 | | 1522 | 1245.9 | | | 121 | | 1 2591 | 1912 15 | 12 | 12644 | | 1.6 | 13 | 1257.6 | 183.5 | 262 | 399 | 12451 | | | 5.2 | | 12591 | 1912 12 | 12 | 1264.6 | | 19 | 1.3 | 12570 | 1805 | 22.5
15.5 | 24.0 | 12459 | | | 1.8 | | 12592 | 1918 15
1918 12 | 12 | 1264.7 | 2218 | 1.6 | 13 | 12549 | 162.4 | 101 | 14.0 | 1247.4 | 135 | | 1.8 | | 12592 | 1918 12
1918 12 | 12 | 1264.9 | | 1.5 | 13 | 1252.6 | 1591 | 8.9 | 10.6 | 12479 | | | 1.8 | | 12592 | 1923 14 | 12 | 1265.0 | | 1.6 | 13 | 12545 | 1682 | 79 | 33 | 12485 | | | 1.8 | | 1259.8 | 1949 25 | 12 | 12652 | | 1.9 | 13 | 1256.0 | | 7.0 | 3.3 | 1249.0 | | | 18 | | 12602 | 1971 24 | 1.2 | | | | | 12572 | 181.5 | 6.3 | 3.3 | 12495 | | 3.0 | 1.8 | | OTAL | 462 | 393 | | | 52.5 | 38.6 | | | 475.6 | 497 A | | | | 136.7 | | . Ac. Ft. | 91.6 | | | 1 | 041 | | | | 433 | | | | 234.6 | 1373. | | tf. Ac. Ft. | | 78.0 | ļ | | | 76.6 | | | | 986.6 | | | 2711 | 1412. | | tes Dally Inflew | 2.5 | | | | 21 | | J | | 63.6 | | | | 6.0 | 1634 | | Minimum
an Dally Inflew | 12 | | | + 27.5 | 1.5 | | [| -432 | 1.6 | | | -364 | 2.9 | 1 2
-38 2 | | orage Change | +13.6 | | H | T & I D | TE: Gage Het | ghts and Storas | es as of Midnight | | | | ! | د ه د | | % Year | | x. W. S. Elev. | 14.2 feet | OD - 1 | 91. | | | Acre Feet | | I | | S COLLECTED | RY | | COMPUTATIONS | ckd. Da | | | | on 1/ | W-40 | orage 123 | | Acre Feet | | | | A. SHIPLEY | Dam To | | Gage Hts. copied W | | | | | S. from 6:4 | | | 7:15 | | 12/23/45 | | T. E. M | | Hydrog | | Storage applied w | | | | 98 C.F. | a.from AT 3: | 00 P.M. on 1 | | to | on | 12/2024 | | <u></u> | | Hydrog | | Inf. & Outr. comp.W | | | | ALLOWANCE MADE FOR PE | | | | | | | | | | | | | JHL 7/31/ | | | NDICATES TOTAL FOR PE | | | | | | | | | | | | | | | D | ally Gage Held | ghi in feet and | Operation R | ecord of | BIG | SANTA AN | T·A | D. | m | | LO
FLO | S ANGELE | OL DISTRIC | T | | | | |---------|---|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--|-----------|---------------------|---------------------|--------| | In
C | n Sant | a Anita C | anyon | | | for the Year I | Ending Septer | mber 30, 19 | <u>16</u> | | HTL | DRAULIC | DIVISION | | | Au | | | • | | | | | | | | | | | | | Continuo | s Water S | itage Recorder | | • | | D | rainage Area. | 10.E | Square Miles | . Capacity of | Reservoir69f | 3.9Ac. | ft. at Spillwa | ry Elevi.3.1 | 6.0Ft. as | of | May | 19.1414. Surv | ey Gage Hel | hts | Read Daily | | | | T | *************************************** | FEBRU | ARY | | | MAR | CH | | | APRI | L | | | N | (AY | | Ī | | ľ | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft. | C. F. S.
Inflow | C. F. S.
Outflow | | | + | 1249.9 | 146.7 | 2.7 | 1.8 | 12548 | 169.6 | 3.2 | 2.2 | 12791 | 316.1 | 3 3 .5 | 35.0 | 1300.9 | 511.5 | | 1.5 | ᅱ | | + | 12504 | 1489 | 2.9 | 1 8 | 12551 | 1711 | 2.8 | 2.1 | 12769 | 3.00.2 | 270 | 35.0 | 13015 | 518. | | 1.5 | \neg | | ╁ | 1254.8 | | 123 | 1.8 | 1255 3 | 172.1 | 2.6 | 2 1 | 1276.4 | 296.6 | 20.2 | 22.0 | 13021 | 525 | | 1.5 | _ | | 1 | 1256.0 | | 7.3 | 4.4 | 12555 | 1731 | 2.5 | 2.0 | 12700 | | 14.9 | 36.7 | 1302.7 | 531.8 | | 1.5 | | | 1 | 12551 | | 4.7 | 6 9 | 12558 | 1745 | 2.7 | 2.0 | 12648 | 222.4 | 14-4 | 30.2 | 13032 | 537 | 4 4.5 | 1.5 | Ξ | | | 12541 | 1663 | 4.4 | 6.8 | 12561 | 1760 | 2.7 | 2.0 | 12673 | | 13.9 | 6.4 | 1303.7 | 543.0 | (4.4 | 1.5 | _ | | | 12531 | 161.5 | 4.4 | 6.8 | 12564 | 177.5 | 2.7 | 2.0 | 1270.8 | | 130 | 2.2 | 13042 | 5483 | 1 4 3 | 1.5 | | | 1 | 12519 | 155.8 | 3 .8 | 6.7 | 1256.6 | 1785 | 2.6 | 2.1 | 1273.6 | 2772 | 11.6 | 2.2 | 1304.7 | 554.5 | | 1.5 | _ | | I | 1250.6 | 1499 | 3.7 | 6.7 | 1256.7 | 1790 | 2.6 | 2.1 | 12759 | 2931 | 103 | 2.3 | 13051 | 559: | 1 42 | 1.5 | _ | | Ĺ | 12493 | 144.0 | 3 .6 | 5.6 | 12569 | 1800 | 2.6 | 2.2 | 12779 | 307.4 | 9.5 | 2.3 | 1305.6 | 564. | | 1.5 | _ | | ľ | 12479 | 137.8 | 3 .5 | 5.6 | 12571 | 1810 | 2.7 | 2.2 | 1279.7 | 320.6 | 9.0 | 23 | 13061 | 570.8 | | 1.5 | _ | | | 12464 | 1313 | ſ 3.6 | 6.5 | 12573 | 182.0 | 2.8 | 2.3 | 12814 | 3333 | 8.2 | 1.8 | 1306.6 | 576. | | 1.5 | | | | 12464 | 1313 | 3.5 | 3.9 | 12581 | 186.0 | 4.3 | 2.3 | 12830 | | 7.7 | 1.5 | 13071 | 582. | | 1.6 | _ | | ı | 1247.0 | 1339 | 3.5 | 2.1 | 1258.7 | 1891 | 3.9 | 2.3 | 1284.6 | 3583 | 7.9 | 1.5 | 1307.6 | 588.8 | | 1.6 | _ | | | 12476 | 136.5 | 3.4 | 2.1 | 12591 | 1912 | 3.3 | 2.3 | 12860 | 369.7 | 7.2 | 1.5 | 13081 | 594.8 | | 1.6 | _ | | | 12485 | | 4 .0 | 2.1 | 12593 | 1923 | 2.9 | 2.3 | 12874 | 381.4 | 7.4 | 1.5 | 13085 | 599. | | 1.6 | _ | | | 12494 | 1444 | 4.1 | 2.1 | 1259.5 | 193.4 | 2.9 | 2.3 | 1288.7 | 392.7 | 7.2 | 1.5 | 1308.9 | 604. | | 1.6 | | | | 12499 | 146.7 | 3.2 | 2.0 | 1259.8 | 1949 | 3.0_ | 2.3 | 12899 | 4033 | 72 | 1.5 | 13093 | 609. | | 1.6 | _ | | L | 12505 | 149.4 | 73.3 | 2.0 | 12621 | 207.3 | 8.6 | 2.3 | 12912 | 4151 | <u> </u> | 1.5 | 13097 | 614. | | 1.7 | _ | | L | 12511 | 1522 | 3.3 | 2.0 | 12610 | 2013 | 5.4 | 8.5 | 12922 | 424.4 | 6.7 | 1.5 | 13100 | 618. | | 1.7 | _ | | | 1251.6 | 154.5 | [3.3 | 2.0 | 12605 | 198.7 | 5.4 | 6.7 | 1293.3 | | L6.2 | 1.5 | 1310.5 | 624 | | 1.8 | _ | | | | 1563 | 731 | 0 | 1262.0 | 206.7 | 5.2 | 11 | 12942 | 443.4 | 5.8 | 1.4 | 13109 | 629 | | 1.8 | _ | | L | 12525 | 158.7 | 3.1 | 2.1 | 12634 | 214.4 | 4.9 | 1.1 | 1295.0 | 4512 | <u> </u> | 1.4 | 13112 | 6333 | | 1.8 | _ | | L | 12529 | 160.5 | 3.1 | 2.1 | 1264.6 | 2212 | 4.6 | 1.1 | 12959 | 4601 | 5.6 | 1.4 | 13115 | 637 | | 1.8 | _ | | L | 12534 | 1629 | [3.1 | 2.2 | 12656 | 2270 | 4.0 | 11_ | 1296.7 | 4682 | 5_5_ | 1.4 | 13118 | 641 | | 1.8 | _ | | | 1253.7 | | (3.2 | 2.2 | 1266.5 | 232.3 | 3.8 | 1.1 | 12975 | 4763 | 5.5 | 1.4 | 13121 | 645. | | 1.8 | _ | | | | 1663 | 3.2 | 2.2 | 12674 | 2377 | 3.B | 1.1 | 12982 | 4835 | 15.2 | 1.4 | 1312.4 | 649 | | 1 .8 | _ | | L | 12544 | 167.7 | 2.9 | 22 | 1268.6 | 2450 | 4.8 | 1_1_ | 12989 | 490.8 | 5.2 | 1.4 | 1312.8 | 654 | | 1.7 | _ | | - | | | | | 12704 | 2562 | 6.7 | 1.1 | 1299.6 | | 5.1 | 1.5 | 13130 | 656.8 | | 1.7 | | | - | | | | | 12835 | 349.7 | 123./
55.5 | 76.5 | 13003 | 305.5 | L 5 .0 | 1.5 | 13132 | 659 | | 1.7 | _ | | L | | | 1102 | 007 | 12795 | 2194 | 2892 | | 1 | | 298.6 | 204.7 | -2124 | 006 | 1293 | 50.4 | _ | | | AL
: Ft. | | 2186 | 30.1 | | | 5736 | · | <u> </u> | <u> </u> | 592.3 | ~ ~ 4 11 | <u> </u> | | 256.5 | 301 | 7 | | | Ac. Ft. | | 4 T B D 4 | 95.8 | | | | 4223 | | | J 3 E J_ | 406.0 | <u>. </u> | | 1000 | 253 | | | | laum
Dally Jaffew | | 12.3 | | | | 123.7 | | li T | | 3 3 5 | | - | | 4.9 | 16 | | | | inus
Dally Inflow | | 2.7 | | | | 2.5 | | | | 5.0 | | | | 3.2 | | 1 | | | ce Change | +82.8 | <u> </u> | | | 151.4 | | | | 186.4 | | | | 156.5 | | + 47 | | | | | FNA | _ | | <u> </u> | NO | TE: Gage Heis | this and Stora | ges as of Midnight | | | | Т | | | % Ye | | | | V. S. Elev. | | feet | on 6 | 10.110 91 | rage 672. | | Acre Feet | | 1 | | S COLLECTED | BY |) c | OMPUTATIONS | ckd. | = | | | 7. S. Elev. | 1314.2 | feet | | W 40 | rage 123. | | Acre Feet | | | KERMIT A. | | Dam Te | | age Hts. copied Wi | | | | | eak Inf. | 1244.6
492 | | S. from 6:45 | | | to7:15_ | | 12/23/45 | | T. E. MOOI | | Hydrog | | torage applied WE | C APK | 4 | | | eak Outf. | 298 | | | OO P.M. on 1 | | to /:15 | on on | 12/23/45 | | . E. MUUI | · | Hydrog | apher I | nf. & Outf. comp.we | C APK E/1 | 11 | | | | | | | R EVAPORATION | 6/ 66/40 | | | | | | | ,,,,,,,,,, | | = = = comp.nt | JHL 7/3 | | | | | | | | RATED DAILY | | | | | | | | | | | JEL 7/3 | 5 | ## BIG SANTA ANITA (contid) | | ght in feet and Operati | | | | | | | | LO
FLO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | |----------------|-------------------------|---------------------|--------------|----------------|------------------|------------------|-------------------|----------|-----------|-------------|---|----------|--------------------|------------| | In Santa
On | Anlta Canyon | | | for the Year l | Ending Septe | mber 30, 19.4 | 6. | | ***** | JAMOLIO | | | tage Recorder | Α μ | | Drainage Area | 10.8 Square | Miles. Capacity of | Reservoir69 | 6.9 Ac. | Ft. at Spillw | ray Elev. 131 | 6.0 Ft. as | of | May | 19.14 Surv | ey Gage Hel | ghts | Read Daily | | | T T | JUNE | | | JU | | | T T | AUG | | <i>*</i> | 1 | | TEMBER | | | Gage | Acre Ft. C.F.S | C. F. S. | Gage | Acre Ft. | C. F. S. | C.F.S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C.F.S. | C. F. S. | | Height | Storage Inflow | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | | 1313.6 | 6647 130 | | 12973 | 4743 | 12.6 | 6.7 | 12782 | 309.6 | 1.3 | 2.1 | 12731 | 2739 | | 1.4 | | 13138 | 6673 2'9 | | 12965 | 4662 | 2.5 | 6.7 | 1278.0 | 3081 | 1.3 | 21 | 12730 | 2732 | | 1.4 | | 13140 | 6699 29 | 1.8 | 12955 | 456.2 | 2.4 | 6.7 | 1277.8 | 306.7 | 1.3 | 2.1 | 12729 | 272.5 | | 14 | | 13141 | 6712 2.8 | 1.9 | 12946 | 4473 | 2.4 | 6.7 |
1277.6 | 3052 | 1.3 | 2.1 | 1272.8 | 271.9 | | 14 | | 13142 | 6726 28 | 1.9 | 12937 | 438.6 | 2.2 | 6.7 | 12774 | 303.8 | 12 | 21 | 1272.5 | 269.9 | | 1.4 | | 13140 | 669.9 2.8 | 5.0 | 12919 | 421.6 | 22 | 6.7 | 1277.0 | 3009 | 12 | 21 | 12724 | | | 1.4 | | 1313.7 | 660.7 2.8 | 5 Q | 12910 | 4133 | 22 | 6.6 | 1276.8 | 299.5 | 12 | 2.0 | 12722 | 267.8 | | 1.4 | | 13130 | 656.8 2.8 | 5.0 | 12901 | 4051 | 2.3 | 6 .6 | 1276.5 | 297.4 | 1 2 | 2.0 | 1272.0 | | | 1.4 | | 13127 | 6529 2 8 | 5.0 | 1289.1 | 396.2 | lã 3 | 6.6 | 12762 | 2952 | 12 | 2.0 | 12719 | 265.9 | | 1.4 | | 13123 | 647.7 12.8 | | 12881 | 387.5 | 123 | 6.6 | 12759 | 2931 | 1.1 | 2.0 | 1271.8 | 265.2 | | 1.4 | | 13119 | 6425 2.7 | 5.0 | 1287.1 | 387.5
378.9 | 2.3 | 6.6 | 1275.6 | 291.0 | 11 | 2.0 | 1271.7 | 264.6 | 0.9 | 1 .4 | | 13111 | 6322 2.6 | 7.7 | 12861 | 370.5 | 2.3 | 6.6 | 1275.4 | 289.6 | 1.1 | 2.0 | 12715 | 263.3 | | 1.4 | | 13102 | 620.8 2.6 | 9.0 | 12851 | 3623 | 2.3 | 6.6 | 12753 | 288.9 | 11 | 1.7 | 12714 | | | 1.3 | | 13092 | 6083 25 | 9.0 | 1284.0 | 353.6 | 2.2 | 6.6 | 12752 | 2882 | 1.1 | 1.5 | 12712 | | | 1.3 | | 1308.4 | 598.51 2.5 | 8.1 | 12829 | 344.9 | 15 2 | 6.6 | 12751 | 2875 | 1.2 | 1.5 | 12711 | 260.7 | | 1.3 | | 1308.0 | 593.6 2.5 | 4.9 | 1281.8 | 336.4 | 2.2 | 6.6 | 1275.0 | 286.8 | 1.2 | 1.5 | 12709 | 259.4 | | 1.3 | | 13074 | 5863 2.5 | 6.6 | 1280.7 | 3281 | 2 1 | 6.6 | 1274.9 | 286.1 | 11 | 1.5 | 12708 | 258.7 | | 1.3 | | 1306.5 | 575.6 2.5 | 7.0 | 12801 | 323.6 | 2 1 | 4 .6 | 1274.8 | 285.4 | 1.1 | 1.5 | 1270.6 | 257.5 | | 1.3 | | 1305.7 | 5661 26 | 7 2 | 12800 | 322.8 | 157 | 1.9 | 1274.7 | 284.7 | 1.1 | 1.5 | 12705 | 256.9 | | 1.3 | | 1305.0 | 557.9 (2.7 | 7.2 | 12799 | 3221 | $\frac{19}{1.7}$ | 1.9 | 1274.6 | 284.0 | 11 | 1.5 | 12704 | 256 2 | | 13 | | 13043 | 5499 2.7 | 7.2 | 12793 | 320.6 | | 2.0 | | 282.7 | 11 | 1.5 | 12702 | 253.7 | | 1.3 | | 1303.5 | 540.7 2.8
532.9 2.9 | 71 | 1279.6 | 3198 | 1.5 | 2.0 | 1274.4 | 282.0 | 1.1 | 1.5 | 12699 | 253.7 | | 13 | | 1302.8 | 532.9 2.9
525.1 3.0 | | 12795 | 3191 | 1 5 | 21 | 12743 | 280.6 | 1.1 | 1.5 | 1269.8 | 2524 | 0.9 | 13 | | 13013 | 5163 29 | | 12793 | 317.6 | (1.5 | 2.1 | 1274.0 | 279.9 | 11 | 1.5 | 1269.7 | 251.8 | | 13 | | 1300.5 | 507.7 2.8 | | 12791 | 3161 | 1.5 | 21 | 12739 | 2792 | 1.0 | 1.5 | 1269.6 | 2512 | | 13 | | 1299.7 | 4992 2.7 | 6.9 | 12790 | 3154 | 1.5 | 2 1 | 1273.7 | 2779 | 1.0 | 1.5 | 12695 | 250.6 | | 13 | | 12989 | 490.8 2.6 | | 1278.8 | 313.9 | 1.5 | 2.1 | 12735 | 276.6 | 1.0 | 1.5 | 1269.4 | 249.9 | | 13 | | 12981 | 4824 2.6 | | 1278.7 | 3132 | 1.5 | 2.1 | 12734 | 275.9 | 1.0 | 1.5 | 12694 | | | 1.3 | | | | | 1278.5 | 311.8 | 11.4 | 2.1 | 12733 | 2752 | 1.0 | 1.4 | | | | | | FAL | 819 | 172.4 | | | 62.5 | 148.5 | | 1 | 353 | 53.8 | | | 27.5 | 403 | | Ac. Ft. | 162.4 | | | 1 | 1240 | | ļ | | 700 | | | | 54.5 | 342 | | rylacum | | 342.0 | | | | 2945 | ļ | | | 106.7 | ļ | | 799 | 3359 | | Daily Inflow | 3.0 | | h | | 2.6 | | | | 13 | | | | 12 | 1.63 | | Dally Inflow | 2.5
-179.6 | | | -170.6 | 1.4 | | ļ | - 36.6 | 1 .0 | | ļ | -253 | 0.8 | + 66 | | ige Change | -1,7.0 | | | | OTE: Gage He | ights and Storas | res as of Midnigh | | | | ļ | -25.3 | L | Yearly? | | W. S. Elev. | 1014.0 | feet on 6/6 | /40 00 | 27.7.200 | | Acre Feet | | T | | S COLLECTED | BY | 10 | OMPUTATIONS | citd. | | W. S. Elev. | | | | orage 672. | | Acre Feet | | | KERMIT A. | w | Dam T | | age Hts. copied Fi | | | Peak Inf. | | C. F. S. from 6:45 | | | to 7:15 | | 2/23/45 | l | T. E. MOO | | Hydrog | | torage applied Fi | | | Peak Outf. | 298 | C. F. S. from AT 3: | OO P.M. on 1 | 2/22/45 | to | on on | WEST #3 | ļ | | • | Hydrog | | if. & Outr. compF | | | | DICATES TOTAL FOR | | | | | | | | | | - | | | JHL 8/1/ | | | ALLOWANCE MADE FO | | | | | | | | | | | | | | | Ac. Ft. at Spill | ous Water Stage Recorder All | | | |------------------|--|---|--| | | | | | | | lights | | | | NOVEMBER | | Gage rieights | | | | JANUARY | JANUA | | | Ft. C.F.S. | Acre Ft. C. F. S. C. F. S. | Gage Acre Ft. | ١, | | rage Inflow | Storage Inflow Outflow | Haight Storage | L | | 52 [1.7 | 26.6 26 | | Ľ | | 75.9 1.7 | 231 23 | | Ļ. | | 6.6 1.7 | 20.7 20. | | L | | 7.2 1.7 | 18.5 18. | | H | | 772 16 | | | ┝ | | 779 (16 | | | H | | 78.6 1.6 | 16.0 16.
15.6 15 | | Н | | 799 2 C | 15.0 15 | | ┝ | | 2.7 122 | 143 14 | | H | | 5.4 2.6 | 13.8 13. | | H | | 61 22.6 | 133 13 | | r | | 4.5 78.4 | 3 128 12. | | H | | 1.7 20.7 | 124 12 | - 2 2 | H | | 241 135 | 0 120 12 | | ŀ | | 19 90 | | | Н | | 5.6 6.5 | 10.8 10.8 | | h | | 72 5.8 | 2 10.5 10. | v 5 | H | | 79 54 | 101 10 | | | | 75 122 0 | 9.8 9. | | | | 779 323 | 9.6 9. | | ۲ | | 60 153 | 9 4 9 | | H | | 29 395 | 6.7 8. | | r | | 9.5 33.6 | 8.0 8. | | H | | 4.7 23.5 | 80 8 | | ŀ | | 5.6 19.0 | 73 7. | | ۲ | | 9 4 17 0 | * 0 7 B 7 | 1181 .0 | H | | 12 152 | | | ŀ | | 01 132 | | | r | | 29 121 | | | r | | | 743 83 0 | 12299 743 | t | | 527.0 | 4011 363 | | ٦ | | 1045.3 | 7056 31 | | 5 | | | 7212 33 | | | | 122.0 | 26.6 1 | | | | 1.6 | 7.8 | | L | | 1.6 | + 743 -1 | + 743 | | | | | | - | | 438.6 | | | | | | | | / | | 46 to 10:0 | | | _ | | 46 to 4:0 | grapher Inf. & Outf. comp. JHL APK 1 | Hydrographer Inf. | 1 | | | | | _ | | 6/ | Control of the contro | 438.6 ACRF Feet RECORDS COLLECTED 9 October K.A. SHIPLEY 0/46 to 10:00 A.M. on 11/20/46 T.E. MOON 6/46 to 4:00 A.M. on 12/26/46 | 438.6 Acre Feet RECORDS COLLECTED BY COMPUTATIONS ckd. D 0 Acre Feet K. A. SHIPLEY Dam Tender Gage His. copied. JHL. APK. 1/16 0/46 to 10:10 A.M., on 11/20/46 T. E. MOON Hydrographer Storage applied. JHL. APK. 1/16 6/46 to 4:10 A.M., on 12/26/46 Hydrographer Int. & Outf. comp. JHL. APK. 1/16 | ## BIG SANTA ANITA (contid) | D | aily Gage Held | thi in feet and | Operation R | ecard of | *************************************** | BIG SAN | CA. ANITA. | Du | m | | LO:
FLOC | S ANGELE
D CONTRO | ON RECO
S COUNTY
OL DISTRIC | т | | | | |---|-------------------------|---------------------|--------------------|---------------------|---|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|----------------------|-----------------------------------|---------------------|--------------------|---------------------|-----| | I | Sant | a Anita C | anyon | | | for the Year E | Ending Septe | nber 30, 194 | 7. | | HYE | RAULIC | DIVISION | l | | | | | _ | - | | | | | | | | | | | | | | age Recorder | _Au | , | | D | rainage Area | J.O. 8 | Square Mile | . Capacity of | Reservoir 72 | 27.,6Ac. 1 | Ft. at Spillwa | y Elev13 | 16.0 Ft. as | of J | anuary , | 19.47 Surv | ey Gage Heig | nhts Rea | d daily | | _ | | - | | FEBRU | ARY | | | MARC | CH | | | APR | IL, | | | м | AY | | i | | ŀ | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | | ⇈ | 1234.0 | 88.9 | 17.8 | _0 | 1251.8 | 165.4 | 5.1 | 4 .8 | 12711 | 278.1 | ſ4.5 | 2.5 | 12753 | 308 | 3.0 | 12.8 | I | | | 1237.8 | 103.6 | 7.4 | | 12519 | 1659 | 5.1 | 4.9 | 1271.7 | 282.2 | 4.5 | 2.5 | 12753 | 308 | | 2.6 | | | |
12414 | 1182 | 7.0 | 0 | 12519 | 165.9 | 5_0_ | 5.0 | 12723 | 286.4 | 4.5 | 2.5 | 1275 3 | 308. | | 2.5 | | | | 12445 | 131.4 | 6.6 | 0 | 12520 | | 5.3 | 5.0 | 1272.8 | 2899 | 4.4 | 2.5 | 12753 | 308 | | 2.5 | 4 | | | 12476 | 145.3 | 6.6 | 0 | 12521 | | 5.2
7.0 | 5.0
5.0 | 12733 | 293.5 | 44 | 2.5 | 12753 | 308. | | 2.4 | | | | 12503
12529 | 1580 | 6.6 | 0 | 1254.0 | | 7.8 | 5.0 | 12743 | 300.7 | 42 | 2.5 | 1275.5 | 309. | | 2.3 | | | | 12553 | 1833 | 6.5 | - ŏ | 1254.0 | | 5.0 | 5.0 | 1275.0 | 305.8 | 41 | 1.5 | 1275.7 | 311. | | 23 | | | | 1258.0 | 1979 | 7.3 | - 0 | 12539 | | 14.7 | 5.0 | 1275.7 | 3111 | 4.0 | 1.5 | 12761 | 314 | | ** ¿õã | | | | 1257.6 | 195.7 | 18.4 | 8.8 | 12543 | 1781 | 4.7 | 3 .8 | 12745 | 302.2 | 4.0 | 8.5 | 1276.6 | 3175 | | 0.3 | | | | 12541 | 177.0 | 7.7 | 17.8 | 12553 | 1833 | 4.7 | 2.5 | 1273.4 | 2942 | 73.8 | 7.9 | 12772 | 322. | 2.7 | 0.4 | П | | | 12518 | 165.4 | 7.4 | 133 | 12562 | 1881 | 4.7 | 2.5 | 1273.5 | 294.9 | 3.6 | 3.2 | 1277.8 | 327 | | 0.6 | | | | 1250.8 | 1604 | 7.0 | 9.5 | 1257.0 | 192.4 | 4.7 | 2.5 | 1273.6 | 295.6 | 3.4 | 3.2 | 12783 | 331.0 | | 0.6 | | | | 1251.0 | 161.4 | 6.8 | 5.8 | 1257.7 | 1963 | 4.7 | 2.5 | 1272.8 | 2899 | 3.4 | 6.1 | 12789 | 3357 | | 0.7 | | | | 1251.0 | 161.4 | 6.4 | 5.8 | 12585 | 200.7 | 4.7 | 2.5 | 12729 | 290.6 | 3 .4 | 3.3 | 12795 | 3405 | | 8.0 | | | | 1251.0 | 161.4 | 6.2 | 5.8 | 12592 | 204.6 | 4.5 | 2.5 | 1272.8 | 289.9 | 3.3 | 3.2 | 12800 | 344. | | 8.0 | | | | 12512 | 162.4 | 6.0 | 5.8 | 1259.8 | 208.0 | 4 .6 | 2.5 | 1272.9 | 290.6 | 3.3 | 8. 5 | 1280.5 | 348. | | 8.0 | | | | 1251.5 | 1639 | 5.8 | 5.8 | 1260.5 | 212.0 | 4.6 | 2.5 | 1273.0 | 2913 | 3.3 | <u>8.s</u> | 12809 | 351.7 | | 9. O
8. O | | | | 12515 | 1639 | 5.8
5.7 | 5.8
5.8 | 12613 | 216.6 | 4.8 | 2.5 | 12731 | 292.0 | 3.2 | 2.8
2.8 | 1281.7 | 355 (
358 a | | 0.8 | | | | 1251.6
1251.6 | 164.4 | 5.6 | 5.8 | 12631 | 2272 | 5.5 | 2.5 | 1273.5 | 294.9 | (3.8 | 2.8 | 1282.0 | 360.7 | | 60 | | | | 1251.5 | 1639 | 5.6 | 5.8 | 12639 | 232.0 | 4.9 | 2.5 | 1273.8 | 2971 | 3.8 | 2.8 | 1282.4 | 364.0 | | 1.0 | | | | 12513 | 1629 | 5.4 | 5.8 | 1264.6 | 2363 | 4.7 | 2.5 | 12739 | 297.8 | 3.8 | 2.8 | 1282.8 | 367 | | 11 | | | | 12513 | 1629 | 5.2 | 5.2 | 12651 | 2393 | 14.2 | 2.5 | 12741 | 2992 | 3.6 | 2.8 | 12832 | 370.6 | | 111 | | | | 12514 | 1634 | 5.0 | 4.8 | 1265.7 | 243.0 | 42 | 2.5 | 12743 | 300.7 | 3.4 | 2.8 | 12835 | 3733 | | tii | | | | 1251.4 | 163.4 | 4 .8 | 4 .8 | 12662 | 2462 | 4 1 | 2.5 | 12745 | 3022 | 3.4 | 2.8 | 1283.0 | 368. | | 4.5 | | | | 1251.6 | 164.4 | 5.3 | 4 .8 | 1266.7 | 2493 | 4.1 | 2.5 | 1274.7 | 303.6 | 3.4 | 2 .8 | 1281.7 | 358.2 | 2.3 | 7.7 | ٦ | | | 1251.7 | 164.9 | 5 1 | 4 .8 | 12682 | 2589 | 7.3 | 2.5 | 1274.9 | 305.1 | 3 .4 | 2.9 | 1280.5 | 348.5 | | 7.5 | | | Г | | | | | 12691 | | 5.5 | 2,5 | 12750 | 305.8 | 3.2 | 2.9 | 1279.2 | 3383 | [2.6 | 8.0 | | | _ | | | | | 12699 | | 5.1 | 2.5 | 12752 | 3073 | 3.1 | 2.9 | 1277.9 | 327.8 | 2.6 | 7.9 | | | | | | | | 1270.5 | 2741 | 4 .6 | 2.5 | | | | | 12765 | 317. | | 7.9 | | | 2 | AL. | | | 1318 | | | | 1010 | | | 1116 | 94.9 | | | 81.7 | 76.8 | | | | . Ft.
c. Ft. | | 3521 | 2614 | | | 309.6 | 200.3 | l | | 221.4 | 1882 | | | 1620
1523 | 417 | . 5 | | | num
ally inflow | | 8.4 | - U I A | | | 7.8 | | | | 4.5 | 1002 | - | | 3.0 | 12 | | | ď | | | 4.8 | | ! | | 4.1 | | | | 3.1 | | | | 23 | | 1 | | Ď | ally laffew
e Change | 190.6 | 4.0 | | <u>-</u> | 1092 | _ | | | - 33.2 | | | | + 9.8 | 1 2 3 | + 6 | | | • | | . | _ | | "Т | NO | TE: Gage Heig | hts and Storag | es as of Midnight | on Day Shown | | | | | <u> </u> | % Year | | | ř | 7. S. Elev. 12 | 93.7 | feet | on 1.1/2 | 0/46 Sto | rage 438.6 | | Acre Feet | 1 | | RECORD | COLLECTED | ву | Co | MPUTATIONS | | D | | | | 81 ± | feet | on 1/11 | TO 27/47 Sto | | | Acre Feet | | . К. А. | SHIPLEY | | Dam Te | | ge Hts. copied | JHL APK 1/ | | | | | 82 | C. F. | | | | to 10:00 | A.M. on | 11/20/46 | | MDON | | Hydrogr | apher St | orage applied | JHL APK | | | P | | 03 | C. F. | | | | | A.M. on | 12/26/46 | | | | Hydrogr | apher In | . & Outf. comp. | JHL APK 1/ | | | ú | | | TOTAL FOR F | | RORATED DAILY | | | | , | | | | | | | | _ | | | ** | EARTH DUMPE | D IN RISE | TO PLUG S | SLUICE GATE LE | AKAGE | | | | | | | | | | | | | | - | NO ALLOWANG | TE MADE FOR | PERCOLATI | ON OR EVAPORA | TION | D | _ | | LO
FLOC | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | | |-------|-----------------------|----------------|--------------|--------------|--------------|----------------|--------------|-----------------|-------------------|-------------|------------|-------------|---|----------------------|---------------|-----------------|------| | ċ | n Sar
a | nta Anita | Canyon | | | for the Year E | inding Septe | mber 30, 19± | l.Z | | | | Continue | a Water Sta | ge Recorder | Àυ | | | | | | | • | | . | | 10 | | | 1 | 117 | | | - | | | | D | rainage Area. | 10.8 | Square Miles | Capacity of | Reservoir72 | /BAc. F | t. at Spillw | ay ElevL. | ID.UFt. as | of | January , | 19.47. Surv | ey Gage Heig | ghts Rea | u daily | | _ | | T | | JUN | ΙE | | | JUL | .Y | | | AUG | UST | | | SEPTI | EMBER | | ľ | | ŀ | Gage | Acre Ft | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | | | . iL | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | 4 | | | 12752 | 3073 | _ 6.5]_ | 7.5 | 1276.5 | 3179 | [1.9 | 2.1 | 1273.5 | 2949 | (0.9 | 12 | 1270.5 | 2741 | 6.0 | 12 | 4 | | | 1274.8 | 304.3 | 2.6 | 4.2 | 12765 | 317.1 | 1.7 | 2.1 | 12733 | 293.5 | 0.8 | 12 | 12705 | 274.1 | 9.8 | 11 | ╬ | | | 12750 | | 2.6 | 1.8 | 12764 | 3163 | 1.5 | 2.1 | 12732 | 292.7 | 0.8. | 1_2_ | 1270.5 | 274.1 | 9.0
9.0 | | -{} | | | 12752 | | 2.5 | 1.7 | 1276.2 | 314.8 | 1.4 | 2.1 | 1273.0 | 292.0 | 0.8 | 12 | 12705 | 2741
2741 | 0.8 | 0.9 | -{}- | | 5 | 1275 2 | | | 2.5 | 12760 | | | | 1272.9 | | 0.8 | 1.2 | | | | 0.7 | 1 | | B- - | 12751 | | 2.5 | 3.0 | 1275 6 | 311.8 | 1.2 | 2.1 | 1272.8 | | 0.8 | 1.2 | 12705 | 274 <u>1</u>
2741 | | 0.7 | + | | :+ | 12750 | | 2.5 | 3.0 | 1275 A | 308.8 | 12 | 1.9 | 1272.7 | 289.2 | 0.8 | 12 | 1270.5 | 274.1 | | 0.7 | 1 | | | | 305 1
303 6 | 2.5 | 2 0 | 12751 | 306.6 | 12 | 2.0 | 1272.6 | 288.5 | 0.8 | 12 | 12705 | 2741 | 0.8 | 0.7 | -1 | | | 1274.7 | 302.9 | 2.5 | 2 9 | 12749 | 305.1 | 12 | 1.9 | 12725 | 287.8 | LOB | 1 2 | 12704 | 273.4 | | 0.7 | | | - 11- | 12744 | 301.4 | 2.5 | (2.7 | 1274.7 | 303.6 | (1.2 | 2.0 | 1272.4 | 2871 | 70.8 | 1.1 | 1270.5 | 2741 | | 0.7 | 7 | | | 12742 | 300.0 | 2.5 | 2.5 | 12744 | 3014 | 12 | 2.0 | 12723 | | 0.8 | 12 | 12705 | 2741 | 0.8 | 0.7 | ~ | | | 12742 | | 2.4 | 23 | 12742 | 3000 | 12 | 2.0 | 12722 | 285.7 | 0.8 | 12 | 1270.6 | 274.7 | 0.8 | 0.7 | ٦ | | | 12745 | 302.2 | 2.4 | 2.0 | 12741 | 2992 | 12 | 1.4 | 1272.0 | 2843 | 0.8 | íã | 1270.6 | 274.7 | 0.0 | 0.7 | ** | | | 1274.8 | | 2.4 | 120 | 12741 | 2992 | 12 | 12 | 12719 | 283.6 | 0 .6 | | 1270.6 | 274.7 | 0.0 | 0.7 | 7 | | | 1275.0 | 305.8 | 2.4 | 71.8 | 12742 | 300.0 | 1.2 | 1.2 | 1271.8 | 2829 | 0.8 | | 1270.6 | 274.7 | 0.9 | 0.7 | ٦ | | | 12752 | | 23 | 1.6 | 12742 | 300.0 | 12 | 12 | 1271.7 | 2822 | 0.8 | 12 | 12707 | 275 4 | 0.9 | 0.7 | ٦ | | | 1275 4 | 308.81 | 2.3 | 1.5 | 12742 | 300.0 | 1.2 | 1.2 | 1271.6 | 281.5 | 8.0 | 1.2 | 1270.7 | 275.4 | 8.0 | 0.7 | 1 | | | 1275.6 | 3103 | 2.3 | 13 | 12742 | 300.0 | 1.2 | 1.2 | 12715 | 2809 | 8.0 | 1.2 | 1270.8 | 2761 | 8.0 | 0.7 | 7 | | | 12759 | 312.6 | 23 | 12 | 12742 | 300.0 | 112 | 12 | 12714 | 2802 | LO.8 | 1.2 | 1270.8 | 2761 | 8.0 | 0.7 | 1 | | | 12762 | 314.8 | 2.3 | r1 2 | 12741 | 2992 | (1.1 | 1.2 | 12713 | 279.5 | 109 | 1.3 | 1270.9 | 276.7 | (0.8 | 0.7 | ٦ | | | 12765 | 3171 | 2.2 | 1.2 | 12741 | 2992 | 1.1 | 1.2 | 1271.1 | 278.1 | 1.0 | 1.3 | 12709 | 276.7 | 0.8 | 0.7 | | | | 12767 | | 2.2 | 1.2 | 1274.0 | 298.5 | 1.1 | 1.2 | 1271.0 | 277.4 | 1.0 | 1.2 | 1271.0 | 277.4 | 0.9 | 0.7 | ٦ | | | 1276.8 | | 2.2 | 1.8 | 1274.0 | 298.5 | 1.0 | 12 | 12709 | | 1.0 | 1.2 | 1271.0 | 277.4 | 0.9 | 0.7 | - | | | 1276.8 | 319.4 | 2.2 | 22 | 1274.0 | 298.5 | 1.0 | 12 | 1270.8 | | 1.0 | 1.3 | 1271.0 | 277.4 | Lo.8 | 0.7 | _ | | 1 | 1276.8 | 319.4 | 2 1 | 2.2 | 1274.0 | 298.5 | r 1 .0 | 1.2 | 1270.7 | 275.4 | 1.0 | 1.3 | 1271.0 | 2774 | | 0.7 | | | t | 1276.8 | 319.4 | 2.1 | 2.1 | 1274.0 | 298.5 | 1.0 | 12 | 1270.6 | 274.7 | 1.0 | 1.2 | 1271.0 | 277.4 | 0.7 | 0.7 | Ξ | | 1 | 1276.8 | 319.4 | 2.0 | 2.1 | 12739 | 297.8 | 1.0 | 1.2 | 1270.5 | 2741 | 1.0 | 1.3 | 12710 | 277.4 | 0.7 | 0.7 | Ξ | | ۳ | 1276.8 | 319.4 | 2.0 | 2.1 | 1273.8 | 2971 | 0.9 | 12 | 12705 | 2741 | 1.0 | 12 | 1271.0 | 277 A | 0.7 | 0.7 | | | 11 | 1276.7 | 318.6 | (2.0 | [2.1 | 1273.7 | 2963 | 0.9 | 12 | 12705 | 2741 | 1.0 | 12 | 1271.0 | 277A | L0.7 | 0.7 | _ | | 1 | | | | | 1273.6 | 295.6 | F0 9 | 12 | 12705 | 2741 | ووا | 13 | | - | | | | | | AL | | 70.4 | _69.6 | | | 36.7 | 483 | | | 26.9 | 37.7 | 1 | | 241 | 22.4 | _ | | | .Ft. | | 1396 | | | | 7.2.8 | | | | 53.4 | | | | 4.7.8 | 448 | 2 | | | .c. Ft. | | | 138.0 | | | | 95.8 | | | | 74.8 | | | 44.4 | | | | | laten
belly inflow | | 2.6 | | | | 1.9 | | | | 1.0 | | | | 0.9 | 1.2 | | | | mum
ally inflew | | 2.0 | | | | 0.9 | | , | 01.5 | 8, 0 | | | | 0.7 | | Č | | ag | e Change | + 1_5_ | | | L | - 23 0 | TR: Care Hat | ghts and Stores | ee as of Midnight | - 21.5 | , | | | + 33 | | + 2
Yearly 7 | | | _ | | | | | | | | Acre Feet | or or morngine | Day billowi | | S COLLECTED | DY | 1 001 | | *** | _ | | | V. S. Elev. | 1293.7 | feet | on 11/ | | rage 438. | 6 | Acre Feet | | | | | | | IPUTATIONS | | D. | | | , S. Elev. | 1181.D ± | feet | | TO 27/47 Sto | | Fo | | | | | Y | Hydrogr | | | HL APK
1/1 | | | | eak Inf. | 382 | C. F. S | 1. from 9:00 | A.M. on | | to 10:00 | | 11/2046 | I | E MOON | | Hydrogr | | rage applied | HL APK 1/1 | 15 | | | eak Outf. | 203 | | 3:00 | | | to 4:00 | A.M. on | 12/26/46 | | | | nydrogi | apater ; Int. | & Outf. comp. | HL APK 1/1 | 11 | | üΜ | arks [in | DICATES TOT. | AL FOR PERI | OD OR PROF | ATED DAILY A | MOUNTS | | | | | | | | | | | | | F. | В. | Dist. | Form | EEA | Revised | 560 | 11/44 | | |----|----|-------|------|-----|---------|-----|-------|--| | | | | | | | (PIT | Da | | | LO
FLO | S ANGELE | ON RECOIDS COUNTY OL DISTRICT DIVISION | T | | | | |-------------------------------|---------------------|--------------------|---------------------|------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--|----------|---|---------------------|----------------| | In Sawp | ir canyon | | | | tor the Iear | Ending Septe | mber 30, 19.41 | 1 | | | | Continuou | s Water | Stage Recorder. | Au | | | Drainage Area | 3.3 | Square Mile | a. Capacity of | Reservoir32 | I8Ac. | Ft. at Spillw | ay Elev. 13 | 360.0 Ft. as | of D | ecember | 19.43 Sur | vey Gage Heig | hts Re | ad Daily | | | | | OCTO | BER | | | NOVE | MBER | | | DECEN | IBER | | 1 | JAI | YUARY | | T | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft. | | C. F. S.
Outflow | | | 1 1308.6 | 59.2 | 0 | 0 | 13083 | 58.5 | 0 | 0 | 1293.6 | 26.1 | 0 | 1.5 | 13101 | 63.0 | 0.3_ | 0.3 | | | 2 1308.5 | 59.0 | _ 0 | 0 | 13083 | 58.5 | 0 | Q | 12921 | 23.4 | Q | 1.4 | 13102 | 632 | 0.5 | 0.4 | | | 3 1308.5 | 590 | 0 | 0 | 1308.3 | 58.5 | Q | <u> </u> | 12905 | 20.7 | <u> </u> | 1.3 | 13102 | 632 | | 0.5 | | | 1308.5 | 59.0 | 0 | 0 | 13083 | 58.5
58.5 | - 0 | 0 | 12889 | 183
15.8 | 0 | 1.2 | 13102 | 632 | | 0.5 | - | | 5 1308.5
6 1308.5 | 59.0
59.0 | 0 | 0 | 13083 | 58.5 | 0 | 1 8 | 1285.2 | 13.5 | 0 | 11 | 13101 | 63.0 | | 0.4 | | | 7 1308.5 | 59.0 | <u>o</u> | o l | 13083 | 58.5 | | ŏ | 12832 | 114 | ŏ | 11 | 13101 | 63.0 | | 0.3 | 1 | | 13085 | 590 | O. | Q | 13083 | 58.5 | ' Q | O. | 12811 | 9 .5 | 0 | 0.9 | 13101 | 630 | 0.2 | 0.2 | | | 1308.5 | 59.0 | 0 | 0 | 13082 | 58.2 | 0 | 0 . | 1280.4 | 8.9 | 0 | 0.3 | 13101 | 63.0 | 0.2 | 0.2 | _ | | 13085 | 590 | | | 1308.2 | 582 | <u> </u> | 9 | 1280.6 | 9.0 | 0.1 | <u> </u> | 13101 | 63.0 | | 92 | - | | 1 13085 | 159.0 | 0 | 0 | 13082 | 582
582 | 0 | 0 | 1280.8 | 9.2 | 18.7 | 0 | 1310.0 | 62.7 | | \$ 0 | | | 2 1308.5
3 1308.5 | 59.0
59.0 | 0 | 0 | 13082 | 58.2 | - 0 | 0 | 1280.9 | 93 | - t ö | ŏ | 1310.0 | 62.7 | | 0.1 | 1 | | 1308.4 | 58.7 | | ŏ | 13082 | 582 | , ŏ | ŏ | 12809 | 93 | ŏ | ŏ | 1310.0 | 62.7 | | 01 | -1 | | 1308.4 | 58.7 | 0 | Ô | 13082 | 58.2 | 0 | 0 | 12809 | 9.3 | 0 | 0 | 13101 | 63.0 | | 0.1 | | | 1308.4 | 58.7 | 0 | 0 | 13082 | 582 | 0 | 0 | 12810 | 9.4 | 0.1 | 0 | 13101 | 63.0 | | 0.1 | | | 1 1308.4 | 58.7 | 0 | 0 | 13082 | 582 | 0 | O O | 1281.0 | 9.4 | 0 | 0 | 13101 | 63.0 | | 0.1 | | | 1308.4 | 58.7 | 0 | 0 | 13082 | 582 | 8 | 0 | 12811
12811 | 9.5
9.5 | 0 | 0 | 1310.0 | 62.7 | | 0.1 | | | 0 1308.4 | 58.7 | 8 | -0 | 13081 | 58.0
58.0 | 8 | 8 - | 12812 | 9.5 | 101 | 0 | 1310.0 | 62.7 | | 01 | | | 1308.4 | 58.7 | 0 | ŏ | 13073 | 56.0 | Ö | 1.0 | 1285.7 | 14.1 | 2.3 | 0 . | 13101 | 63.0 | | 0.1 | | | 13084 | 58.7 | ŏ | ŏ | 1306.0 | 52.9 | ŏ | 1.5 | 13081 | 58.0 | 22 1 | Ö | 13101 | 63.0 | | 0.1 | - | | 13084 | 58.7 | 0 | 0 | 1,304.8 | 50.0 | O | 1.5 | 1310.7 | 64.5 | 24.3 | 21.0 | 1310.0 | 62,7 | 0 | 0.1 | | | 13083 | 58.5 | 0 | 0 | 13035 | 471 | 0 | 1.5 | 13103 | 63.5 | 4.9 | 5.4 | 13100 | 62.7 | | 0.1 | | | 13083 | 58.5 | 0 | <u> </u> | 13021 | 4 3 .8 | 0 | 1.5 | 13103 | 63.5 | 2.8 | 2.8 | 13100 | 62.7 | | 0.1 | 4 | | 13083 | 58.5 | <u>0</u> | 0 | 1300.8
1299.4 | 41.0
37.9 | 0 | 1.5 | 13103 | 635
632 | 1.8 | 1.8 | 1310.0 | 62.7 | 01 | 0.1 | - | | 13083 | 58.5
58.5 | - 0 | | 1298.0 | 349 | 0 | 1.5 | 13102 | 63.2 | 1 2 | 1.2 | 1310.0 | 62.7 | | 6 1 | - | | 13083 | 58.5 | ŏ | | 1296.6 | 32.0 | ŏ | 1.5 | 13102 | 632 | 0.7 | 0.7 | 1310.0 | 62.7 | | 0 i | | | 13083 | 58.5 | 0 | O . | 12951 | 29.0 | Ö | 1.5 | 13101 | 63.0 | 0.5 | 0.6 | 1310.0 | 62.7 | 0.1 | 0.1 | -1 | | 13083 | 58.5 | 0 | 0 | | | | | 1310.1 | 63.0 | 0,4 | 0.4 | 13100 | 62.7 | | 0.1 | | | OTAL | <u> </u> | 0 | 0 | | | 0 | 14.6 | | | 62.4 | 453 | ļl | | 5.6 | 5.7 | | | f. Ac. Ft.
itf. Ac. Ft. | | 0 | F (0.8) | | | - 20 2 | +.(0.6) | l | | 123.8 | 899 | l | | $\begin{array}{c} -11.1 \\ -11.3 \end{array}$ | 130.2+(1. | | | Maximum
can Dally Inflow | | 0 | | | | 0 | ± , t · O · O / · | | | 24.3 | | | | 0.5 | | 4 3 | | Misimum
ean Dally Inflew | | ŏ | | | | ŏ | | | | o o | | | | 0 | | 5 - | | orage Change | - 0.7 | | | | -295 | | | | - 34.0 | | | | -03 | | + 3 | 3.5 | | | | | | | N | OTE: Gage He | | ges as of Midnight | on Day Show | - | | | | | ⅓ Ye | ORT | | x. W. S. Elev. | 1315.4 | feet | | | rage 77.5 | | Acre Feet | | | - week | S COLLECTED | | | COMPUTATIONS | | Def | | | 1280.1 | feet | | | rage 8.6 | | Acre Feet | | | | VADD I COR | Dam Te
Hydrogr | | Storage applied | | | | x. Peak Inf.
x. Peak Outf. | 85.2 | | S. from 6:00 | | 2/23/45 | to 7:00 | A.M. on on | 12/23/45 | | T. E. N | 10.0N | Hydrogr | | Inf. & Outf. comp. | JHL) | | | | 36.0 | | | E TO EVAPORA | | | | | | 2001 | | AAJUEUEI | | & Outer comp. | RAW JHL | 11/3 | | 7 | | | | RORATED DAIL | _ | | | Oally Gage Heig | • | • | | | AWPIT | | | | | LO
FLO | S ANGELE | ION RECO S COUNTY OL DISTRIC DIVISION | т | | | | |------|-----------------------|--------------------|--------------------|---|----------------|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|---------------------|---------------------------------------|---------------------|--|-------------------------|------------------| | í | In | WD1.T.L.Cany | Q.n | *************************************** | | tor the Year | Ending Septe | mber 30, 19.1/f | 5. | | | | Continue | Water Sta | ge Recorder | ∆ u | | | | | 2.0 | | | D | | F4 -4 F-171 | *** 1.00 | | | | 10 No. C. | | | • | | | | 1 | Frankge Area | | | . Capacity of | Neservoir32 | | | AY Elev | U.UFI. 88 | | | 1813 20 L | vey Gage Hei | | | | | | , | | FEBRU | ARY | | | MAR | CH | | | APR | ш. | | _ | МА | Y | _ | ╝ | | | Gage
Height | Acre FL
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | | 1 | 13100 | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | 0.1 | 0.1 | 13103 | 635 | 4.1 | 4.2 | 13100 | 62.7 | ± | | | | 2 | 13101 | 63.0 | 0.2 | 01 | 13100 | 62.7 | 0.1 | 0.1 | 13104 | 63.7 | 4.4 | 4.3 | 13100 | 62.7 | | | -⊪- | | 3 | 13103 | 63.5 | 0.5 | 0.5 | 13100 | 62.7 | 0.1 | 0.1 | 1310.4 | 63.7 | 3.7
2.8 | 3.7 | 1310.0 | 62.7
62.7 | | | + | | ž- | 13101 | 63.0 | 0.3 | 0.3 | 13100 | 62.7 | 0.1 | 0.1 | 13101 | 63.0 | 1.8 | 1.8 | 13100 | 62.7 | | | - | | 6 | 13101 | 62.7 | 0.3 | 0.1 | 13100 | 62.7 | 0.1 | 0.1 | 13101 | 63.0 | 12 | 12 | 13100 | 62.7 | | | 1 | | 7 | 13100 | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | 01 | 0.1 | 13101 | 63.0 | 11 | 11 | 13100 | 62.7 | | | 1 | | 8 | 13100 | 62.7 | 01 | 0.1 | 13100 | 62.7 | 0.1 | 0.1 | 13101 | 63.0 | 0.0 | 0.9 | 13100 | 62.7 | | | 7 | | 9 | 13101 | 630 | 0.2 | 01 | 13100 | 62.7 | 0.1 | 0.1 | 13101 | 63.0 | 0.7 | 0.7 | 13100 | 62.7 | | | | | 0 | 13101 | 630 | 0.1 | 0.1 | 13100 | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | 0.4 | 0.5 | 13100 | 62.7 | | | | | 1 | 1310.0 | 62.7 | 0 | 0.1 | 13101 | 63.0 | 0.2 | 0.1 | 13100 | 62.7 | 0,4 | 0.4 | 13100 | 62.7 | | I | | | 2 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.1 | 63.0 | 0.1 | 0.1 | 13100 | 62.7 | 0.3 | 0.3 | 13100 | 62.7 | | $\leftarrow \leftarrow$ | | | 3 | | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | . 0 | 0.1 | 1310.0 | 62.7 | 0.2 | 0.2 | 13100 | 62.7 | | | 4 | | 4] | 13100 | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.2 | 0.2 | 13100 | 62.7 | | \longrightarrow | 4 | | 5 | | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.2 | 0.2 | 13100 | 62.7 | l l | | 4 | | 6 | 13101 | 63.0 | 0.2 | 01 | 13100 | 62.7 | 0.1 | 01 | 1310.0 | 62.7 | 0.2 | 0.2 | 1310.0 | 62.7 | | +- | + | | 8 | 1310.0 | 62.7 | 0.1 | 01 | 13100 | 63.0 | 0.2 | 83 | 1310.0 | 62.7 | 02 | 02 | 13100 | 62.7
62.7 | | | | | 9 | 1310.0 | 62.7 | 0.1 | 0.1 | 13101 | 63.0 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.2 | 0.2 | 1310.0 | 62.7 | | | - | | 0 | 13100 | 62.7 | 01 | 01 | 13101 | 63.0 | 0.1 | 0.1 | 13100 | 62.7 | 01 | 0.1 | 13100 | 62.7 | | | | | 1 | 1310.0 | 62.7 | 01 | 0.1 | 13101 | 63.0 | 0.1 | .0 1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 1 1 | - | | | | 1310.0 | 62.7 | 01 | 01 | 1310.0 | 62.7 | 0 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | 1 1 - | - | | | 3 1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | | | 7 | | 4 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 01 | 1310.0 | 62.7 | | | | | 5 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 1. | | | | в | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 01 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 |
1310.0 | 62.7 | | | | | 7 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | 0.1 | 0.1 | 13100 | 62.7 | | 1_ | | | 8 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | | | - | | ١. ٩ | | | | | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | | | | | 0_ | | | | | 1310.7 | 64.5 | 19.5 | 18.6 | 1310.0 | 62.7 | 0.1 | 0.1 | 1310.0 | 62.7 | | · | _ | | 1 | | | -77- | 3 .6 | 1310.4 | 63.7 | 29.9 | 29.4 | | | 243 | 24.8 | 121001 | 62.7 | 1.6 | 1.6 | ╝ | | | c. Ft. | | 7.1 | | | | 59.3 | 29.4 | | | 482 | 24.8 | | | 3.2 | 252 | 2 " 2 | | ιŧέ. | Ac, Ft. | | | 7.1 | | | | 583 | | | | 49.2 | | | 3.2 | (1 4) +24 | 18.1 | | ME | ximum
Dally Inflow | | 0.5 | | | | 195 | | | | 4.4 | | | | 0.05 | 24 | | | Mi | imum
Dally Inflew | | o | | | | 0 | | | | 0.1 | | | | 0.05 | | o T | | | ge Change | 0 | | | | + 1.0 | | | | - 1 .0 | | | | 0 | | + 3 | | | | | | | | | | OTE: Gage Hei | | es as of Midnight | on Day Shows | | | | | | % Yes | 77.4 | | | W. S. Elev. | 1315.4 | feet | on 12/2 | | rage 77.5 | | Acre Feet | | | | S COLLECTED | | | MPUTATIONS | | De | | | V. S. Elev. | 1280.1 | feet | on 12/9 | | rage 8.6 | | Acre Feet | I | | R. E. WAL | | Dam T | | e Hts. copied R | | | | | Peak Int. | 85.2 | | from 6:00 | | 2/23/45 | to .7:00 A | M. on | 12/23/45 | | T. E. MO | ON | Hydrog | | rage applied | JHL10/ | 5/ | | | Peak Outf. | 36.0 | | I. fromAT 1:0 | | 2/23/45 | to | on | ! | | | | Hydrog | rapner Inf | & Outf. comp. | AW JHL 11 | /2 | | ΕM | LARKS () | INDICATES T | OTAL MONTHL | Y LOSS DUE | TO EVAPORAT! | ON AND PER | COLATION | | | | | | | | | | | ## SAWPIT (contid) | r. c. proc | Form GRC Review | N MR 11/44 | | | | | | | | ,, • | DAM | OPERATI | ON RECO | RD | | | | |------------|----------------------|--------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|---|----------------|---------------------|----------------------|---------------------|-----------| | Dı | tily Gage Hel | ght in feet an | d Operation R | ecord of | | SAWPIT | | | m. | | | | S COUNTY | | | | | | | | | | | | | | | | | | | OL DISTRIC | | | | | | In | Samplit | Canyon | | | | or the Year | Ending Septe | mber 30, 19.14 | ₿. | | 711 | DRAULIC | | - | | | | | J | • | | | | | | | | | | | | Continuo | us Water S | Stage Recorder | | | | Dr | ainage Area | 3.3 | Square Miles | . Capacity of | Reservoir32 | | Ft. at Spillw | y Elevi.3 | 30.0Ft. as | of | December | 19143Surv | ey Gage Hei | ghts Re | ad Daily | | | | | | 10 | NE | | | טנ | LY | | | AUG | UST | | Ì | SEF | TEMBER . | ŀ | 2 | | A A | Gage
Height | Acre FL
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | Inflow | C. F. S.
Outflow | Day. | | | 13100 | 62.7 | + | + | 13100 | 62.7 | + | + | 13095 | 61.5 | Q | 0 | 1308.8 | 59.7 | | 0 | _1 | | | 13100 | 62.7 | | | 13100 | 62.7 | | | 1309.5 | 61.5 | 0 | 9 | 1308.7 | 59.5 | | <u> </u> | - 2
3 | | | 13100 | 62.7 | | | 13100 | 62.7 | <u> </u> | | 1309.5 | | | 0 | 1308.7 | 59.5
59.5 | | 0 | - 🕯 | | | 13100 | 62.7 | | | 13100 | 62.7 | *- | 2 f | 1309.5 | 61.3 | Ö | 0 | 1308.7 | 59.5 | | 0 | - 5 | | | 3100 | 62.7 | | | 13100 | 62.7 | 0- | <u>ت</u> ق ا | 1309.4 | 61.2 | ŏ | 0 | 1308.6 | 592 | | 0 | 6 | | | 13100 | 62.7 | | | 13100 | 62.7 | _ e | Ĕħ | 13094 | 61.2 | ŏ | ō | 13086 | 592 | | ŏ | 7 | | | 13100 | 62.7 | | | 13100 | 62.7 | | | 1309.4 | 612 | 0 | ō | 1308.6 | 592 | | ō | - 8 | | 9 | 13100 | 62.7 | | | 13100 | 62.7 | | 0 | 13093 | 61.0 | 0 | 0 | 1308.6 | 592 | 0 | 0 | 9 | | | 13100 | 62.7 | | | 1310.0 | 62.7 | | | 1309.3 | 61.0 | 0 | | 1308.5 | 590 | | | 10 | | | 13100 | 62.7 | | - 8 | 13100 | 62.7 | | | 13093 | | <u> </u> | | 13085 | 59.0 | | | 11 | | | 13100 | 62.7 | | <u> </u> | 13100 | 62.7 | . + | + | 13093 | 61.0 | 9 | | 13085 | 59.0 | | | 13 | | | 13100 | 62.7 | = 1 | | 13099 | 62.5
62.5 | 0 | ŏ | 1309.3 | 61.0 | 0 | 0 | 13085 | 59 0
59 0 | | | 14 | | | 13100 | 62.7 | | | 13099 | 62.5 | ŏ | - ŏ | 13092 | 60.7 | ŏ | | 1308.4 | 58.7 | | | 15 | | | 1310.0 | 62.7 | - | | 1309.8 | 622 | 0 | ŏ | 13092 | 60.7 | ŏ | | 1308.4 | 58.7 | | | 16 | | | 13100 | 62.7 | * | 40 | 1309.8 | 622 | ŏ | ŏ | 13091 | | 0 - | | 1308.4 | 58.7 | | | 17 | | | 13100 | 62.7 | | 6 | 1309.8 | 622 | 0 | 0 | 13091 | | ō | 0 | 1308.4 | 58.7 | | | 18 | | | 1310.0 | 62.7 | <u>.</u> | _ <u>-</u> | 1309.8 | 622 | 0 | 0 | 13091 | | Ò | ō | 1308.4 | 58.7 | | 0 | 19 | | 20 | 13100 | 62.7 | | 1 | 1309.8 | 62.2 | 0 | 0 | 13091 | | 0 | . 0 | 13083 | 58.5 | | | 20 | | | 13100 | 62.7 | | | 1309.8 | 622 | 0 | 0 | 1309.0 | | 0 | | 13083 | 5.8.5 | | | 21 | | | 1310.0 | 62.7 | | | 1309.8 | 622 | 0 | 9 | 1309.0 | | 0 | | 13083 | 58.5 | | | 22 | | | 13100 | 62.7 | | | 13097 | 62.0
62.0 | 0 | | 13090 | | 0 | <u> 0 </u> | 13083 | | | | 23 | | | 13100 | 62.7 | | | 1309.7 | 62.0 | 0 | - ŏ | 1309.0 | 60.2 | 0 | 0 | 13082 | 582 | | | 24
25 | | | 13100 | 62.7 | | | 1309.7 | 62.0 | - 6 | - ö - | 13089 | 60.0 | ŏ | 0 | 13082 | 58.2
58.2 | | | 26 | | | 13100 | 62.7 | - - | | 1309.7 | 62.0 | ŏ | 0 | 13089 | 60.0 | ŏ | ő | 13082 | 582 | | | _26
27 | | | 310.0 | 62.7 | | | 13097 | 62.0 | ŏ | ŏ | 13089 | 60.0 | ŏ | ŏ | 13082 | 582 | | | 28 | | | 310.0 | 62.7 | | - - | 1309.6 | 61.7 | 0 | 0 | 1308.8 | 59.7 | 0 | | 13082 | 582 | Ö | | 29 | | | 1310.0 | 62.7 | + | + | 1309.6 | 61.7 | 0 | 0 | 1308.8 | 59.7 | 0 | O | 1308.2 | 582 | | ō | 30 | | 81 | | | | | 1309.6 | 61.7 | 0 | 0 | 1308.8 | 59.7 | 0 | 0 | | | | | 31 | | TOTA | | | 0.6 | 0.6 | | | 3.0 | 0.2 | | | 0 | 0 | | | 0 | 0 | | | Inf. Ac. | Ft. | | 12 | | | | 0.4 | | | | 0 | | | | 0 | 2543 | | | | I. FT. | | | 12 | | | | + (1.0) | | | | (0.5) | | 0 | + (1.6) | | | | | | | 0.02 | | | | 30.0 | | | | ŏ | | | | <u> </u> | 24.3 | * | | | lly inflew
Change | - 0 | 0.02 | | | -1.0 | | | ļ | -20 | 0 | | | -15 | 0 | -1.0 | | | Pmrage | | | | | н | :N | TE: Gage Hei | this and Storag | es as of Midnight | on Day Show | n | | " | | | Yearly Tot | | | Max. W. | S. Elev. | 1315.4 | feet | on 12/2 | 23/45 Stor | rage 77.5 | | Acre Feet | | | | S COLLECTED | BY | l c | COMPUTATIONS | ckd. Da | | | Min. W. | | 1280.1 | feet | on 12/9 | | | | Acre Feet | | | R, E. WADI | | Dam Te | | age Hts. copied R | | | | Max. Pe | | 85.2 | | 8. from 6:00 | A.M. on 1 | 2/23/45 | to 7:00 Á | | 12/23/45 | | T. E. MOOI | | Hydrogi | rapher 5 | Storage applied R | AW JHL 11/27 | 7/4 | | | ak Outf. | 36.0 | C. F. 5 | S. from AT 1: | 00 P.M. on 1 | 2/23/45 | to | on | | | | | Hydrogr | rapher I | inf. & Outf. comp. F | AW JHL 11/2 | 7/4 | | REMA | | | TOTAL MONTHS | Y LOSS DUE | TO EVAPORATI | ON AND PER | COLATION | | | | | | | | | | _ | | | `+ | 0.02 FLOW | Daily Gage Heig | ght in feet and | Operation R | secord of., | S | AWPIT | | | m. | | LO:
FLOC | S ANGELE
D CONTR | ON RECO
S COUNTY
OL DISTRIC | т | | | | |--------------------------|-----------------|------------------|---------------------|---------------|-------------|----------------|----------------|-------------------|--------------|-------------|---------------------|-----------------------------------|----------------|-----------------|------------------|-----| | In Sawpit | Canyon | | | | or the Year | Ending Septe: | mber 30, 19 | !7 | | HYD | RAULIC | DIVISION | ge Recorder | | | | Drainage Area | 3.3 | Square Miles | . Capacity of | Reservoir32 | 1.8Ac. | Ft. at Spillwa | y Elevl.3f | 30.0 Ft. as | of D | ecember , | 1943 Surve | y Gage Heid | his Read | Daily | | | | 1 | остов | | | | NOVEN | | | | DECEM | | | | JANU | | · · · · · | li | | Gage | Acre Ft. | C. F. S. | C. F. S.
Outflow | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | ١, | | Height | Storage | Inflow | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outrlow | 4 | | 13083 | 58.5 | 0.2 | 00 | 12731 | 4.0 | 0 | | 13100 | 62.7 | 0.1 | 01 | 1305 4 | 51.5 | (3.6 | [9.3 | | | | 58.5
58.2 | - ŏ - | 0 | 12732 | 4.0 | - ö | - 0 | 13100 | 62.7 | 01 | 0.1 | 1301.7 | 4 2 9
3 3 2 | 3.2 | 7.9 | | | 13082 | 58.2 | 0 | 0 | 12732 | 4.0 | Ö | ŏ | 13100 | 62.7 | 01 | 01 | 12921 | 23.4 | 2.8 | 7.7 | | | 13082 | 58.2 | Ö | - ŏ | 12733 | 4 0 | _ <u>ŏ</u> | ŏ | 1310.0 | 62.7 | 0.1 | 0.1 | 12879 | 16.9 | 2.7 | 6.0 | | | 13082 | 58.2 | 0 | Ö | 12733 | 4.0 | 0 | 8 | 13100 | 62.7 | 0.1 | 0.1 | 12912 | 21.8 | 2.5 | 180 | ╨ | | 13082 | 58.2 | ŏ | - - | 12733 | 4.0 | - 6 | - 8 | 1310.0 | 62.7 | 01 | 01 | 12931 | 25.2 | 1.8 | - 8 | + | | 13081 | 58.0 | ŏ | ŏ | 12733 | 4.0 | ŏ | ŏ | 1310.0 | 62.7 | 01 | 0.1 | 1294.7 | 28.2 | 1.5 | - 8 - | ┰ | | 13081 | 58.0 | - 6 | ö | 12733 | 4.0 | - 0 | - ŏ | 13100 | 62.7 | 01 | 01 | 12962 | 312 | 1.5 | | + | | 13081 | 58.0 | ŏ | ŏ | 12733 | 4.0 | ŏ | ŏ | 13100 | 62.7 | 0.1 | 01 | 12974 | 33.6 | 12 | - ŏ - | - | | 13081 | 58.0 | ŏ | ŏ | 12733 | 4.0 | ŏ | ŏ | 13100 | 62.7 | 0.1 | 01 | 12984 | 35.7 | 11 | | | | 13081 | 58.0 | ŏ | ŏ | 1273.8 | 43 | 0.2 | - 8 | 1310.0 | 62.7 | 01 | 01 | 12992 | 37.4 | 5. 5 | - 8 | + | | 13080 | 57.7 | ŏ | ŏ | 12825 | 10.8 | 3.2 | -ŏ | 1310.0 | 62.7 | 0.1 | 0.1 | 1299.8 | 38.8 | 0.7 | | ╌ | | 13003 | 412 | - 6 | 8.3 | 12861 | 14.6 | 1.9 | - 6 | 1310.0 | 62.7 | 01 | 01 | 1300.4 | 401 | 0.7 | ŏ | ⊣⊦ | | | | - 6 | 7.7 | 1287.8 | 16.7 | 1.9 | - 8 1 |
1310.0 | 62.7 | 0.1 | | 1300.4 | 412 | 0.6 | 0 | | | 12934 | 25.8 | 01 | 4.9 | 1289.0 | 18.4 | 0.9 | - 8 | 13100 | 62.7 | 01 | | 13014 | | 0.5 | - 0 | - | | | 16.4 | 0.3 | | 1289.7 | 19.5 | 0.5 | - 6 | | | 01 | 0.1 | | 423 | 0.5 | 0 | | | 12791 | 7.8 | 0.3 | 4.5 | | 204 | 0.5 | - 6 | 1310.0 | 62.7 | | 0.1 | 1301.8 | 432 | | - 0 | -1 | | 12683 | 1.8 | 0.3 | _ 3.3 | 12903 | | 0.4 | 8 | | 62.7 | 0.1 | | 13022 | 441 | 0.4 | | | | 12701 | 2.5 | | <u> </u> | 1290.8 | 212 | | | 1310.0 | 62.7 | 0.1 | | 1302.5 | 4 4 .8 | 0.4 | 0 | | | | 3.0 | 0.3 | <u>, ŏ</u> | 1310.7 | 64.5 | 22.8 | 1.0 | 1310.0 | 62.7 | 0.1 | | 1302.9 | 45.7 | 0.4 | 0 | - | | 12718 | 3.3 | 0.1 | | 1310.6 | 643 | 5.4 | 5.3 | 1310.0 | 62.7 | 0.1 | 0.1 | 13032 | 46.4 | 0.4 | 0 | - | | 12722 | 3.5 | 01 | 0 | 1310.5 | 64.0 | 2 4 | 2.5 | 13100 | 62.7 | 0.1 | 0.1 | 1303.5 | 471 | 0.4 | 0 | _ | | 12724 | 3.6 | 0.1 | 0 | 1311.0 | 65.3 | 5.7 | 5.1 | 13099 | 62.5 | 0 | 0 | 1303.8 | 47.7 | 0.3 | . 0 | | | 12725 | 3.6 | 0 | 0 | 13108 | 64.8 | 3.7 | 3.9 | 13099 | 62.5 | 0 | 0 | 1304.0 | 48.2 | 0.3 | 0 | _ | | 12725 | 3.7 | 0.1 | 0 | 1310.6 | 643 | 2.2 | 2.5 | 13111 | 65.6 | 5.3 | 3.5 | 1304.3 | 48.9 | 0.3 | 0 | _ | | 12728 | 3 .8 | 0 | | 1310.5 | 64.0 | 1.6 | 1.7 | 1310.7 | 64.5 | 174 | 180 | 1304.5 | 494 | 0.3 | 0 | | | 12729 | 3.8 | 0 | 0 | 13101 | 63.0 | 11 | 1.6 | 13110 | 653 | 17.4 | 17.0 | 1304.8 | 50.0 | 0.3 | 0 | | | 12729 | 3.8 | 0 | 0 | 1310.0 | 62.7 | 0.6 | 0.5 | 13102 | 64.5 | 11.6 | 12.0 | 1305 4 | 51.5 | 0.8 | 0 | | | 1273.0 | 3.9 | 0.1 | o | 1310.0 | 62.7 | 0.3 | 0.3 | 13105 | 64.0 | 7.2 | 74.0 | 1305.8 | 52.4 | (0.5 | 0 | | | 12730 | 3.9 | 0 | 0 | 1310.0 | 62.7 | 0.2 | 0.2 | 13104 | 63.7 | 4 .8 | 5.0 | 13062 | 53.4 | 0.4 | 0 | Т | | 12731 | 4.0 | 0 | 0 | | | | | 13100 | 62.7 | 4.5 | | 1306.5 | 54.1 | 0.4 | 0 | | | TAL | | 20 | 28.7 | | | 54.7 | 24.7 | <u></u> | | 704 | 699 | | | 343 | 384 | | | Ac. Ft. | | 563 | . 14 6 5 | | | 1085 | 1 10 6 | | | 139.6 | . 7 | ļ | | + (8.0) | 32 | | | f. Ac. Ft. | | | + (12) | ——— | | | (a.o) + | | | 1386 | + 1 1.0 | | 762 | | 320.7+(3. | | | Eximum
a Daily Inflow | | 0.3 | | | | 8.22 | | | | 174_ | | | | 3.6 | 2 | 25 | | digimum
Badly Inflow | | 0 | | | | 0 | | | | <u> </u> | | | | 0.3 | | Ö | | rage Change | -542 | | | | - 58.7 | | | | 0 | | | | - 8.6 | | | - 4 | | | | | | | NO | TE: Gage Heig | | es as of Midnight | on Day Showr | | | | | | % Yea | ar | | . W. S. Elev. | 1311.2 | feet | on 12/2 | 6/46 Stor | rage 65 | .88 | Acre Feet | | | | COLLECTED | BY | | PUTATIONS | | Da | | W. S. Elev. | 1267.7 | feet | on 10/ | 8/46 Stor | rage 1 | 6 | Acre Feet | | | R. E. WADDI | COR | Dam Te | | Hts. copied J | | | | . Peak Inf. | 77.4 | C. F. s | 3. from 11:00 | | /20/46 | | NOON OR | 11/20/46 | | T. E. MOON | _ | Hydrogr | apher Stor | age applied J | IL APK 1 | 07 | | . Peak Outf. | 26.2 | | 1:30 | | | | A.M. on | 12/26/47 | | | | Hydrogr | apher Inf. | & Outr. comp. j | IL APK I | 1/ | | | | | | PRORATED DAHL | | | | ,,, | | | | | | | · | | ## SAWPIT (cont'd) | E | ally Gage Heig | yhi in feet and | i Operation R | ecord of | | SAWPIT | | De | m | | LO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC | | | | | |--------|----------------------------|-----------------|---------------|--------------|----------------|------------------|----------------|--|-------------------|-----------------|-----------|----------------|-----------------------------------|-----------------|--------------------------------|-------------------------------------|---------| | I | n Sawo | it Canyor | l | | | for the Year | Ending Septe | mber 30, 18.1 | . Z . | | HYI | DRAULIC | DIVISION | | tage Recorder | ·An | | | | 1 | 9.3 | gamen Milas | . Canadir of | Reservoir32 | 118 3- | Ft at Smiller | Fl. 19 | 60 0 24 44 | as Dec | ember | tolia Surv | | | - | /********************************** | | | - 1 | ramage Area. | FEBRU | | capacity of | | MAR | | el Plear | 1 | APR | | 15.50., 001.11 | cy. Gage New | | AY | | · · · · | | 1 | Gage | Acre Ft. | C. F. B. | C. F. S. | Gage | Acre Pt. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gago | Acre Ft. | C. F. S. | C. F. S. | | | 1 | Height | Storage | Inflow | Outflow | Height 1302.6 | Storage
4.5.0 | r 0 1 | Outflow | Height 1306.2 | Storage
53.4 | Inflow | Outflow | 13083 | Storage
58.5 | Inflow | Outflow | · | | 3 | 13068 | 54.8
55.5 | 0.4 | 0 - | 1302 B | 45.4 | 0.1 | 0 | 13063 | 53.6 | 01 | - 8 - | 13083 | 58.5 | | ŏ | - | | 3 | 13073 | 56.0 | 0.3 | 0 | 13029 | 45.7 | 01 | 0 | 1306.4 | 53.9 | 0.1 | Ō | 1308.4 | 58.7 | | Ō | | | | 1307.5 | 56.5 | 0.3 | <u> </u> | 13030 | 45.9 | 0.2 | 0 | 13065 | 541 | 0.1 | 0 | 1308 4 | 58.7 | | 0 | _ | | | 13077 | 570 | 0.3 | <u> </u> | 13032 | 454 | 10.3 | _ <u> </u> | 13066 | 54.3 | 0.1 | <u> </u> | 1308.4 | 58.7 | | <u> </u> | | | | 13079 | 57.5
58.0 | 0.3 | 0 | 13033 | 46.8 | 0.2 | 0 | 1306.7 | 54.6
54.8 | 0.1 | - 8 | 13084 | 58.7
59.0 | | 0 | | | | 13081 | 58.5 | 0.3 | - 0 | 1303.6 | 47.3 | 02 | 0 | 1306.9 | 55 I | 01 | 0 | 1308.5 | 59.0 | | 0 | | | | 1308.5 | 59.0 | 02 | ŏ | 1303.7 | 475 | 0.2 | ŏ | 1307.0 | 55.3 | 0.1 | ō | 1308 6 | 592 | | ŏ | | | 0 | 13053 | 512 | 0.9 | 4.9 | 1303.B | 47.7 | 0.1 | 0 | 1307.0 | 55.3 | 0.1 | 0 | 1308.6 | 592 | 0.07 | O | | | | 12984 | 35.7 | 0.8 | 8.5 | 13040 | 482 | r02 | 9 | 13071 | 55.5 | 0.1 | 0 | 1308.6 | 592 | | 0 | | | | 12990 | 37.0 | 0.7 | <u> </u> | 13041 | 48.4 | 0.2 | 0 | 13072 | 55.8 | 0.1 | 0 | 1308.6 | 59.2 | | 0 | | | | 12994 | 379 | 0.4 | <u> </u> | 13042 | 48.7 | S 0 | 2 - | 13073 | 56.0 | 0.1 | 0 | 1308.7 | 59.5 | | 0 | | | | 12997 | 38.5 | 0.4 | - 8 | 13043 | 48.9
49.1 | 0.2 | 0 | 13073 | 56.0
56.3 | 0.1 | 0 | 1308.7 | 59.5
59.5 | | 8 | | | | 13003 | 39.9 | 03 | ŏ | 13045 | 49.4 | 0.1 | | 13074 | 563 | 0.1 | - 6 | 1308.8 | 59.7 | | - 6 | | | | 13005 | 403 | 03 | ŏ | 1304.7 | 49.8 | 01 | ŏ | 13075 | 56.5 | 01 | ŏ | 1308.8 | 59.7 | | 0 | | | | 1300.7 | 40.7 | 03 | ŏ | 1304.8 | 50.0 | 0.1 | Ö | 1307.6 | 56.7 | 0.1 | 0 | 1308.8 | 59.7 | 0.06 | ō | | | 9 | 13009 | 412 | 0.2 | 0 | 1304.9 | 50 <i>3</i> | 0.1 | 0 | 1307.6 | 56.7 | 0.1 | 0 | 1308.8 | 59.7 | | 0 | | | | 13011 | 41.6 | loz | <u> </u> | 1305.0 | 505 | 101 | 0 | 1307.7 | 57.0 | 0.1 | <u> </u> | 1308.9 | 60.0 | | 0 | | | | 13013 | 421 | 02 | 0 | 13051 | 50.7 | 02 | 0 | 1307.7 | 57.0
57.2 | 01 | 0 | 13089 | 60.0 | | 0 | | | | 1301.5 | 42.5 | 02 | 0 | 13052 | 51.2 | 02 | 8 | 1307.8 | 572 | 0.1 | <u> </u> | 1308.9 | 60.0 | | 8 | | | | 13018 | 432 | 02 | ŏ | 1305.4 | 51.5 | 0.1 | ŏ | 1307.9 | 57.5 | 0.1 | ŏ | 1309.0 | 602 | | ŏ | 1 | | | 13020 | 436 | ŏ ž | - 5 | 1305.5 | 51.7 | 0.1 | . ŏ | 13079 | 57.5 | 0.1 | Ö | 13090 | 60.2 | | ŏ | 1 | | | 13021 | 43.8 | 0.2 | Ö | 1305.6 | 51.9 | 0.1 | 0 | 1308.0 | 57.7 | 0.1 | 0 | 1309.0 | 60.2 | | 0 | | | | 13023 | 443 | 0.2 | 0 | 1305.7 | 522 | 0.1 | 0 | 1308.0 | 57.7 | 01 | 0 | 13091 | 60.5 | | 0 | | | 18][| 13024 | 445 | 01 | 0 | 1305.8 | 52.4 | 0.1 | 0 | 13081 | 58.0 | 0.1 | 0 | 13091 | 60.5 | | 0 | | | 9] | | | | | 13059 | 52.7 | 0.1 | 0 | 13081 | 58.0 | 0.1 | 0 | 13091 | 60.5 | | 8 | | | 0_ | | | | | 1306.0 | 529 | [0 1 | 0 | 13082 | 58.2 | 101 | 0 | 13091 | 60.7 | | 8 | - | | 1 L | | | 8.9 | 13.5 | 13061 | 531 | 4.6 | - 0 | | | 3.0 | 0 | 13092 | 00.1 | 0.00 | 8 | -# | | f. Ac | | | 177 | | <u> </u> | | 9.1 | | i | | 6 0 | | | | 4.0 | | 56 | | utf. A | LC. TL | | | - (0.4) | | | ŏ . | + (0.6) | | | ŏ + | (0.8) | | 0 | + (14) | 347,5+0 | 6.6 | | | sily inflow | | <u> </u> | | L | | _ ō _3 | | | | 0.1 | | | | 0.07 | | 22 | | | ally inflow | | 0.1 | | | | 0.1 | | | | 0.1 | | | | 0.06 | | | | orag | e Change | 9.6 | | | L | +86 | VME1 Came ***- | ehts and St | es as of Midnight | + 51 | | | ļ | + 2.5 | | | - 2 | | - | | | 4 | | | | | | on an or Midnight | on Day Showr | | S COLV MOTER | nu | 1 0 | | | Year | | | 7. S. Elev.
7. S. Elev. | 1311.2 | feet | on 12/2 | | rage 55. | | Acre Feet | | | | S COLLECTED | Dam Te | | OMPUTATIONS
age Hts. copied | ckd. | De | | | sak Inf. | 1267.7
77.4 | | on10/18 | /46 Sto | | | NOON on | 11/20/46 | | E. WADDIC | UK | Hydrogr | | orage applied | JHL APK
JHL APK | | | | esk Outf. | 26.2 | | | :30 A.M. on 1 | | | A.M. on | | L | . C. MUUN | | Hydrogr | | | JHL APK | | | | ARKS (| | | | OR PRORATED DE | | | | | | | | | | | **** UIV | -1/ | | _ | (| | | | COLATION AND | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | _ | | 1 | In Sawni | ght in feet an | • | | | | | | _ | | LO
FLO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | | |----------|-----------------------|--|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|--------------------|---------------------------------------|--------------------|---------------------|---|---------------------|--------------------|---------------------|----------| | ì | O ₂ | L | | ••••• | | or me rear. | Encing Sepre | mber 30, 18 | L.C. | | | | Continue | us Water Sta | na Recorder | Ац | | | | _ | | | | 00 | | | - 10 | en n | | | | | | - | | | | _1 | Drainage Area | KaE | .Square Mile | . Capacity o | Reservoir32 | .i.a.HAc. | Ft. at Spillw | ay Elev | Ou.uFt. as | of | cemper | . 19.N.3., Surv | ey Gage Hel | ghtsKea.c | gally | | _ | | | | 10 | NE | | | JU | LY | | | AUC | UST | | 1 | SEPTI | MBER | | 4 | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. B.
Outflow | Gage
Haight | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | | 1 | 13092 | 60.7 | | 0 | 1309.7 | 62.0 | | 0 | 1308.3 | 58.5 | | 1.0 | 13051 | 50.7 | | 0 | I | | 2] |
13093 | | | 0 | 1309.7 | 62.0 | | 0 | 13075 | 56.5 | | 0.9 | 13051 | 50.7 | | 0_ | 1 | | 3] | 13093 | 61.0 | | | 1309.7 | 62.0 | | 0 | 1306.7 | 54.6 | | 0.9 | 1304.5 | 49.4 | L | 0.7 | | | ۱. | 13093 | 610 | | _ 0 | 13097 | 62.0 | ļ | 0 | 1306.0 | 52.9 | | 0.8 | 1303.7 | 47.5 | | و و | | | ᆁ | 13093 | 61.0 | | <u> </u> | 13097 | 62.0 | | <u> </u> | 13055 | 51.7 | | 0.6 | 1303.5 | 471 | | 0.2 | 4 | | - | 13094 | | | | 1309.7 | 62.0 | | 0 | 13054 | 51.5 | | 0.1 | 1303.5 | 471 | | <u> </u> | - | | Э | 13094 | 61.2 | | | 1309.7 | 620 | | 0 | 13054 | 51.5 | | 0 | 1303.5 | | | <u> </u> | -1 | | :4 | 13094 | 612. | <u> </u> | <u> </u> | 1309.7 | 62.0 | | 0 | 1305.4 | 51.5 | | 0 | 13035 | | | 0 | -# | | . | 13094 | 612 | Ü | 0 | 1309.7 | 62.0 | 0 | 0 | 13054 | 51.5
51.5 | | o o | 13035 | 47.1 | | <u> </u> | -1 | | ╢ | 13094 | 61.5 | | 0 | 1309.6 | 61.7 | | ŏ | 1305.4 | 51.5 | - 8 | 0 | 13035 | 471 | u | 0 | 4 | | - | | | 8 | 0, | 1309.6 | 61.7 | 8 | ŏ | 1305.4 | 51.5 | | Ö | 1303.5 | 471 | 0 | 0 | -# | | | 13095 | | - 6 | 0 | 1309.5 | 61.7 | 20 | Ö | 13053 | 51.2 | | 0 | 13034 | 46.8 | | 0 | -1 | | 1 | 13095 | 61.5 | - | 0 | 13096 | 61.7 | | ō | 13053 | 51.2 | === | Ö | 13034 | 46.8 | | 1 6 | 7 | | 1 | | 61.5 | <u> </u> | 0 | 1309.6 | 61.7 | ro | Ŏ | 13053 | 51.2 | .= | Ö | 13034 | 468 | | ō | | | 1 | | 61.5 | ţ. | 0 | 13096 | 61.7 | 0 1 | 0 | 1305.3 | 512 | | O. | 13034 | 46.8 | - 0 | 0 | 7 | | 1 | | | S | 0 | 1309.5 | 61.5 | - × g | 0 | 13053 | 51.2 | - | O | 13034 | 46.8 | <u> </u> | Ŏ | | | 3 | | 61.7 | 0 | 0 . | 13095 | 61.5 | S | 0 | 13053 | 512 | <u>a</u> | 0 | 13034 | 46.8 | | 0 | T | | 7 | | 61.7 | | 0 | 13095 | 61.5 | | Ó | 13052 | 51.0 | | 0 | 13034 | 46.8 | | Ö | | | 7 | 13096 | 61.7 | | _ 0 | 13095 | 61.5 | | 0 | 13052 | 51.0 | | 0 | 13034 | 46.8 | | 0 | | | | 1309.6 | 61.7 | | 0 | 13095 | 615 | | 0 | 13052 | 51.0 | | 1 0 | 13034 | 46.8 | | 0. | \Box [| | :1 | 1309.6 | 61.7 | | 0 | 13095 | 61.5 | | . 0 | 13052 | 51.0 | | 0 | 13034 | 4 6 .8 | | 0 | | | | 1309.6 | 61.7 | | O | 13095 | 61.5 | | | 13052 | 51.0 | | 0 | 1303.4 | | | 0 | _ | | 1 | | 61.7 | | 0 | 1309.5 | 61.5 | | Q | 13052 | 510 | | 0 | 13034 | 46.8 | | 0 | 4 | | | | 61.7 | | 0 | 1309.5 | 61.5 | | <u> </u> | 13052 | 51.0 | | | 1303.4 | 46.8 | | 0 | 4 | | J | | 61.7 | | Q | 13095 | 61.5 | | 0 | 13051 | 50.7 | | 0 | 1303.4 | 46.8 | | 0 | _ | | 1 | 1309.7 | 62.0 | | <u> </u> | 13094 | 612 | | 0 | 13051 | 50.7 | | 0 | 1303.4 | 46.8 | | 0 | 4 | | Ш | 1309.7 | 62.0 | | 0 | 13094 | 61.2 | | 0 | 13051 | 50.7 | | Ŏ O | 1303.4 | 46.8 | | 0 | -# | | 4 | | 62.0 | | Ŏ | 1309.4 | 612 | | 0 | 13051 | 50.7 | | 0 | 13034 | 46.8 | | 8- | 4 | | | 13097 | 62.0 | | 0 | 1309.4 | 612
605 | | 0.5 | 13051 | 50.7 | | 0 | 13033 | 46.5 | | U | 4 | | | | | 1 4 | 0 | 13091 | 00.5 | 0.5 | 0.5 | 12021 | 50.7 | 0.4 | 4.3 | | | 0.3 | 1.8 | | | | C. Pt. | | 2.8 | | | | 1.2 | | ! <u>-</u> | · · · · · · · · · · · · · · · · · · · | 0.8 | 4.5 | i' | | 0.6 | 3.6 | | | | Ac. Ft. | | | - (1.4) | | | | +_ (1.8.) | | | | - (20) | | 3.6 | +(1.2) | 360.6+(13 | 3.0 | | Ne | ximen
Daily taflew | | | -,,- | | | + | | | | + | - 10.7 | 1 | | + | | 3 2 | | | almum
Daily Inflow | | | | | | | | | | Ó | | | | . 0 | | ō | | | ge Change | 113 | | | | - 1.5 | | | | - 0.8 | | | | -4.1 | - | - 1 | | | - | | | | | | NO | TE: Gage Hel | ghts and Storag | res as of Midnight | on Day Show | n | | | | | Yearly? | | | x. 1 | W. S. Elev. 15 | 11.2 | feet | on 12/ | 26/46 Sto | rage 65.8 | , | Acre Feet | | | RECORD | S COLLECTED | BY | COM | PUTATIONS | ckd. | Da | | | | 67.7 | feet | | | rage 1.6 | | Acre Feet | | | R. E. WADDI | COR | Dam To | | Hts. copied J | HL APK 10/ | /29 | | | Peak Inf. | 77.4 | | S. from 11: | | 11/20/46 | to 12:00 N | | 11/20/46 | | T. E. MOON | | Hydrog | | | HL APK 10/ | | | x. 3 | Peak Outf. | 26.2 | C. F. | | | | to 3:30 A | | 12/26/46 | | | | Hydrog | rapher Inf. | & Outf. comp. J | HL APK 11/ | 17/ | | ĒМ | LARKS | | TOTAL FOR F | | RORATED DAILY | | | | | | | | | | | | _ | | _ | | INDICATES | | | | | | | | | | | | | | | | ## SAN GABRIEL NO. 2 | | | ght in feet and | | | | IN GABRLEL | | | _ | | FLOC | S ANGELE | ON RECO
S COUNTY
OL DISTRIC | т | | | | |----------|----------------|-----------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|---------------------|-----------------------------------|----------|--------------------|---------------------|---------------| | In
On | Sa | n Gabriel | - West F | ork | | for the Year | Ending Septe | mber 30, 19.14 | š. | | HYL | PRAULIC | DIVISION | | Siage Recorder | Proceure | | | Dra | inage Area | 39.2 | Scuare Miles | . Capacity of | ReservoirI.05 | 36Ac. | Ft. at Spillw | v Elev. 23F | 750Ft. as | of Jan | uarv | 19:145 Surv | | | ad daily | | | | Ť | | OCTOB | | | | NOVEM | | | | DECEM | | | | | NUARY | | | | - | Gage | Acre Ft. | C. F. S.
Inflow | C. F. B.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft | . C. F. S. | C. F. S.
Outflow | 1 | | 1- | Height | 1709.3 | [1.6 | 6.3 | 22845 | | [41 | 6.1 | 2255.6 | 532.6 | [4.4 | 2.3 | 22662 | | | 1.7 | ╬ | | | | 16999 | 1.5 | 6.3 | 22844 | | 4.0 | 6.1 | 2255.7 | 5351 | 4.4 | 2.3 | 22672 | 856 | | 1.7 | | | | | 16906 | 14 | 6.1 | 22828 | | 3.8 | 38.0 | 2255.9 | 540.0 | 4.4 | 2.3 | 22681 | | | 1.8 | | | | | 16768 | 1 3 | 6.1 | 2273.6 | | | | 2256.0 | 542.4 | 4.4 | 2.3 | 22689 | | | 1.8 | | | | | 16675 | 133 | 6.1 | 2264.8 | 7822 | 28.0 | 1730 | | 5474 | 4 | 2.3 | 2269.7 | | | 1.8 | | | | | 1662.9 | 4.2 | 6.3 | 22604 | | 7.7 | | 22563 | 549.9 | [4.3] | 22 | 22703 | | | 1.8 | | | | | 16582 | 4.0 | 6.3 | 2257.6 | | 129 | 50.0 | 22565 | 554.9 | 4.3 | 2.2 | 22710 | | | 1.9 | | | | | 16536 | [33 | 6.3 | 2257.7 | | 4.9 | 3.5 | 2256.6 | 557.4 | 4.3 | 2.2 | 22682 | | | 60.0 | | | | | 1644.5 | 3.1 | 6.3 | 2257.8 | | 4.9 | 3.5 | 2256 B | 562.4 | 4.3 | 22 | 2262.6 | | | 1000 | | | | | 16354 | 2.9 | -6.5 | 22561 | | 142 | 24.0 | 22570 | 5674 | 43 | 2.2 | 22565 | | | 940 | | | | | 16262 | 2.7 | 6.5 | 2253.9 | | 4.1 | 29.0 | 22571 | 570.0
575.0 | 4.1 | 22 | 22507 | | | 790 | | | | | 16171 | 2.5 | 6.5 | 2252.7 | | 3.6 | 182 | 22573 | 577.6 | 4 1 | 2.2 | 22516 | | | 1.5 | | | | | 16035 | \2 0 | 6.5 | 22530 | | 3.8 | 2.2 | 22575 | 5802 | 41 | 2.2 | 22533 | | | 1.4 | | | | | 15990 | 4.4 | 6.5 | 22531 | | 3.7 | 2 2 | 2257.7 | 585.2 | 41 | 2.2 | 22540 | 494 | | 14 | | | | | 15900 | 129 | 6.5 | 22532 | | 3.7 | 2.2 | 22579 | 590.4 | 4.4 | 2.2 | 2254.7 | | | 1.4 | | | | | 15810 | 8.8 | 6.5 | 22534 | | 3.6 | 2.2 | 2258.0 | 592.9 | | 22 | 22555 | | | 1.4 | | | 2 | 2862 | 15720 | 2.6 | 6.5 | 22536 | | 3.6 | 2.2 | 22582 | 5981 | 4.4 | 2.2 | 22561 | 544 | | 1.5 | | | | | 15675 | 2.5 | 6.5 | 2253.8 | | 3.5 | 2.1 | 22583 | 600.7 | 4.4 | 2.2 | 2256.8 | | | 1.5 | | | 2 | 2859 | 15586 | 2.4 | 6.5 | 22539 | | 3.5 | 2.1 | 2.258.5 | 6.0.6.0 | 4.4 | 2.2 | 22574 | 577 | 6 9.4 | 1.5 | $\overline{}$ | | | | 1549.7 | [2.6 | 6.5 | 22540 | | [3.5 | 2.1 | 22741 | | | 2.3 | 2258.0 | | | 1.4 | | | 2 | 285.6 | 15453 | 2.8 | 6.5 | 22542 | | 3.7 | 2.1 | 22832 | | | | 2258.6 | | | 1.4 | | | | | 15365 | 3.0 | 6.5 | 22543 | | 3.9 | 2.1 | 22849 | | 509.0 | 472.0 | 22591 | | | 1.4 | | | | | 1527.6 | 3.2 | 6.3 | 2254.5 | 5062 | 4.1 | 2.1 | 22673 | | 124.2 | 454.0 | 22596 | | | 1.5 | | | | | 1518.8 | 3.4 | 6.3 | 2254.6 | | | 2.1 | 22625 | 714.7 | 80.5 | 1540 | 22602 | | | 1.5 | | | 2 | 2849 | 1514.4 | 3.6 | 6.3 | 2254.8 | 5133 | [42 | 2.2 | 2261.8 | 6949 | 451 | 55.0 | 2260.6 | | | 1.5 | | | | | 1505.7 | 3.8 | 6.3 | 2255.0 | | 4.2 | 2.2 | | 697.7 | 36.5 | 35.0 | 22611 | | | 1.6 | | | 1 | 284.6 | 1501.4 | 4.1 | 6.3 | 22551 | 520.4 | 4.3 | 2.2 | 2261.6 | | 29.8 | 34.0 | 2261.6 | | | 1.6 | | | | | 15014 | <u> </u> | 6.3 | 22552 | | 4.3 | 2.3 | 2262.6 | | | 133 | 22621 | 703 | | 1.5 | | | - 5 | 204.5 | 1501.4 | 6.5 | 6.5 | 22554 | 321.8 | 4.4 | 2.3 | 2265.2 | | | | | | | 1.5 | | | TAI | | TOULA | 95.5 | 197.7 | | | 1733 | 6605 | 2002 | 134.4 | | 1696.6 | 22023 | 720 | 3444 | 375 7 | | | LC. I | | <u> </u> | 894 | 1911 | | · | 343.7 | . 0000 | | <u> </u> | 3636.9 | 12090.0 | | | 6831 | 4853 | | | A.c. | Ft. | | 931 + | (1 4 7) | | | 3104 | + (7 1) | | | 33652 | + (5.2 | | 714 | 6 + (6.7) | 5812.0+(3) | | | axlat. | y jeflew | | 6.5 | | | | 28.0 | , -(T -L) | | | 6072 | | | | 17.7 | 607 | | | termi | nt
y inflow | f | 13 | | | | 3.5 | | | | 4 1 | | | <u>_</u> | 7.7 | | í | | | hange | -217.3 | | | | -9736 | | | | + 2666 | | | | -68 | 3 | -992 | | | | | | | | | NO | OTE: Gage Hei | ghts and Storag | es as of Midnight | t on Day Show | n | | | | | 1/4 Yes | | | w. | S. Elev. | 2294.2 | feet | on 3/31 | /46 St | orage 1951.8 | 3 | Acre Feet | | | RECORD | S COLLECTER | BY | T | COMPUTATIONS | ckđ. | D | | | . Elev. | 2202.6 | feet | on VAR! | OUS TIMES 86 | | | Acre Feet | | | E. F. DE VO | ORE | Dam T | | | GHM JHL 7 | _ | | Pes | k Inf. | 2790 | C. F. | 8. from 7:00 | A.M. on | 3/30/46 | to 8:00 A | .M. on | 3/30/46 | | G. H. MEDDL | ETON | Hydrog | | | GHM IHI | 4 | | Pea | k Outf. | 810 | | S. from 2:25 | | 3/30/46 | to 2:30 P | | 3/30/46 | | H. D. WENT | 7 | Hydrog | | Inf. & Outf. comp. | | _ | | MAI | KS (| | TOTAL FOR | | RORATED DALL | | | | | | | | | | | | _ | | | | | | | EVAPORATION | | | | | | | | | | | | Ξ | | | | CUTFLOWS AS | | | | | | | N FLOW DURING | | | | | | | | _ | | | • | | | | SAN | | | | | | LO:
FLOC | PERATION S ANGELES DO CONTRO PRAULIC | COUNTY | ST | | | |------|--------------------|--------------|-------------|---------------------------------|---------------|-------------|---------------|------------------|--------------------|-------------|--------------|--------------------------------------
----------------|--------------|--------------------|------------| | 0 | n | WW.W.T.T.W.T | | | | tor me rear | cutoff Bebre | IIIIDBF 50, 16 | u. | | | | Continue | Aus Water | Stage Recorder | Pressure | | | | 00.0 | | | | | | 0.00 | ne 0 | 10. | | N= C | | | | | | | rainage Area. | 38.2 | Square Mile | Capacity of | Reservoir 105 | 36Ac. | Ft. at Spillw | ay Elev. Ed | JUAN Ft. as | of | iuai y | 19 40 3014 | C) Gage He | ights | Read Dail | J | | Т | | FEBRU | | | | MAR | | | | APR | | | | | MAY | | | - | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft | | C. F. S. | | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | | Outflow | | | 22633 | | 7.6 | 1.6 | 2265.0 | 7882 | _ 1 8 8 | | 22689 | | 258.7 | 500.0 | | | 210 | 2.1.0 | | | 2263.7 | | 7.6 | 1.6 | 2265.4 | 800.5 | 8.6 | 1.6 | 2268.6 | | 1542 | 1590 | | | 200 | 20.0 | | | 2267.5 | | 60.9 | 1,9 | 22659 | 815.9 | | | 2274.6 | | | 4.4 | | - | 191 | 191 | | | 22693 | | 31.3 | 1.9 | 22663 | 828.4 | 8.2 | | 22792 | | 913 | 4.7 | | <u> </u> | 16.8 | 16.8 | | | 22671 | | 164 | 52.0 | 22666 | 8378 | 8_0 | | 22830 | | 83.5 | 50 | | | 16.1 | 1.6.1 | | 6_ | 22615 | 686.6 | 189 | 103.0 | 22670 | 850.4 | 7.8 | | 2270.0 | | 89.6 | 334.0 | <u>.</u> | | 15.4 | 15.4 | | 7 | 2255.4 | 527.8 | 170 | 970 | 22674 | 8632 | 7.6 | 1.6 | 22414 | 2412 | 62.0 | 418.0 | | <u> </u> | 14.8 | 14.8 | | 8 | 2250.0 | 406.8 | 14.1 | 750 | 2267.8 | 875.9 | 7.4 | 1.6 | 2219.0 | 7.2 | 371 | 1550 | | | 145 | 14.5 | | 7 | 22512 | 4321 | 142 | 1.5 | 22681 | 885.5 | 7.2 | 1.6 | 22144 | 0 | 66.4 | 70.0 | | | 142 | 142 | | | 22523 | | 13.7 | 1.5 | 2268.5 | 8985 | 7.0 | | | | 710 | 71.0 | | | 14.5 | 145 | | | 22533 | | 12.8 | 1.5 | 22688 | 9082 | و م | 1.7 | | 1 | 67.0 | 67.0 | | 1 | 14.8 | 14.8 | | | 22542 | | 12.0 | 1.5 | 22691 | 9180 | 6.8 | | | | 630 | 63.0 | | | 14.3 | 143 | | | 22551 | | 12.4 | 1.5 | 2269.7 | 937.7 | 11.8 | | | | 62.0 | 62.0 | 2 | 2 | | 135 | | | | 5400 | 115 | 1.5 | 22701 | 950.8 | 8.4 | | | | 62.0 | 62.0 | - 5 | | 13.5 | 13.5 | | | 2256.7 | 559.9 | 11.6 | | 22704 | 9608 | ſ 7.9 | | | | 630 | 63.0 | 4 | <u> </u> | 135 | 135 | | | 22575 | 580.2 | 111.4 | 1.5 | 2270.8 | 974.1 | 7.4 | | | | 57.0 | 57.0 | 9 | 2 | 131 | 131 | | | 22582 | | | 1.5 | 22711 | 9842 | 7.0 | | | | 57.0 | . 570 | - | (n | 12.7 | 12.7 | | | | | | 1.5 | 22520 | 4494 | | | | | | 55.0 | | - 0 | 118 | | | | 22589 | | 10.8 | 1.5 | 22496 | 3986 | 23.0 | | | | 55.0
54.0 | 54.0 | | - | 122 | 118 | | | 2259.6 | | | | | | | | | | | | | | 122 | | | | 22602 | | | 1.5 | 22455 | 316.9 | 21.0 | 710 | | | 500 | 500 | | , | | 122 | | | 2260.8 | | 9.9 | 1.5 | 22480 | 366.0 | 201 | 1.4 | | | 410 | 41.0 | | | 122 | 122 | | | 2261.4 | 6838 | 9,9 | 1.5 | 22500 | 406.8 | 20.0 | | | 9 | 32.0 | 32.0 | | | 110 | 110 | | | 22619 | | 9.8 | 1.5 | 22422 | 2554 | 19.0 | | | <u> </u> | 320 | 32.0 | | + | 102 | 102 | | | | 714.7 | 9.7 | 1.5 | 22261 | 422 | 180 | | 9 | | 30.0 | 300 | | | 10.6 | 10.6 | | | 22630 | | 9.6 | | 22200 | 0 | 17.0 | | | · · · | 26.0 | 260 | | | 102 | 102 | | JL | 2263.6 | 746.5 | 9.4 | 1.6 | 2219.5 | 0 | 16.0 | | | 2 | 24.0 | 24.0 | | | 10.6 | 10.6 | | IL | 22641 | 7612 | 9.2 | 1.6 | 2219.6 | 0 | 190 | | <u>.</u> | × | 23.0 | 23.0 | | | 10.6 | 10.6 | | 7 | 2264.6 | 7762 | 0.9 | 1.6 | 22199 | _ 0 | 22.0 | 0.55 | | | 23.0 | 23.0 | | | 102 | 102 | | 7 | | | | | 22241 | 28.7 | 445 | | | | . 22.0 | 0.55 | | | 9.4 | 9.4 | | 1 | | | | | 22942 | 1951.8 | 12546 | 285.0 | (| | 22.0 | 22.0 | | | 8.7 | 8.7 | | - - | | | | | 2282.0 | 13903 | 3139 | 597.0 | | | | | | | 7.9 | 7.9 | | žī, | AL | | 392.4 | 3644 | | | 19653 | 1652.8 | | | 1885.9 | 25861 | | | 409.6 | 409.5 | | Ac | . Ft. | | 7783 | | | | 38981 | | | | 37406 | | | | 8124 | 1408 | | | .c. Ft. | | 7228 | + (5.4) | | | 3278.3 | + (5.8.) | I | | 51295 | + (1.4) | | | 8124 | 15755 + (4 | | Max | mum
ally inflow | | 60.9 | | l | | 1254.6 | | | | 258.7 | | | | 210. | 125 | | बार् | mum
ally inflow | | 7.6 | | ٨. | | 6.8 | | | | 22.0 | | | | 7.9 | | | rag | e Change | +501 | | | | 6141 | | | _ | 13903 | | 1 | | 0 | | -171 | | | <u>v</u> | ···· | | | | NO | TE: Gage He | ights and Storag | res as of Midnight | on Day Show | 1 | | | | | % Yes | | . 33 | V. S. Elev. | 2204.2 | feet | on 3/3 | 11/46 Sta | rage 195 | | Acre Feet | | | RECORD | S COLLECTED | BY | T | COMPUTATIONS | ckd. | | | | 2294.2 | feet | | US TIMES St | | 0 | Acre Feet | | | E. K. DE V | | Dam ' | | Gage Hts. copied | | | | | 2202.6 | | 8. from 7:00 A | | | | | 3/30/46 | | G. H. MIDDI | | | grapher | | GHM JHL 7/ | | | | 2790 | | | | 3/30/46 | | | | | | | | | Inf. & Outf. comp. | | | | eak Outf. | 810 | | 8, from 2:25 F | | 3/30/46 | to 2:30 ! | | 3/30/46 | | H. D. WENT | | | | mi. at Outr. comp. | GHM JHL | | SML | | LOW AS PER | | | AT ION 251 FO | | 16 USI | D 11% OF CO | MPUTED INFLO | FOR SIDE | CANYON FLO | DURING STO | DRM 3+30/31 | /46 | | | | | | | | | CORATED DAILY | Dar. | _ | | L0
FLO | OS ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | | |-----------------------------|----------|--------------|--------------|----------------|--------------|---------------|-------------------|----------------|--------------|--------------|--------------|---|------------|-----------------------|-------------|----| | On Sa | n Gabrie | - West F | Ork | | for the Year | Ending Septe | mber 30, 19.45 | <u>).</u> | | | | | | tage Recorder | Pressure | | | | | | | | | | | | | | N | Continuo | D. | rage Necuraer | | | | Drainage Area | 39.2 | Square Miles | . Capacity o | f Reservoir | 536Ac. | Ft. at Spillw | ay Elev. 23 | 85.0 Ft. as | of Ja | лиагу | , 1945 SUTV | ey Gage Held | htsR | ad Daily | | | | | JU | NE | | | JU | LY | | | AUC | JUST | | | SEP | TEMBER | - | T | | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. B. | C. F. S. | - | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | + | | 1 2202.6 | | 7.5 | 7.5 | 2202.6 | | 3.8 | 3.8 | 2202.5 | | 1.3 | 1.3 | 2202.6 | | 0.9 | 0.9 | | | 2 | | 7.5 | 7.5 | ! | | 3.2 | 3.2 | | | 1.3 | 1.3 | | | 0.9 | و ٥ | -# | | 3 | | 7.2 | 7.2 | \ <u></u> | | 3.2 | 3.2 | | | 1.3 | 13 | | | 1.0 | 10 | ᅪ | | 5 | | 7.5 | 7.5 | | | 3.0 | 3.0 | | | 13 | 13 | [| · | 1.0 | 10 | - | | 6 | | 7.2 | | | | | | | | 1.3 | 13 | | | 1.0 | | ╢ | | 7- | ļ | 72 | 72 | | | 3.0 | 3.0 | | - | 13 | 13 | | | | 1.0 | -# | | · | | 7.2 | 7.2 | | | 2.8 | 2.8 | | | 13 | 13 | } | | 1.8 | 1.0 | ╢ | | ° | | 6.8 | 6.8 | | | 8.5 | 2.8 | | | 13 | 13 | i | | 1.0 | 1.0 | -# | | 0- | | 6.8 | 6.8 | | | 2.8 | 2.B | | | 13 | 1 3 | 2202.6 | O | 10 | 1.0 | -1 | | 1 | - | 6.4 | 6.4 | | | 2.8 | .2.8 | | | 1.3 | 13 | 22034 | 0,5 | (1.1 | 1.0 | ᅦ | | 2 | | 6.4 | 6.4 | 2 | | 2.8 | 2.8 | 2 | 9 | 1.3 | 1.3 | 22042 | 0.7 | 1.0 | 0.8 | 7 | | 3 | Φ. | 6.1 | 6.1 | | 9 | 2.6 | 2.6 | | - 8 | 1.3 | 1.3 | 2204.8 | 11 | 1.0 | 0.8 | | | | 6 | 5.8 | 5.8 | | ď | 2.6 | 2.6 | | 0 | 1.3 | 1.3 | 22053 | 1.4 | 1.0 | 8. Q | 7 | | 5 | | 5.4 | 5.4 | - | . 0 | 2.6 | 2.5 | 0 | S. | 12 | 1.2 | 2205.7 | 1.8 | 11.0 | 8.0 | ٦ | | 6 0 | ţ | 5.4 | 5.4 | | 7 | 2.6 | 2.6 | 2 | | 12 | 12 | 2206.0 | 2 .0 | [1.0 | 8, 0 | ╗ | | 7 2 | - 107 | 5.4 | 5.4 | | | 2.6 | 2.6 | ψ
(0 | 2 | 12 | 12 | 22062 | 22 | 1.0 | 8. 0 | 7 | | 8 0 | 2 | 5.4 | 5.4 | σ, | ž | 2.6 | 2.6 | | | 1.2 | 12 | 2206.5 | 2.6 | 1.0 | 0.8 | | | 9 0 | | 5.0 | . 50 | _ & | | 2.8 | 2.8 | æ | | 1.2 | 12 | 2206.8 | 3.0 | 1.0 | 0.8 | | | 10 | | 4.7 | 4.7 | | | 2.8 | 2.8 | | | 1.2 | 1.2 | 22072 | 3.5 | وها | 0.8 | | | 1 | | 4.4 | 4.4 | | | 2.6 | 2.6 | | | 11 | 1.1 | 22074 | 3.8 | 100 | 9,0 | 4 | | 2 | | 4.4 | 4.4 | | | 2.4 | 2.4 | | | 1.0 | 1.0 | 2207.5 | 4.2 | 0.9 | 8.0 | _1 | | 13 | | 4.4 | 4.4 | | | 22 | 2.2 | | | 1.0 | 1.0 | 2207.7 | 4.3 | 0.9 | 8.0 | 4 | | 4 | | 4.7 | 4.7 | | | 2.0 | 2.0 | | | 1.0 | 1.0 | 22078 | 4.5 | 0.9 | О.В | _1 | | В | | 4.7 | 4.7 | <u> </u> | | 1.9 | 1.9 | | | 0.9 | و و | 22079 | 4.6 | 100 | 0.8 | -1 | | 6 | | 4.4 | 4.4 | <u> </u> | | 1.8 | 1.8 | | | 8, O
8, O | 8.0
8.0 | 22081 | 5.0
5.2 | 139 | <u> 0 8</u> | -4 | | 7 | | 4.4 | 4.4 | | | 1.8 | 1.8 | | | 11 | 1.1 | 22082 | 5.4 | ود | 0 .B | _ | | 18 | | 4.4 | 4 4 | | | 1.7 | 1.7 | | | 1.1 | 11 | 22083 | 5.6 | lió | 03 | -1 | | ŏ- | | 4.0 | 4.0 | ļ | | 1.7 | 1.7 | | | 1.0 | 1.0 | 2208.8 | 6.3 | - 1 3 - | 11 | -1 | | ů | | 40 | | \ | | 1.5 | 1 5 | | | | | 2200.0 | <u> </u> | + \12 | | ᅰ | | OTAL | | 1723 | 1723 | î | | 78.7 | 78.7 | | | 36.2 | 1 0
36 2 | i | | 29.6 | 264 | 4 | | f. Ac. Ft. | | 3420 | | | | 156.0 | | | | 71.8 | | i | | 58.7 | 1471 | T" | | itf. Ac. Ft. | | | 3420 | | | | 1560 | | | | 71.8 | | | 52.4 | 16377.2.4 | | | Maximum
can Dally Jaffew | | 7.5 | | - | | 3.8 | | | | .1.3 | | | | 1.5 | 125 | | | Minimum
san Dally Inflow | | 4.0 | | | | 1.5 | | | | 0.8 | | | | 0.9 | - | σ. | | orage Change | 0 | | | | 0 | | | | 0 | | | | + 63 | | -171 | 2. | | | | | | | N | OTE: Gage He | ights and Storage | as of Midnight | on Day Show | | | | | | Yearly | To | | ax. W. S. Elev. | 2294.2 | feet | on 3/ | 31/46 Sto | rage 195 | .8. | Acre Feet | | | | OS COLLECTED | | | OMPUTATIONS | ckđ. | De | | n. W. S. Elev. | 2202.6 | feet | on VAR | IOUS TIMES Sto | | 0 | Acre Feet | | | E. K. DE V | ORE | Dam Te | ander G | age Hts. copied (| HM JHL 7 | 73 | | ax. Peak Inf. | 2790 | | S. from 7:00 | | 3/30/46 | | O A.M. OIL | 3/30/46 | | G. H. MIDD | LETON | Hydrogr | rapher 8 | torage applied (| HM JHL | _ | | ax. Peak Outf. | 810 | C. F. ! | S. from 2:25 | PiM. on | 3/30/46 | to 2:3 | in P.M. on | 3/30/46 | | H. D.
WENT | Z | Hydrogr | rapher I | nf. & Outr. comp. (| JHL MH | _ | | EMARKS | DRATED DAILY | MOUNTS | | | | | · — — · | | | | | | _ | | | | TAL LOSS DU | | | | | | | | | | | | | | _ | | | | | | | | | | | | | LO:
FLOC | ANGELES | ON RECO
COUNTY
OLDISTRIC
DIVISION | т | | | |------|-------------------|-------------------|--------------|---------------|---------------|----------------|--------------------------|---------------|------------------|--------------|-------------|------------|--|---------------|-------------------|----------| | I. | San | <u> Sabriel -</u> | West For | <u>k</u> | | for the Year E | Ending Septem | ber 30, 18,47 | | | пп | RAULIC | | | | ٠. | | | - | | | | | | | | | | | | | | sge Recorder | .Pressur | | D | ainage Area | 39.2 | Square Miles | . Capacity of | Reservoir 105 | 9.7. Ac. I | ft. at Spillway | FIev. 2385 | .0 Ft. as | of Se | ptember | 1946 Surve | y Gage Held | hts Re | ad Daily | | | Ī | | OCTOR | | | | NOVEM | The second second second | | | DECEM | | ì | | JANU | | | | r | Gago | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | | 1 | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | | 1 | 22122 | 144 | 7.0 | 2.9 | 2212.1 | 142 | 2.4 | 2.4 | | 13475 | 401 | 40.0 | 22553 | 5725 | | 1100 | | -11- | 22121 | 142 | 3.7 | 3.8. | 2212.1 | 142 | 2.4 | 2.4 | | | 391 | 390 | 2254 4 | | | 1100 | | 1 | 22122 | 14.4 | 4.7 | 4.6 | 22121 | 14.2 | 2.6 | 2.6 | | | 39.0 | 39.0 | 2252.4 | | | 1080 | | - | 22121 | 14.2 | 4.3 | 4.4 | 22121 | 142 | 2.4 | 2.4 | | | 36.0 | 36.0 | 2249.8 | | | 104.0 | | ╬ | 22123 | 14.7 | 3.2 | 3.0- | 2212.1 | 142 | 2.2 | 22 | 2279.4 | | 323 | 400 | 2233A | 1629 | | 2120 | | | 22123 | 14.7 | 2.6 | 2.6 | 22121 | 14.2 | 2.2 | 2.2 | | 1289.5 | 42.6 | | 0.2025 | | 66.9 | 1490 | | ╀ | 22121 | 142 | 2.0 | 2 2 | 22121 | 142 | 2.2 | 2 2 | | 1252.0 | 371 | 5 6 Q | | | 72.0 | 72.0 | | - | 22121 | 142 | 2 4 | 2.4 | 22122 | 14.4 | 2.5
1.9 | 2 4
1 9 | | 12119 | 3 4 .7 | 5 5 .0 | | | 70.0 | 700 | | ₽ | 22121 | | 2.2 | 2.2 | | 14.4 | 19 | 1.5 | | | 311 | 40.0 | | | 68.0 | 68.0 | | ╫ | 22121 | 142 | 1.8 | | 22122 | | 3.6 | 3.4 | 2276.0 | 11939 | 301 | 30.0 | | | 58.0 | 58.0 | | - | 22121 | 14.2 | 1.7 | 1.8 | 22123 | 14.7 | 140.7 | 7.5 | | | 28.1 | 28.0 | | | 56.0 | 560 | | ⊩ | | | 1.7 | 1.7 | 22409 | 279.0 | | | | 1190.4 | 253
253 | 27.0 | | | 54.0 | 54.0 | | L | 22121 | 142 | | | 2287.4 | | 722.6 | 28.7 | | | | | | | 52.0 | 52.0 | | - | 22121 | 142 | 1.7 | 1.7 | 22909 | | 1239 | 42.8 | 2215.1 | 11833 | 243 | 26.0 | | | 500 | 50.0 | | ╁ | 22121 | 142 | 1.7 | 1.7 | 2291.8 | | 66.7 | 45.0 | | 1179.8 | 22.4 | 24.0 | | | 46.0 | 460 | | 1 | 22121 | 142 | 8.5 | 2.8 | 22920 | 18686 | 4 5 .8 | 41.0 | 22755 | 11762 | 21.2 | 2 3 .0 | | | 420 | 42.0 | | L | 22121 | 142 | 2.5 | 2.6 | 22922 | 18783 | 4 3 .0 | 38.0 | | 1172.7 | 20.4 | 0.55 | | - 5- | 400 | 40.0 | | ┡ | 22121 | 14.2 | 2.4 | 2.4 | 22922 | | 341 | 3 4 .0 | | 11656 | 18.5 | 22.0 | 2 | | 38.0 | 38.0 | | - | 22121 | 142 | 2.2 | 22 | 22922 | | 31.0 | 31.0 | | | 17.5 | 21.0 | | | 370 | 37.0 | | ₽ | 22121 | 142 | 2.0 | 20 | 2306.5 | | 431.4 | 38.6 | | 11691 | 185 | 130 | <u>u</u> | | 360 | 360 | | L | 22121 | 142 | 2.0 | 2.0 | 23093 | | 160.7 | 744 | | 11904 | 183 | 7 .5 | | <u> </u> | 34.0 | 34.0 | | L | 22121 | 142 | 2.0 | 0.5 | 2305.8 | | 109.5 | 2169 | | 12119 | 183 | 7.5 | | | 3 3 .0 | 33.0 | | L | 22121 | 142 | 2.0 | 2.0 | | 2393.8 | 3171 | 428.8 | | 12299 | 16.7 | 7.5 | | | 32.0 | 320 | | Ц. | 22121 | 142 | 2.0 | 2.0 | 2293.8 | | 190.7 | 4111 | 22782 | | 30.3 | 7.9 | | | 31.0 | 31.0 | | L | 22121 | 142 | 2.0 | 2.0 | 22838 | | 122.2 | 352.8 | | 19172 | 6109 | 2868 | | | 300 | 300 | | L. | 22121 | 142 | 2.0 | 2.0 | 2277.5 | | 97.7 | 222.0 | 22900 | | 10325 | 1100.0 | | | 29.0 | 290 | | L | 22122 | 14.4 | 2.7 | 2 .6 | 2278.4 | | 71.1 | 56.0 | 2282.0 | 14239 | 5493 | 730.5 | | | 34.0 | 34.0 | | L | 22122 | 14.4 | 3.0 | 3.0 | 2279.0 | 13046 | 58.6 | 47.0 | 22722 | 1062.5 | 325.5 | 507.7 | | | 51.0 | 51.0 | | II | 22122 | 144 | 2.8 | 2.8 | 2279.6 | | 5 4 .8 | 4 3 .0 | | | 226.8 | 473.8 | | | 35.0 | 35.0 | | | 22121 | 14.2 | 2.5 | 2.6 | 22801 | 13475 | 52.0 | 42.0 | | | 163.5 | 1963 | | | 29.0 | 29.0 | | | 22121 | 142 | 2.4 | 2.4 | | | | | 22549 | 562.8 | 137.7 | 109.6 | | | 29.0 | 290 | | TA | | | 80.01 | 76.0 | ! | | 28999 | 2226.6 | | <u> </u> | 37134 | 4107.1 | | | 15956 | | | | Pt.
c. Pt. | | 1587 | (0) | | <u>,</u> | 57519 | | | | 73654 | · · · · · | | 7060 | 31648 | 1644 | | ax) | num
Bly laflew | | 15.0.7 | | | | 44164 | + (22) | | | 81463 | + (3 8) | | 1259 | + (0.6 | 16440.34 | | D | Hy laffew | | 7.0 | | | | 722.6 | | | | 10325 | | | | 1149 | 103 | | D | lly Inflew | | 1.7 | i | | 4 m // m · m | 1.9 | | | No | 16.7 | | | # · 2 · X · 2 | 29.0 | | | Age | Change | +.7.9 | | | | 13333 | mm. Care Y2:1-1 | hts and fits | as of Midnight | - 784.7 | | | | 5628 | | | | | | | | | | | | | a as or Midnight | on Day Shown | | | | | | ¼ Yes | | | | 7.09 | feet | on 11/2 | | rage 2853 | | Acre Feet | | | | COLLECTED | | | MPUTATIONS | ckd. | | | |)2_± | feet | on 1/6/4 | 7-9/30/47 Sto | | | Acre Feet | | | | _VORE | Dam Te | | | HM JHL | | | ak Inf. 22 | | C. F. 5 | .from 11:00 | P.M. on | 12/25/46 | to 12:00 M | | /25/46 | | . WENTZ | | Hydrogr | | orage applied G | HM JHL | | | ak Outr. 13 | | C. F. 8 | . from 10:30 | A.M. on | 1/6/47 | to 10:35 A. | | /5/47 | G. H | . MIDDLETON | | Hydrogr | apher Int | . & Outf. comp. @ | HM JHL 1 | | M | RKS OUTFI | OW AS PER | STATION F 2 | 09-R LESS | 1.0% FOR SIDE | CANYONS OF | N DAYS INFI | OW EXCEEDS | 100 CFS | | | | | | | | ## SAN GABRIEL NO. 2 (contid) | | | | | | S) | | | | | | LO:
FLOC | S ANGELES | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | | |-------------------------|-------------|----------|--------------|-------------|---------------|--------------|----------------|-----------|------------------|--|----------------|--------------|---|--------|--------------------|--------------|-------| | | | | | | | | | | | c | | NO Surve | | | r Stage Recorder | Pressur | е | | Drainag | o Areai | FEBRU | | Capacity of | ReservoirI.U. | MAF | | y Elev | 385 Ft. as | | | 1940 301 40 | Gage Hei | ghts | | | _ | | G | ıgo | Acre Ft | C.F.S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | APF | C. F. S. | C. F. S. | Gage | Acre l | MAY
Ft. C.F.S. | C. F. S. | - , | | He | lght | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Store | | Outflow | ᆚᆫ | | 22 | 02.0 | | 29.0 | 29.0 | 22020 | | 170 | 170 | 2202.0 | | 15.0 | 15.0 | 0.2023 | | 8.7 | 8.7 | | | ;⊹ | | | 290 | 29.0 | | | 17.0 | 17.0 | <u> </u> | | 150 | 15.0 | | - | 8.3 | 8.3 | _ | | | | | 28.0
25.0 | 25.0 | · · · · · | 1 | 17.0 | 17.0 | | | 14.0 | 14.0 | | | 8.3 | 8.3
7.9 | 241- | | | | | 24.0 | 24 0 | | | 170 | | | t | 14.0 | 140 | | | 7.5 | 7.5 | - | | 1 | | | 23.0 | 230 | | | 17.0 | 170 | | | 14.0 | 14.0 | | | 7.5 | 7.5 | | | | I | | 22.0 | 220 | | | 16.0 | 160 | | | 13.0 | 13.0 | | | 7.5 | 7.5 | | | | | | 21.0 | 21.0 | | ļ | 16.0 | 16.0 | | <u> </u> | 13.0 | 13.0 | | | 7.2 | 7.2 | | | ļ | | | 23.0 | 23.0 | | ļ | 16.0 | 16.0 | | | 13.0 | 13.0 | | | 6.8 | 6.8 | | | ₩ | | | 28.0 | 28.0 | | | 16.0 | 15.0 | | | 12.0 | 12.0 | | | 7.2 | 7.2 | | | ļ | | | 24.0 | 24.0 | | - w | 15.0 | 15.0 | | - v | 12.0 | 12.0 | <u>2</u> | | 7 2 | 7.2 | | | è | | <u>à</u> | 23.0 | 23.0 | | 8 | 14.0 | 14.0 | | - 5 | 110 | 11.0 | | 20 | 7.2 | 7 2 | :# | | | | | 22.0 | 22.0 | <u> </u> | === | 14.0 | 14.0 | <u>-</u> - | | 110 | 11.0 | | - 5 | 7.2 | 7.2 | | | | ; + | - = | 22.0 | 22.0 | | 1 # | 14.0 | 14.0 | <u>ē</u> | # | 11.0 | 110 | - 6 | # | 7 2 | 7 2 | | | 1 | | | 21.0 | 21.0 | | | 14.0 | 140 | | | 10.0 | 10.0 | | | 7 2 | 7 2 | | | 9 | | £ | 21.0 | 21.0 | - s | _ ĝ | 14.0 | 14.0 | u) | ž | 9.4 | 9.4 | s s | ź | 6.8 | 6.8 | 3 | | | 2 | | 20.0 | 20.0 | - ŭ | _ | 13.0 | 13.0 | e e | | 8.7 | 8 .7 | œ | | 6.8 | 6.8 | | | " | | | 200 | 0.02 | | | 13.0 | 13.0 | | | 9.1 | 9 1 | | | 6.4 | 6.4 | | | I | | _ | 50.0 | 0.08 | | | 14.0 | 14.0 | ļ | ļ | 9.4 | 9.4 | | | 6.1 | 6.1 | | | | + | | 190 | 19.0 | | | 16.0 | 160 | | | 9.4 | 9 .4
9 .8 | | | 5.8 | 5 .8 | | | ⊩- | | | 18.0 | 19.0 | | | 16.0 | 17.0 | | - | 9.8 | 9.8 | | | 5 .4
5 .8 | 5 .4
5 .8 | | | | | | 18.0 | 18.0 | | | 16.0 | 16.0 | l | | 9.8 | 9.8 | | | 5.8 | 5.4 | | | | - | | 180 | 18.0 | | ļ | 15.0 | 15.0 | | | 9.8 | 9.8 | | | 5 A | 5.4 | - | | 1 | | | 17.0 | 17.0 | | | 14.0 | 14.0 | | | 9.8 | 9.8 | | | 5.0 | 5.0 | - | | | | | 17.0 | 17.0 | | | 14.0 | 14.0 | | I | 10.0 | 10.0 | | | 5.8 | 5.8 | i II | | | | | 17.0 | 17.0 | | | 19.0 | 19.0 | | | 10.0 | 100 | | | 5 .4 | 5 .4 | | | | | | | | | | 0.08 | 20.0 | | | 10.0 | 100 | | | 5.0 | 5.0 | 5 | | | | | | | | <u> </u> | 19.0 | 19.0 | | ļ | 9.4 | 9.4 | | | 4.7 | 4.7 | | | <u> </u> | | | | | | | 17.0 | | | | | | | | 5.0 | 5 .0 | | | Ac. Ft. | | | 6110 | 6110 | | <u> </u> | 489.0
969.9 | 489.0 | | <u>' </u> | 337.4
669.2 | 2374 | | | 204.9 | 2049 | | | Ac. Ft. | | | 1 | 2119 | | | 3033 | 969.9 | | | 0092 | 6692 | | | | 19698 | | | ieximum
a Dally Infl | •• | | 29.0 | | | | 20.0 | | | | 15.0 | | | - | 8.7 | 1032 | | | fialmum
Belly Infle | | | 17.0 | | | | 13.0 | | | | 8.7 | | | | 4.7 | | 1.7 | | age Chan | | 0 | | | | 0 | | | | 0 | | | | 0 | | | | | | | | | | | | OTE: Gage Heig | | es as of Midnigh | t on Day Show | | | |
 | % Yes | | | . W. S. Ele | | 09.7 | feet | on 11/ | | orage 285 | 3_1 | Acre Feet | | | | COLLECTED | | | COMPUTATIONS | | Dat | | W. S. Ele | |)2 ± | feet | | 47 -9/30/4Ft | | <u> </u> | Acre Feet | | | NYON DE V | ORE | Dam T | | Gage Hts. copied | GHM JHL 1 | 12/ | | Peak Inf | | | C. F. S | from 11:00 | P.M. on | 12/25/46 | to 12:00 h | | 2/25/46 | | WENTZ | | Hydrog | | Storage applied | GHM JHL | | | . Peak Ou | | | | from 10:30 | A.M. on | 1/6/47 | to 10:35 A | M. on 1 | /6/47 | L G.H | MADDLETON | | Hydrog | rapher | Inf. & Outf. comp. | GHM JHL | | | MARKS | | | ED ON STATI | | | | | , | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | () | INDICATE | S EVAPORATI | UN L055 | | | | | | | | | | | | | | | | | | d Operation Re | | | | | | | | LC
FLO | OPERATIONS ANGELES
OD CONTRO
ORAULIC | S COUNTY
OL DISTRIC | ST. | | | | |------|-------------------|---|--------------------|---------------------|---|--|--------------------|---------------------|-----------------|--|--------------------|--|------------------------|--|---|---------------------|------| | 0 | n | 4m.m | | a.a.a | *************************************** | | rumd nebre | | | | | | Continue | ous Water | Stage Recorder | Pressur | e | | n. | | 39.2 | Source Miles | Canacity of | Reservoir I | 0597 Ac. | Ft. at Spiller | av Elav. 238! | 5 Ft.a. | of S | eptember | 18 46 Surv | | | Read daily | | | | - | antige Area | | | Oapacin, or | | | LY | | | | | , toman | - Cage III | | | | 11 | | - | | TU. | | | | | | , | | | GUST | 7 | | | PTEMBER | | - | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre F
Storage | Inflow | C. F. S.
Outrlow | | | | 2202.0 | | 5.4 | 5.4 | * | | 2.4 | 2.4 | | - | 1.1 | 1.1 | | ļ | | 0.9 | - - | | | | | 54 | 5.4 | | | _ è è _ | 20 | | | 1.1 | 11 | | | 0.9 | 0.9 | | | + | | | 5 A
5 A | 5.4
5.4 | | | 1.8 | 1.8 | | 1 | 12 | 12 | | 1 | 0.9 | 60 | + | | - | | | 5.0 | 5.0 | | | 1.8 | 1.8 | | 1 | 11 | 1.1 | | - | 60 | 0.9 | 7 | | ╁ | | | 5.0 | 5.0 | | | 1.8 | 1.8 | | " | 11 | 1.1 | | | 0.9 | 0.9 | 7 | | ╫ | | 5 0 5 0
5 0 5 0
5 0 5 0
4 7 4 7
4 4 4 4 | | | | | 1.8 | 1.8 | | | 1.1 | 11 | | | 0.9 | 0.9 | 1 | | | | | | | | | 1.6 | 1.8_ | | | 11 | 1.1 | | | 0.9 | 0.9 | _ | | ┸ | | | | | | | 1.7 | 1.7 | | | 11 | 1.1 | | | 1.0 | 1.0 | _ - | | ╄ | | | | | | - | 1.7 | 1.7 | | | 11 | 11 | | | e 0
e 0 | 0.8 | 4 | | - | | | | | | · | 1.7 | 1.7 | | ļ | 11 | 11 | | | 0.8 | 0.9 | | | ╟ | | | 4.4 | 4.4 | | | 1.7 | 1.7 | | | 11 | 11 | | † | 1.0 | 1.0 | | | - - | | | 4.4 | 4.0 | > | + | 1.7 | 1.7 | | | 11 | 11 | | | و ہ | 6 6 | -1 | | ╫ | | | 3.8 | 3.8 | * | - 8 | 1.7 | 1.7 | <u>_</u> | 8 | 10 | 1.0 | | - 8 | 0.0 | و ہ | 7 | | ╫ | | | 3.2 | 3.2 | | <u></u> | 1.6 | 1.6 | | 2 | 1.0 | 1.0 | L | - 6 | 0.9 | 0.9 | 7 | | ╫ | - | 9 | 3.2 | 3.2 | | 9 | 1.5 | 1.5 | | 2 | 1.0 | 1.0 | 0 | 0 | 0.9 | 0.9 | | | 1 | - 6 | #3 | 3.4 | 3.4 | Ş | S | 1.4 | 1.4 | ^ | i i | 1.0 | 1.0 | | Š | 1.0 | 1.0 | | | JL. | L | | 3.0 | 3.0 | | | 1.3 | 1.3 | <u> </u> | 9 | 1.0 | 1.0 | - S | | و ٥ | 0.9 | 4 | | ╟ | Š | <u>ž</u> | 3.4 | 3.4 | v v | Z | 1.2 | 1.2 | | | 10 | 10 | 2 | Z | 0.9 | 0.9 | - | | Ł | <u> </u> | | 3.4 | 3.4 | œ. | | 1.2 | 12 | <u></u> | | 0.9 | ف و | <u> </u> | | 8.0 | 8, O
8, O | | | - | | | 3.6 | 3.6 | | | 1.2 | 12 | | | <u>e. 0</u> | e 0
8.0 | | + | 0.8
0.7 | 0.7 | - | | ╟ | | | 3.0 | 3.0 | | | 12 | 12 | | | 8.0 | 0.8 | | + | 0.7 | 0.7 | + | | ╫ | | | 2.8 | 2.8 | | | 12 | 1 2 | | | 0.8 | 0.8 | | 1 | Ŏ.7 | 0.7 | - | | ╫ | | _ | 2.8 | 2.8 | | | 11 | 11 | | 1 | 8.0 | 0.8 | 1 | | 0.6 | 0.6 | 7 | | ⇈ | | | 8. \$ | 2 .8 | | | 1.1 | 11 | | | 8.0 | 8.0 | | | 0.1 | 0.1 | | | Т | | | 8. S | 2.8 | | | 1.1 | 1.1 | | | 0.9 | 0.9 | | | 0.1 | 0.1 | | | 1 | | | 2.8 | 2 .8 | | | 1.1 | 11 | | <u> </u> | 0.9 | 0.9 | | - | 0.9 | 0.9 | _ | | -11- | | | 2.5 | 2.6 | | | 11 | 11 | <u> </u> | | 9 9 | Q 9
Q 0 | | - | 8. 0 | 8. 0 | 4 | | JL. | | | 1183 | 4103 | | | 46.7 | 46.7 | | | 31.0 | 31.0 | - | - | 24.4 | 24.4 | _ | | Ac. | | | 234.6 | 1100 | | | 92.6 | 40.1 | | | 61.5 | | | | 48.4 | 2013 | | | f. A | c. Ft. | | | 234.6 | | | | 92.5 | | | | 61.5 | | | 484 | 20134.84 | | | | liy Inflew | | 5.4 | | | | 2.4 | | | | 1.2 | | | | 10 | 1032 | | | | tum
dly inflow | | 2.6 | | | | 11 | | | - | 8.0 | | | | 0.1 | | Ó. | | | Change | 0 | | | | 0 | | | | . 0 | | | | 0 | | | | | | | | | | | | | | es as of Midnig | nt on Day Show | | | | | | Yearly? | | | | . S. Elev. 230 | | feet | on_11/2 | | torage 2853 | | Acre Feet | | | | S COLLECTED | BY Dam | Tandan | COMPUTATIONS | | Da | | | 8. Elev. 220 | | feet | on 1/6/4 | 7-9/30/47 ⁸ | | to 12:00 | | 10/05/10 | E. KENY | | RE | | grapher | Gage Hts. copied G
Storage applied G | | 18 | | | ak Inf. 229 | | C.F. S | from 11:00 | P.M. on | | to 10:35 | | 1/6/47 | H. D. Y | IDDLETON | | | | Inf. & Outf. comp. | | - | | | | | STATION F2 | | M.M. On | 1/6/41 | 10:35 | M-M- | 1/6/47 | · O. H. N | 11 PAPE 100 | | 22,5010 | - Spinot | - cust. comp. | OLDAI PLIF | | | | | | EVAPORATION | | | | | | | | | | | | | | | | _ | | | EXCAVATED TO | | | | | | | | | | | | | | | # SAN GABRIEL NO. I | F. C. D | et Form 66A Nevie | md 500 11/44 | | | | | | | | | | | | | | | | |------------|-----------------------|--------------|--------------|----------------|----------------|------------|---------------|---------------|-------------------|----------------|--------------|---------------------|--|------------|-------------------------|---------------------|----------| | 1 | | - | | | | | | Da | | | LO:
FLOC | S ANGELE
D CONTR | ON RECC
S COUNTY
OL DISTRIC
DIVISIO | T
N | | • | | | 1 | | | | | | | | | | | | | | | Stage Recorder | | | | L_ | Drainage Area | 203 | Square Mile | s. Capacity of | f Reservoir | .,3112Ac. | Ft. at Spillw | ay Elev. 1.15 | 3.0 Ft. as | of N | ovember | 1 <u>945</u> Surv | ey Gage Hel | ights | Read Daily | | | | | | OCTO | BER | | | NOVEN | ABER | | | DECE | IBER | | | JAI | TUARY | | ii . | | | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | 8 | | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Shorage | Inflow | Cutflow | Height | Shorage | Inflow | Outflow | <u> </u> | | 1 2 | 128285 | | 340 | 360.0 | 1283.75 | 3485 | 496 | | 129450 | 799.6 | 39.4 | | 136240 | | | 88.6 | | | 8 | 128330 | | 35.0 | 29.1 | 128425 | | | | 129455 | 802.2
802.2 | 39.4
38.1 | | $\frac{136300}{135735}$ | | | 88.6 | | | 4 | 1284.40 | | 350 | 26.3 | 129020 | | 204.7 | | 1294 60 | | 392 | | 1353330 | | | 5989 | | | 5 | 128440 | | 350 | | 1295.50 | | | | 1294.60 | 804.8 | 379 | | 134920 | | | 5674 | 1 8 | | 6 | 128335 | | 490 | 372 | 1295 10 | | 863 | | 1294.60 | | 382 | | 1345 10 | | | 563.3 | 6 | | 7] | 1286.50 | 419.0 | 580 | | 129295 | | 111.7 | 173.4 | 129460 | 804.8 | 37.7 | 37.5 | 1342.60 | 622 | | 375.7 | | | 8 | | 412.0 | 510 | | 1295.05 | | 445 | | 1294.70 | 810.0 | 39.8 | | 1339.75 | | | 414.0 | | | | 1285.85 | 402.0 | 460 | 510 | 1292.45 | 7209 | 422 | | 1294.70 | | 373 | | 133835 | | | 340.5 | | | 10 | | 398.0 | 440_ | 459 | 129250 | | 54.5 | | 1294.75 | 812.6 | 38.4 | | 1336.85 | | | 3332 | | | 11 | 1285.55
1285.40 | | 440 | | 129230 | | 69.0 | | 1294.80 | 8152
8178 | 38.5
38.5 | | 133470 | | | 374.1 | | | 18 | 1285 50 | | 43.0 | 44.9 | 1293.80 | | 432 | | 1294 90 | 8204 | 38.5 | | 1335.60 | | | 85.4
85.4 | | | | 1285.65 | | 43.0 | 41.4 | 1293.85 | | 415 | | 129490 | | 37.8 | | 1335.80 | | | 85.4 | | | | 128570 | | 43.0 | 419 | 1293.85 | | 39.7 | | 1294.75 | 8152 | 375 | | 133600 | | | 85.4 | | | | 1284.45 | | 43.0 | | 1293.90 | | 41.0 | | 1294.65 | 810.0 | 37.51 | | 133620 | | | 85.4 | | | | 1283.50 | | 42.0 | 54.0 | 129395 | 808.6 | 40.7 | | 129450 | 799.6 | 3 4 .9 | 39.9 | 133630 | 518 | 0 93.5 | 85.4 | | | 18 | 128295 | 329.0 | 40.0 | 46.5 | 129395 | | 403 | | 129440 | 794.4 | 37.4 | 39.9 | 1336.45 | 520 | 5 983 | 85.4 | | | | 128255 | | 40.0 | 44.9 | 129395 | 808.6 | 39.8 | | 129425 | 785.5 | 36.7 | 40.4 | 133650 | 521 | 3 92.5 | 881 | 19 | | | 128245 | | 41.0 | 422 | 129395 | 808.6 | 38.6 | | 129420 | 784.0 | 39.1 | | 133655 | | | 902 | 20 | | 21 | 1282.65
1282.75 | 321.0 | 41.0 | 38.6 | 1294.05 | 813.7 | 399 | 37.0 | 1314.80 | 2358 | 866.8 | | 1336.55 | | | 89 <u>1</u>
87.7 | 21 | | 23 | 1282.75
1282.70 | 324.0 | 40.0 | 38.4 | 1294 10 | 8213 | 38.7 | 37.0 | 134990 | 10822 | 29842 | | 1336.60
1336.60 | 522
522 | | 87.6 | | | 24 | 128270 | 3230 | 39.0 | 38.7 | 129425 | 823.8 | 38.5 | | 136620 | | | | 1336.60 | 522 | 9 881 | 87.6 | | | | 1282.60 | | 39.0 | 403 | 129430 | 826.4 | 385 | 370 | 136365 | 10572 | 611.0 | | 1336.60 | | | 87.6 | 25 | | | 128250 | | 39.0 | | 129435 | 828.8 | 38.5 | | 1358.46 | | 448.7 | | 1336.60 | | 9 883 | 87.6 | 26 | | 27 | 1282 45 | 316.0 | 39.0 | 39.9 | 129435 | 828.8 | 373 | | 1357.05 | 9071 | 271.0 | | 1336.55 | 522 | 1 84.5 | 87.6 | | | | 128240 | | 39.0 | | 129440 | | 38.4 | | 1358.70 | 9436 | 2743 | | 1331.05 | | | 505.5 | | | | 1282.50 | | 47.0 | 455 | 1294.45 | 833.6 | 383 | | 1360.00 | 9728 | 238.4 | 90.6 | 131850 | | | 897.3 | | | 30_ | 1282.60
| 3200 | 85.0 | | 1294.45 | *7969 | 371 | 37.0 | 136095 | | 1989 | | 131320 | | | 360.4 | | | | 1282.80 | 325.0 | 600 | 57.4 | | | 17670 | 15002 | 1361.70 | | | 88.6 | 131320 | 219 | 6 89 <u>1</u>
3836.5 | 88.7 | | | Int. A | | | 2681.7 | 1674.7 | | | 34984 | 115002 | | | 06985 | 21202 | | | 7609.5 | 78093 | | | Outr. | Ac. FL | | | + (7.9 | f | | | + 1143 | | | 13657 | + (137 | 1 | 5480 | + (40.1) | 33152.5+(7 | | | Meas | dmam
Dally laffew | | 85.0 | | | | 2339 | | | - | 29842 | | | | 2243 | 2984 | 1 2 | | Maar | lause
Daily latter | | 34.0 | | | | 371 | | | | 34.9 | | | | 771 | 3 4 | | | Store | re Change | 648.0 | | | | 508.6 | | | | 9319 | 1 | | | -792 | 0 | +1223 | | | | | | | | | NO | TE: Gage Heis | | es as of Midnight | on Day Show | n | | | | | ½ Year | , | | | | 1423.85 | feet | on 6/5, | | \$50,395.2 | | Acre Feet | | | | COLLECTED | | | OMPUTATIONS | | ate | | | | 1278.0 | feet | on 10/13 | | rage 336. | | Acre Feet | | | ALPH H. HARE | | Dam T | | age Hts. copied | WEC | | | | | 5760 | | 8. from [1:0] | | | to 12:00 | 1 M 0212/ | 21/45 | G | EORGE H. MIC | DLETON | Hydrog | | torage applied | WEC | | | | | 9200 | | B. from AT 8: | | | | | | | | | Hydrog | mpnor I | nf. & Outf. comp, | WEC | | | _ <u> </u> | () 1 | ORRECTED FO | R 36.7 A.E. | CAPACITY I | LOST DUE TO DE | EBRIS** | KESERVOIR. | W.S. ELEV., | COMBINED RES | SHRVOLRAN | D SUMP_STORA | GE. | | | | | | | | | NO COLUMN | LES MINISTER | LIATURALII | m LUSS. | | | | · | | | | | | | | | | | | | ***** | th in feet and Opera | | | SAN GABRIEL | Da | - | | LO:
FLOC | S ANGELES | DIVISION | T
1 | ige Recorder | Au | |---|-------------------------------|---------------------|----------------|-------------------------------------|---------------------|--------------------|---------------------|--------------------|---------------------|-------------------------|---------------------|--------------------|------------------------| | | 000 | | 101 | 0110 | | EO 0 . | Man | | \r C | | | - | | | Drainage Area | ZVJ Square | Miles. Capacity of | Reservoir44 | .342 Ac. Ft. at Spill | way Elev1.4 | 03. U. Fr. as | ofnov | ember | 19.95. Surve | y Gage Heig | ghts Rea | io Daliy | | | . 1 | FEBRUARY | | | MARCH | | | APF | uL | i | | MA | Y | ù | | Gage
Height | Acre Ft. C.F.
Storage Infl | | Gage
Height | Acre Ft. C. F. S.
Storage Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Shorage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | 131315 | 2191 8 | 5.8 88.8 | 131995 | 2926 712 | 2 65.0 | 1381.45 | 15244 | 10139 | 0.5 | 141570 | 27049 | 2123 | 90.6 | | 2 1313 05 | 2181 8 | 3.7 88.7 | 1320.00 | 2932 684 | | 138590 | 16566 | 668.1 | 0.5 | 141620 | 27248 | 1933 | 90.6 | | 1316 10 | | | 1320.10 | 2944 725 | | 138845 | | 4002 | | 141670 | | | 90.6 | | 1317.05 | | | 132015 | 2950 684
2962 715 | | 1385 00 | | 3632 | | $\frac{141720}{141760}$ | | 174.8 | 90.6 | | 131830 | | | 132035 | 2973 703 | | 1382 65 | | 6313 | | 141800 | | 189.4 | 90.6 | | 131915 | | | 132035 | 2973 65 | | 1382.70 | | 7883 | | 1418.40 | | 1613 | 913 | | 132030 | 2967 18 | 11136 | 132040 | 2979 68. | | 138300 | | 497.0 | 451.5 | 1418.7 C | 28257 | 1543 | 90.6 | | 132025 | 2962 9 | | 132040 | 2979 65. | | 138495 | | | | 141910 | | 1739 | 902 | | 1320.05 | | | 1320.45 | 2985 684
2985 654 | | 138690
1389.05 | | 353.0
355.1 | | 141950
141980 | | | 902 | | 1319.65 | | | 1320.45 | 2985 65 | | 139130 | | 364.1 | | 142020 | | 1755 | 902 | | 1319.40 | 2862 8 | 5 972 | 1320.75 | 3021 833 | 1 65.0 | 1393.45 | 18965 | 3552 | | | 28974 | 1434 | 902 | | 131925 | | 900 | 1320.90 | 3038 743 | | 1395.50 | | 343.9 | | 1420.70 | | 1438 | 902 | | 131910 | | 16 900 | 1320.95 | 3044 685 | | 1397.50 | | | | 142100 | | 154.5 | 902 | | 1319.00 | | 4 2 90.0 | 1321.00 | 3050 68 A | | 1399.50 | | 348.6
356.5 | | 142125
1421.45 | | 144.5 | 902 | | 1318.60 | | 3.8 90.0 | | 3442 2633 | | 1403.40 | | 343.8 | | 1421.70 | | 1440 | 902 | | 131835 | | 5 3 900 | 132630 | 3725 208.5 | | 140520 | | 3303 | | 142190 | | 1331 | 902 | | 1318 45 | | 0.0 73.7 | 132825 | 3989 1812 | 481 | 1406.65 | | 317.6 | | 1422 10 | | 133.4 | 902 | | 131865 | | | 1328.75 | 4058 851 | | 1407.85 | | 298.9 | | 1422.30 | | | 90.2 | | 1319.85 | | | 1329.00 | 4092 832 | | 140890 | | 271.9 | | 142250 | | 1343 | 902 | | 1319.05 | | 9.6 65.6 | 1329.95 | 4226 1334
4463 1854 | | 1409.95 | | 273.4 | | 1422.65 | | 123.8 | 902 | | 1319.45 | | | 133250 | 4596 1268 | | 1411.65 | | | | 1422.95 | | | 902 | | 1319.60 | | | 1333.00 | 4670 95.7 | | 141245 | | 248.4 | | 142315 | | 1343 | 90 Z | | 1319.75 | | | 1333.45 | 4738 95 | 1 603 | 141320 | | 239.8 | | 142330 | | 124.0 | 902 | | 1319.85 | 2915 72 | | 133415 | 4844 113.7 | | 141390 | | 2323 | | 1423.40 | | 1140 | 902 | | 3 | | | 133510 | 4992: 135.0
10162:2613.0 | 603 | 1414.50
1415.10 | | 211.5 | 90.8 | 142350
1423.60 | 30248 | 1152 | 902 | | (- | | | | 13236 15503 | | 141310 | 20011 | 231.4 | 30.0 | 1423.65 | 30311 | 1041 | 902 | | OTAL | 288 | 2.6 25109 | | | 18362 | | | 11443 | | | | | 28001 | | . Ac. Ft. | 571 | 7.6 | | 139898 | | | | 26968 | | | | 91785 | B6070. | | tf. Ac. Ft.
Maximum
an Daily Inflow | | 3 + (182) | | | 5 + (S 2 8) | ļ | | 90242 | ± (976) | - 55 | 5539 + | (124.6) | 56352.9±(34
2 9 8 4 | | an Daily Inflow
Minimum
an Daily Inflow | 24 | Z.O | | 2613.0
65.4 | | I | | 2114 | | | | 2123 | 34 | | az Dally Inflow | +7190 | | | 10321.0 | <u>-</u> | + | 13575 | | | | 3500 | | +29338 | | | | | | | eights and Storas | es as of Midnight | | | | | | | % Year | | | 423.85 | feet on 6.5 | | age 30,395.2 | Acre Feet | | | RECORDS | COLLECTED | | | PUTATIONS | ckd. Da | | | 278.0 | feet on 10/ | 18/45 Stor | age 336.i | Acre Feet | | | LPH H. HARR | | Dam Te | | | WEC | | | 760 | | | 2/21/45 to 12:0 | O M on | .12/21/45 | GE | ORGE_H. MID | DLETON | Hydrogr | | | WEC | | | 200
CORRECTED FOR 36 | C. F. S. from AT 8: | | 47.90 | | | | | | Hydrogr | apner ; inf. | & Outf. comp. | WEC | # SAN GABRIEL NO. I (contid) | C. Dist. Form 68C Revise | d 500 11/44 | | | | | | | | | | | | | | | | |------------------------------------|---------------------|--------------------|---------------------|---------------------------|----------------|---|---------------------|--------------------|---------------|--|---------------------|--------------------|----------------|---------------------------------|----------------|-------| | | | | | | | | | | | DAM | PERATIO | ON RECO | RD | | | | | Daily Gage Heig | -lis In fact and | Oneration B | ecord of | | SAN GA | ABRIEL | Der | No. I | | LO: | 5 ANGELES | SCOUNTY | | | | | | Dany Gage Heil | Aut m seet and | Operation in | ecozu o1 | | | *************************************** | | • | | FLOC | D CONTRO | OL DISTRIC | т | | | | | | | | | | | | | | | | | DIVISION | | | | | | In Sa | n Gabriel | Canyon | | | for the Year I | Ending Septe | mber 30, 1940 | i | | | | | | | A | | | 0 | | | | | | | | | | | | Continuo | us Water Ste | ge Recorder | Au | | | Drainage Area. | 203 | quare Miles | . Capacity of | Reservoir1) | 4342Ac. 1 | Ft. at Spillw | ay Elev. 115 | 3QFt. as | of No v | ember , | 1945 Surv | ey Gage Heig | ghts | Read Daily | <u></u> | | | 1 | JUN | F | | 1 | JUI | '.Y | i i | | AUG | 1197 | | | SEPT | EMBER | | I | | Gage | | | | | Acre Ft. | | | | Acre Ft. | | | 7 | Acre Ft. | C.F.S. | C. F. S. | - à | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Storage | Inflow | Outflow | " | | 1
1423.70 | | 1038 | 902 | 1421.60 | | 62.3 | 90.3 | 1415.70 | | 453 | | 1406.85 | | 37.7 | 903 | 1 | | 2 1423.75 | 30353 | 103.8 | 902 | 142145 | 29368 | 62.0 | | 1415.45 | | 45.0 | | 140650 | | 293 | 903 | | | 3 1423.80 | 30374 | 103.8 | 902 | 142130 | 29326 | 62.0 | | 141520 | | 4 3 .4 | | 1406.20 | | 38.0 | 903 | | | 4 1423.85 | 30395 | | 90.2 | 142120 | 29284 | 72.4 | | 1414.95 | | 44.7 | | 140590 | | 38.0 | 903 | 4 | | 5 1423.85 | 30395 | 94.4 | | 1421 05 | | 62.4 | | 1414.70 | | 45.0 | 903 | 140555 | | | 9.0.3 | | | 6 1423.85 | 30395 | 943 | | 1420.90 | | 62.6 | | 1414.45 | | 43.8 | | 1405.25 | | | 90.3 | | | 7 1423.80 | | 831 | | 1420.70 | | 52.5 | | 141420 | | 442 | | 1404.90 | | | 903 | | | 8 1423.80 | | 93.5 | | 1420.55 | | 63.0 | | 141390 | | 34.2 | | 1404.55 | | | 903 | | | 9 1423.80
10 1423.70 | | 93.5 | | 1420.40 | | 62.9
52.3 | | 1413.65
1413.40 | | 44.0 | | 140425 | | | 903
201.4 | | | 10 1423.70
11 1423.60 | | 100.8 | | 1420.00 | | 52.9 | | 1413.15 | | 463 | | 1401.75 | | | 328.9 | | | 12 1423.60 | | 83.0 | 1110 | 1419.85 | | 63.4 | | 1412.90 | | 44.6 | 903 | 1400.15 | | 51.6 | 3322 | 12 | | 13 1 4 2 3 .4 0 | | 90.1 | | 1419.65 | | 53.6 | | 1412.60 | | 36.5 | | 1397.80 | | | 4682 | 13 | | 14 1 4 2 3 3 0 | | 0.08 | | 1419.45 | | 539 | | 1412.30 | | 35.5 | | 1395.35 | | | 4652 | 14 | | 15 142320 | | 79.7 | 969 | 1141930 | 28502 | 65.4 | 903 | 1412.05 | 25618 | 46.0 | | 1390.65 | | 61.2 | 8352 | 18 | | 16 1423.10 | | 79.5 | | 1419.05 | | 433 | | 1411.75 | | 37.0 | | 138815 | | | 4572 | | | 17 1423.05 | | 86.0 | | 1418.85 | | 53.1 | | 1411.45 | | 37.5 | | 138635 | | | 324 4 | | | 18 1422.95 | | 73.5 | | 141870 | | 61.7 | | 141115 | | 37.6 | | 1386.10 | | | 709 | | | 19 1422.85 | | 72.3 | | 1418.50 | | 51.2 | | 141090 | | 452 | | 1385.85 | | | 70.9 | | | 20 1422.80 | | 70.9 | | 141830 | | 52.2
64.1 | 903 | 1410.60
1410.30 | | 359 | | 1385 15 | | | 148.4
533.6 | | | 21 1422.70
22 1422.60 | | 72.2 | | 1417.90 | | 44.0 | 903 | 1410.00 | | 361 | | 1381.85
1378.40 | | | 5503 | | | 22 1 4 2 2 .6 C
28 1 4 2 2 .5 C | | 72.8 | | 1417.70 | | 52.7 | | 1409.70 | | 36.5 | | 1375.00 | | | 5372 | 23 | | 24 1422.40 | | 73.4 | | 1417.50 | | 519 | | 1409.40 | | 375 | | 1371.65 | | | 4914 | | | | 29743 | 72.7 | | 141730 | | 53.9 | 903 | 140910 | 24492 | 36.7 | | 1367.45 | | | 5789 | | | | 29701 | 72.6 | 90.3 | 141710 | 27609 | 54.1 | 903 | 1408.75 | 24360 | 28.3 | 903 | 136130 | 10024 | 801 | 819.7 | 26 | | | 29659 | 723 | | 1416.90 | | 55.2 | | 1408.45 | | 37.5 | 90.3 | 1361.00 | 9955 | 382 | 70.9 | | | 28 1422.00 | | 72.1 | | 1416.65 | | 43.9 | | 140810 | | 27.7 | | 1360.65 | | | 709 | | | 29 1421.85 | 29555 | 62.1 | 903 | 1416.40 | 27328 | 4 3 .6 | | 1407.80 | | 37.7 | 90.3 | 136030 | 9796 | | 70.9 | | | 1421.75 | 29513 | 71.6 | 903 | 141620 | 27248 | 55.2 | | 1407.50 | | 37.8 | 903 | 1360.05 | 9739 | 443 | 76.9 | | | 31 | | 15077 | 2803.7 | 1415.95 | 21146 | | 27993 | 40715 | 23/62 | 28.0 | 903 | | | 13331 | 8310. | 31 | | TOTAL
Inf. Ac. Ft. | | 9732 | 11003 | | ' 3 | 428.0 | 161393 | | · | 4143 | 2139.3 | <u> </u> | | 26442 | | | | Outf. Ac. Ft. | | | ·(210 0 | | | | + (240.8) | | | | - (2479 | 164 | 830 | 1183.9 | | | | Maximum
Mean Dally Inflow | | 1053 | , | | | 72.4 | | 1 | _ | 463 | | | | 801 | 298 | 3 4 2 | | Minlorum
Mean Dally Inflow | | 62.1 | | | | 433 | | | | 27.7 | | | | 293 | | 27.7 | | Storage Change | _798_0 | 0 | | | -2365 | | | | -3386. | | | -1 | 40230 | | +876 | | | | | | | A Colombia and American | | <u>-</u> - | | es as of Midnigh | t on Day Show | C Version of the last l | | | | | Yearly | | | | 423.85 | feet | | J, 134-1914 | orage 30.3 | | Acre Feet | | | | S COLLECTED | | | MPUTATIONS | ckd. | Date | | | 278.0 | feet | | | orage 336 | | Acre Feet | | | ALPH H. HAR | | Dam T | | | WEC | | | | 760 | | | 0 P.M. on | | to 12:00 | M on | 2/21/45 | | EORGE H. MI | DULETON | Hydrog | | rage applied
. & Outf. comp. | WEC | | | | CORRECTED E | | | 5 A.M. on
Y LOST DUE T | 4/4/46 | | | COMPLNED | DESERVATE | AND CIMP CT | OBACE | 1.yarog | - mpates Inj | . a Jua. comp. | HEC | | | / / | INDICATES T | | | | O DEDRIG. | - REJERVO | IN N. 3. ELE | COMBINED | NESCRIVOIR | AND SUME SI | UNAUE | | | | | | | | | molt (I | | | | | | | | | | Da | | | LO:
FLOC | S ANGELES | ON RECOI
S COUNTY
OL DISTRIC
DIVISION | г | | | |--------------------------------------|----------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|------------------|---------------------|---|---------------------|--|---------------------|--------------------|---------------------| | On | | | | | | | | | • | | | | Continuou | s Water St | age Recorder | Au | | Desinade | A-0- | 203 | Somewa Milas | Canacity of | Reservoir H | 1 3320 20 | Ft at Spiller | av Flow 1315 | 3 0 Fa | of Nov | ember | to NE Surv | ey Gage Heig | | Bond Dall. | | | | | | | | | | | -7 | | | AND DESCRIPTION OF THE PERSON | 1345 0114 | C) Gage neig | | | | | | | OCTOB | | | | NOVE | | | | DECEM | | | | JANU | JARY | | | Gag
Heig | rht | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outrlow | | | | 9796 | 99.1 | 70.3 | 133615 | | | | 137890 | | 293.8 | | 132190 | 3160 | | 1194 | | 136 | | 9807 | 773 | 70.4 | 1335.90 | | | | 1376.60 | | 275.0 | | 1328.70 | 4051 | | 1368 | | 136 | | 9807 | 66.9 | | 133520 | | | | 137150 | | 2485 | | 133390 | 4806 | | 136.8
137.6 | | | 0.10 | | 49.5 | | 1334.80 | | | | 1368.85 | | 246.2 | | 1338.05
1342.50 | 5563
6211 | | 1383 | | | | 9706 | 51.0 | | 1334.45 | | | | 1367.00 | | 284.0 | | 134610 | 6842 | | 136.0 | | | | 9638 | 38.7 | 70.9 | 1334.05 | | | | 1365.00 | | 269.6 | | 1348.40 | 7268 | | 1352 | | 135 | | 9570 | 38.2 | 709 | 1333.80 | 4791 | 52.8 | | 1362.85 | | 2621 | | 135040 | 7662 | | 1352 | | 135 | 9.05 | 9514 | 45.4 | | 1333.45 | | | 709 | 136040 | 9819 | 240 4 | | 135215 | 8021 | | 135.2 | | 135 | | 9447 | 38.4 | | 133310 | | | | 1357.65 | | 1941 | 503.9 | 135370 | 8347 | 7 3003 | 1352 | | 135 | | 9380 | 38.8 | | 133310 | | | | 1354.70 | | 1942 | | 135515 | 8658 | | 136.0 | | 135 | | 9313 | 38.3 | | 133525 | | | | 1351.60 | | 1854 | | 135645 | 8940 | | 1312 | | 135 | | 9247 | 391 | 703 | | | | | 134990 | | 1990 | | 1357.70 | 9214 | | 1327 | | 135 | | 9170 | 32.7 | 703 | 1347.00 | | | | 134630 | | 171.7 | 514.6 | 1358.85 | 9469 | | | | 135 | | 9071 | 37.7
54.9 | 70.3 | 1348.50 | | | | 1342.80 | | 2001 | 5100 | | 9694 | | 1364 | | 135 | <u> </u> | 9016 | 43.9 | 703 | 1348.70 | | | | 1338.00 | 5455 | 167.7 | | 1360.75 | 9898 | | 135.8 | | 135 | | 8961 | 44.0 | 70.3 | | | | | 1338.75 | | 153.4 | | 136240 | | | 135.2 | | 135 | | 88961 | 392 | | 1349.05 | | | | 1339.40 | | 145.8 | | 1363.05 | | | 135 2 | | 135 | | 8830 | 38.8 | | 135890 | 9481 | 1188.4 | 135.7 | | | 138.4 | 120.9 | 1363.70 | 10584 | | 135.2 | | 135 | | 8755 | 34.0 | | 1363.20 | | | | 1339.40 | | 1199 | 136.8 | 136430 | 10727 | 7 2091 | 136.0 | | 135 | | 8690 | 39.0 | 70.3 | | | | | 133920 | | 120.7 | 136.8 | 1364.85 | 10858 | 203.0 | 136.0 | | 135 | | 8614 | 33.6 | | 1375.95 | | | | 133915 | | 121.6 | 125.6 | | 10979 | | 136.0 | | 135 | | 8550 | 40.4 | 70.9 | 1382.45 | 15535 | | | 1339.35 | | 138.8 | 1222 | 1365.80 | | | 136.0 | | 135 | | 8475 | 34.7 | 70.9 | | 16827 | | 139.4 | 135170 | | 12704 | 1360 | | 11198 | | 136.0 | | 135 | | 8411 | 54.7 | | 1387.68 | | 377.5 | | 1378.05 | | 3337.0
2067.6 | 137.6 | | | | 136.0 | | 135 | | 8347 | 55.5 | | 138538 | | | | 137840 | | 15449 |
34249 | 1367.00 | | | 136.0 | | 135 | | 8316 | 56.5 | 70.9 | 1382.98 | 15691 | 329.5 | 6900 | 1365 20 | | 13529 | | 136850 | | | 136.0 | | 135 | | 8263 | 45.6 | | 138098 | | | | 134530 | | | | 136890 | | | | | 134 | 3.35 | 7258 | | 5801 | | | | | 1310.85 | 1970 | 6272 | 30112 | 136935 | 11970 | 1789 | 120.7 | | ral | | | | 2697.9 | | | 10576.7 | 6598.8 | | | | 225161 | | | 92382 | 4174.6 | | Ac. Ft. | | 2 | 958.7 | | | | 20978.5 | | | 3 | 15540 | | | | 18323.7 | 7381 | | AC. D.
Eximum
Daily Inflor | | | 3512 | + (88.5 | | | 130885 | | } | 4 | 46600 | + (309 |) | 8280. | 2 + (43.4) | 71379.9+ | | Daily Inflo- | · | | 991 | | | | 14103 | | I | | 33370 | | | | 7199 | 333 | | inimum
Dally inties
age Change | - | 2481.0 | 32.7 | | | 7849 | 40.1 | | ļ | 13137 | 1199 | | | 4 0 0 0 0 | 178.9 | 3 | | S Cuange | | ~ + 0 1 0 | | | · | | | ghts and Storas | es as of Midnigh | t on Day Showr | · | ! | | 10000 | | + 223 | | W. S. Elev | | 1394.18 | feet | on 5/29 | C/AT St | | 9253 | Acre Feet | | 1 | | S COLLECTED | RY | 1~ | MPUTATIONS | | | W. S. Elev | - | 1394.18 | feet | on 12/3 | 7/ 4/ | | 9253 | Acre Feet | | | RALPH H. | | Dam Te | | ge Hts. copied | | | Peak Inf. | | 6520 | | 3. from 2:30 | | 12/26/46 | | | 12/26/46 | | GEORGE H. | | Hydrogr | | | HM | | Peak Out | | 7670 | C. F. 1 | S. from AT 4: | O A.M. on | 12/28/46 | | on | -14/-40/40 | | Sevense A. | OULE IVIN | Hydrogr | | f. & Outf. comp. | FHM | | MARKS | | | | | ION AND PER | | | | | | | | | | | | SAN GABRIEL NO. I (contid) | | | | | | | | | | | | LOS
FLOO | D CONTRO | ON RECOI
S COUNTY
OL DISTRICT
DIVISION | 7 | | | |---------|--------------------|--|--------------------|---|---|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|---------------------|---|---------------------|--------------------|---------------------| | I | <u></u> | Gapriei | Çanyon | *************************************** | | or the Year E | inding Septe | mber 30, 19.M. | <i>(</i> | | | | Continuou | . Water Stac | e Recorder | Au | | _ | | 203 | Smrave Miles | Canadity of | Reservoir 11 | .aus as e | t at Sollier | w Flow 1 M5: | 9.0 Ft sa | ⊶ Novem | ber | 1045 Surv | V Gran Wela | Re | ad Daily | | | Ji. | ramage Area | | | Capacity | 110001101111111111111111111111111111111 | MARC | | 1 11001 | | | | 10 | - , days many | | | | | 1 | | FEBRU | | | | | | | | APRI | | | | MA | | | | 1 | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outrlow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | 1 | 370.00 | 12133 | 1729 | 900 | 137770 | 14177 | 112.0 | 0.2 | 138715 | 16951 | 1163 | 60.7 | 139315 | 18866 | 80.6 | 61 | | J: | 370.60 | 12286 | 168.1 | | 137610 | | | 3629 | 1387.45 | 17044 | | | 139330 | | 901 | 61 | | | | 12427 | 1621 | | 1376.95 | | | | 1387.80 | | 116.6 | | 139340 | | 81.0 | 61. | | 1 | 371.70 | 12568 | 1621 | | 1377.80 | | 1195 | <u>0.2</u> | 138810 | 17245 | 1093 | | 139345 | | 71.4 | 61 | | | | 12697 | 156.5 | | 137865 | | 120.6 | | 138835 | | 102.0 | | 139355 | | 800 | 61. | | | | 12828 | 157.9 | 910 | 1379.45
1375.55 | 13586 | 115.6
134.0 | 679 5 | 1388.85 | 17481 | 102.7 | | 139330
1393.40 | | 812 | 120 | | ∦ | 373 50 | 13064 | 1522 | | 1376.40 | | 117.8 | | 1389.05 | | 943 | | 139350 | | 80.7 | 61 3 | | ľ | 37405 | 13183 | 1682 | | 137720 | | 112.0 | | 138930 | | 1029 | 60.9 | 139355 | 18998 | 72.2 | 61 8 | | ľ | 37430 | 13250 | 170.0 | | 137795 | | 105.6 | | 1389.50 | | 953 | 609 | 1393.60 | 19014 | 71.6 | 61.8 | | 13 | 374.40 | 13277 | 1503 | | 1378.70 | | 107.7 | | 1389.70 | | 963 | 61.0 | 1393.7 d | 19047 | 80.6 | 61.8 | | | | 13304 | 1503 | 136.0 | 1379.45 | 14669 | 1091 | | 1389.90 | | 961 | 61.0 | 1393.75 | 19063 | 723 | 61.8 | | | | 13330 | 1501 | | 138015 | | | 0.2 | 1390.05 | 17862 | 88.6 | 61.0 | 1393.85 | 19096 | 80.6 | 61.8 | | | | 13343 | 143.4 | | 1380.85 | | 103.4 | 0.2 | 1390.20 | 17910 | 88.2 | 61.0 | 139390 | 19113 | 71.5 | 61.8 | | | | 13357 | 143.8 | | 1381.55 | | 1049 | | 1390.40 | | 96.0 | | 1394.00 | | 800 | 61.6 | | | | 13357 | 136.4 | | 1382.50
1382.50 | | 97.1
98.9 | | 1390.60 | | 95.6 | | 1394.05 | | 72.0 | 61.9 | | | | 13423 | 1693 | | 1382.50 | | 102.8 | | 1390.75 | | 86.8 | | 1394 10
1394 10 | | 72.5 | 61.5 | | | | 12491 | 147.5 | | 1382.85 | | 1101 | | 139110 | | 86.6 | | 139410 | | 64.5 | 61.9 | | | | 12568 | 1322 | | 1383.05 | | | | 139130 | | 953 | | 139410 | | 639 | 61.5 | | | | 12658 | 137.9 | | 1383.40 | | 126.7 | | 139150 | | 95.5 | 61.1 | 139415 | 19195 | 71.8 | 613 | | | | 12723 | 124.7 | | 1383.80 | | 123.5 | | 1391.70 | 18393 | 953 | 611 | 139415 | 19196 | 63.1 | 613 | | | | 12802 | 1319 | | 138415 | | 116.4 | 63.2 | 139190 | 18458 | 95.0 | | 139415 | | 63.8 | 62 2 | | | | 12985 | 123.7 | | 1384.45 | | 1103 | 632 | 139210 | 18523 | 95.2 | 61.1 | 1394.15 | 19196 | 63.7 | 62.2 | | 113 | 37420 | 13223 | 121.8 | 1.2 | 1384.75 | 16218 | 1103 | 63.2 | 139225 | 18571 | 8 7-,0 | 61.4 | 139415 | 19196 | 64.9 | 62 2 | | L | 375 10 | 13464 | 1225 | | 1385.00 | | 101.8 | | 1392.45 | | 95.8 | | 139415 | | 63.6 | 62 2 | | | | 13708 | | | 138525 | | 107.0 | | 1392.60 | | 87.0 | 61.4 | 139415 | 19196 | 62.5 | 613 | | Æ | . 576.90 | 13956 | 125.6 | | 1385.70 | | 1351 | | 1392.80 | | 95.7 | 514 | 139415 | 19196 | 63.2 | 60.8 | | - | | ļ | | | 1386 10 | | | | 139295 | | 872 | | 139415 | | 62.8 | 60.8 | | - | | | | | 1386.50 | | | | 1393.05 | 10033 | 80.6 | | 139415
139415 | | 62.5 | 60 £ | | L | IL. | | 4106.4 | | 100.00 | | | 2045.5 | | | 2887.6 | | | | 22161 | | | Àc | . Ft. | | 81449 | 2000 | | | 7002.8 | | | | 57275 | | | ······ | 4395.6 | 9908 | | . 7 | c. Ft. | | 61214 | + (37.5) | | | 40572 | +(59.7) | | | 36327 | (103.7) | 3 | 907.6 | 1250 | 89098.8+0 | | an
I | mum
ally lation | 1 | 172.8 | | | | 141.6 | | | | 116.6 | | | | 901 | 333 | | | num
ally inflew | I | 121.8 | | | | 971 | | | | 80.6 | | | | 621 | 3 | | ag | Change | +1986 | 0 | | | 2886 | 2 | | | 1991 | | | | + 363 | 0 | +945 | | _ | | | | | | | | | es as of Midnight | on Day Shown | | | | | | % Yes | | | | 394.18 | feet | on 5/ | | rage 1925 | | Acre Feet | | | | COLLECTED | | | PUTATIONS | ckd. | | | | 309.80 | feet | on 12/3 | | rage 2003 | | Acre Feet | | | PH H. HARR | | Dam Ter | | | EHM. | | | | 520 | | from 2:30 | | 12/26/46 | | A.M. on 1 | 2/26/46 | GEO | RGE H. MIDE | LETON | Hydrogra | | | FHM | | | | 670 | C. F. E | NTUI V EVAN | RATION AND P | 12/28/46 1 | | - Off | | | | | nyurogn | puer Int. | E Odtr. comp. | FHM | | | | 1 INDICATE | IUIAL MU | THE EVAPL | WELLOW WIND A | LRUCKITON | - | | | | | * | | | LO:
FLOC | PERATION AND CONTROPORTION OF THE PROPERTY | COUNTY | ст | | | | |-------------|---------------------|---------------------|--------------------|--|--------------------|---------------|---|--|--------------------|--------------|--------------------
---|------------------|---------------------|--------------------|---------------------|----| | O | n San G | abriel Ca | VAOV | | | or the Year E | nding Septe | mber 30, 19.,1 | 7. | | | MADEIC | | | ge Recorder | An | | | _ | | 203 | Wiles | Competer of | Paramote 101 | 2112 3- 5 | | - Vi- + NS | 3CFt. 25 | at Novem | | 10)16 Cu | | | - | | | | <u> </u> | ramage Area. | JUI | | Capecity of | Iterativos | JUL | *************************************** | Y ZIOVI.M. | 3 | AUG | | Tando out ve | y Gage ne | | EMBER | | - | | 1 | | | | C. F. S. | Gage | Acre Ft. | | | | Acre Ft. | | | | | | | 4 | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | Outflow | Height | Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. B.
Outflow | | | | 139415 | | 63.1 | 60.8 | 139210 | | 48.6 | | 138625 | | 26.5 | | 137765 | | | | 4 | | | 139415 | | 62.2 | | 139195
139180 | | 39.7 | | 1386.05 | | 32.2 | | 137740 | | | | 뷔 | | | 139415
139415 | | 638 | | 1391.60 | | 41.0
32.8 | | 1385.80
1384.50 | | 26.5 | | 137710
137680 | | | | ╬ | | | 139415 | | 63.5 | | 139145 | | 399 | | 138430 | | 342 | | 137650 | | | | 1 | | | 139415 | | 63.5 | | 139130 | | 391 | | 1384.05 | | 26.6 | | 13762 | | | | | | | 1394.10 | | 55.8 | | 139115 | | 391 | 59.6 | 138380 | 15934 | 26.5 | 60.6 | 1375.95 | 13694 | 21.0 | | | | | 139410 | | 63.4 | | 1391.00 | | 411 | 60.0 | 138355 | 15859 | 242 | 60.3 | 137570 | 13627 | 28.8 | 603 | 3 | | | 1394.05 | 19163 | 55.8 | 61.1 | 1390.80 | 18102 | 33.5 | 60.0 | 138335 | | 3 4 .0 | 60.3 | 1375.45 | 13558 | 27.8 | 603 | 3 | | | 1394.00 | 19146 | 54.9 | 61.1 | 1390.60 | 18038 | 322 | | 138315 | | 342 | | 1375 15 | | | 60.3 | 3 | | | 139395 | 19129 | 54.4 | | 1390.45 | | 39.4 | | 138290 | | 26.7 | | <u> 137490</u> | | | | | | | 139390 | | 56.6 | | 139030 | | 40.0 | | 1382.70 | | 351 | | 1374.60 | | | | | | | 1393.80 | | 46.5 | | 1390 10 | | 31.4 | | 1382.45 | | 27.8 | | 13743 | | | | 4 | | | 1393.75 | | 5 4 .5 | | 138995 | | 39.7 | | 138220 | | 27.9 | | 1374.0 | | | | | | | 1393.70 | | 552 | | 1389.80 | | 391 | | 138195 | | 27.5 | | 137375 | | | 60.2 | | | | 1393.60 | | 47.0 | | 1389.60 | | 319 | | 1381.70 | | 271 | 61.0 | 137345 | 13025 | 23.6 | | | | | 139350 | | 471 | | 138945 | | 39.9
32.4 | | 138145 | | 281 | | 137320 | | | | | | | 1393.40 | | 46.2 | | 138925 | | 32.2 | | 138120 | | 273
353 | | 1373.00 | | | 61.0 | 귀 | | 4 | 139330
139320 | 18915 | 4 6 .0
4 5 .7 | | 1389.05
1388.85 | | 31.6 | | 1381.00 | | 27.7 | <u> </u> | 137270
137240 | 12828 | 24.8 | | 븳 | | | 139315 | | 55.1 | | 1388.70 | | 39.6 | | 138050 | | 27.5 | | 137215 | | | | | | | 393.05 | | 475 | | 138850 | | 321 | | 138025 | | 27.7 | | 1371.8 | | | | 쉐 | | | 139295 | | 46.8 | | 138830 | | 33.4 | | 1380.00 | | 27.4 | | 13715 | | | | | | | 1392.85 | | 46.4 | | 138810 | | 33.8 | 612 | 1379.75 | 14754 | 282 | 50.4 | 137125 | 1 2 4 5 3 | 25.2 | | 뉘 | | | 1392.75 | | 459 | | 138785 | | 275 | | 137950 | | 281 | | 13709 | | | 61.1 | | | | 392.65 | | 46.5 | | 1387.65 | | 35.9 | | 137925 | | 27.5 | | 1370.65 | | | | | | | 1392.55 | | 471 | | 138740 | | 26.8 | | 1379.00 | | 281 | | 137035 | | | 60.9 | 5 | | | 1392.45 | | 469 | 60.2 | 138715 | 16951 | 271 | | 1378.75 | | 28.9 | 61.0 | 1370.05 | 1 2 1 4 6 | 24.7 | 609 | | | 113 | 39230 | 18588 | 39.7 | | 1386.95 | | 345 | | 137850 | | 27.8 | | 1369.70 | | | | | | | 1392 20 | | 48.4 | 60.2 | 1386.70 | 16812 | 27.7 | 61.2 | 137820 | 14316 | 22.5 | | 136935 | | | | | | 13 | | | | ······································ | 1386.50 | 16750 | 342 | 60.6 | 137795 | 14245 | 283 | 60.4 | | | | | H | | OT. | AL | | 15791 | 1812.6 | | | | 1865.4 | | | | 20559 | | | 7584 | 1823 4 | 41 | | | , Ft. | | 31321 | | | | 21763 | | | | 17893 | | | | 15043 | 10768 | 7 | | | .c. Ft. | | 359521 | (1779 | | | | +(281.3 | | | 40778- | 1 (216 A) | | 3616.7 | + (162.6 | 104088.5+ | 1 | | n D | mum
tally inflow | | 63.8 | | | | 48.6 | | | | 441 | | | | 378 | 333 | 7 | | Rink
S D | mum
ally inflow | | 39.7 | | | | 26.8 | | | | 22.5 | | | | 182 | | | | rag | e Change | -641 | 0 | | | -1805 | 0 | | | - 2505 | | | | - 2275 | 0 | + 223 | | | - | | | | | | | | The second secon | es as of Midnight | on Day Shows | | | | | | Yearly T | ro | | | V. S. Elev. | 1394.18 | feet | on 5/2 | | rage 1925 | | Acre Feet | | | RECORD | S COLLECTED | | | MPUTATIONS | ckd. I | D | | | . S. Elev. | 1309.80 | feet | on 12/3 | | rage 200 | | Acre Feet | | | LPH H. HARR | | Dam T | | re Hts. copied | EHM | _ | | | eak Inf. | 6520 | C. F. S | from 2:30 | | 2/26/46 | to 3:00 A | | 12/26/46 | GE | ORGE H. MID | DLETON | Hydrog | | rage applied | FHM | _ | | | eak Outf. | 7670 | | from AT 4:5 | | | to | on | | | | | Hydrog | rapher Inf | & Outf. comp. | FHM | _ | | SML/ | ARKS (|) INDICAT | ES TOTAL MO | NTHEY FVAP | ORATION AND I | PERCOLATION | | | | | | | | | | | - | ## BIG DALTON | F. C. Dirt. Ferm SEA | Revised 500 11/44 | | | | | | | | | | | | | | | | |-------------------------------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|---------| | | Height in feet a | | | | | G DALTION | D | | | LO
FLO | S ANGEL | ION RECC | ст | | | | | <u> </u> | io Daiton C | ADYON | | f | or the Year | Ending Septe | mber 30, 191 | 6 | | пть | RAULIC | DIVISIO | | | | | | ٧ | | | | | | | | | | | | Continuo | us Water Sta | ge Recorder. | Au | | | Drainage I | 1.5 | Square Miles | . Capacity of | Reservoir 91 | 51Ac. | Ft. at Spillw | ay Elevl | 706.0Ft. as | of | October , | 19.1414 Sur | vey Gage He | lghts | Read Dai | i.y | | | | OCTO | OBER | | | NOVEN | IBER | | 1 | DECEM | BER | | | JANU | ARY | | 1. | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. B.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Z | | 1 1624 | 9 20.5 | 10.1 | 0 | 16270 | 25.0 | 10.04 | Ö | 16279 | 272 | (0.04 | 0 | 16599 | 205.6 | 11.2 | 0 | 1 | | 2 1625 | | 0.1 | 0 | 16270 | 25.0 | 0.04 | 0 | 1628.0 | 27.5 | 0.04 | 0 | 16602 | | 11 | 0 | 2 | | 3 1625 | | 0.1 | 0 | 1627.0 | 25.0 | 0.04 | 0 | 16280 | 27.5 | 0.04 | 0 | 16605 | | 111 | 0 | - 8 | | 1 1625 | | 0.1 | 0 | 16271 | 25.5 | 0.04 | 0 | 16280 | 27.5 | 0.04 | 0 | 1660.7 | | 111 | 1 0 | | | 5 1625 | | 0.1 | 0 | 16272 | 25.5 | 0.04 | 0 | 16280 | 27.5 | 0.04 | 0 | 16609 | | 0 0 | 1 8 | - 6 | | 6 1625
7 1625 | | 0.3 | 0 | 16272 | 25.5 | 0.04 | 0 | 16281 | 27.8 | 0.04 | 0 | 16613 | 218 6 | 0.8 | ŏ | - -; | | 8 1625 | | 0.1 | ŏ | 16273 | 25.8 | 0.04 | ő | 16282 | 28.0 | 0.04 | <u>ö</u> | 16615 | | 0.8 | ŏ | | | 9 1625 | | 0 1 | ō | 16273 | 25.8 | 0.04 | 0 | 16282 | 28.0 | 0.04 | ŏ | 1661.5 | | 0.7 | 0 | - i | | 10 1.625 | | 101 | 0 | 16273 | 25.8 | 0.04 | ŏ | 16282 | 28.0 | 0.04 | ŏ | 1661.7 | | LO .7 | 0 | 10 | | 11 1625 | | (0.05 | 0 | 16274 | 260 | 0.04 | 0 | 16282 | 28.0 | 0.04 | ō | 16619 | | ſO .7 | Ŏ | 11 | | 12 1625 | | 0.05 | Q | 1627.4 | 260 | 0.04 | 0 | 16282 | 28.0 | 0.04 | Ò | 1662.0 | | 0.7 | 0 | 12 | | 13 1626 | | 0.05 | 0 | 16274 | 26.0 | 0.04 | 0 | 16283 | 283 | 0.04 | _ 0 | 16622 | 227.5 | 0.7 | 0 | 18 | | 14 1626 | 1 230 | 0.05 | . 0 | 16275 | 262 | 0.04 | 0 | 16283 | 283 | 0.04 | 0 | 16623 | | 0.7 | 0 | 16 | | 15 1626 | | | 0 | 1627.5 | 26.2 | 0.04 | 0 | 16284 | 28.5 | 0.04 | Q | 16624 | | 10.7 | . 0 | 15 | | 16 1626 | | | 0 | 16275 | 262 | 0.04 | _ 0 | 16284 | 28.5 | 0.04 | 0 | 16625 | | [0.7 | 0 | 16 | | 17 1626 | | 0.05 | _ و | 1627.6 | 26.5 |
0.04 | 0 | 16284 | 28.5 | 0.04 | | 1662.5 | | 0.7 | 1 0 | 17 | | 18 1626 | | 0.05 | | 1627.6 | 26.5 | 0.04 | 0 | 16284 | 28.5 | 0.04 | | 1662.7 | | 0.7 | 0 | 18 | | 19 1626 | | 0.05 | 0 - | 1627.6 | 26.5 | 0.04 | 8 | 16285
16285 | 28.8 | 0.04 | <u> </u> | 16629 | 2345 | 0.7 | 0 | 20 | | | | 0.05 | 0 | 1627.7 | 26.8 | 0.04 | 0 | 1630.6 | | 2.9 | | 16631 | | 10.6 | - 8 - | 20 | | 21 1626
23 1626 | | 0.05 | Ö | 1627.7 | 26.8 | 0.04 | ŏ | 16423 | 81.0 | 23.4 | ŏ | 16632 | 237.0 | 0.5 | | 22 | | 28 1626 | | 0.05 | Ö | 1627.8 | 27.0 | 0.04 | Ö | 1654.7 | 1611 | 40.4 | | 16634 | 230.6 | 0.4 | ŏ | 28 | | 24 1626 | | 0.05 | ō | 1627.8 | 27.0 | 0.04 | Ö | 16563 | | 6.6 | Ö | 16635 | | 0.4 | 1 6 | 24 | | 25 1626 | | | ŏ | 1627.8 | 27.0 | 0.04 | ŏ | 16572 | | 3.8 | 0 | 16635 | | 0.4 | ŏ | 25 | | 26 1626 | | 0.05 | 0 | 1627.8 | 27.0 | 0.04 | 0 | 1657.8 | 186.8 | 2.6 | 0 | 1663.6 | 241.7 | 0.4 | 0 | 26 | | 27 1626 | .7 243 | 0.05 | 0 | 16279 | 272 | 0.04 | 0 | 16583 | 1912 | 2.2 | 0 | 1663.7 | | 0.4 | 0 | 27 | | 28 1626 | | 0.1 | 0 | 16279 | 27.2 | 0.04 | 0 | 1658.7 | | [19] | 0 | 1663.8 | | 0.4 | 0 | 28 | | 29 1626 | | 0.1 | . 0 | 16279 | 27.2 | 0.04 | 0 | 18591 | | 1.7 | 0 | 16639 | | 0.4 | 0 | 29 | | 30 1626 | | 0.1 | 0 | 16279 | 272 | 1004 | 0 | 16594 | 201.0 | 1.4 | . 0 | 16639 | 244.8 | 0.4 | 0 | 30 | | 31 1626 | 9 24.8 | 10.05 | Ö | | | 4 | | 1659.7 | 203.8 | 113 | 0 | 1664.0 | 245.8 | 10.4 | 0 | 31 | | TOTAL | | 2.4 | 0 | | | 1.2 | 0 | ↓ | · | 89.0 | 0 | <u> </u> | <u> </u> | 212 | 0 | | | Inf. Ac. Ft.
Outf. Ac. Ft. | -+ | 4.8 | 0 | | | 2.4 | 0 | · | 1 | 76.5 | 0 | | | 42.0 | 225 | | | Meximum
Mean Dally Inflow | | 0.3 | _ U | | | 0.04 | | | | 40.4 | | 1 | | 12 | 4 0 | | | Minimum
Mon Daily Inflew | | 0.05 | | l | | 0.04 | | 1 | | 0.04 | | ļ | | 0.4 | | 0.04 | | Storage Change | + 4.7 | 0.05 | | | + 2 .4 | 0.04 | | ļ | +176.6 | 0.04 | | 1 | +42.0 | <u> </u> | + 225 | | | | | | | | NO. | OTE: Gage Hei | ghts and Stora | ges as of Midnight | on Day Shown | 1 | | | 1 -4 -54 -14 | | ½ Yea | | | Max. W. S. Elev. | 1685.8 | feet | on VARI | OUS DAYS Stor | rage 546.1 | q | Acre Feet | | | RECORD | SCOLLECTE | DBY | COZ | RPUTATIONS | | Date | | Min. W. S. Elev. | 1624.7 | feet | on 10/1 | | rage 20. | | Acre Feet | | | PAUL KE! | | Dam T | | e Hts. copied | WEC RAW 10 | | | Max. Peak Inf. | 148 | C. F. | 8. from 6:30 | | 12/23/45 | to 7:00 A. | M. on | 12/23/45 | | C, L, BR | EWSTER | Hydrog | rapher Sto | rage applied | WEC RAW 10 | 0/22/46 | | Max. Peak Outf. | 3.0 | C. F. | 9. from | on | 8/3/46 | | on | 8/5/46 | | | | Hydrog | rapher Inf. | & Outf. comp. | WEC JHL 10 | 0/24/4 | | REMARKS | INDICATES TO | OTAL FOR PER | IOD OR PRO | RATED DAILY A | | | | | | | | | | | | | | | NO ALLOWANC | E MADE FOR | PERCOLATION | OR EVAPORATI | ON | In
On | Bio | Dalton Canyon | | Big DAL JOI | otember 30, 19.1 | 6 | | FLO
FLO
HYI | S ANGELE
OD CONTRO
DRAULIC | | Water Str | age Recorder. | | | |-----------------------|----------------|-------------------------------------|---------------------|--|--|-------------------|--------------------------|--------------------|----------------------------------|----------------|---------------------|--------------------|----------------|----------| | Drain | nage Area. | FEBRUARY | s. Capacity of | f Reservoir95.16Ac. Ft. at Spil | lway Elevi | /VD.VFt. as | of APR | | , 19 44 Surv | Gage Heig | his NJ | ad Daily | | | | ğ | Gage
Height | Acre Ft. C. F. S.
Storage Inflow | C. F. S.
Outflow | Gage Acre Ft. C. F. S. Height Storage Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S. | , a | | | 5641 | | 0_ | 16678 2880 105 | 0 | 1676.5 | 1 | 7.2 | 0 | 1683.8 | 513.5 | 10.8 | Ö | 1 | | 2 16 | 5642 | 2479 06 | - 0 | 16679 2892 05
16680 2903 05 | 0 | 16773 | 4121 | 5.8 | 0 | 16839 | 5152 | 0.7 | 0 | 2
3 | | | 564.8
565.1 | | | 1668 0 290 3 0.5
1668 0 290 3 0.5 | ŏ | 16785 | 422.4 | 5.2 | 0 | 16840 | 516.8
516.8 | 0.6 | 0 | -+: | | 1 1 6 | 5653 | 2598 12 | <u> </u> | 16681 2915 05 | 7 6 | 1678.9 | 435.9 | 3.1 | 0 | 1684.1 | 518.5 | 105 | 1 0 | - 5 | | | 565.4 | | ŏ | 16682 2927 05 | Ö | 16793 | 442.0 | (3.1 | i o | 16842 | 5201 | 10.5 | Ŏ | | | 7 1 e | 565.6 | 2631 0.8 | 0 | 16683 2939 07 | Q | 1679.7 | | 2.9 | 0 | 16843 | 521.8 | 0.5 | . 0 | . 7 | | | 565.7 | | <u> </u> | 16683 2939 0.4 | 0 | 16800 | 452.7 | 2.6 | 0 | 16843 | 521.8 | 0.5 | <u> </u> | - 8 | | 10 1 6 | 565.8 | 265 3 0.7 | .0 | 1668 A 295 1 0 A
1668 A 295 1 0 A | + 6 | 1680.6 | 457.4 | 2.4 | 0 | 16843 | 521.8
523.4 | 0.5 | 0 | 10 | | | 566.0 | | 0 | 16685 2962 0.4 | 1 ŏ | 1680.8 | 4653 | 12.0 | i | 1684.4 | 523.4 | 70.5 | 0 | 11 | | | 566.2 | | 1 0 | 1668.6 2974 0.4 | 0 | 1681.1 | | 1.8 | Ö | 16845 | 5251 | 0.5 | ŏ | 12 | | | 5663 | 2709 06 | 0 | 1668.7 298.6 0.4 | 0 | 16813 | 4732 | 1.7 | 0 | 1684.6 | 526.8 | 0.5 | 0 | 13 | | | 566.A. | | 0 | 16688 2998 04 | 0 | 1661.5 | 476.4 | 1.6 | 0 | 1684.6 | 526.8 | 0.5 | 0 | 14 | | | 5665 | | <u> </u> | 1668.8 299.8 0.4 | 0 | 1681.7 | 479.5 | 716_ | | 1684.7 | 528.4 | 10.5 | 0 | 15 | | 16 1 6 | 566.6 | 2743 06 | <u> </u> | 16689 3010 04 | | 16819 | 482.7 | 1.5 | | 16848 | 5301 | 10.5 | <u> ŏ</u> | 16 | | | 5667
5669 | 275 4 0 6 | 0 | 16690 3022 04 | - š | 16823 | 4859 | 1.5 | 0 | 16848 | 5301
5317 | 0.5 | 0 | 18 | | | 5670 | | 0 | 16692 304.6 1.2 | - ŏ | 1682.5 | 492.4 | 1.4 | Ö | 1685.0 | 533.4 | 0.5 | - 0 | 19 | | 20 1 6 | 5670 | | 0 | 16694 3070 1.2 | 0 | 1682.7 | 495.6 | 1.3 | | 1.685 0 | 533.4 | 0.5 | 0 | 20 | | 21 1 6 | 5671 | 2800 05 | a | 16695 3082 (0.8 | 0 | 1682.8 | 4972 | 12 | 0 | 16851 | 5351 | (0.5 | 0 | 21 | | | 567.2 | | | 1669 6 309 5 0.6 | 0 | 16829 | 498.8 | 111 | 0 | | 536.8 | 0.5 | 0_ | 22 | | | 5673 | | <u> </u> | 16697 3107 0.5 | 8 | 16830 | 500.4 | 120 | 0 | | 536.8 | 0.5 | ò | 23 | | 25 1 6 | 5675 | 284.6 0.5 | | 16698 3119 0.5
16699 3131 0.5 | | 1683.2 | 502.0 | 0.9 | 0 | 16853 | 5385
5402 | 0.5 | 0 | 25 | | | 567.6 | | Ö | 16700 3143 04 | Ŏ | 16833 | 505.3 | 70.9 | 1 0 | 1685.4 | 5402 | 0.5 | - 0 | 28 | | | 567.7 | | Ö | 16700 3143 104 | 0 | 16834 | 507.0 | 0.9 | 0 | 1685.4 | 5402 | 0.5 | Ö | 27 | | 28 1 6 | 567.7 | | O . | 16702 3168 12 | 0 | 1683.5 | 508.6 | 0.8 | 0 | | 541.8 | 0.4 | 0 | 28 | | 29 | | | | 16703 3180 05 | 0 | 1683.6 | 5102 | 0.8 | 0 | | 541.8 | 0.4 | 0 | 29 | | 80 | | | | 1673.8 363.1 22.8
1675.5 386.4 11.7 | - - - | 1683.7 | 511.9 | 8.07 | 0 | | 5435
5435 | 0.4 | 0 | 30
81 | | TOTAL | | 20.7 | 0 | 502 | i ö | | - | 633 | 0 | 10000 | 3433 | 153 | 6 | 81 | | Inf. Ac. Ft. | | 411 | | 99.6 | | 1 | | 125.6 | ·- V | · | | 31.5 | | 23.5 | | Outi. Ac. F | | | | | 0 | | | | | | | 0 | | 0 | | Maximum
Mean Daily | latiew | 3.2 | | 22.8 | | | | 7.2 | | | | 8.0 | | 40.4 | | Minimum
Mean Daily | Inflow | 0.5 | | 0.4 | | · | | 9, 0 | | ļ | 71. | 0 .4 | | 0 0 4 | | Storage Ch | ange | +410 | | + 9 9 .6
NOTE: Gage | leights and Stora | ges as of Midnigh | - 125 5
t on Day Show | n | | ļ | 31.6 | | + 52 | | | Max. W. B. | Ellov | 1685_8 feet | OR VAD | IOUS DAYS Storage 546.9 | Acre Feet | | 1 | | S COLLECTED | BY | Loo | MPUTATIONS | ckd. | Date | | Min. W. S. 1 | | 1685.8 feet | | | Acre Feet | | | PAUL KE | | Dam Ter | | ge Hts. copied | WEC RAW | | | Max. Peak | | 148 C.F. | S. from 6:30 | A.M. on 12/23/45 to 7:00 | A.M. on | 12/23/45 | | C. L. Bi | | Hydrogra | pher Sto | rage applied | WEC RAW | 10/22/4 | | Max. Pesk | | 3.0 C.F. | S. from | on 8/3/46 to | on. | 8/5/46 | l | | | Hydrogra | pher Inf | & Outr. comp. | | | | REMARK | CB [| | | PRORATED DAILY AMOUNTS | | | | | | | | | | | | | | NO ALLOWANCE MADE F | OR PERCOLAT | ION OR EVAPORATION | ### BIG DALTON (cont'd) F. C. Bist. Form 88C Revised 506 11/44 DAM OPERATION RECORD BIG DALTON LOS ANGELES COUNTY Daily Gage Height in feet and Operation Record of...... FLOOD CONTROL DISTRICT HYDRAULIC DIVISION In Blg Dalton Canyon for the Year Ending September 30, 19116. Continuous Water Stage Recorder Au 951 . 6. Ac. Ft. at Spillway Elev. 1706 . 0. Ft. as of Square Miles. Capacity of Reservoir. October ıэ́ЦЦ_Survey Gage Heights Read Daily JULY JUNE AUGUST SEPTEMBER Acre Ft. Storage Height Storage 16772 2 342 1 16718 3370 16713 330 6 1670 3 318 0 1669 9 313 1 1669 0 302 2 1668 0 290 3 1668 0 290 3 1783 1741 1692 1643 16823 4891 16820 4843 16817 4795 16614 4748 16811 4700 (2.9 1656.8 2.9 1656.3 3.0 1655.7 3.0 1655.1 3.0 1654.5 2 5 2 4 2 4 2 4 2 4 0 2.0 16551 1643 3.0 165545 1596 (2.8 165540 15556 2.8 165533 1502 2.8 165525 1442 2.8 165525 1442 2.8 165525 1442 2.7 16551 1391 2.7 16551 1391 2.7 16564 1291 2.7 16497 1243 2.6 16489 1190 2.6 16487 1138 2.6 16487 1034 2.7 16457 982 2.7 16427 1034 2.7 16427 1052 2.7 16427 1052 2.7 16427 1052 2.7 16427 1052 2.7 16427 1052 2.7 16427 1052 2.7 16427 1052 2.7 16437 1052 2.7
16437 1052 2.7 164 1681 1 470 0 1680 8 465 3 1680 5 460 6 1680 2 455 8 1679 9 451 2 1679 6 446 6 2.4 2.4 1679.9 451.2 1679.6 446.6 1679.3 442.0 1678.9 435.9 1678.6 431.4 1678.3 422.4 1678.0 422.4 1677.6 416.5 1677.7 0 407.7 1676.6 402.0 1676.6 402.0 1676.6 399.3 1675.7 389.2 1677.2 389.2 1677.3 356.5 1677.3 356.5 1672.9 351.2 1672.6 347.3 1668.5 296.2 16667.5 284.6 1667.0 278.8 1666.5 274.3 16665.6 274.3 16665.1 268.6 1665.7 264.2 1665.7 264.2 1664.1 246.9 1663.2 258.7 1664.2 237.6 1663.2 237.6 1661.2 217.8 1660.0 206.5 1659.0 197.4 1658.5 193.0 1657.9 187.6 2 A 2 5 2 5 2 A 2 A 11 12 13 14 1089 1089 1034 982 931 841 7951 659 659 5553 503 409 364 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 4 2 4 2 3 2 3 2 3 2 3 2 3 2 4 2 4 2 4 25 25 24 24 24 24 24 24 23 2.4 2.4 2.4 2.4 2.4 2.4 2.4 74.0 259 5253 5090 40.4 147.0 1638 03 0 -146.7 NOTE: Gage Heights and Storages as of Midnight on Day Shor -49.5 -1470 on VARIOUS DAYS Storage 546.9 Acre Feet on 10/1/45 Storage 20.1 Acre Feet Max. W. S. Elev 1685.8 ### 1665.8 reet on VARIOUS DAYS Storage 546,9 ### 1624.7 feet on 10/1/45 Storage 20.1 ### 1. 148 C.F.S.from 6:30.A.M. on 12/23/45 to #### 3.0 C.F.S.from 6:30.A.M. on 8/3/46 to | INDICATES TOTAL FOR PERIOD OR PROPARTED DAILY AMOUNTS | NO ALLOWANCE MADE FOR PERCOLATION OR EVAPORATION Min. W. S. Elev. Max. Peak Inf. 7:00 Å.M. on 12/23/45 8/5/46 REMARKS | | | - | - | | | BIG DAL | | Di | | | LO
FLO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | τ | | | | |----------|--------------------|--------------|--------------|------------------|----------------|----------------|----------------------|----------------|-------------------|----------|--------------------|------------------|---|------------|---------------------------------|--|-----------| | C | Blo Da | FOUL SHILL | X/ | | 1 | or ine i ear i | ruotud pebie | mber 30, 19.5 | 1.4. | | | | C | W O | age Recorder. | Au | | | | | ٠ | | | | | | | | • | | N. O | | | | | | | D | rainage Area | ЧБ | Square Miles | Capacity of | Reservoir 95 i | | Ft. at Spillw | ay Elev | 706.0 Ft. as | of | ctoper, | 1944 Surv | gy Gage Hei | ghts Rez | ic daily | | •• | | | | OCTO | BER | | | NOVEM | BER | | | DECEM | BER | | | TAN | JARY | | | | } ⊩ | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | | Acre Ft. | C.F.S. | C. F. S. | | | ' ji | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outrow | Gage
Reight | Storage | Inflow | Outflow | | | 1 | 1629.8 | 32.3 | 0.2 | 2.3 | 1630.0 | 32.9 | 10.05 | 0 | 16513 | 135.5 | r1.0 | 0 | 16631 | | | 8.7 | -#- | | 2 | 16282 | 28.0 | 0.2 | 2.3 | 16300 | 329 | 0.05 | 0 | 1651.6 | 137.6 | 1.0 | 0 | 16622 | | | 8.4 | - | | 3 | 1627.8 | 27.0 | 1.1 | 1.6 | 16300 | 329 | 0.05 | 0 | 16519 | 139.8 | 0.9 | 0 | 16612 | | | 8.1 | | | 4 | 1628.0 | | (0.3 | 0 | 1630.0 | 329 | 0.05 | 0 | 16521 | 1412 | 0.9 | 0 | 16602 | | 3.0 | 8.1 | | | 5 | 16282 | 28.0 | 10.2 | 0 | 1630.0 | 32.9 | 0.05 | 0 | 16523 | 142.7 | 60) | 0 | 16591 | 1983 | 2.7 | 7.8 | - | | 6 | 16283 | | 3.0 | Ö | 16301 | 33.2 | 0.05 | 0 | 1652.6 | 144.9 | 1.1 | 0 | 16579 | | | 7.8 | 7 | | 7 | 1628.4 | | 0.1 | 0 | 16301 | 332 | 0.05 | 0 | 1652.8 | 1464 | 71.0 | 0 | 1656.7 | | | 7.8 | 7 | | 8 | 1628.5 | | 0.1 | 0 | 16301 | 332 | 0.05 | ō | 1653.0 | 1479 | 8.0 | 0 | 1656.6 | | | 2.7 | - | | p | 1628.6 | 291 | 0.1 | 0 | 16302 | 33.5 | 0.05 | 0 | 16532 | 149.4 | 0.8 | 0 | 1657.0 | | | 1 0 | | | 0 | 1628.7 | 29.3 | 0.1 | 0 | 16302 | 3 3 .5 | 10.05 | 0 | 1653.4 | 151.0 | 0.7 | 0 | 16574 | | | 1 0 | | | 1 | 1628.8 | 29.6 | 0.1 | 0 | 16303 | 3 3 .8 | 0.1 | 0 | 1653.6 | 1525 | 0.7 | Ō | 1657.7 | | | i o | | | 2 | 1628.8 | 29.6 | 0.1 | 0 | 1630.7 | 34.9 | 0.6 | 0 | 1653.8 | 1541 | 0.6 | ō | 1658.0 | | | ŏ | | | 3 | 1628.9 | 29.8 | 01 | Ō | 16315 | 37.4 | 1.2 | 0 | 16540 | 155.6 | 0.7 | o i | 1658.4 | | | - 0 | | | 1 | 1629.0 | | 0.05 | Ō | 16322 | 39.6 | 1 1 | - o | 16541 | 156.4 | 0.6 | o i | 1658.6 | | | 1 5 | | | <u>-</u> | 16290 | | 0.05 | 0 | 1632.4 | 402 | 703 | ŏ | 1654.3 | 158.0 | 10.7 | Ö | 1659.0 | 197.4 | | 1 8 | - | | 6 | 16291 | 30.4 | (0.1 | Ö | 1632.6 | 40.9 | 0.3 | ŏ | 1654.4 | 1583 | (0.6 | ŏ | 16593 | | | 0 | \exists | | 7 | 16292 | | 0.1 | ā | 1632.7 | 412 | 0.2 | ŏ | 1654.6 | 1603 | 0.5 | 0 | 16595 | 202.0 | | - 6 | -# | | <u>.</u> | 16292 | 30.7 | 0 1 | ŏ | 1632.8 | 41.5 | 102 | ŏ | 1654.7 | 1611 | 05 | 0 | 1659.7 | 203.8 | | 0 | | | | 16293 | 30.9 | 101 | ŏ | 16329 | 419 | tož | | 1654.8 | 1619 | 0.5 | ĕ∦ | 1660.0 | 206.5 | | 6 | -+ | | ĭ⊬ | 16293 | 30.9 | 0.1 | ŏ | 16409 | 74.1 | 162 | ŏ | 1655.0 | 163.5 | 105 | 0 | 16602 | | | | -#- | | 1 | 1629.4 | 31.2 | 0.05 | | 1642.4 | 81.5 | 3.8 | ŏ | 1655.1 | 1643 | 0.5 | 0 | 1660.4 | | | 1 8 | | | | 1629.4 | 31.2 | 0.05 | ŏ | 16433 | 86.2 | 2.3 | 0 | 16552 | 1651 | 0.5 | ŏi | 1660.6 | 2121 | | | - | | | 16295 | 31.5 | 0.1 | ŏ | 1645.5 | 98.2 | 6.1 | | 1655.4 | 166.7 | (0.5 | | 1660.8 | 214.0 | | 1 0 | | | | 16295 | 31.5 | 0.1 | - 6 | | 1082 | 5.0 | - 6 | 1655.5 | 167.6 | 0.7 | - 6 / | 1661.0 | | | 1 8 | | | | 1629.6 | 31.8 | 10.05 | ŏ | 16482 | | 3.2 | - 6 | 16565 | 175.8 | 4.1 | - 6 | 16612 | | | <u> </u> | - - | | | 1629.6 | 31.8 | 0.05 | ŏ | 16490 | | 2.6 | ŏ | 16591 | 1983 | 113 | 0 | 1661.4 | 219.7 | | 1 6 | ╁ | | | 1629.7 | 321 | 70 2 | ŏ | 1649.7 | | 2.3 | <u> </u> | 1661.8 | 223.6 | 12.8 | ~ - 0 | 1661.5 | 220.7 | 0.6 | 1 - 6 | | | | 1629.7 | 321 | 0.05 | ŏ | 16502 | | 1.7 | ŏ | 1663.6 | 241.7 | 18.5 | ŏ | 1662.0 | 225.5 | | 1 6 | ╟ | | | 1629.8 | 323 | 0.05 | ŏ | 1650 8 | | 1.5 | ŏ | 1664.8 | 254.4 | 7.0 | - | 16623 | 228.5 | 1.5 | + | | | | 16299 | 32.6 | 0.05 | - ŏ - | 1651.0 | | 1.4 | <u>ŏ</u> | 1664.7 | 2533 | 6.9 | 7.4 | 1662.5 | 2305 | | 5 | | | | 16299 | | 10.05 | ö | 2001.0 | <u> </u> | | | 16639 | 244.8 | 6.7 | - 115 | 1662.7 | 2322 | | 1-8- | - | | OTA | | 22.0 | 4.30 | 6.2 | | | 50.8 | .0 | 110022 | 244.0 | 74.5 | 18.4 | 1002.7 | 2223 | 1532 | 59.4 | | | . Ac. | | | 8.5 | | | | 100.6 | | i | | 1480 | 10.4 | | | 105 2 | 362 | , 6 | | tf. A | c. Ft. | | | 12.3 | | | ~ ~ ~ ~ ~ | 0 | 1 | | <u>. + U .U</u> | 365 | | | 105.5
117.8 | 166 | | | | gen
ally leflow | | 1.1 | | | | 16.2 | | | | 12.8 | | | | 4.5 | 16 | | | Miele | uty tellow | | 0.05 | | | | 0.05 | | | | 0.5 | | | | 4 <u>.5</u>
0 .6 | | 0.0 | | MA D | Change | -3.8 | | | | 1007 | | | | 111.5 | | | | 10 3 | | + 196 | | | | | | | | Т | | TE: Gage Heis | hts and Storas | es as of Midnight | | | | | | | 7 1 7 Ye | | | v P | S. Elev. | 1673.4 | feet | on 6/16/ | 47 Stor | | | Acre Feet | | | 12070 - 12070 1 15 | S COLLECTED | RV | Loc | MPUTATIONS | and the second section is a second section of | + | | | S. Elev. | 1621.1 | feet | on 9/24/ | | | | Acre Feet | | | AUL KEISER | COMBCIED | Dam Te | | ge Hts. copied | | Dat | | | ak Inf. | 55.7 | | from 11:00 A | | | | | | | . L. BREWS | | Hydrogr | | ge His. copied
orage applied | JHL FHM 9 | | | | ak Outf. | 55.7
12/2 | C.F.S | from 8:00 | A-M OF 1 | | | | 11/20/46 | | . C. DREWS | E | Hydrogr | | | JHL FHM S | 9/5 | | | | | | | | 2/ 50/40 | ~ 12.00 | 110011 04 | 12/30/40 | | | | nyurogr | white In | . & Outf. comp. | JHL APK | 10/ | | | ANNUAL NO A | LLUWANCE N | IAUE FOR PER | COLAI ION OF | R EVAPORATION | | | | | | | | | | | | | ## PUDDINGSTONE DIVERSION (contid) | | Pathy Gage Help | | - | | | | STONE DIV | | _ | | LO
FLO | DPERATIONS ANGELES OD CONTRO DRAULIC | COUNTY | CT | | | | |------------|-----------------------|---
--|------------------|------------------|---------------|------------------|-----------------|-------------------|---------------|----------------|--------------------------------------|------------|--------------|--------------------|------------|----------| | C | >n | <u> </u> | <u></u> | | | TOP IME I WAT | Enung Sepre | mber 30, 18.7. | | | | | Continue | ous Water | Stage Recorder | Au | | | E | rainage Area. | 2.6 | Square Miles | . Capacity of | Reservoir10 | 9.6Ac. | Ft. at Spillw: | ay Elevl.l. | 52.5Ft. as | of S | ptember . | 19 111 Surv | ey Gage He | ights | Read at vari | ous time | s | | 1 | | FEBRU | A CONTRACTOR OF THE PARTY TH | | | MAR | | | | APR | | | | | MAY | | | | 3 | Gage | Acre Ft. | C.F.B. | C. F. S. | Gago | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C.F.S. | Gage | Acre F | | C. F. S. | ┨. | | , | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | | Outflow | 1 | | 1 | 11406 | 218 | 8.2 | 6.7 | 11388 | 135 | 0 | 0 | 11369 | **52 | 0 | . 0 | | | | Q | | | 2 | 11405 | 214 | 7.9 | 7_1 | 11385 | 124 | 0 | 0 | 1136.8 | 15.0 | 0 | . 0 | | 4 | 0 | 0 | 7 | | 8 | 11394 | 16.1 | 4.9 | 6.7 | 11381 | 10.8 | 0 | 0 | 1136.6 | | 0 | 0 | | 4 | | 0 | 4 | | 4_ . | 11391 | 14.8 | 2.8 | 2.7 | 11380 | | 105 | <u> </u> | 11365 | | <u>Q</u> | 0 | | + | 0 | 0 | - | | 듸 | 11391 | 14.8 | 1.4 | 0.6 | 11382 | 112 | 12 | <u> </u> | 11364 | | | 0 | | | | 9 | - | | <u>6</u> ∦ | 11392 | 15.2 | 1.5 | 0.5 | 11383 | 11.6 | 0.9 | - 0 | 11362 | 3.7 | <u> </u> | 0 | | | 9 | 0_ | | | [4 | 11392 | 15.2 | 2.0 | 12 | 1138 A
1138 5 | 12.0
12.4 | 0.9 | -8 | 11361 | | 0 | 0 | | | <u> </u> | <u> </u> | | | B- | 11392 | 15.2 | 2.3 | - 1.3
0.8 | 1138.7 | | وة | 0 | 1136.0
1135.8 | | - 8 | 8 | - | | - 0 | 0 | + | | :# | 11393 | | 1.8 | - 0.0 | 1138.6 | 12.7 | 0.5 | - 8 | 1135.7 | | -0 | 6 | | | | 0 | + | | | 11402 | 199 | 1.8 | - 0 | 11383 | 11.5 | 0.2 | - 0 | 1135.5 | | ŏ | 0 | | | 0 | 8 | 1 | | | 11404 | 209 | 13 | ŏ | 1138.0 | 104 | 0 ~ | ŏ | 11353 | | ŏ | - 0 | | = | ŏ | ŏ | - | | 8- | 11406 | 21.8 | 1.5 | ŏ | 11380 | | ō | ŏ | 11352 | | ŏ | ŏ | | _ | ŏ | 0 | + | | - | 11405 | 21.4 | (12 | - o | 1138.0 | 1 9 3 | Ò | o o | 11349 | | <u>ŏ</u> _ | o i | | | - ŏ | ŏ | - | | 5 | 11403 | 20.4 | 12 | - ŏ - | 1138.0 | 8.7 | 0 | Ö | 11345 | | ŏ | ō i | - 6 | - 5 | ŏ | ŏ | + | | 6 | 11400 | 189 | 1.0 | Ò | 11379 | 8.0 | 0 | 0 | 11341 | 3.0 | - 0 | O I | <u> </u> | Ű. | ő | Ö | 7 | | | 1139.8 | 18.0 | 10 | ō | 11379 | | 0 | 0 | 11335 | | ō | ō | | 7 | ŏ | 0 | 1 | | | 1139.8 | 18.0 | ÖŘ | 0 | 1137.8 | | 0 | 0 | 11328 | | Ō | 0 | - CS | - 8 | Ō | ō | - | | 19 | 1140.0 | 189 | 9.0 | 0 | 1137.8 | 7.3 | 0 | 0 | 1132.0 | 0.1 | _ o | 0 | E | 10 | ō | Ö | _ | | 20 | 11401 | 194 | 0.8 | Ö | 1137.8 | 7.3 | 0 | 0 | 11312 | 0.1 | 0 | 0 | | 0 | 0 | 0 | _ | | 21 | 11400 | 189 | 8.0 | 0 | 1137.8 | 7.3 | 0 | 0 | 1130.4 | ** | 0 | 0 | | Ś | 0 | Ó | 7 | | 12 | 11401 | 194 | 8.0 | 0 | 1137.7 | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | :3 | 11401 | 19.4 | 8.0 | · 0 | 1137.7 | | 0 | 0 | | | 0 | 0 | | | | 0 | | | 4 | 11402 | 199 | 0.4 | 0 | 1137.6 | 6.8 | 0 | _0_ | 8 | - 5 | 0 | 0 | | | Ö | 0 | | | 15 | 11401 | 19.4 | LOZ | 0 | 1137.6 | 5.8 | 0 | 0 | 0.00 | 8.5 | o | 0 | | | | 0 | 7 | | 8 | 1139.8 | 18.0 | 0.2 | 0 | 1137.5 | 6.6 | 0 | 0 | _ & 2 | | 0 | 0 | | | 0 | 0 | | | | 11395 | 16.6 | 0.1 | 0 | 11375 | 6.6 | 0 | 0 | | \$-5 | 0 | 0 | | ļ | 0 | 0 | | | 18 | 11392 | 152 | 0.1 | 0 | 11374 | | 0 | Q | S - S | ν <u>σ</u> | 0 | 0 | | | 0 | 0 | | | 9] | | | | | 11372 | | 0 | 0 | U, (E | | o o | 0 | | ļ | 0 | 0 | | | 0 | | | | | 11371 | 5.7 | 8 | 0 | | | 0 | 0 ' | | | - 8 | 0 | | | 1 | | | | ~=- | 11370 | 5 A | 6.0 | 0 | | | 0 | 0 | | - | 8 | 0 | 4 | | TOT | AL
. Ft. | | 499 | 27.5 | | | 11.9 | ' | | | - 8 | | | | | | <u>ب</u> | | | LC.Ft. | | 990 | (50.0) | | | | (21.6 | J | | <u> </u> | + (5.4) | | | | 1399 | | | | mom
July Jaffew | | 8.2 | | | | 12 | | | | 0 | T () A | | | 0 | -1108.0+(2 | 4 7 | | | inits
Daily Juffer | | 01 | | ļ | | - 6 ~ | | ll | | - 0 | | | | - ŏ | | 0 | | OFR- | e Change | - 5.7 | | | ļ | - 9.8 | | | ļ | -54 | | | | 0 | | | ŏ | | OI 00 | o contains . | ,, | | | | | TE: Gage Heis | this and Storag | es as of Midnight | t on Day Show | 1 | | | | | % Yes | | | . v V | V. S. Elev. 11 | 45.95 | feet | on 12 | /26/46 Sto | rage 51. | 0 | Acre Feet | | 1 | RECORD | 8 COLLECTED | BY | | COMPUTATIONS | | Dat | | | | 27 ± | feet | | T OF YEAR Sto | | | Acre Feet | | F. A. | POLLARD | | Dam ' | render T | Gage Hts. copied | | | | | | 57.5 | | | | | to 5:00 A. | | 12/26/46 | | BREWSTER | | | grapher | Storage applied | | | | | | 57.5 | | | | | to 5:00 A | | 12/26/46 | | | | | | Inf. & Outf. comp. | | /24 | | | | | | | COLATION AND | | | | 14/40/40 | | | | | | | PEN 11/ | ۷٤٥ | | | · | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | OR PRORATED D | | | | | | | **** | | | | | - | | | | | | | AND LOWER PON | | | | PER POND ONLY | LC
FLO | S ANGELE | ON RECO | T | | | | |-------------|----------------------|---------------------|--------------------|---------------------|------------------|---------------------|--------------------|-------------------|--------------------|---------------------|--------------------|---------------------|----------------|---------------------|---------------------------------------|---------------------|------------| | | _ | | | | | | | | | | | | | us Water S | tage Recorder | | | | D | rainage Are | 2.6 | Square Miles | . Capacity o | Reservoir | 8.6 Ac. | Ft. at Spillw | ay Elev | 52.5 Ft. as | of | eptember | 19.14 Sur | vey Gage Hei | ghts Rea | d at vario | us times | s | | | | שנ | | | | | LY | | | | JUST | | | | TEMBER | | - | | 3 | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C.F.S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | | 2 | | | 0 | o | l | | 0 | 0 | 1127.0 | | 0 | 0 | 11270 | | , o | 0 | -1- | | 2 | | | 0 | 0 | | | - 0 | 0 | | | 0 | 8 | | | 0 | 0 | ╁ | | 4 | | | 0 | 0 | | | i ŏ | ŏ | | | ŏ | Ö | | | 0 | ŏ | | | 5 | | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | . 0 | | | 6 | | <u> </u> | 0 | 0 | 1 | | . 0 | Q. | - | | 0 | 0 | ļ | | <u> </u> | <u> </u> | | | 7 | | | 0 | <u> </u> | | | - 8 | 0 | 1 | | 0 | 0 | ļ | | 0 | 0 | - | | ╬╫ | | | - 0 | 0 | | | 0 | - 0 | 1 | | 0 | ŏ | ļ-: | | 0 | - × | 1 | | • | | | Ö . | o o | | | Ö | ŏ | | | ŏ | ŏ | | | i o | Ŏ | | | 1 | | · v | 0 | Q | - 4 | | 0 | 0 | | | 0 | .0 | _ج_ | | 0 | 0 | | | 2 | - a | | O. | | - - - | | 0 | 0 | | | 0 | 0 | <u> </u> | | | 0 - | -# | | a | | .2 | 0 | 0 | | | 0 | - 6 | | - 8 | 0 | 0 | | - 0 | 0 | 0 | 1 | | \$
5 | = | - | 0 | . 0 | | | 0 | | - 5 | | 0 | ŏ | | - 5 | 0 | ŏ | - | | 6 | | | 0 | o | 1 | | 0 | 0 | 2 | ώ | Ö | ō | | Ś | ō | 0 | | | 7 | - B | | 0 | 0 | | | 0 | 0 | S S | -0 | 0 | 0 | S S | | 0 | 0 | | | 18] | | O O | 0 | <u> </u> | | | 0 | 0 | - 2 | | 0 | _ o | e | z | | 0 | - | | 19 | | | 0 | 0 | | _ | 0 | 0 | - | | - 8 | 0 | ļ | | 0 | 0 | -+ | | 0 | | - 3 | ŏ | Ö | 1 | | 0 | Ö | | | - 6 | ŏ | | | , , , , , , , , , , , , , , , , , , , | 8 | ┪ | | 2 | | | ŏ | 0 | ļ — | | 0 | 0 | | | Ö | Ō | | | 0 | 0 | + | | 3 | | | 0 | 0 | 1127.0 | | 0 | 0 | | | 0 | 0 | | | 0 | - 0 | | | μŢ | | | 0 | O O | | | 0 | 0 | | | 8 | 0 | | | 0 | 0 | - | | 5 | | - | 0 | 0 | <u> </u> | | 0 | 0 | | | | 0 | B. | | - 8 | 0 | - | | 18 | | | 0 | - ö | | | 0 | - ŏ | 1 | | | - 6 | | | + 6- | | ╛ | | -
| | 1 | Ŏ | 0 | 1 | | 0 | 0 | | | 0 | 0 | | | 0 | - 6 | - | | 9 | | 1 | Ò | 0 | 87 | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | | | 0 | 0 | E O | | 0 | 0 | ļ | | 0 | 8 | ļ | | 0 | 0 | | | 1 | | | 0 | 0 | | | 0 | 0 | | | | - 6 | <u> </u> | | 1 0 | 0 | 4 | | TOT. | | | - 0 | ı <u> </u> | | | 0 | | <u> </u> | | - 6 | | | | | 139 | 9 7 | | utf. A | c. Ft. | | | 0 | | | | 0 | | | | 0 | ļ | | 0 | 1108.94(29 | | | Max
teas | inem
laify Inflow | | _ 0 | | <u> </u> | | 0 | | | | o | | ├ | | 0 | | 4 | | toen C | ally fuller | | 0 | | i | | o | | <u> </u> | 0 | 0 | | ļ | 0 | 0 | | <u>o</u> _ | | orag | e Change | 0 | | | L | | OTE: Gage Hei | ights and Stora | ger as of Midnight | | 'n | | !! | U | | Yearly | O
v Tot | | ar V | V. S. Elev. | 1145,95 | feet | on 12/ | 26/46 Sto | rage 51.9 | <u></u> | Acre Feet | | | | S COLLECTED | BY | C | OMPUTATIONS | | Dat | | | . S. Elev. | 1127 ± | feet | | OF YEAR Bto | rage 0 | | Acre Feet | · | | A. POLLARE | | Dam T | ender G | age Hts. copied | JHL APK | | | | esk Inf. | 57.5 | | 8. from 2:00 | | 12/26/46 | | | 12/26/46 | | L. BREWSTE | R | Hydrog | rapher S | torage applied | IHL APK | _ | | | eak Outr. | 57.5 | | B. from 2:00 | | 12/26/45 | | A.M. on | 12/26/46 | | | | Hydrog | rapher I | if. & Outf. comp. | HL APK 11 | /26, | | CEM. | ARKS | () INDICA | IES LUSSES | DUE 10 PER | COLATION AND | LVAPUKA (-10 | N . | | | | | | | | | | | #### PUDDINGSTONE F. C. Dist. Form SEA Serised 500 11/44 DAM OPERATION RECORD LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION Daily Gage Height in feet and Operation Record of PUDD INGSTONE In Puddinestone Creekfor the Year Ending September 30, 19,44 Continuous Water Stage Recorder...Au. Drainage Area 32.2 Square Miles. Capacity of Reservoir. 17, 190.0. Ac. Ft. at Spillway Elev. 970.0 Ft. as of January 19 11 Survey Gage Heights Read Daily OCTOBER NOVEMBER DECEMBER JANUARY Day Ř Acre Ft. Storage Gage Hight Storage | Stora Acre Ft. Storage Cere Height Acre Pt Height Storage 9 2 3 9 0 5 1 7 8 .7 9 2 3 9 0 5 1 7 8 .7 9 2 3 9 0 5 1 7 8 .7 9 2 3 9 0 5 1 7 8 .7 9 2 3 9 0 5 1 7 8 .7 9 2 3 9 0 5 1 7 8 .7 9 2 3 9 0 5 1 7 8 .7 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .8 5 5 1 6 8 .4 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 4 7 .9 9 2 3 .7 5 5 1 3 7 .6 9 2 3 .7 5 5 1 3 7 .6 9 2 3 .7 5 5 1 3 7 .6 9 2 3 .7 5 5 1 3 7 .6 9 2 3 .7 5 5 1 2 7 .3 9 2 3 .6 5 5 1 2 7 .3 9 2 3 .6 5 5 1 2 7 .3 9 2 3 .6 5 5 1 2 7 .3 9 3 3 .6 5 5 1 2 7 .3 9 3 3 .6 5 5 1 2 7 .3 9 3 3 .6 5 5 1 2 7 .3 9 3 3 .6 5 5 1 2 7 .3 9 3 3 .6 5 5 1 1 7 .0 9 3 3 .6 5 5 1 1 Height Blongs 932 35 4864 2 932 25 4884 4 932 25 4884 5 932 10 4814 6 932 00 4794 7 931 95 4785 1 931 85 4765 9 931 75 4746 7 931 85 478 83 8 0 8 0 8 0 8 0 0000 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 93 2 15 4 824 5 93 2 10 4 814 6 93 2 10 4 814 6 93 2 00 47947 93 1 85 4765 9 93 1 85 4765 9 93 1 85 476 7 93 1 55 472 8 93 1 1 55 472 8 93 1 1 55 466 9 93 1 1 35 466 9 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 1 93 1 20 464 2 93 1 20 464 2 93 1 20 464 2 93 1 20 464 2 93 1 20 464 2 93 1 20 464 3 93 1 20 464 3 93 1 20 464 3 93 1 20 464 3 93 1 20 464 3 93 1 20 464 3 93 1 20 464 3 93 1 20 464 3 93 1 20 4 10 11 12 18 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 80 81 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8 O 8 O 8 O 8 O 8 O 8.0 8.0 8.0 8.0 8.0 8 .0 8 .0 8 .0 8 .0 8 .0 8.0 8.0 8.0 8.0 240.0 11.5 12371 + (83.5) 1307.7+(234.8) 4760 + (454) 0 0. S - 5 2 1 .5 + 8 1 6 .1 NOTE: Gage Heights and Storages as of Midnight on Day Show -305.5 Max. W. S. Elev. Min. W. S. Elev. Max. Peak Inf. Max. Peak Outf. RECORDS COLLECTED BY COMPUTATIONS od. Date Gage His. copied Fish. JHL 7/23/47 Hydrographer Hydrographer Inf. & Outr. comp. Fish. JHL " Acre Feet Dam Tender | | • | • | . • | | | | NGSTONE | | | | LO
FLO | S ANGELE | ON RECC
S COUNTY
OL DISTRIC
DIVISIO | T | | | | |----------|---------------------------------------|---------------------|--------------------|---|------------------|---------------------|--------------------|---------------------|------------------|---------------------|--------------------|-----------------------------|--|--------------------|---------------------|---------------------|--------| | ľ |) <u>n</u> | THE POILS | A.I.EEV | *************************************** | | ior the Year | Ending Septe | mber 30, 19.49 | 2 . | | | | Continue | us Water St | age Recorder | Au | | | 'n | uniuuaa Auan | 30.0 | Smure Miles | Canacity | Reservoir 1.7. | 190 0 4- | Ft at Spiller | - Fi- 071 | 0 5 | دا. تس | anuary | talli Survi | | | | | | | Ī | . and go said | FEBRU | | o oupuon y o | 1 | MAR | ~ | -1 -10vk | | APR | | tont | o, Gage IIe | | AY | | - | | ŀ | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre FL
Storage | C. F. S.
Inflow | C. F. S.
Outflow | - | | :#- | · · · · · · · · · · · · · · · · · · · | | 0 | 0 | 93355 | | | 0 | 93415 | | 3.2 | O | | | | | | | - | 933.55
933.55 | | 0 | 0 | 933.55 | 51067 | 0 | 0 | 934 20 | | 2.2 | ō | 934 10 | 52000 | 9 | 5.7
7.6 | - | | 3-II- | | 5137.6 | 16.6 | Ö | 933.50 | 50964 | 0 | o o | 934.15 | | 5.7 | ŏ | 93395 | | | 8.0 | -1 | | 1 | 933.75 | | 6.1 | 0 | 933.50 | | 0 | 0 | 934.25 | | 5.0 | Ö | 933.85 | | | 8.0 | \neg | | 5 | 933.75 | | 2.0 | Q | 93350 | | 0 | 0 | 934.55 | | 322 | 0 | 933.75 | | | 8.0 | | | | 933.70 | | 1.0 | 0 | 933.45 | 50861 | _ 0 | 0 | 934.55 | | 1.5 | 0 | 933.70 | | | Ω.8 | _ | | | 933.70 | | 10 | 0 | 933.45 | 50861 | 0 | 0 | 934.55 | | 1.5 | 8 | 933.55 | | | 8.7 | | | | 933.70 | | 0 | 0 | 933.45 | 50861 | 0 | 0 | 934.50 | | 1.0 | 0 | 933.45 | | | 9.0 | _ | | - | 933.70 | | <u> </u> | 0 | 93340 | 5075.8 | 0 | <u> </u> | 93450 | | 0.1 | 0 | 93335 | | | 9.0 | _ | | -15- | 933.70 | | <u> </u> | 0 | 93340 | 5075.8 | o | 9 | 93450 | | O . | 0 | 933.25 | | | 9.0 | _ | | - | 933.65 | | <u>ŏ</u> | 0 | 933.40
933.40 | 50758 | - 0 | 0 | 934.45 | 22951 | 0 | 0 | 93315 | | | 9.5 | _ | | - | 933.65 | | _ <u>o</u> | ~~~~ | 933.40 | 20 (28 | - 0 | | 934.45 | | | 0 | 933.05 | | | 110 | - | | ₽ | 933.65 | | 8 | గ | 933.40 | 50750 | 0 | - ŏ | 934.45 | | - | 0 | 932.90 | | | 110 | | | ╬ | 933.65 | | 0 | ŏ | 93335 | 5075.0 | <u> </u> | - 6 - | 934.40 | | 0 | - 8 | 932.65 | | | 11.0 | - | | ╀ | | 51273 | 8 1 | Ö | 933.35 | 50655 | 0 | | 934.40 | | Ö | ŏ | 932.55 | | | 11.0 | - | | ⇈ | | 51273 | ŏ | ŏ | 933.35 | 50655 | - ö | ŏ | 934.40 | | 0 | ŏ | 932.45 | | | 11.0 | - | | ۲ | | 51273 | ō | 0 | 93335 | 5065.5 | 0 | o | 934.40 | | - ŏ | ŏ | 932.30 | | | 11.0 | _ | | <u>"</u> | | 51170 | Ö | 0 | 933.40 | 50758 | (49 | ō | 934.40 | | ō - | ō | 93220 | | | 11.0 | _ | | 骭 | | 51170 | 0 | 0 | 933.40 | 5075.8 |
5.4 | . 0 | 93435 | | 0 | Ō | 93210 | | | 110 | - | | T | 933.60 | | Ö | 0 | 933.40 | 5075.8 | 0.3 | 0 | 93435 | | O | 0 | 931.95 | | | 11.0 | _ | | į, | 933.60 | | 0 | Ö | 933.40 | 50758 | 0.1 | Ö | 93435 | | 0 | 0 | 931.85 | | | 11.0 | _ | | ľ | 933.60 | 51170 | 0 | 0 | 933.40 | 5075.8 | loi | 0 | 93430 | 52632 | 0 | 0 | 931.70 | 47371 | . 0 | 11.0 | *** | | I | 933.60 | 5117.0 | 0 | 0 | 933.35 | 5065.5 | 0 | . 0 | 934.30 | 52632 | 0 | 0 | 931.60 | 47175 | 0 | 11.0 | Ξ | | | 933.55 | | 0 | 0 | 93335 | 5065.5. | Ο | 0 | 934 30 | 52632 | . 0 | 0 | 931.45 | 46890 | . 0 | 11.0 | _ | | L | 933.55 | | 0 | 0 | 93335 | 5065.5 | | 0 | 93430 | | 0 | 0 | 931 30 | | | 11.0 | _ | | 1- | 93355 | | | Ö | 93335 | 5065.5 | 0 | 0 | 934.25 | | 0 | 0 | 931.20 | | | 11.0 | _ | | Ł | 933,55 | 5106.7 | _ 0 | <u> </u> | 933.40 | 5075.8 | 6.4 | 0 | 93425 | | <u>o</u> . | 0 | 93110 | | | 11.0 | _ | | ١., | | | | | 93345 | 50861 | 6.4 | 0 | 934.25 | | 0 | 0 | 930.95 | | | 11.0 | | | - - | | | | | 934.05 | 52099 | 63.6 | 0 | 93420 | 5241.9 | 0 | 1.6 | 930.80 | | | 11.0 | _ | | L | NL . | | 26.7 | 0 | 33413 | 52312 | 992 | 0 | | | 52.4 | 1.6 | 930.70 | 4346.8 | | 11.0 | _ | | | . Ft. | | 530 | | | L | 196.8 | · | | <u>'</u> | 103.9 | 1.0 | | <u> </u> | 1 0 | 310.5
159 | | | . A | .c. Ft. | | | (53.0) | | | | (722) | | | | (0.0.0) | ir | 6180 | + (791) | | | | ix | mum
ally inflow | | 16.6 | | | | 63.6 | | | | 322 | | | 0.7.2.2 | (1 9 1) | 27 | | | 17.1 | mum
ally inflow | i ———— | 0 | | | | 0 | | | | 0 | Land Control of the Control | | | | ~ | 7 | | ag | e Change | 0 | | | | 124.5 | | | | + 10.7 | | | | -6951 | | -86 | S. | | _ | | | | | | NO | OTE: Gage Hei | ghts and Storag | es as of Midnigh | t on Day Shown | | | The same of the same | | | % Ye | | | . v | . S. Elev. | 935.0 | feet | on 10/1/ | AS Str | rage 591 | 2.2 | Acre Feet | | | RECORD | S COLLECTED | BY | 1 00 | MPUTATIONS | ckd. | 1 | | | S. Elev. | 884.15 | feet | | | | 7.0 | Acre Feet | | | F. A. PO | | Dam 7 | | ge Hts. copied F | | | | . P | eak Inf. | 929 | C. F. 8 | | | 12/23/45 | | A.M. on | 12/23/45 | [| C. L. BR | | Hydros | | orage applied F | | ī | | . P | eak Outf. | 32 | | from 12:0 | | | | M on | | <u> </u> | | | Hydros | | . & Outr. comp.F | | | | | ARKS 1 | NDICATES TO | | | | | | Want to active to | | | | | | | | 01.12 | _ | LIVE OAK | | | eight in feet an | | | | | | | | | LO
FLOC | S ANGELI | ION RECO
ES COUNTY
ROL DISTRIC
C DIVISION | r | | | | |----------|------------------|---------------------|--------------------|---|----------------|---------------------|--------------------|----------------------------|-------------------|---------------------|--------------------|---------------------|--|------------------|----------------------|---------------------|------------| | In
Or | _ Llve | Oak Canyon | | *************************************** | | for the Year | Ending Septe | mber 30, 19 1 1 | 3 | | ***** | MAGER | | | Stage Recorder | Δu | | | _ | | 0.00 | | | | O7 E 1 | T | | 107.0 | _ | M | | | | • | | | | Dr | zinzge Are | | | a. Capacity of | Reservoir2 | | | TA Flear | 19./ | | | 19.38. Sur | /ey Gage Heig | | iead at varis | lus_limes | 3 | | ۱ ا | | OCTO | BER | | | NOVE | ABER | | j | DECEN | ABER | _ | | JA | NUARY | | - | | } - | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre F
Storag | | C. F. S.
Outflow | 1 | | 1 | | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | 14705 | 37 | | 2.0 | | | 2 | | <u> </u> | | 0 | | + | <u> </u> | 0 | | | <u> </u> | 0 | 1469.5 | 33 | | 2.0 | | | 3 | | | 0 | 0 | | - | 0 | 0 | | | Ŏ – | 0 | 14684 | 29 | | 2.0 | | | :- - | | | 0 | 0 | | 1 | 0 | 0 | | | 8 | 0 | 14672 | 25 | | 2.0 | | | 6 | | + | 0 | 8 | | | 0 | 0 | 1 | | . 0 | - 0 | 14645 | 21
18 | | 2.0 | | | 7 | | + | 0 | 0 | | 1 | 0 | 0 | | | 0 | 0 | 14630 | 14 | | 2.0 | | | s | | | .0 | 0 | | | i o | 0 | | 8 | 0 | ŏ | 14614 | 11 | | 0.5 | | | | | | 0 | 0 | | | 0 | 0 | <u> </u> | 2 | . 0 | Ò | 14603 | 9 | 4 0.05 | 1.2 | | | | | | ٥ | 0 | | | | | 9 | 9 | 0 | . 0 | 1460.4 | . 9 | | 0 | | | 1 | | | Q. | | | + | 0 | 0 | l | ν | 0 | 0 | 14605 | 9 | | 0 | 4 | | 3 | - >- | | 0 | <u> </u> | | - a | 0 | 0 | - 8 | - 2 | 0 | 0 | 1460.6 | 9 | | 0 | 1 | | :- - | - - | | 0 | 0 | _ = | | 0 | 0 | | | 0 | 0 | 1460.6 | 9 | | 0 | ╢ | | + | | - 70 | 0 | 0 | | <u> </u> | 0 | 0 | | | 0 | . 0 | 1460.7 | 10 | | 0 | ╫ | | - | | | 0 | 0 | | + + | 0 | 0 | 1 | - | 0 | 0 | 1460.8 | 10 | | . 0 | ┰ | | 7 | | 3 | 0 | Ö | | | 0 | 0 | | - | 0 | . ŏ | 1460.9 | 10 | | ŏ | | | 8 | | 9 | 0 | 0 | Š | 2 | 1 0 | 0 | | | o o | ŏ | 14609 | 10 | | ŏ | -1- | | 9 | ý) | Ž | 0 | ā | e e | | 0 | 0 | | | O | ō | 14609 | 10 | | Ö | 1 | | 0 | æ | | | ا ف | | | L. 0. | | | | 0 | 0 | 14610 | 10 | 6 0.05 | 0 | I | | | | | | 0 | | <u> </u> | 0 | 0 | 14451 | 0 | 0 | 0 | 14610 | 10 | | 0 | _ | | 2_ _ | | | Q | 0 | | | 0 | 0 | 1465.6 | 211 | 10.6 | 0 | 14610 | 1.0 | | 0 | 4 | | 3 | | | - 0 | 8 | | + | 0 | 0 | 14769 | 65.0 | 222 | <u> </u> | 14610 | -10 | | 0 | + | | - | | + | 0 | X | | + | . 0 | 8 | 14772 | 65.0 | 0.8
0.1 | 0.9 | 14611 | 10 | | 8 | | | - | | + | ŏ | 0 | | | 0 | 0 | 14761 | 61.0 | 0.1 | 2.1 | 14611 | 10 | | 8 | ┰ | | ; | | | ŏ | ŏ | | 1 | ŏ | ŏ | 14753 | 572 | 0.1 | 2.1 | 14611 | 10 | | ŏ | ┪ | | · - | | 1 | ŏ | ŏ | | | ŏ | Õ | 1474.4 | 531 | 0.1 | 2.1 | 14611 | 10 | | ŏ | + | | | | 1 | 0 | 0 | | | 0 | 0 | 14735 | 492 | 0.1 | 2.1 | 14612 | 11 | | Ŏ | 1 | | | | | 0 | 0 | | | 0 | 0 | 1472.6 | 45.4 | 0.1 | 2.1 | 14612 | 11 | | 0 | | | | | | 0 | Ö | | - | | | 14716 | 413 | 0.1 | 21 | 14612 | 11 | | 0 | | | OTA. | | | 0 | 0 | | <u> </u> | 0 | 0 | ļ | <u> </u> | 343 | 135 | | | 19 | 172 | | | tt, A | o. Ft. | | | 0 | | | | 0 | | | 6.8.0 | 268 | 1 | | 3.8 | 71 | 1.8 | | Maxia | num
Hy Inflow | 1 | 0 | | | | ٠. ۵ | | | | 222 | ~ | 1 | | 01 | 2.2 | | | Mile | ily latiow | | . 0 | 1 | | | 0 | | ļ | | 0 | | | | 0.05 | - 6 | | | orage | Change | 0 | | | | 0 | | | | +413 | | |] | -30 | | + 11 | | | | | | | | | N | OTE: Gage He | ghts and Stora | ges as of Midnigh | t on Day Show | | | _ | | | 1/4 Yes | | | | S. Elev. | 1477.4 | feet | | | torage 67.6 | | Acre Feet | | | | S COLLECTE | | | COMPUTATIONS | | Det | | | S. Elev. | 1445 ± | feet | | OUS TIMES 8 | | | Acre Feet | | | H. R. W | | Dam Te | | Gage Hts. copied GH | M APK 9/ | /19
/19 | | | ak Inf. | 127 | | S. from 6:00 | | 12/23/45 | to 7:00 A | | 12/23/45 | | C. L. B | REWSTER | Hydrog | | Storage applied GH | M APK 9/ | /19 | | EMA | ak Outf. | 2,1 | C. F. | s. from FOR 7 | DAYS on | 12/25/45 | to | on | 12/31/45 | <u> </u> | | | Hydrog | apher | Inf. & Outf. comp. G | DM APK 9/ | / 26 | | BLM(A | HAS 7 | INDICATES T | OTAL FOR T | raion on the | DATED DATE | AMOUNTS | | | | | | | | | | | | | | | INDICALES | CIAL FOR P | ERIOD OR PRO | KAIED DAILT | WWOON 12 | IVE OAK | Da | | | LO:
FLO | S ANGELE | ON RECO
IS COUNTY
OL PISTRIC
DIVISION | τ | | | | |------|---------------------------------|----------|--------------|---------------|----------------|--------------------|----------------|----------------|--------------------|----------------|------------|-------------|--|------------|---|----------|----------------| | ċ | h Live | Oak Cany | on | | 4 | for the Year | Ending Septe: | mber 30, 19.4 | b. | | | | | | | A., | | | | | | | | | | | | | | | | | _ | ge Recorder | | - | | D | rainage Area. | 2.30 | Square Miles | L Capacity o | Reservoir 22 | 7.5Ac. | Ft. at
Spillwa | ry Elev. 14 | 97OFt. as | of | мау | 1938 Sur | vey Gage Heig | his Read. | .atVario | us limes | s | | Т | | FEBRU | ARY | | 1 | MAR | CH | | 1 | APF | IL | | | MA | Y | | 1 | | } - | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Cago | Acre Ft. | C. F. S. | C. F. S. | - | | `∥ | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outrlow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | | | 1 | 1461.2 | 11.0 | 0 | 0 | 1462.7 | 14.0 | . 0 | 0 | 1469.7 | 341 | 1.1 | 0 | 1471.8 | 421 | 0 | 0 | | | 2 | 14612 | 11.0 | 0 | 0 | 1462.7 | 14.0 | (0.05 | O | 14711 | 393 | 2.6 | 0 | 1471.8 | 421 | 0 | 0 | | | | 1461.7 | 119 | 0.5 | 0 | 1462.7 | 140 | ' 0 | <u> </u> | 1471.6 | 41.3 | 1.0 | 0 | 1471.7 | 41.7 | o | 0 | -4 | | | 1461.7 | 11.9 | (0.05 | <u> </u> | 1462.7 | 14.0 | 0 | 0 | 14719 | 42.5 | 0,6 | 0 | 1471.7 | 41.7 | 0 | | _# | | | 1461.8 | 12.1 | 0.05 | 0 | 14628 | 142 | 0.05 | 0 | 14720 | 429 | 0.2 | 0 | 1471.6 | 413 | 0 | . 0 | _ | | | 14618 | | 0.05 | | 1462.8 | 14.2 | *0 | | 14721 | 433 | 0.2 | ~~~0 | 14716 | 413 | | 0 | 4 | | 7 | 1461.8 | 121 | 0.05 | <u>ŏ</u> | 1462.8 | 142 | - <u>o</u> | 0 | 14722 | 43.7 | 0.2 | Ŏ. | 14715 | 409 | 0 | 0 | | | | 14619 | 123 | 0.05 | 0 | 14628 | 142 | 0 | 0 | 14722 | 43.7 | 0.1 | O
O | 1471.5 | 40.9 | - 0 | 0 | -# | | | 14619 | 123 | 0.05 | 0 | 14628 | 14.2 | 0 | - 0 | 14723 | | 0.1 | 0 | 14/14 | | 0 | 0 | -1 | | | 14620 | | 0.05 | 0 - | 14628 | 142 | 0 | 0 | 14723 | 441 | 0 | 0 | 14713 | 401 | 0 | 0 | -1 | | | 14620 | 12.5 | 0.05 | | 1462.8 | 142 | 0 | ŏ | 14723 | 441 | 0 | Ö | 14712 | 39.7 | | - 8 | | | | | | 10 0 3 | 0 | 14629 | 14.4 | ŏ | Ö | 14723 | 441 | Ö | ŏ | 14712 | 39.7 | ŏ | - 0 | | | | 14621 | 12.7 | 0.05 | <u> </u> | 14629 | 14.4 | Ö | Ö | 14723 | 441 | 8 | ŏ | 14711 | 39.7 | . 0 | <u> </u> | - # | | | 14622 | 12.9 | 0.1 | ŏ | 14629 | 144 | Ö | 0 | 14723 | 441 | ŏ | ŏ | 14711 | 393 | 0 | ŏ | - | | | 14622 | 129 | 0.05 | - ŏ | 14629 | 14.4 | i o | ŏ | 14723 | 441 | ŏ | ő | 1471.0 | 38.9 | ŏ | ö | | | 7# | 14623 | 131 | 0.05 | ŏ | 14629 | 14.4 | Ö | ŏ | 14723 | 441 | š – | ŏ | 1471.0 | 38.9 | ö | ŏ | | | | 14623 | 131 | 0.05 | ŏ | 14629 | 14.4 | ŏ | ŏ | 14723 | 441 | ö | ŏ | 14709 | 38.5 | ŏ | ŏ | -1 | | | 14623 | 131 | 0.05 | ŏ | 1463.0 | 14.6 | 10.05 | ŏ | 14723 | 441 | - 8 | Ö | 14709 | 38.5 | 0 | ŏ | -1 | | | 14624 | 13.3 | 0.05 | | 14630 | 14.6 | 0.05 | ŏ | 14722 | 43.7 | ŏ | ŏ | 14708 | 382 | 7 | 8 | - | | | 1462.4 | 133 | 0.05 | Ö | 1463.0 | 14.6 | 0 | 0 | 14722 | 43.7 | ă | ŏ | 14708 | 382 | ŏ | ŏ | 1 | | | 14625 | | 0 0 | ŏ | 1463.0 | 14.6 | Ö | Ö | 14722 | 43.7 | ŏ | ō | 1470.7 | 37.8 | ŏ | ŏ | | | | 14625 | | 0.05 | Ö | 1463.0 | 14.6 | ō | ŏ | 14721 | 433 | ŏ | ŏ | 14707 | 37.8 | ŏ | ŏ | - | | | 14625 | 13.6 | 0 7 | ŏ | 14630 | 14.6 | ŏ | Ŏ | 14721 | 433 | ŏ | ŏ | 14706 | 374 | × 0 | ŏ | | | 1 | 1462.6 | 13.8 | 0.05 | ō | 14630 | 14.6 | 0 | Ö | 14721 | 433 | ŏ | Ö | 1470.5 | 374 | ō | 0 | -1 | | ٦ľ | 1462.5 | 13.8 | 0 | 0 | 1463.0 | 14.6 | 0 | 0 | 1472.0 | 429 | 0 | Ó | 14705 | 371 | 0 | 0 | | | | 1462.6 | 13.8 | 0.05 | 0 | 14630 | 14.6 | 0 | 0 | 1472.0 | 42.9 | 0 | Ō | 14704 | 36.7 | 0 | 0 | 7 | | | 1462.7 | 14.0 | lo | Ō | 1463.0 | 14.6 | Ŏ. | 0 | 14719 | 42.5 | Ó | 0 | 14704 | 36.7 | 0 | Ö | \neg | | 1 | | | | | 1463.0 | 14.6 | .0 | Ó | 14719 | 42.5 | 0 | 0 | 14703 | 363 | 0 | 0 | \exists | | 10 | | | | | 14673 | 26.1 | 5.8 | 0 | 1471.9 | 42.5 | 0 | 0 | 14702 | 359 | 0 | 0 | | | JL | ` . | | | | 14691 | 32.0 | 3.0 | 0 | L | | | | 14702 | 359 | 0 | 0 | | | OT. | | | 1.5 | 0 | <u> </u> | | 9.1 | 0 | ļ | l | 5.1 | 0 | | | 0 | 0 | -1 | | | c.Ft. | | 3.0 | 0 | ļ | | 18.0 | 0 | ! | | 121 | 1 12 5 | | | 0 5 | 10 | | | Die | lanum. | | 0.5 | u | l ————— | | | | I | | | 1 61 | | 0 + | | 60.9 +(8 | | | MI. | ally laflew | | 0.5 | | | | 5.8 | | l | | 2.5 | | | | 0 | | <u>2</u> . | | er I | mum
bally inflew
e Change | . 3.0 | | | l | 100 | | | l | + 105 | | | | | | + 3 | | | rag | a custiga | + 3.0 | | | <u> </u> | - 18.0 | TE: Gage Hele | rhts and Store | ges as of Midnight | | m | | <u> 5</u> | -6.6 | | + 3 | | | | 7 C W | | feet | | | | Gege Hei | Acre Feet | - as or seronigh | - on Day ishow | | s collecter | DV | 1 600 | CONTRACTOR OF THE PROPERTY | | ALC: YES | | | V. S. Elev. | 1477.4 | feet | on 12 | | Fage 67.6 | | Acre Feet | | - | H. R. V | | Dam T | | PUTATIONS
Hts. copied G | ckd. | Di
719 | | | oak Inf. | 1445 ± | | S. from 6:0 | IOUS TIMES Sto | | to 7.00 t | | 12/22/45 | | | REWSTER | Hydrog | | age applied G | | 719 | | | eak Outf. | 127 | C. P. | S. from FOR 7 | DAVE OF | 2/23/45
2/25/45 | to 7:00 A | | 12/23/45 | | | ANCHO LER | Hydrog | | & Outf. comp. | | | | | ARKS | 2.1 | Ç. F. I | - HON-LOK / | DATS OF 12 | 2/25/45 | | | 14/31/45 | <u></u> | | | nyarog | eher t mr. | и опц. Сопро- | / K 9/ | / 20 | | | ~ | | | | | | | | | | | | | | | | | # LIVE OAK (contid) | | Daily Gage Hel | | d Operation F | lecord of | | LLYE | DAK | De | m | | LC | OS ANGELES | | | | | |----------|-----------------------------------|---------------------|--------------------|---------------------|----------------|---------------------|--------------------|---------------------|------------------|---------------------|--------------------|-------------------------|---------------|---------------------------------|---------------------|----------| | 1 | | | | | | | Ending Sept | ember 30, 19) | 46 | | | OD CONTROI
DRAULIC I | DIVISION | | | | | i | | | | | | | | | | | | | | ater Stage Recorder. | | | | | Drainage Area | | | a Capacity of | f Reservoir22 | | | way Elev | 37.0Ft. as | | | . 19.38 Surve | Gage Heights. | Read at veriou | s.times. | | | à | | | NE | , | | | ILY | | | AUG | | | | SEPTEMBER | | - } | | Å | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | re Ft. C. F. S.
orage Inflow | C. F. S.
Outflow | | | 1 | | 35.6 | 0 | | 1445.0 | | 0 | 0 | | | 0 | 0 | | | 0 | _ 1 | | 2 | 14700 | 35.2 | 0 | 0 | | | 0 | 0 | | + | 0 | 0 | | | 0 | 2 | | 1 | 1469.8 | 34.5 | 0 | 0 | | | 0 | 0 | | 1 | ŏ | i š | | | 0 | - 1 | | 5 | 1469.8 | 345 | Ö | 0 | | | 0 | Ŏ | | | Ö | Ö | | ŏ | 0 | 5 | | 6 | 1469.7 | 341 | 0 | 0 | | | 0 | 0 | | | 0 | 1 0 | | 0 | 0 | - 6 | | 7_ | 1469.6 | 338 | 0 | 0 | - | | 0 | 1 0 | | + + | <u> </u> | 0 | | 0 | 0 | 7 | | 8 | 14695 | 33,4 | 0 | 0 | | | 0 | 0 | } | | 0 | 0 | | 0 | 0 | s | | 10 | 14693 | 330 | 0 - | 8 | | 9 | 0 | 1 0 | | | ŏ | 1 ŏ 1 | | | 0 | 10 | | 11 | 1468.8 | 309 | 0 | 0.6 | | | 0 | 0 | i - | | ŏ | io | | Ö | ŏ | 11 | | 12 | 14679 | 28.0 | 0 | 1.0 | [| ₹ | 0 | 1 0 | | | O |) 0 | | Ō | 0 | 12 | | 13 | 1467.0 | 25.1 | | 1.0 | | Ŝ | | Q | | - | 0 | 0 | | 0 | 0 | 13 | | 14 | 14661 | 22.5 | _ 0 | 10 | | | 0 | 0 | <u> </u> | + | 0 | <u>0</u> | - É - | y 8 | 0 | 14 | | 18 | 14651 | 19.8 | <u> </u> | 10 | | | 0 | 0 | | li i | 0 | 0 | | | - 8 | 15
16 | | 16
17 | 1464.0 | 169 | 0 | 1.0 | ł | | 0 | 0 | | - 8 | 0 | 0 | - | 0 3 | - 0 | 17 | | | 14619 | 123 | 0 | 1.0 | 1 | | . 0 | 0 | - | + 5 | ŏ | ŏ | - | 0 | 0 | 18 | | 19 | 1460.7 | 101 | 0 | 1.0 | | | Ö | Ö | S | 9 | Ö | Ō | 88 | 2 0 | Ö | 19 | | 20 | 14595 | 8.2 | 0 | 1.0 | | | 0 | 0 | 쮼 | | 0 | 0 | ш. | 0 | 0 | 20 | | | 14581 | 6.2 | 0 | 1.0 | ļ | | . 0 | 0 | | | 0 | 1 0 | | | 0 | 21 | | | 14566 | 4.5 | 0 | 8. O
8. O | l | | 0 | 0 | | <u> </u> | 0 | 0 | | <u> </u> | 0 | 22
23 | | | 14549 | 3.0
1.7 | 0 | 0.6 | l | | 0 | 0 | <u> </u> | | 0 | 8 | | - 0 | - 8 | 24 | | | 14500 | 0.6 | 0 | 0.6 | | 4 | 0 | 0 | | | ŏ | ŏ | | - 0 | ŏ | 25 | | | 14453 | | 0 | 0.3 | | 150 | 0 | 0 | | | 0 | 0 | | 0 | 0 | 26 | | 27 | 1445.0 | | 0 | 0.2 | | | Q | 0 | | | 0 | 0 | | 0 | 0 | 27 | | | 1445.0 | | 0 | 0.1 | | | | - 9 | | | 0 | 0 | | . 0 | 0 | 28 | | | 1445.0 | | 0 | 0 | ļ | | 0 | 0 | ļ | | 0 | 0 | + | 8 | 0 | 29 | | 30 | 1445.0 | - | | | | | 0 | 0 | | 1 | - ö | + 8 - | | | | 30 | | TOT | 'AI. | | 0 | 14.0 | | | , ŏ | 1 0 | | 1 | ō | 1 0 h | | 0 | 0 | - 101 | | Inf. A | c. Ft. | | . 0 | | | | Ó | | | | 0 | | | 0 | | 4.9 | | Outf. | Ac. Ft.
claum
Dally Inflew | | | + (8.1) | ļ | | | | | | | 0 - | | <u>o</u> | 88.7+(16. | | | | | | 0 | | | | 0 | | - - | | 0 | | | | 2 | 2.2 | | Store | laum
Bally laflow
zo Change | -359 | 0 | | ļ | | | | | 0 | | | | n 0 | | 0 | | Smisi | 50 cuanto | 1-223 | | | | No. | OTE: Gage He | ights and Storag | es as of Midnigh | at on Day Shown | | | | <u> </u> | | y Totals | | Max. V | W. S. Elev. | 1477.4 | feet | on 12 | /25/45 Sto | rage 67.6 | | Acre Feet | | T | | S COLLECTED B | Y | COMPUTATIONS | ckd. | Date | | | V. S. Elev. | 1445 ± | feet | on VAR | IOUS TIMES Sto | rage O | | Acre Feet | | | H. R. 3 | WHISLER | Dam Tender | Gage Hts. copied | | 5/8/47 | | | Peak Inf. | 127 | C. F. | S. from 6:00 | A.M. on | 12/23/45 | to 7:00 | A.M. on | 12/23/45 | | | BREWSTER | Hydrographer | | APK | ~~~ | | | Peak Outf. | 2.1 | C. F. 1 | S. from FOR 7 | DAYS on | 12/25/45 * | to | | 12/31/45 | <u> </u> | | | Hydrographer | Inf. & Outf. comp. | | | | REM | ARKS () I | NDICATES TO | TAL LOSS DL | JE IO EVAPO | RATION AND PE | RCOLATION | • | - · • · · | | | | OAK Soute | | | | LO
FLO | S ANGELI | ION RECO
ES COUNTY
OL DISTRIC
DIVISION | т. | | | | |---------------------------|--|-------------|---|---
--------------|---------------|----------------|-------------------|-------------|----------------|----------------|---|-------------|------------------|--------------|------| | On | ····********************************** | ×.11 | *************************************** | *************************************** | tor the 1ear | Ending Sepie | mper 30, 199 | 1. | | | | Continuo | W.t 9t | age Recorder | Δu | | | | | | | | | | | | | | _ | | | | | | | Drainage Are | 2.30 | Square Mile | L Capacity o | f Reservoir227 | | Ft. at Spillw | ry Elev!.4 | 27.0Ft. as | of | мау , | 19.38. Sur | ey Gage Hei | ghis Read. | at variou | atimes | | | | осто | BER | | ı | NOVEN | ABER | | | DECE | MBER | | | JANU | JARY | | 1 | | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | - | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Shorage | Inflow | Outflow | ĺ | | 1445 0 | | 0 | 0 . | 14450 | | 0 | 0 | 1466.6 | 239 | (0.05 | 0 | 1469.4 | 330 | ro .1 | 2.0 | + | | | 1 | 0 | 0 | | | 0 | 0 | 1466.5 | 23.7 | 0.05 | Ö | 14683 | 293 | 01 | 2.0 | -1 | | | | 0 | 0 | | | 0 | 0 | 14665 | 23.7 | 0.05 | O | 1467.0 | 251 | 0.05 | 2.0 | 7 | | | | 0 | 0 | 1 | | 0 | 0 | 14665 | 23.7 | 0.05 | Ō | 1465.7 | 21.4 | 0.05 | 1.9 | | | | | O . | Ō | :[| | 0 | 0 | 1465.4 | 23.4 | 0.05 | 0 | 14642 | 174 | 0.1 | 1.9 | 1 | | 1 | 1 | 0 | ō | 1 | | 0 | 0 | 14665 | | 0.2 | 0 | 14625 | 13.6 | 0.05 | 1.8 | 7 | | - | T | o l | ō | 1 | | 0 | 0 | 14664 | 23.4 | 01 | Ö | 1460.6 | 9.9 | 101 | 1.8 | -† | | | | o o | ŏ | 1 | | 0 | o i | 14664 | 23.4 | 0.1 | 0 | | | | | 1 | | ļ | | 0 | 0 | i | | 0 | ŏ | 14664 | 23.4 | 01 | 0 | 14592 | 7.7 | LO .0.5 | 1.2 | | | | | ŏ | 0 | 1 | | ŏ | ŏ | 14663 | 231 | 0.1 | 0 | 14594 | 8.0 | 101 | <u> </u> | -{ | | | | 0 | | | | 0 | | | | | | 1459.6 | 8.3 | 0.1 | 0 | | | · | | | 0 | 1 | | | 0 | 1466.3 | 231 | 0.05 | Ω | 1459.7 | 8.5 | 0.1 | ļ <u>o</u> | -# | | | | 0 | <u> </u> | ļ ——— | | 0 | 00 | 14663 | 231 | 0.05 | 0 | 14598 | 8.6 | 01 | 0 | | | | a | | 0 | ļ | | 0.1 | 0 | 14663 | | 0.05 | . 0 | 14600 | 8.9 | 101 | 0 | _ | | | 9 | 0 | 0 | | | 0.1 | 0 | 14663 | 231 | 0.05 | 0 | 14601 | 9.1 | 101 | 0 | Н | | <u> </u> | | _ 0 | ٥ | | | 0 | | 14662 | 22.8 | 0.05 | 0 | 14601 | 91 | 0.1 | . 0 | _ | | | | 0 | 0 | | | _ 0 | 0 | 14662 | 22.8 | 0.05 | 0 | 14602 | 9.2 | 0.1 | 0 | П | | > | in | 0 | 0 | J | | 0 | 0 | 14662 | 8.55 | 0.05 | 0 | 14603 | 9.4 | 101 | 0 | ~ | | - 0 | U | 0 | 0 | | | 0 | 0 | 14662 | 22.8 | 0.05 | 0 | 14604 | 9.6 | 01 | 0 | -1 | | - O | Z | o | ō | 1445.0 | 0 | 0 | ō | 14662 | 8.55 | 0.05 | 0 | 14604 | 9.6 | 101 | 0 | 1 | | ~ | 1 | 0 | 0 | 1463.0 | 14.6 | 7.5 | 0 | 14661 | 22.5 | 0.05 | 0 | 14605 | 9.8 | 0.1 | ō | -1 - | | · | 1 | 0 | | 1463.0 | 14.6 | 0.1 | ō | 14661 | 22.5 | 0.05 | ō | 1460.6 | 9.9 | 01 | ŏ | ┰ | | ļ —— | 1 | o l | ŏ | 14629 | 14.4 | 0 | ă - | 14661 | 22.5 | 0.05 | - ŏ | 1460.5 | 9.9 | 101 | | 1 | | | + | ŏ | ŏ | 1465.4 | 30.6 | 3.2 | ŏ | 14661 | 22.5 | 0.05 | - | 1460.7 | 101 | 1 0 1 | | - - | | | | ŏ | ŏ | 14663 | 231 | 1.3 | - 0 | 14661 | 22.5 | 102 | - | | | | | + | | ļ | + | - 6 | 0 | 1466.6 | 23.9 | 70.6 | | 14665 | | | | 1460.7 | 101 | 0.1 | 0 | | | | | | | | 239 | 0.2 | | | | 0.7 | <u>o</u> | 1460.7 | 101 | 0.1 | 0 | | | | | 0 | Q | 1466.6 | | | | 1469.6 | 338 | 5.2 | | 1460.8 | 103 | 0.1 | 0 | 4 | | | ļ | 0 | <u> </u> | 1466.7 | 242 | 0.1 | . 0 | 1470.7 | | 21 | <u> </u> | 1460.8 | 103 | 0.1 | 0 | _ | | ļ | | 0 | <u> </u> | 1466.6 | 23.9 | 0.1 | 0 | 14714 | 40.5 | 1.5 | 0 | 14611 | 10.8 | 0.1 | Ō | _[| | | ļ | Q. | 0 | 1466.6 | 239 | 0.05 | <u> </u> | 14719 | 42.5 | 1.1 | 0 | 14611 | 10.8 | 0.1 | 0 | | | | | 0 | 0 | 1466.6 | 239 | (0.05 | 0 | 14714 | 405 | 0.5 | 1.4 | 14612 | 11.0 | 0.1 | 0 | 7 | | | | 0. | 0 | | | | | 14705 | 371 | 0.5 | 2.1 | 14612 | 11.0 | 101 | 0 | 7 | | TAL | | 0 | 0 | | | 134 | 0 | | | 133 | 3 .5 | '1 | | 2.9 | 14.6 | 7 | | Ac. Ft. | | 0 | | | | 26.6 | | | | 26.4 | | 1 | | 5.8 | 5.8 | ā. | | . Ac. Ft. | | | 0 | | | | (8.8) | | | | (6.1) | | 290 | L (3.0) | 35.9+(11.9) | | | laximum
t Dally Inflaw | | 0 | | l . | | 7.5 | | | | 5.2 | | | ~ .0 | | | 7 | | inimum
Dally Inflow | 1 | 0 | | | | 0 | | | | 0.05 | | | | 0.05 | 6 | | | age Change | 1 0 | | | l | 1 235 | | | | 132 | | | | 261 | 0.05 | | | | | · | | | <u> </u> | NO | TE: Gage Heig | hts and Storag | te as of Midnight | on Day Show | m | | !! | | | + 11 | | | W. S. Elev. | 470.0 | feet | 00 104 | 00.440 540 | | | Acre Feet | | | | COLLECTE | DV | 1 20 | MINTER | | 1 | | | 472.0 | feet | on 12/ | | | | Acre Feet | | | | | | | MPUTATIONS | ckd. 1 | Da | | | 445 ± | | | | | 1, | | | | H. R. WHISLER | | Dam Te | noer Ga | ge Hts. copied J | L APK 10/22/ | /4 | | Peak Inf. | 25.4 | | S. from 11:00 | | 1/20/46 | to 1:00 F | M. on | 11/20/46 | | C. L. BREWSTER | | | | orage applied 5 | L APK | | | . Peak Outf.
MARKS | 2.1 | | S. from | | | to | | | | | | Hydrogr | apher Inf | & Outf. comp | L APK 10/2 | 24 | | | | | | ORATED DAILY | | | | | | | | | | | | | # LIVE OAK (contid) | r. c. bu | . Form 65B Ravised | 301 11/44 | | | | | | | | | | | AV 5560 | | | | — | |----------|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|------------------|-------------------|----------|----------------|------------|---------------|-------------|------------------|-------------|---------------| | | | | | | | | | | | | | | ON RECO | RD | | | | | ļ | ally Gage Heig | ht in feet an | d Operation R | ecord of | | LIVE | DAK | Dan | n. | | | | S COUNTY | _ | | | - | | | | | | | | | | | | | | | OL DISTRIC | | | | - | |) 1 | ■ Live 0 | ak Canyo | D | | f | or the Year I | Inding Septe | mber 30, 19.4 | 7. | | HYL | RAULIC | DIVISION | 4 | | | i i | | 1 |)n | | | | | | | | | | | | Continuo | us Water St | age Recorder | Au | î | | ١. | | 2 20 | C Wil-s | Conneiter of | Reservoir22 | 7 5 301 | F4 at Collins | w Flow 1310 | 7 0 Ft | of | Mav | 10 38 Sur | YEV Game Well | L. Rea | d at vario | us times | ļ | | 1 | rainage Area | 2.30 | Square Muel | . Capacity of | Neser volt && | | | KA DISAT THE | (.e.U | | | 1590 | Gage Men | | | | | | | | FEBRU | JARY | | | MARG | CH | | | APR | IL | | i | M | AY | | ₂₀ | | â | Gage | Acre Ft. | C. F. B. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage . | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. B. | 8 | | 1 1 | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Helght | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | | | 1 | 14613 | 112 | [0.1 | | 1462.0 | 125 | ro .0 5 | 0 | 14619 | 123 | 0 | | 14608 | 103 | 0 | 0 | ┼ ┆│ | | 2 | 1461.4 | 114 | 0.1 | | 1462.0 | 12.5 | 0 | 0 | 1461.9 | | 0 | <u> </u> | 1460.7 | 101 | 9 | 0 _ | + ′, | | 3 | 1461.4 | 114 | 0.05 | <u> </u> | 1462.0 | 12.5 | 0.05 | 0 | 14619 | | 0 | 0 | 1460.7 | 101 | - 8 | 0 | +: | | 3- | 14615 | 11.6 | 0.05 | 9 | 1462.0 | 12.5 | 0.05 | ŏ | 1461.8 | | ŏ | 0 | 1460.5 | 9.8 | ŏ | 0 | - 5 | | 6 | 1461.6 | 11.7 | 0.15 | 0 | 14621 | 12.7 | 0.05 | 0 | 1461.8 | | 0 | 0 | 14605 | 9.8 | 0 | Ö | 8 | | 7 | 1461.6 | 11.7 | 0.05 | 0 | 14621 | 12.7 | 0.05 | Ö | 1461.8 | | Ö | 0 | 14604 | 9.6 | Ō | ō | 7 | | 8 | 14617 | 11.9 | 0.05 | 0 | 14621 | 12.7 | 0.05 | 0 | 1461.7 | | | ō | 14604 | 9.6 | 0 | 0 | T 8 | | 9 | 1461.7 | 11.9 | 0.05 | 0 | 14621 | 12.7 | 0.05 | 0 | 1461.7 | | 0 | 0 | 14603 | 9.4 | 0 | 0 | - | | 10 | 14618 | 121 | 0.1 | | 14621 | 12.7 | 0.05 | 0 | 1461.7 | 119 | _ م | | 14602 | 9.2 | <u> </u> | <u> </u> | 10 | | 11_ | 14618 | 12.1 | 0.05 | | 1462.1 | 12.7 | 0.05 | 0 | 1461.6 | | 0 | 0 | 14601 | 9.1 | 1 0 | 0.7 | 13 | | 12
13 | 14618 | 121 | 0.05 | 0 | 14621 | 12.7 | 0.05 | 0 | 1461.6 | | 0 | 8 | 14592 | 7.7
5.6 | 0 | 1.0 | 13 | | 14 | 1461.8 | 12.1 | 0.05 | 0 | 14620 | 12.5 | 0.05 | 0 | 1461.5 | | Ö | Ö | 14578 | 3.7 | 0 | 0.0 | 14 | | 15 | 1461.9 | 123 | 0.05 | | 1462 0 | 125 | 0.05 | 0 | 1461.5 | | ŏ | 0 | 14536 | 2.1 | 0 | 0.8 | 15 | | 16 | 1461.9 | 12.3 | 0.05 | õ | 14620 | 12.5 | 0.05 | 0 | 14615 | | 0 | 0 | 1450.7 | 8.0 | 0 | 0.7 | 16 | | 17 | 1462 0 | | 0.05 | 0 | 1462 0 | 12.5 | lò | 0 | 14614 | | 0 | 0 | 14453 | | _ 0 | 0.3 | 17 | | 18 | 14620 | 12.5 | 0.05 | | 14620 | 12.5 | | 0 | 14614 | | 0 | 0 | 14453 | | 0 | Q | 18 | | 19_ | 14620 | 12.5 | 0.05 | | 14620 | 12.5 | 0 | <u> </u> | 14613 | 112 | 0 | 0 | | | 0 | 0 | 19 | | 20 | 14620 | 12.5 | 0.05 | | 14620 | 125 | 0.05 | 0 | 14613 | | 8 | , o | <u> </u> | | 0 | 0 | 20 | | 21
22 | 14620 | 12.5 | 0.05 | - 8 | 14620 | 12.5
12.5 | 0.05 | <u> </u> | 14613 | 110 | - 8 | 0 | · | | 1 0 | 0 | 22 | | 23 | 1462.0 | 12.5
12.5 | 0.05 | | 1462.0 | 12.5 | 10 | ŏ | 14612 | | ŏ | ŏ | 1 | - 8 | ŏ | ŏ | 23 | | 24 | 1462.0 | 12.5 | 0.05 | | 14619 | 123 | ŏ | ŏ | 14611 | | ō | ŏ | 1 | | Ŏ | Ŏ | 24 | | 25 | 1462.0 | 12.5 | 0.05 | ō | 14619 | 123 | lo | 0 | 14611 | | 0 | 0 |] |) | 0 | . 0 | 25 | | 26 | 1462.0 | 12.5 | 0.05 | 0 | 14619 | 123 | 0 | 0 | 1461.0 | | 0 | 0 | | 60 | <u> </u> | 0 | 26 | | 27 | 1462.0 | 125 | 0.05 | 0 | 14619 | 12.3 | 10 | 0 | 1461.0 | | 0 | <u> </u> | | v v | _ 0 | 0 | 27 | | 28 | 1462.0 | 12.5 | LO .0.5 | 0 | 14619 | 123 | <u>o</u> | 0 | 1460.9 | | 0 | 0 | | | 0 | 0 | 28 | | 29 | | | | | 14619 | 123 | 8 | | 1460.8 | 10.4 | - 6 | 0 | ł | | + 8 - | 0 | 30 | | 30
31 | | | | | 14619 | 123 | | - 6 - | | 100 | | | | | ~~ | - ŏ - | 31 | | TO | 'AT, | | 1.6 | 0 | * 40 * | | 0.8 | Ö | | | 0 | 0 | 1 | | 1 8 | 4.4 | 1 | | Inf. A | c. Ft. | | 3.2 | | | | 1.6 | | | | 0 | | | | 0 | 6.3 | 5.6 | | | Ac. Ft. | | . 0 | (1.5) | | | 0+ | (1.8) | | | | + (20) | | 8.7 | + (16) | 44.6+(18 | | | Mean | Daily laflow | | 0_1 | | | | 0.05 | | | | 0 | |
<u> </u> | | | | 7.5 | | Maan | imum
Dally Inflow | | 0.05 | | | | _ 0 | | | | 0 | | 1 | | 0 | 0 | | | Store | ge Change | + 1.5 | | | <u> </u> | - 0.2 NO | TH: Gare Hei | chts and Storas | es as of Midnight | - 2 0 | n | | Ų | -103 | | O % Year | | | 76 | O Bless | | feet | OD 10 | (00 (40 Sto | rage A2 | | Acre Feet | | 1 | | S COLLECTE | RY | Loc | MPUTATIONS | | Date | | | | 72.0
45 ± | feet | | 30/46 Sto | | 1 | Acre Feet | | 'n | R. WHISLER | | Dam T | | ge Hts. copied | JHL APK 10/ | | | | | 25.4 | | | 00 A.M. on | 11/20/46 | to 1:00 | PM on | 1/20/46 | | L. BREWSTE | | Hydrog | rapher St | orage applied | JHL APK ' | ,, | | Max. | Peak Outf. | 2.1 | C. F. | S. from | on | 12/30/46 | | on | | | | | Hydrog | rapher In | f. & Outf. comp. | JHL APK 10/ | /24/47 | | REN | LARKS [| | | | RORATED DAILY | | | | | | | | | | | | | | | | INDICATE | S LOSSES DU | E TO PERCOL | ATION AND EV | APORATION | Dan | | | LC
FLO | DPERATI
S ANGELE
DD CONTR
DRAULIC | S COUNTY | CT | | | | |---------------|---------------------|----------|---------------|-------------------------|--------------|-------------------|--------------|-----------------|-------------------|--|-----------|--|----------|--|-------------------------------|-----------|---------------| | In
Or | Live Oa | k Canyon | | | | for the Year | Ending Sept | ember 30, 19! | Ϊζ | | | | | | age Recorder | Δu | | | | | | | | | 227 6 . | F | | 7.0 | | | 39 Surv | | | at variou | | | | Dr | ainage Area | | | . Capacity of | Heservoir | .с.г., уАс.
JU | | AY Elev. | ri. as | | UST | 19 | Gage He | | EMBER | S.LIMES. | _ | | L | | Acre Ft. | C.F.B. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C.F.S. | C. F. S. | - | | 1 | Gage
Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outriow | | | L | 14450 | | 0 | 0 | | | . 0 | . 0 | | | 0 | 0 | | | 0 | 0 | \Box | | L | | | 0 | 0 | | - | 0 | 0 | | | 0 | 0 - | ļ | | .0 | <u> </u> | - | | ⊬ | | L | | 0 | | | 0 | 0 | | ļ | 0 | 9 | | | - 0 | 0 | \dashv | | 1- | | | 0 | 0 | | 1 | 0 | 0 | | l | 0 | 0 | ļ | | ň | Ö | - | | H | | | 0 | 0 | | | 0 | ó | | | 0 | 0 | | 1 | 0 | 0 | _ | | r | | | 0 | ŏ | | | 0 | Õ | | | O. | 0 | | | ō | 0 | _ | | - | | | o | o l | | | 0 | 0 | | | . 0 | . 0 | | 1 | 0 | 0 | _ | | | | | 0 | 0 | | _ | 0 | 0 | | <u> </u> | | 0 | <u> </u> | 1 | | 0 | | | L | | | | | | | | <u> </u> | | | <u> </u> | | <u> </u> | + | <u> </u> | <u> </u> | | | _ | | | o | 0 | | | 0 | <u> </u> | | <u> </u> | 9 | 0 | | | 0 | 0 | | | ŀ | | <u>e</u> | ŏ | 0 | - | | 0 | , o | | | | 0 | | | 9 | 8 | _ | | - | | | 0 | - 0 | > | 1 | 0 | 0 | | | 0 | 0 | | | 0 | 0 | _ | | - | | | Ö | 0 | | 3 | 0 | 0 | | 0 | 0 | n | = | 0 | 0 | 0 | _ | | H | | - | 0 | o d | | | · 0 | ő | | E . | 0 | O | | 10 | 0 | 0 | _ | | Г | | 9 | 0 | õ | | 0 | 0 | . 0 | . <u></u> | - 5 | 0 | 0 | <u>-</u> | | Ō | Ò | | | | | | 0 | | <u> </u> | (V) | 0 | 0 | 9 | +1 | 0 | 0 | 9 | - # | 0 | . 0 | | | L | | Ď. | 0 | 0 | <u> </u> | 2 | 0 | 0 | | | 0 | 0 | | - | <u> </u> | 0 | _ | | L | | - a | <u> </u> | | <u> </u> | | 0 | <u> </u> | - 8 | ¥ | 9 | 0 | <u> </u> | <u> </u> | - 8 | 0 | _ | | L | | - + | ŏ | <u> </u> | <u> </u> | - | 0 | 0 | <u>=</u> | | 0 | 0 | ~ | | - 8 | - 6 | _ | | | | · · | 0 | - 0 | | | 0 | - 0 | | | 8 | 0 | | + | 1 6 | 0 | _ | | ⊩ | | | 0 | 0 | l | | 0 | 1 8 | | | ŏ | 0 - | | + | 1 0 | ŏ | | | #- | | | | 0 | | | Ö | 3 | | | ŏ | ŏ | 1 | 1 | Ŏ | 0 | - | | 1 | | | 0 | 0 | [| | 0 | 0 | | | 0 | 0 | | | 0 | 0 | _ | | Т | | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | _ | | | | | 0 | 0 | | | 0 | ļ 0 | | | 0 | 0 | <u> </u> | | 0 | 0 | | | - | | | 0 | <u> </u> | | | 0 | <u> </u> | | | 0 | 0 | . | ļ | 0 | 0 | _ | | 1- | | | | 0 | } | ļ | 9 | 9 | | | 0 | 0 | ļ | | + | | _ | | TA | | | 0 | 0 | | | 0 | 0 | | | 0 | | | + | - 0 | - | _ | | Ac. | | | 0 | | | | - 0 | | | | 0 | <u> </u> | | · | - 6 | 63 | 5 | | . A | . Ft. | | | 0 | | | | - | | | | 0 | | | 0 | 44.64 | | | texir
n De | lly tatlew | | | | | | 0 | | ļ | | O | | | | | | 7. | | linin
De | um
Ily Inflow | | 0 | | | | <u> </u> | | | | . 0 | | ļ | | 0 | 0 | | | age | Change | 0 | | | l | 0 | OTTO CARE TO | dobts and Steer | es as of Midnigh | O Thou | | | <u> </u> | 0 | | Yearly | | | | | | | | | | | | tes es or midnigi | COLDEN SDOW | | S COLLECTED | N DEF | 1~ | N/TW III 1 TWO | | 2.19 | | | S. Elev. | _1472.0 | feet | on 12 | | torage 42. | | Acre Feet | | l | | | | | OMPUTATIONS uge Hts. copied J | | Į. | | | S. Elev.
ak Inf. | 1445 ± | feet
C F 1 | on PAR
B. from 11:00 | T OF YEAR S | 11/20/46 | | | 11/20/46 | | R. WHISLE | | | | orage applied | HL APK 10 | 4 | | | ak Outt. | 25.4 | | B. from | | 12/30/46 | to | on on | 11/20/40 | ٠. | L. DKENS! | .n. | | grapher In | f. & Outf. comp. | HL APK 10 | // | | | RKS (| | TES LOSSES | | | | | | | | | | | | | 10 | | ### THOMPSON CREEK | | ight in feet an | | lecord of | | THOMPSON | | De | | | LO
FLO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | | |-------------------|--|--------------------|---------------------|----------------|--|--------------------|---------------------|--|---------------------|--------------------|---------------------|---|---------------------|---------------------|---------------------|-----| | Thon | . F. T. I | K.i | | | .xor me 1 ear | reaming pebie | mper 30, 19.7 | × | | | | Continuo | us Water Sta | age Recorder | None | | | rainage Area | 3.5 | Square Mile | a. Capacity of | Reservoir6 | 2.3 Ac. | Ft. at Spillw | ey Elev18 | 34.8Ft. as | ofJa | оц <i>агу</i> | 19.43 Surv | ey Gage Hel | hts Reg | d at vari | ous time: | 8 | | | OCTO | BER | 1 | | NOVE | MBER | | 1 | DECEM | IBER | | 1 | JANU | TARY | | 1. | | Gage
Height | Acre Ft.
Storage | C. F. E.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | 1 | | | | 0 | . 0 | | | 0 | 0 | | | 0 | 0 | 1598.6 | 76.8 | 0 | 0 | I | | | | . 0 | <u> </u> | | | <u>ŏ</u> | 9 | ļ | | <u> </u> | . 0 | 1598.4 | 75.6 | 0 - | 0 | F | | | | 0 | - 0 | - | | 0 | 8 | l | | 0 | Ö | 15981
15979 | 73.7 | + - 6 - | - | ╁ | | | | ŏ | ŏ | | | ň | 1 6 | | | ŏ | ŏ | 15977 | 713 | <u> </u> | 0 | ╫ | | | t | Ö | ō | | | 0 | Ö | | e e | ō | Ö | 15975 | 701 | Ö | Ô | ╢ | | | | 0 | 0 | | | Q | 0 | | ď | Ó | Q | 15972 | 68.3 | 0 | 0 | JE | | | | Q | 0 | | | . 0 | 0 | | ō | 0 | δ | 1597.0 | 671 | 0 | 0 | | | | ļ | 0 | 9 | | | o o | 0 | ° | č | 0 | 0 | 1596.7 | 65.4 | 0 | Ŏ | 1 | | | ļ | 0 | 8 | | | 0 | 0 | | 2 | 0 | 0 | 15965 | 642 | 0 | 9 | Ŧ | | | ├── | 0 | 8 | | | 0 | - 8 | | _ z | 0 | 0 | 15962 | 62.5 | 0 | - 3 - | ╫ | | 5 | | ŏ | ă î | | · · | i ŏ | ŏ | ~ | | ŏ | ŏ | 1595.8 | 60.2 | ŏ | ă- | # | | - | | 0 | ŏ | | 8 | Ŏ | ŏ | | | ŏ | Ö | 15955 | 58.5 | Ö | ŏ | 1 | | | <u> </u> | 0 | . 0 | | 2 | 0 | O. | | | o _ | Ō | 15952 | 56.8 | 0 | _ 0 | 1 | | | 0 | 0 | 0 | 0 | - - - | Q | 0 | | | O | 0 | 1595.0 | 55.7 | 0 | 0 | J | | <u>.</u> | Ś | 0 | Q | - | | 0 | 0 | ļ | | o | 0 | 1594.8 | 54.6 | 0 | Q | JC. | | <u> </u> | - | 0 | 0 | <u> </u> | 2 | 0 | 8 | | | <u> </u> | <u> </u> | 1594.6 | 535 | 0 | 8 | ₽ | | <u> </u> | - - | 0 | 8 1 | ~~ | | - 8 | 1 8 | l | | 0 | 0 | 15943 | 51.9
50.8 | 0 | -6 | ╫ | | | | 0 | ŏ | | | Ö | 0 | 1573.8 | 0.04 | | 0 | 15939 | 49.8 | 0 | 6 | ╁ | | | | Ö | 0 | | ł | Ŏ | ŏ | 15935 | 477 | 25.0 | Ŏ | 1593.7 | 48.7 | Ö | 6 | | | | | O | ō | | | . 0 | .0 | 16002 | 87.0 | 21.0 | Ō | 15934 | 472 | 0 | 0 | 1 | | | | . 0 | Q | | | 0 | Q | 1600.6 | 89.7 | 1.3 | <u> </u> | 15932 | 461 | 0 | 0 | | | | | 0 | <u> </u> | | | Ö | 9 | 16004 | 88.3 | 102 | 9 | 15930 | 451 | 8 | 8 | | | | | 8 | 0 | | - | 0 | 0 | 16001 | 86.4 | | 0 | 1592.8 | 441 | 6 | 8 | Ŧ | | | | 8 | - 7 - | | | - 6 | - ŏ | 1599.6 | 831 | 0 | 6 | 15924 | 42.2 | + - 6 - | - 6 | ╫ | | | - | ŏ | ŏ | | | ŏ | ŏ | 15993 | 812 | ŏ | ŏ | 15922 | 412 | ŏ | - - | ╫ | | | | ŏ | ō | | | 0 | Ó | 15991 | 79.9 | Ō | 0 | 15921 | 40.7 | 0 | 0 | ╫ | | | | Ò | 0 | | | | | 15989 | 78.7 | 0 | 0 | 1592.0 | 402 | 0 | 0 | 1 | | | | 0 | 0 | | | 0 | 1 0 | | | 482 | 0 | | | 1 0 | 0 | 1 | | 7t. | | | | | | - 0, | 0 | l | | 95.6 | (169) | ļ | _ | 0 (3.8.5) | 95 | 6 | | iven
Hy Inflow | | 0 | | | | ٥ | | | | 25.0 | (103) | | | r (38-3) | 25 | _ | | int
Sty Inflow | | - 0 | | | | - 0 | | | | 0 | | | | ŏ | ~ ~ ~ | · | | Change | 0 | | | | 0 | | | | + 78.7 | | | | -385 | · · · · · · · | + 40 | -2 | | | | | | | N | OTE: Gage Hel | ghts and Storag | res as of Midnight | on Day Shows | 1 | | - | | | 1/4 Yea | r | | S. Elev. | 1600-6 | feet | on 12/2 | | orage 80. | 7 | Acre Feet | | | | S COLLECTED | | | MPUTATIONS | | Dat | | S. Elev. | 1573.0 | feet | | OF YEAR St | | | Acre Feet | | | H. R. WHI | | Dam Te | | e Hts. copied Fi | | 47 | | ak Inf. | 120 ± |
C. J | 5. from 6:00 | .м. ов | 12/23/45 | | A.M. on | 12/23/45 | | C. L. BRE | STER | Hydrogr | | rage applied F | | _ | | ak Outf. | 0 | | s. from FOR THE | | | to | on. | | | | | Hydrogi | mpnor Inf | & Outf. comp. F | HM JHL " | | | nns () | INDICATES ' | TOTAL LOSS | DUE TO EVAPO | PRATION AND | PERCOLATION | ٧. | | | | | | | | | | | | Daily Gage Heig | | _ | | | | CREEK | | _ | | LO
FLO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т, | | | |-----------------|-------------|--------------|---------------|-----------------|----------------|----------------|---|------------------|--------------|-----------|-------------|---|-------------|-----------------|------------| | Oz | kwanimaniwa | | | | or me rear | cutting paper | III) er 50, 18 | 40 | | | | Continuo | u Water Sta | ge Recorder | None | | Drainage Area. | 3.5 | Scuare Miles | . Capacity of | Reservoir 6.1.2 | _3At. | Ft. at Spillwe | av Elev. I.631 | 1.8 Ft. as | of J | anuary | 19 103 Surv | ev Gage Held | hts Read | at vario | us timas | | | FEBRU | | | 1 | MAR | | | | APR | | | | ма | | | | Gage | Acra Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C.F. S. | C. F. B. | Gage | Acre Ft. | C. F. R. | C. F. S. | Gago | Acre Ft. | C. F. S. | C. Fr. St. | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outrlow | Height | Storage | Inflow | Outflow | | 15919 | 39.7 | 0 | 0 | 1587 ▲ | 211 | . 0 | 0 | 15899 | 30.7 | 2.2 | 0 | 1588.6 | 25.4 | 0 | 0 | | 15918 | 393 | 0 | 0 | 15872 | 2.0.4 | 0 | 0 | 1591.0 | 35.5 | 3.0 | . 0 | 1588.4 | 24.6 | Ō | . 0 | | 1591.7 | 38.8 | 1.0 | 0 | 15870 | 19.7 | 0 | 0 | 1591.6 | 383 | 2.0 | 0 | 15882 | 239 | 0 | 0 | | 15916 | 383 | 0.5 | 0 | 15869 | 19.4 | ō | 0 | 1591.8 | 393 | 1.1 | 0 | 1588.0 | 23.1 | 0 | ō | | 15915 | 378 | 0 | 0 | 15868 | 101 | . 0 | Q | 15919 | 39.7 | 0.9 | 0 | 15879 | 8.25 | Ö | Ó | | 15914 | 374 | . 0 | 0 | 1586.7 | 18.7 | 0 | 0 | 15919 | 39.7 | 0.6 | . 0 | 1587.7 | 221 | 0 | 0 | | 15912 | 36.4 | 0 | Ō | 15865 | 181 | 0 | 0 | 15919 | 39.7 | 0.6 | 0 | 15875 | 21.4 | Ó | 0 | | 15910 | 35.5 | 0 | 0 | 15864 | 178 | ã | Ō | 15919 | 39.7 | 0.6 | 0 | 15874 | 211 | Ö | 0 | | 15908 | 34.6 | Ö | 0 | 15862 | 171 | 0 | Q | 1591.8 | 393 | 0.4 | 0 | 15872 | 20.4 | 0 | 0 | | 15905 | 33.3 | Q. | 0 | 1586.1 | 168 | 0 | 0 | 15917 | 388 | 0.3 | 0 | 15871 | 200 | 0 | . 0 | | 15903 | 324 | 0 | 0 | 1585.9 | 16.2 | 0 | | 1591.6 | 383 | 0.3 | 0 | 15869 | 19.4 | 0 | 0_ | | 15902 | 320 | 0 | 0 | 15858 | 15.9 | 0 | 0 | 15915 | 37.8 | 0.3 | 0 | 1586.8 | 191 | 0 | 0 | | 1590.0 | 3.1.1 | 0 | 0 | 1585.7 | 15.7 | 0.2 | 0 | 1591.4 | 37.4 | 0.2 | 0 | 15866 | 18.4 | 0 | 0 | | 15899 | 30.7 | 0 | Q | 15855 | 15.1 | 0 | Q | 15913 | 36.9 | 0.2 | | 1586.5 | 181 | 0 | 0. | | 1589.7 | 298 | 0 | Ō | 15854 | 14.8 | 0 | 0 | 15911 | 360 | 0.1 | 0 | 15863 | 17.5 | 0 | 0 | | 15895 | 290 | 0 | Ō | 15853 | 145 | 0 | Q | 1591.0 | 35.5 | 0 | 0 | 15862 | 171 | 0 | 0 | | 15894 | 286 | 0 | O. | 15852 | 143 | 0 | 0 | 15909 | 351 | 0 | 0 | 1586.0 | 16.5 | 0 | 0 | | 15892 | 27.7 | Q | Ò | 15850 | 13.7 | Ŷ. | 0 | 1590.7
1590.6 | 342 | 0 | Q | 15859 | 162 | Ö | 0 | | 1589.0 | 269 | 0 | Q _ | 15849 | 13.4 | (0.5 | 0 | | 33.7 | 0 | 0 | 1585.7 | 15.7 | 0 | Ö | | 15889 | 26.5 | 0 | Ô | 15848 | 132 | 0.6 | 0 | 1590.4 | 32.9 | 0 | <u> </u> | 1585.6 | 154 | C | 0 | | 1588.7 | 25.8 | 0 | Q | 15846 | 12.7 | 0.2 | 0 | 15903 | 32.4 | 0 | 0 | 1585.4 | 14.8 | 0 | 0 | | 1588.6 | 25.4 | 0 | Q . | 1584.5 | 12.4 | 0 | Ó | 15901 | 31.5 | 0 | 0 | 15853 | 14.5 | 0 | 0 | | 15884 | 24.5 | 0 | ō | 15844 | 12.1 | 0 | 0 | 1590.0 | 311 | 0 | Õ | 15851 | 14.0 | 0 | Ō | | 15883 | 242 | 0 | Ò. | 15842 | 11.6 | 0 | 0 | 1589.8 | 30.3 | 0 | Ô | 1585.0 | 13.7 | 0 | 0 | | 15881 | 235 | 0 | Ô | 15841 | 114 | 0 | Ô | 1589.5 | 29.4 | 0 | . 0 | 1584.8 | 132 | . 0 | 0. | | 1588.0 | 231 | 0 | 0 | 1584.0 | 111 | - 0 | Ω | 15894 | 28.6 | 0 | 0 | 1584.6 | 12.7 | 0 | 0 | | 1587.8 | 22.2 | 0 | 0 | 15838 | 10.6 | 0 | 0 | 15892 | 27.7 | 0 | 0 | 15845 | 12.4 | 0 | 0 | | 1587.6 | 21.7 | 0 | Ô. | 1583.8 | 10.6 | 3.0 | 0 | 15891 | 273 | 0 | 0 | 15843 | 119 | 0 | 0 | | | | | | 1583.8 | 10.6 | 1.5 | 0 | 15889 | 26.5 | 0 | Q | 15841 | 11.4 | 0 | 0 | | | | | | 1587.4 | 211 | 3.0 | O O | 1588.7 | 25.8 | 0 | 0 | 1584.0 | 111 | 0 | 0 | | | | | | 15891 | 273 | 3.0 | 0 | | | | | 15839 | 109 | 0 | 0 | | AL | | 1.5 | 0 | | | 12.0 | Q | | | 12.8 | Q . | | | 0 | 0 | | c.Pt. | | 3.0 | | | | 23.8 | | ļ | | 25.4 | | | | | 147 | | Ac. Tt. | | 0+ | (21.4) | <u> </u> | | | (182) | | | | (27.D) | <u> </u> | + | (149) | | | Bally Inflew | | 1.0 | | | | 3.0_ | | J | | 3.0 | | ļ | | . 0 | 2.5 | | Dally Inflow | | 0 | | | | Q | | | | | | L | | 0 | | | ge Change | -185 | | | | +56 | | | | -15 | | | ! | -149 | | + 10 | | | | | | | Carried Street | TE: Gage Heig | THE PERSON NAMED IN COLUMN TO A STREET OF THE PERSON NAMED IN COLUMN TO | s as of Midnight | on Day Shows | | | | | | % Yes | | | 00.6 | feet | | | rage 89.7 | | Acre Feet | | | RECORD | S COLLECTED | | | PUTATIONS | ekd. | | V. S. Blev. 15 | 73.0 | feet | | OF YEAR Stor | rage 0 | | Acre Feet | | | H. R. WH | | Dam Te | | | HM JHL 8/6 | | | 20 ± | | from 6:.00 | | 12/23/45 | to 7:00 | A.M. On | 12/23/45 | | C. L. BRE | WSTER | Hydrogr | | | HM JHL | | | 0 | C. F. 1 | . from FOR TH | E WATER on YE | AR | to | on | 1 | | | | Hydrogr | apher Inf. | & Outf. comp. F | HM JHL | | (ARKS () | | | | ORATION AND P | | | | | | | | | | | | #### THOMPSON CREEK (contid) F. C. Dist. Form 69C Revised 500 [1/44 DAM OPERATION RECORD LOS ANGELES COUNTY FLOOD CONTROL DISTRICT Daily Gage Height in feet and Operation Record of THOMPSON_CREEK HYDRAULIC DIVISION Continuous Water Stage Recorder..... None 19 N3 Survey Gage Heights Read at various times Drainage Area 3.5 January JUNE JULY AUGUST SEPTEMBER ğ Gage Height Acre Ft. C. F. S. Storage Inflow C. F. S. Outflow C. F. S. Inflow Acre Ft. Storage Height 1575 0 1574 9 1574 7
1574 6 1574 5 1574 4 1574 3 1574 4 | 1579.3 | 2.7 | 1579.1 | 2.4 | 1579.0 | 2.5 | 1578.8 | 2.1 | 1578.6 | 2.0 | 1578.4 | 1.8 | 1.5 1 1583.7 10.4 2 1583.7 99 3 1583.4 9.7 4 1583.3 9.4 5 1583.2 9.2 ٥ 1583 Z 1583 O 1582 8 1582 6 1582 4 1582 2 01 01 01 8.7 8.3 7.9 7.5 1.5 1.4 1.3 1.3 1.1 1.1 0.9 0.8 0.7 0.7 1582 1 1582 1 1582 0 1581 8 1581 7 1581 6 6.7 6.3 6.3 15 | 1581.7. 15 | 1581.6. 10 | 1581.4. 11 | 1581.3. 18 | 1581.3. 18 | 1581.3. 19 | 1581.3. 19 | 1580.9. 20 | 1580.9. 21 | 1580.6. 22 | 1580.5. 24 | 1580.6. 25 | 1580.6. 26 | 1580.7. 27 | 15779.6. 29 | 15779.6. 30 | 15779.4. 31 | 1580.7. 31 | 1580.7. 31 | 1580.7. 31 | 1580.7. 31 | 1580.7. 31 | 1580.7. 31 | 1580.7. 31 | 1580.7. 32 | 1580.7. 33 | 1580.7. 34 | 1580.7. 350.7. 360.7. 6.0 5.6 00000 5.4 5.3 4.9 4.6 4.3 4.2 4.1 3.8 00000 3.4 0. E 8. S 31 0 147.8 + (0.2) + (2.6 0+(147 25.0 0 0 -8.1 -2.6 NOTE: Gage Heights and Storages as of Midnight on Day Shown | COMPUTATIONS okd. Date | Dam Tender | Gage His. copied | Film. JHL | 8/6/47 | | Hydrographer | Storage applied | Film. JHL | 8/6/47 | | Hydrographer | Inf. & Outr. comp.Film. JHL | 8/6/47 | | Max. W. S. Elev. | 1600.6 | feet | on 12/24/45 | Storage | 89.7 | Acre Feet | Min. W. S. Elev. | 1573.0 | feet | on PART OF YEAR | Storage | 0 | Acre Feet | Max. Feek Int. | 120\(\frac{1}{2}\) | C. F. S. from | 6:00 | A.M. | on | 12/23/45 | to | 7:00 | A.M. | 0 | Max. Feek Out. | O | C. F. S. from | For | THE WATERON YEAR | to | OR | REMARKS | | HOLICATES LOSS DUE TO EVAPORATION AND PERCOLATION RECORDS COLLECTED BY | F. C. Dist. Form 86A | Revised 500 11/44 | | | | | | | | | | | | | | | | |-------------------------------|-----------------------|--------------------|---------------------|----------------------------|---------------------|--------------------|---------------------|-------------------|---------------------------------------|--------------------|---------------------|---|---------------------|--------------------|---------------------|---------| | 1 | e Height in feet a | - | | | | | K Dan | | | LO
FLO | S ANGELE | ON RECO
S COUNTY
OL DISTRIC
DIVISION | т | | | | | OnI.D | ompson Cree | х | | | for the Year l | Ending Septe | mber 30, 19.4L | ć | | | | | | ge Recorder | Nene | | | H | | | | | _ | | | | | | | | | - | | - 1 | | Drainage A | Area 3.5 | Square Mile | s. Capacity of | Reservoir6.1.2 | .3Ac. | Ft. at Spillw | ay Elev. 163 | 34.8Ft. as | of Ja | Nuary | 19 <u>.143</u> Sur | vey Gage Heig | his Read | at varlo | us times | | | | OCT | BER | | | NOVEM | IBER | | | DECEN | BER | | | JANU | ARY | | | | Gage
Height | Acre Ft.
t Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | à | | 1 1573 | | 0 | 0 | 1573 | | 0 | 0 | 15911 | 36.0 | r 0.4 | 0 | 1590.5 | 333 | 0.4 | 0 | 1 | | 2 | | 0 | 0 | | | 0 | 0 | 15909 | 351 | 0.3 | 0 | 15904 | 329 | 0.3 | 0 | T 2 | | 3 | | 0 | 0 | | | 0 | 0 | 1590.8 | 3 4 .6 | 0.3 | 0 | 15903 | 32.4 | 0.2 | 0 | 1 8 | | 4 | | į o | 0 | | | 0 | 0 | 15907 | 34.2 | 0.1 | 0 | 15902 | 32.0 | 0.2 | o | 1. | | - 5 | | <u> </u> | 0 | <u> </u> | | 0 | ا و ا | 1590.5 | 33.3 | 10 | 0 | 15901 | 31.5 | 0.1 | | 5 | | 6 | | ļ <u>0</u> | QQ | | | <u>Q</u> | <u> </u> | 1590.4 | 329 | 0.3 | 0_ | 1590.0 | 311 | 0.05 | O | 10 | | 7 | | 0 | 0 | | | | | 15902 | 32.0 | 0.1 | 0 | 15900 | 311 | 0.05 | | 7 | | 8 | | <u> </u> | 0 | ļ | | 0 | 0 | 1590.0 | 311 | 0.1 | <u> </u> | 1589.9 | 30.7 | 0.05 | <u> </u> | 8 | | 9 | | 0 | | <u> </u> | | 0 | <u> </u> | 15899 | 30.7 | 0 | 0 | 1589.8 | 303 | 0.05 | o | 10 | | 10 | | | <u> </u> | | | 0 | 0 | 15898 | 303 | 9 | <u> </u> | 1589.7 | 29.8 | 0.05 | <u> </u> | 11 | | 11 | | | | 1573.7 | 0.04 | 0.7 | Q | 1589.7 | 29.8 | 0 | <u> </u> | 15896 | 29.4 | 0.05 | | 112 | | 12 | | <u> </u> | 0 | 1573.9 | 0.05 | | <u> </u> | 1589.6 | 29.4 | 0 | <u> </u> | 1589.5 | _29.0 | 0.05 | <u>o</u> _ | 13 | | 13 | | 0 | 0 | 15798 | 3_3 | 23 | <u>Q</u> | 1589.4 | 28.6 | 0 | <u> </u> | 1589.4 | 58.6 | 0.05 | Ö | 14 | | - Francisco | | 0 | - 8 | 15802 | 3.8 | 0.8 | 0 | 15893
15891 | 282 | 0 | 0 | 15892 | 27.7 | 0.05 | 0. | 15 | | 10-10-1 | | 0 | 0 | 15791 | | 0 3 | 0 | 15889 | | 0 | | 15891 | 273 | 0.05 | 0. | 18 | | 16 9 | 25 | 0 | 0 | 15784 | 2.4
1.8 | 0 | 0 | 1588.7 | 26.5
25.8 | 8 - | 0 | 15890
15889 | 26.9 | 0.05 | 0 | 17 | | 18 | | 0 | Ö | 1577.8 | 1.4 | ŏ | 0 | 1588.6 | 25.4 | 0 | 0 | 1588.7 | 26.5
25.8 | 0.05 | 0 | 18 | | 1 10 - 4 | | 0 | <u>V</u> | 15772 | 1.0 | o o | 8 | 15884 | 24.5 | - 6 | 0 | 1588.6 | 25.4 | 0.05 | 0 | 19 | | 20 20 | | 1 0 | 0 | 15898 | 30.3 | 15.8 | - ŏ | 15883 | 24.2 | 0 | ŏ | 1588.5 | 25.0 | 0 0 5 | ŏ | 20 | | 21 | | 0 | Ö | 1590.0 | 311 | 1.6 | 0 | 1588.2 | 23.9 | ŏ | Ō | 15883 | 242 | Ö | - 6 | 21 | | 22 | | 1 0 | ō | 15899 | 30.7 | 8.0 | ŏ | 15881 | 235 | ŏ | ō | 15881 | 23.5 | ŏ | ŏ | 22 | | 23 | | Ö | Ö | 1591.0 | 35.5 | 3 .4 | ō | 1587.8 | 22.4 | ŏ | Ō | 1588.0 | 231 | . 0 | ŏ | 23 | | 24 | | Ō | Ö | 1591.7 | 38.8 | 2.7 | 0 | 1587.6 | 21.7 | 0.1 | 0 | 15879 | 8.25 | O | ŏ | 24 | | 25 | | Ō | ō | 1591.7 | 3 8 .8 | ون | Ö | 1587.8 | 22.4 | 0.5 | õ | 1587.7 | 221 | Ŏ. | ŏ | 25 | | 26 | | 0 | 0 | 1591.6 | 383 | 0.5 | 0 | 1589.0 | 269 | 2.5 | 0 | 1587.6 | 21.7 | 0 | 0 | 26 | | 27 | | 0 | 0 | 1591.6 | 383 | 0.5 | 0 | 15898 | 303 | 2.0 | 0 | 1587.5 | 21.4 | 0 | 0 | 27 | | 28 | | 0 | 0 | 1591.4 | 37.4 | 0.4 | 0 | 1590.0 | 311 | r12 | 0 | 1587A | 211 | 01 | Q | 28 | | 29 | | 0 | 0 | 15913 | 36.9 | 0.4 | 0 | 15902 | 32.0 | 9.0 | 0 | 15873 | 20.7 | 0.1 | 0 | 29 | | 30 | | 0 | 0 | 15912 | 36.4 | 104 | 0 | 15905 | 333 | 0.5 | 0 | 15871 | 0.05 | 0.05 | 0 | 80 | | 31 | | 0 | 0 | ļ | | | | 1590.6 | 33.7 | (0.4 | 0 | 1587.0 | 19.7 | 0.05 | 0 | 81 | | TOTAL | | 0 | | 1 | | 322 | . 0 | <u> </u> | <u> </u> | 9.8 | 1 0 | <u> </u> | | 220 | | | | Inf. Ac. Ft.
Outf. Ac. Ft. | | 0 | | ļ | | 63.9 | + (274) | l | | 194
0 + | (22.2) | | | (184) | | 7.7 | | Maximum
Mean Dally Inflow | | 0 | | | | 15.8 | - (6.1.A) | | | 2.6 | (66 Z) | | | 0.4 | _ 0 + 6
1 | 5.8 | | Minimum
Mean Dally Inflew | | 0 | | | | 0 | | | | õ | | 1 | | 0 | | 0 | |
Storage Change | | | | | + 36.4 | | | | - 2.7 | | | l | -140 | | + 1 | | | | M | | | 2, | NO | TE: Gage Hei | ghts and Storag | es as of Midnight | on Day Show | 'n | | | | | ½ Year | | | Max. W. S. Elev. | 1591.7 | fect | | 24 TO 26/46 ^{Sto} | rage 38 | B | Acre Feet | | · · · · · · · · · · · · · · · · · · · | RECORD | S COLLECTED | BY | 001 | RIOTATIONS | ckd, I | Date | | Min. W. S. Elev. | 1573 | | | | |) | Acre Fest | | | H. R. WHIS | LER | Dam To | ender Gag | e Hts. copied Ji | | 1/17/47 | | Max. Peak Inf. | 47.2 | | | OO NOON on | 11/20/46 | | P.M. on | 11/20/46 | | C. L. BREW | | Hydrog | | rage applied J | | 1/17/47 | | Max. Peak Outf. | . 0 | | S. from | on | | to | 0n | | | | | Hydrog | rapher Inf | & Outf. comp. J | | 1/17/47 | | REMARKS | | | | R PRORATED DA | | 5 | | | | | | | | | | | | | () INDICA | TES LOSSES | DUE TO PERC | CLATION AND E | VAPORATION | | | | | | | | | | | | | N | | | | | | | | | | | | | | | | | ### THOMPSON CREEK (cont'd) F. C. Diet. Form SER Revised SSS 11/44 DAM OPERATION RECORD LOS ANGELES COUNTY FLOOD CONTROL DISTRICT HYDRAULIC DIVISION THOMPSEN CREEK Dem Daily Gage Height in feet and Operation Record of...... In Thompson Creek for the Year Ending September 30, 1947 Continuous Water Stage Recorder None Drainage Area 3.5 Ac. Ft. at Spillway Elev. 1638.8... Ft. as of January ..., 1943 Survey Gage Heights Read at various times FEBRUARY MARCH APRIL MAY å Day 15833 15831 15830 15828 15827 ò 9 4 8 9 1579.3 1579.2 1578.9 1578.9 1578.6 1578.6 1578.6 1577.7 1577.7 1577.7 1577.4 1577.4 1577.2 1577.4 1577.4 1577.4 1577.4 1577.4 1577.6 1577.6 1577.6 1577.6 1577.6 1577.6 1577.6 1577.6 1577.6 1576.6 1576.6 ۵ 0 2.7 2.5 2.3 2.2 2.1 2.0 1.8 1.7 1.7 0 1582 6 1582 5 1582 3 1582 3 1582 2 1582 1 1582 1 1581 8 1581 5 1581 5 1581 1 1581 0 1580 9 1580 9 1580 6 1580 5 1580 5 1580 5 1580 5 1580 5 1580 5 1580 5 1580 5 1580 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 8 兹 0.5 0.5 0.4 0.4 1576.0 1575.8 1575.7 1575.5 1575.3 31 0 + (87.7)0 0 158 -100 NOTE: Gage Heights and Storages as of Midnight on Day Shown Max. W. S. Elev. Min. W. S. Elev. feet on 11/24. TO 2666 Storage 38.8 feet on PART OF YEAR Storage 0 C. F. S. from 12:00 NOON on 11/20/46 to C. F. S. from 0 on to to to Acre Feet Max. Peak Inf. Max. Peak Outf. 1:00 P.M. on 11/20/46 REMARKS () INDICATES LOSSES DUE TO PERCOLATION AND EVAPORATION | ally Gage H | ielght In feet ar | id Operation ? | Record of | | THOMPSO | ON CREEK | Den | m. | | LC | OS ANGELE | ION RECO | Y | | | |--------------------|---------------------|--------------------|---------------------------------------|----------------|--|--------------------|---------------------|--|--------------------|--|---------------------|--|---------------------|----------------------|------------| | | ompson Cree | | | | | : Ending Sept | tember 30. 19.47 | <u>1</u> . | | | | C DIVISIO | N | ~ | | | _ | | | | | | | | | 1 | | 112 Cu | | | tage Recorder | | | ainage Arer | . 3.5 | Square Mile | a. Capacity of F | Reservoir U.I. | 2.3 Ac. | Ft. at Spillw | ray Elev. 103 | 14.8 Ft. ar | of Janu | ary | , 1943 Sur | vey Gage He | sights Read | id at variou | JS times | | | | INE | | | JU | ULY | T P | ď | AUC | GUST | _ | | SEPT | TEMBER | | | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | - Gage
Height | Acre FL
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S. | C. F. S. | | | Diffred | O Introw | Outrow | | - 500 | O | Outriow | Height | 13001.05 | O | Outrow | Height | 201-60 | O | | | 1573 | + | 0 | 8 | | + | 0 | - 8 | | - | - 0 | - | 4 | + | | 0 | | | | 0 | 0 | | + | 1 0 | 0 | | + | 0 | 1 6 | | | - 8 | 0 | | | + | 0 | 0 | | | 0 | - 0 | | + | 0 | 1 - 8 | - | | 0 | | | | + | 0 | 0 | | | - 0 | 1 8 | J | | 0 | Ŏ | 1 | + | 0 1 | o - | | | 1 | 0 | Ó | | | 0 | Ö | | | ō | 1 0 | ĺ | | i o | Ö | | | | 0 | .0 | | | _ 0 | 0 | | | 0 | i o | | | o l | 0 | | | | 0 | o l | | | 0 | 0 | 4 | T | 0 | 0 | | | 0 | O | | | T | 0 | O | | | 0 | 0 | ,L | I | 0 | 0 | | T | 0 | 0 | | | J | 0 | 9 | | | <u> </u> | - 9 | · | | 0 | 0 | <u> </u> | | 0 | Q | | | | <u> </u> | | 2 | | <u>o</u> | - <u> </u> | | | | 1 0 | ↓ | + | | 0 | | <u> </u> | - 0 | 9 | <u> 8 </u> | ā | - <u>-</u> | 9 | - 9 1 | | - 8 | 0 | 0 | ــــــــــــــــــــــــــــــــــــــ | | 1 0 | 0 | | <u> </u> | | <u> </u> | <u>8</u> | | <u>-</u> | 0 | 0 | <u></u> | | 0 | 0 | | - 8 | 0 | 0 | | | - K | - 0 | 0 | | <u> </u> | - 8 | - 8 - | <u>-</u> - | | - 6 | - 8 | | 1 2 | - 8 | 8 | | | - 2 | 0 | 8 | | | - O | - 6 | | | + - 8 - | 0 | | 1 | | 8 | | ` | | 1 6 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | 1 0 | B | 2 | + -8 - | 3 | - 5 | ω | 1 - 0 - t | 8 | | | - 2 | 1 0 | ŏ | ~ | | 1 0 | | œ e | + | 8 | - 6 | 8 | 2 | ŏ | - 5 | | <u>8</u> - | + = | 0 - | ŏ | , | + | 1 6 | 1 ŏ 1 | | + | ŏ | ō | <u> </u> | + | ŏ | - 6 | | | + | ō | i o | (| | Ó | 0 | | + | ō | 0 | | 1 | ō | 0 | | | | Ö | 0 | - | | Ò | Ô | | | 0 | j o | | | 0 | ō | | | | Ŏ | Q | | | 0 | 0 | | | 0 | 0 | | | 0 | 0_ | | | | 0 | Q | | | 0 | 0 | | 1 | 0 | 0 | | | 0 | 0 | | | | 0 | 0 | | I | 0 | 0 | <u></u> | I | 0 | 0 | 1 | I | 0 | 0 | | | T | 0 | 0 | | | <u> </u> | <u> </u> | | | 9 | o | ∮ | | 1 8 | Ö | | | | 0 | 9 | | | 0 | | | | 0 | 0 | | | + -0- | 0 | | | ' | 9 | | | | . 0 | 0 | | + | 0 | 1 8 | 4 | | - 8 - | - 8 | | | | 0 | . 0 | | + | - 0 | 0 | 1 | + | 0 | | 1 | | - 8-1 | - 8 | | | + | 0 | | , | + | 0 | - 8 | | | - 0 | | | + | | - 8 | | | + | | | | | | - 0 | 1 | 1 | 1-0 | | ļ | + | + | | | ı. | + | 0 | 0 | | + | + 8 | 1 0 | d | + | | 1 8 | 1 | + | 0 | -0- | | Ft. | + | 0 | | | | | | | | ŏ | | i | | 0 | . 8 | | c. Ft. | | | . 0 | | | | o | 1 | | | 0 | | | - ŏ | 0 + (8 | | nom
elly lattew | | 0 | | h | | 0 | / | ıl | | 0 | | 1 | | | 1 | | aum
Lily Inflow | I | o | | | | 00 | | 1 | | 0 | | 1 | | 0 | | | Change | 0 | | | | 0 2 | me: Care W | : har and Sterne | | O | | | | 0 | | | | | | | | | | | eights and Storage | W #18 OL WINDING | t on Day snow | n moor | | D BY | | | Yearly ' | | | 1591.7 | feet | on 11/24 | TO 26/46 St | | | Acre Feet | | | | | | | MPUTATIONS | ckd. | | | 1573 ± | feet | | | Storage 0 | | Acre Feet | | | H. R. WHISL | | | | ige Hts. copied JHL | | | | 47.2 | | S. from 12:00 | | | to 1:00 P | P.M. on 11 | 1/20/46 | + | C. L. BREWS | STER | | | orage applied JHL | | | ak Outf. | 0 | Ç. b., r | S. from FOR TH | .1E WATER on ▼ | /EAR | to | UII | and the same of th | | | | пушо | ographer Inf. | f. & Outf. compJHL | IL APK 11/ | ## HAMILTON BOWL (contid) | | | | - | ecord of | | | | | | | LO
FLO | OPERATIONS ANGELES OD CONTRO ORAULIC | COUNTY | т | | | | |-----------|-----------------------|-------------------------------|--------------|---|-------------|----------------|----------------|-----------------|------------------|---------------|------------|--------------------------------------|------------|----------|----------------------
---|------| | 0 | n | and the state of the state of | | *************************************** | | TOT ING TORE | cutting paper | muer 30, 10 | | | | | Continuo | us Water | Stage Recorder | H.C.E. | | | D | alnade Area | 3.5 | Square Miles | Capacity of I | Reservoir | 160 U Ac. | Ft. at Spillwe | Elev | 7.0 Ft. as | of J | uly 31 | 19147. Surve | У Gage Hei | ghtsR | ead daily | | | | 1 | | FEBRU | | | | MAR | | | | APR | | | | | MAY | | (| | 1 | Gage | Acre Ft. | C.F.S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre Ft. | C. F. S. | C. F. S. | Gage | Acre F | | C. F. S. | -# | | | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | Inflow | Outflow | Height | Storage | | Outflow | _ _ | | | | | 0 | 0 | | | | 0 | | | 0 | 0 | | | 0 | 0 | 4 | | Ŧ | | | <u> </u> | <u> </u> | | | 0.7 | Ŏ. | | | 0 | Q | | | _ O | <u> </u> | ╬ | | | | | <u> </u> | <u> </u> | 6.3 | 1.4 | 0.7 | 0 0 | <u>_</u> | | 0 | 0 | | | 0 | | | | 1- | - 54 - | D + ≥ | 0 | 0 | | | 14.7 | 14.7 | | | 9 | 8 | | | | O | -11- | | ┢ | 9 E | 0 = = | 0 | 0 | | | *1 4 ·/ | 0 ./_ | | | | 0 | | | - 0 | - 0 | + | | ₽ | 8 111 | 2.5.5 | 0 - | 0 | | | 0 | ö | | | ŏ | 0 | | | 1 0 | 0 | - | | ╢ | ~ | | 0 | 0 | | † - | ŏ | ö | | | -0 | 0 | | | + 6 | | -1 | | ╟ | 4 .6 | 0.4 | 3.B | 3.6 | | | ŏ | ö | | | 0 | ŏ | | | - 0 | - 8- | 1 | | 1 | 4.0 | - VA- | 0.3 | 0.5 | | - 0 | ŏ | | | - | ö | ŏ | | | - 0 | - 6 | | | ╟ | | | 03. | 0 - | | | 0 | ŏ | >- | | ŏ | ŏ | Α. | - | i ŏ | ŏ- | ┪ | | H | . > | 75 | ŏ | ŏ | | ===== | ŏ | ŏ | | | ŏ | ŏ | - t | | ŏ | ŏ | - - | | F | - 62 | 000 | ŏ | Ö | | Γ | ŏ | ŏ | | | <u> </u> | 0 | <u> </u> | 9 | | _ ŏ | 1 | | r | 0° E | - 6 4 5 | ŏ | ŏ | | 0 | Ö | ō | | | ŏ | ō | | 9 | Ö | 0 | 7 | | 1 | | 235 | - ŏ | ŏ | | | ŏ | ŏ | === | === | ŏ | Ö | = | 0 | | ŏ | -1 | | ۲ | | i i | ŏ | ŏ | | ¥ | 0 | 0 | <u></u> | | ŏ | Ö | 0 | St | | ŏ | 7 | | r | 4.5 | 0,4 | 2.9 | 2.7 | 9 | 0 | 0 | 0 | | - 5 | ō | 0 | | | 0 | - ō | 7 | | r | | | 0 | 0.2 | | 9 | ō | 0 | ν σ | - | o - | ō | 8 | | ō | ō | 7 | | 1- | | | 0 | 0 | - IE | 5 | 0 | 0 | œ e | | 0 | 0 | 8 | | 0 | ō | 7 | | 忊 | | | 0 | 0 | | <u>a</u> | 0.5 | 0.5 | | - D | 0 | 0 | | | 0 | - 0 | | | Г | | " | 0 | 0 | | | 0 | 0 | | ē | 0 | 0 | | | 0 | 0 | 7 | | | -6 | <u>-</u> - | 0 | 0 | | 1. | 0 | 0 | | <u> </u> | 0 | 0 1 | | | 0 | 0 | | | Г | <u> </u> | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | _ 0 | _I | | | £ | .α
3 υ | _ 0 | 0 | | | 0 | 0 , | | L | 0 | 0 | | | 0 | 0 | 3 | | | | 7) | 0 | 0 | | | 0 | Q | | | 0 | 0 | | | 0 | 0 | | | Ľ | | e c | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | | _][| | Ĺ | a) | _ = | 0 | 0 | 5.6 | 0.9 | 0.5 | 0 | | | 0 | 0 | | | 0 | _ 0_ | | | L | <u> </u> | a a | . 0 | 0 | | | 0.7 | 12 | | | Q _ | 0 | | | 0 | 0 | _[| | | œ | | | | | | 0 | 0 | | | ō | 0 | | L | 0 | 0 | _ [| | 1 | | ļ | | | | ļ | O O | . 0 | | | 0_ | 0 | | | 0 | 0 | 4 | | Ĺ | | | | | | | 0 | 0 | | | ļ <u>.</u> | | | <u> </u> | 9 | 0 | -1 | | T. | | | 7_0 | 7.0_ | | | 173 | 173 | | <u>'</u> | 0 | 0 | | ! | 1 0 | 0 | ᆀ | | | Pt.
c. Ft. | | 13.9 | -1.5.0 | | | 343 | 343 | | | | | | | 0 | 646 | | | | C. Pt. | | | 139 | | | 147 | 24.3 | | | | | | | 0 | - 644 | | | D
Heli | ally inflow | | 3.B | | | | 14.7 | | | | 0 | | | | 0 | 135 | | | D | ally Inflow
Change | 0 | | | | 0 | | | l— | 0 | | | | 0 | | | 8 | | Ь | Change | У | | <u>"</u> | | | OTE: Gage Hel | ghts and Stores | es as of Midnigh | t on Day Show | m | ! | | <u>v</u> | | % You | | | - | . S. Elev. | | feet | on | 10/10 Pt | | | Acre Feet | - I miningi | 1 | | S COLLECTED | DV | ——-г | COMPUTATIONS | Out of the latest | | | | | 19.4 | feet | on 11/ | OF YEAR St | orage 237.0 | | Acre Feet | | l | . C VIDMAR | | Dam T | | Gage Hts. copied J | | Da | | | | 1.8. | | 8. from 3:00 | | | to 4.00 0 | | 11/10/40 | | | | Hydrog | | Storage applied J | n FS 10/8 | 3/4 | | | | 52 | | S. from 9:15 | | | | M. On | 11/12/46 | | . S. BONAD | MAN | Hydrog | | Inf. & Outf. comp. J | IL F5 | - | | | RKS | 58.5 | O. P. | 9:15 | r.m. un | 11/14/46 | 9:30 P. | m. on | 11/14/4b | <u>'</u> | | | 113/01/08 | puer | a Outr. comp. J | IL FS 10/1 | 10/ | | 10.7 | ight in feet and
g Beach . C | | | | | | | | | LC
FLO | S ANGELE | ON RECC
S COUNTY
OL DISTRIC
DIVISIO | CT . | | | | |----------|------------------------------|--|----------------------|--|--------------------------------|-------------------------|--|---------------------|-------------------|---------------------|--------------------|---------------------|--|---------------------|--|--|--------------| | ö | n | u beach, c | '6'I'''''''''''''''' | 2 | | ior the 1 ear | ruging Sepie | mper 30, 18,.91 | <i>i.</i> | | | | Continue | me Water S | tage Recorder | H.C.F. | | | | | | | | | aa 1 | | | • | . 16.1 | | W7 C | | | | | | | D | rainage Area | 3.5 | Square Miles | . Capacity of | Reservoirl | DU. HAc. | Ft. at Spillw | y Elevl.I. | . U Ft. as | of Jul | У.ЗІ | , 19.4.7 SUTV | ey Gage He | ights | tead dairry | | _ | | | | JUI | NE | | | JU | LY | | | AUG | UST | | | SEP | TEMBER | | | | 3 | Gage | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gage
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | Gaga
Height | Acre Ft.
Storage | C. F. S.
Inflow | C. F. S.
Outflow | | | 1 | Height | Swinge | O | | 720.5.10 | - Barrage | | | Tiergan | Switege | 0 | Outlow | Horgan | Storage | O | 0 | ╬ | | 2 | | | 0 | 0 | | | 0 | 0 | | | 0 | 8 | | | 0 | 0 | ╬ | | 3 | | 1 | 0 | 0 | | | 0 | 0 | | | 0 | ŏ | l | | 1 8 | 0 | 1 | | 4 | | + | 0 | o . | | 1 | | -0 | | | ŏ | Ö | | 1 | | ŏ | 1 | | 5 | No. Andrews on many colonies | · · · · · · · · · · · · · · · · · · · | | ······································ | Teneral processors for an area | ar - who is no weathern | | 0 | | | . Ŏ | O . | | | ō | Ŏ. | | | 6 | | I | 0 | Q | | | 0 | 0 | | | ō | 0 | | | 0 | 0 | 7 | | 7 | | | 0 | 0 | | | 0 | _0 | | | 0 | 0 | | | 0 | 0 | _[| | в . | | | 0 | 0 | | | 0 | _ 0 | | | 0 | 9 - | | ļ | 0 | 0 | 4 | | 9 | | | 0 | <u>Q</u> | | | 0 | 0 | | | <u> </u> | 0 | | | 0 | 0 | 4 | | 2 | — | | 0 | <u> </u> | | | <u> </u> | l 0 | <u> </u> | | 0 | σ | <u> </u> | ļ | 1 0 | 0 | 4 | | 1 | | | <u> </u> | 0 | | | <u> </u> | · 0 | | | 0 | 0 | - E | as | 0 | 0 | 4 | | - | Щ. | | 0 | 0 | | - 6 | 0 | 0 | <u> </u> | | -0 | 0 | | 9 | - 0 | 0 | 4 | | | | | 0 | <u>o</u> | | | 0 | 0 | | - 5 | 8 | | | | 1 8 | - 0 | -1 | | ;- - | - | · · · | - 0 | - 0 | 0 | , v | 1 6 | 0 | | 5 | - 0 | - 0 | - 9 - | - 5 | 1 6 | - 8 - | -1 | | - | _ _ | • • | - 0 | ö | | + | 0 | ŏ | <u> </u> | | ŏ | 1 8 | | | + ŏ | 0 | ╢ | | 7 | | - Z | 0 | <u>ö</u> | - 0 | - 2 | . 0 | 0 | - 8
9 | ₹ . | - 6 | ŏ | - % | - 2 | - 6 | 1 0 | + | | 3 | | | ŏ | o o | - v | | 0 | ŏ | 2 | - | ŏ | ŏ | - 8 | † | 0 | ŏ | 1 | | - 1 | | 1 | ŏ | O | | | 0 | O | | | Ŏ. | ŏ | | 1 | Ö | 0 | 7 | | ıt | | | o. | ō | | | Ō | O | | | _Q | 0 | | | , o | . 0 | | | 7 | | | 0 | 0 | | | 0 | 0 | | | 0 | 0 | | | 0 | | ٦ | | 1 | | | 0 | 0 | | | | 0 | | | Q | 0 | | | 0 | 0 | | | 3 | | | 0 | Q | | | _ 0 | 0 | | | 0 | 0 | | | . 0 | 0 | | | | | | 0 | 0 | | ļ | 0 | 0 | |
 0 | 0 | | l | | 0 | _ | | 4 | | | 0 | <u> </u> | | | <u>' </u> | -0 | | ļi | 0 | 9 | <u> </u> | | 0 | 0 | 4 | | 4. | | | <u> </u> | <u> </u> | | + | . 0 | 0 | | | 0 | 0 | | | 0 | - 8 | 4 | | -1 | | | 0 | 0 | | | 0 | . 0 | L | | 8 - | 0 | l | | 1 8 | 0 | ᅥ | | 1 | | | | - 0 | | | 0 | - 6 | | + | ŏ | 3 - | ļ | | 5 | 8 - | \dashv | | - | | | | - 6 | | | 1 0 | 8 | | | | - ŏ | i | | - ŏ - | | \mathbb{I} | | | | | | | | † | 0 | 0 | | | ŏ | - 5 | · | | | + | \dashv | | OT | AT. | 1 | 0 | 0 | | 1 | 0 | Ö | | 1 | o o | 1 6 | | | 0 | 0 | ۲ | | . Ac | . Ft. | | ŏ | i i | | | - ŏ | | | | o – | | | | ŏ | 646 | 5 | | | c. Ft. | | | 0 | | | | | | | | _ 0 _ | | | _ 0 _ | 646 | 6 | | RA D | taily Inflow | | <u> </u> | | | | 0 | | ļ | | 0 | | | | 0 | 135 | | | | mum
ally Inflew | | 0 | | | | 0 | | | | 0 | | | | <u> </u> | | 0 | | rag | e Change | 0 | | | | 0 | OTT - C 77-1 | when and St. | 1 of 351d-1- | O
ht on Day Show | | | <u> </u> | 0 | | | 0 | | w=. | | | | | | | | | ee en ni briquid. | nt on Day show | | | | | | Yearly 7 | _ | | | V. S. Elev. | 19.4 | feet | on 114 | | torage 237. | 0 | Acre Feet | | ·l | | OS COLLECTED | | | OMPUTATIONS | | D | | | S. Elev. | 1.8 | feet | | OF YEAR S | | 4 | | | | . VIDMAR | | Dam 7 | render C | age Hts. copied J | HL FS 10/8/ | /4 | | | eak Inf. | 652 | C.F. | 8. from 3:00 | P.M. on | 11/12/46 | to 4:00 P. | W. On 1 | 1/12/46 - | F 5 | . BONADIMA | N | Hydrog | rapher 1 | torage applied J | HL FS 10/8/ | 4 | | | ARKS | 58.5 | C. F. | S. from 9:15 | P.M. On | 11/14/46 | to 9:30 P. | Ma UII 1 | 1/14/46 | | | | нуаго | · ebuer 1 | nf. & Outf. comp. | HL FS 10/10 | o/ | TABLE XI ### YEARLY RESERVOIR OPERATION SUMMARY | YEAR | | INFI | LOW | OUTFLOW | | PEAK | INFLOW | | PEAK OL | JTFLOW | | STORAGE A.F. | | |------|------|-------------------|-------------------|-------------|-----|------|--------|-----|---------|--------|---------|--------------|----------| | 1 1 | A.F. | MAX DAY
C.F.S. | MIN DAY
C.F.S. | ANNUAL A.F. | MO. | DAY | C.F.S. | MO. | DAY | C.F.S. | MAXIMUM | MINIMUM | SEPT. 30 | | | | | | | | PA | COIMA DA | 4 | | | | | | |---------|-------|------|------|-------|-----|----|----------|-----|-----|------|------|-----|------| | 1928-29 | N.D. | N.D. | N.D. | N.D. | | | N.D. | | | N,D. | 1109 | 18 | 201 | | 1929-30 | 1110 | N.D. | N.D. | 965 | | | N.D. | 1 | 1 | N.D. | 756 | 40 | 40 | | 1930-31 | 1082 | N.D. | N.D. | 886 | ł | | N.D. | 1 | l | N.0 | 754 | 24 | 137 | | 1931-32 | 8741 | N.D. | N.D. | 8448 | l | | N.D. | 1 | l | N.D. | 3589 | 33 | 311 | | 1932-33 | 2160 | 101 | 0 | 2119 | | | N.D. | 4 | 13 | 81 | 1523 | 43 | 353 | | 1933-34 | 3454 | N.D. | N.D. | 3493 | 1 | 1 | 914 | 1 | 26 | 65 | 2002 | 48 | 62 | | 1934-35 | 5569 | 84 | 0 | 5556 | i | | N.D. | 5 | 16 | 92 | 3061 | 60 | 0 | | 1935-36 | 3098 | 88 | o | 3094 | 2 | 12 | 248 | 5 | 13 | 129 | 2500 | 0 | *4.0 | | 1936-37 | 15737 | 356 | 0 | 14210 | 2 | 14 | 508 | 2 | 18 | 250 | 5118 | 2.0 | 1531 | | 1937-38 | 25878 | 2360 | 0 | 26796 | 3 | 2 | 8320 | 3 | 3 | 2060 | 6397 | 0 | * 0 | | 1938-39 | 3525 | 86 | 0 | 3080 | 12 | 19 | 145 | 1 | 20 | 66 | 998 | 0 | 445 | | 1939-40 | 3209 | 156 | 0 | 3133 | (1 | 8 | 928 | 2 | 4 | 169 | 1698 | 158 | 521 | | 1940-41 | 25785 | 536 | 0 | 25942 | 3 | 4 | 815 | 3 | 5 | 430 | 4342 | 232 | 364 | | 1941-42 | 1920 | 48 | 0.05 | 2032 | 12 | 29 | 85 | .7 | 15 | 97 | 1460 | 95 | 95 | | 1942-43 | 20698 | 1246 | 0.1 | 20407 | 1 | 23 | 2651 | 1 | 23 | 598 | 2682 | 0 | 386 | | 1943-44 | 15004 | 898 | 0.4 | 15167 | 2 | 22 | 1790 | 3 | 2-3 | 326 | 4818 | 0.8 | 44 | | 1944-45 | 4866 | 206 | 0.4 | 4911 | 2 | 2 | 494 | 2 | 2 | 397 | 1258 | 0 | 0 | | 1945-46 | 4600 | 332 | 0 | 2905 | 3 | 30 | 564 | , 2 | 5 | 241 | 3524 | 0 | 1673 | | 1946-47 | 4356 | 118 | 0 | 6029 | 12 | 26 | 318 | 1 | 7 | 223 | 1697 | 0 | 0 | | | | | | | | BI | G TUJUNG/ | DAM | | | | | | |---------|-------|-------|------|-------------|-------|---------------------------|--------------------|------|-------|--------|------|-----|-------| | 1930-31 | N.D. | N.D. | N.D. | N.D. | | I | N.D. | | | N.D. | 239 | 43 | 156 | | 1931-32 | N.D. | N.D. | N.D. | N.D. | | | N.D. | 1 | | N.D. | 4908 | 156 | 798 | | 1932-33 | 4342 | 218 | 0 | 4518 | | | N.D. | 1 | 20 | 35 | 3252 | 337 | 622 | | 1933-34 | 4441 | 994 | 0 | 4234 | 1 | 1 | 2430 | 7 | 17-18 | 21 | 4510 | 167 | 829 | | 1934-35 | 11992 | 380 | 0 | 10698 | 4 | 8 | 718 | 4 | 8 | 540 | 6249 | 648 | 2122 | | 1935-36 | 3875 | 131 | 0 | 5509 | 2 | 12 | 312 | 2 | 17 | 52 | 2661 | 189 | 488 | | 1936-37 | 26969 | 803 | 0.6 | 25729 | 2 | 6 | 1740 | 2 | 15-19 | 366 | 6266 | 188 | 1728 | | 1937-38 | 64855 | 12030 | 1,0 | 65022 | 3 | 2 | 32940 | 3 | 2 | 32600 | 7719 |) 0 | . 0 | | 1938-39 | 9905 | 327 | 1,2 | 9106 | 12 | 19 | 666 | 12 | 23 | 424 | 2343 | 0 | * 8.0 | | 1939-40 | 7058 | 337 | 0.4 | 7197 | 1 | 8 | 2302 | 1 | 8 | 747 | 2277 | 0 | *717 | | 1940-41 | 59402 | 1200 | 0.9 | 59086 | 3 | 4 | 1570 | 2 | 21 | 1560 ± | 2313 | + | *1033 | | 1941-42 | 7120 | 71 | 0.8 | 7724 | 12 | 10 | 134 | 12 | 30 | 47 | 2131 | 115 | 428 | | 1942-43 | 52877 | 5695 | 1.1 | 52919 | 1 | 23 | 17850 | 1 | 23 | 17670 | 5321 | 0 | 0 | | 1943-44 | 42270 | 2779 | 5.0 | 41722 | 2 | 22 | 4770 | 2 | 22 | 3310 | 2485 | { o | 548 | | 1944-45 | 13206 | 475 | 1.2 | 12231 | 11 | 11 | 1847 | - 11 | 13 | 300 | 3034 | 503 | 1523 | | 1945-46 | 11543 | 1154 | 0.8 | 12383 | 3 | 30 | 2313 | 3 | 30 | 983 | 4096 | 503 | 680 | | 1946-47 | 12987 | 674 | 0.9 | 12827 NOTE: | OUTEL | ⁽ 13
O₩S DO | 1690
NDT SHOW P | L 12 | 26 I | 501 | 1748 | 423 | 840 | | 1921-29 | SOME ST | DRAGE RECORDS | AVAILABLE | AT CITY OF | PASADEN | A WATER | DEPARTMEN | τ. | | | | | | |---------|---------|---------------|-----------|------------|---------|---------|-----------|-----|----|------|------|-----|------| | 1929-30 | N.D. | N.D. | N.D. | N.D. | 1 . | j . | N.D. | 1 | | N.D. | 196 | 0 | 0 | | 1930-31 | N.D. | N.D. | N.D. | N.D. | | ł | N.D. | | | N.D. | 155 | 0 | *0 | | 1931-32 | N.D. | N.D. | N.D. | N.D. | | | N.D. | | | N,D, | 1715 | 0 | 0 | | 932-33 | N.D. | N.D. | N.D. | N.D. | 1 | i | N.D. |] | | N.D. | 1046 | 0 | 0 | | 1933-34 | 2938 | 757 | 0 | 0 | 1 | i | 3310 | | | 0 | 2310 | 0 | 0 | | 1934:35 | 3843 | N.D. | 0 | 0 | 10 | 17 | 1310 | | | Q | 1128 | 0 | *26 | | 935-36 | 3457 | N.D. | 0 | 86 | 1 | ł | N.D. | 7 | 2 | 12 | 1450 | 2.0 | 6. | | 936-37 | 12030 | 340 | 0 | 2818 | 2 | 6 | 852 | 2 | 18 | 135 | 3310 | 6.0 | 156 | | 937-38 | 25436 | 3720 | 0 | 17496 | 3 | 2 | 10840 | 3 | 2 | 6440 | 5465 | 0 | *331 | | 938-39 | 3044 | 200 | 0 | 634 | 12 | 19 | 201 | 12 | 20 | 62 | 760 | 0 | 488 | | 939-40 | 1350 | 142 | 0 | 745 | - 1 | 8 | 859 | 2 | 21 | 74 | 959 | 0 | 0 | | 940-41 | 27013 | 1380 | 0 | 24582 | 2 | 20 | 3870 | 2 | 20 | 3120 | 1762 | 0 | 531 | | 941-42 | 689 | 91 | 0 | 443 | 12 | 10 | 479 | 12 | 8 | 27 | 378 | 4.0 | 4. | | 942-43 | 25655 | 2559 | 0 | 23552 | 1 | 23 | 7740 | 1 | 23 | 5530 | 2366 | 0.5 | 58 | | 943-44 | 8680 | 1454 | 0 | 7905 | 2 | 22 | 2310 | 2 | 22 | 1530 | 1823 | 0 | 0 | | 944-45 | 2341 | 288 | 0 | 2031 | 11 | 11 | 949 | 3 1 | 15 | 434 | 730 | 0 | 0 | | 945-46 | 2994 | 435 | 0 | 1343 | 12 | 22 | 1040 | 12 | 23 | 389 | 1341 | 0 | 72 | | 946-47 | 4045 | 285 | 0 | 3949 | 12 | 25 | 1283 | 12 | 27 | 610 | 691 | 0 | 0 | | | | | | | | EAT | ON WASH | MAC | | | | | | |-------------------------------|---------------------|------------------|-------------|--------------------|----------|----------|---------------------|--------------|-------------------------|------------------|-------------------|-----|---------------| | 1936-37
1937-38
1938-39 | 3062
6993
340 | 112
883
51 | 0
0
0 | 1502
5213
84 | 3
12 | 2
18 | N.D.
2670
169 | 2
3
12 | VAR
TIMES
2
19 | 40
2700
29 | 613
963
112 | 0 0 | 0
*0
62 | | 1939-40 | 390
7323 | 31
188 | 0 | 96
6089 | 1 2 | 8
20 | 220
426 | 10 | 8
20 | 13
256 | 149
432 | 0 | *0. | | 1941-42
1942-43 | 78
7212 | 11
498 | 0 | 6399 | 12 | 10
23 | 73
1700 | , | 23 | 1100 | 47
643 | 0 | 0 | | 1943-44
1944 - 45 | 2901
331 | 265
52 | 0 | 1970
101 | 2
11 | 22
11 | 371
204 | 3 2 | 14
2 | 268
26 | 398
107 | 0 | + | | 1945-46
1946-47 | 514
779 | 77
76 | 0
0 | 265
507 | 12
11 | 23
13 | 284
341 | 12 | 22
26 | 121
86 | 174
243 | 0 | 0 | | j | | | | NOTE: | OUTFL | ows do | NOT SHOW F | ERCOLATI | ON LOSSE | s. | | ĺ | | LEGEND N.D. NOT DETERMINED * STORAGE CORRECTED FOR DEBRIS LOSSES + 0.05 C.F.S. OR LESS ## YEARLY RESERVOIR OPERATION SUMMARY | YEAR | | INFL | | OUTFLOW | | PEAK I | NFLOW | | PEAK OUT | FLDW | | STORAGE A.F. | | |--------------------|----------------|-------------|-------------------|----------------|----------|-----------|--------------|-------|----------------|--|---------------|--------------|------------| | | ANNUAL
A.F. | C.F.S. | MIN DAY
C.F.S. | ANNUAL
A.F. | MO. | DAY | C.F.S | мо. | DAY | C.F.S. | MAX IMUM | MINIMUM | SEPT. 30 | | | | | ' | \ | | | | | | ······································ | | | | | · | | | | ···· | В | IG SAN | FA ANITA | DAM | | | | | | | 1926-27 ° | 1208° | 13 | 0.4 | 1030 ° | | | N.D. | T 1 | | N.D. | 668 | 147 | 312 | | 1927-28 | 1009 | 22 | 0.1 | 1162 | | | N.D. | | | N.D. | 244 | 1770 | 97 | | 1928-29 | 1214 | 30 | 0 | 1256 | | | N.D. | i i | | N.D. | 630 | 11 | 94 | | 1929-30 | 1276 | 25 | 0.1 | 964 | | | N.D. | | | N.D. | 711 | 9.0 | 302 | | 1930-31
1931-32 | 989
4010 | 34
236 | 0 | 1155
3883 | | | N.D.
N.D. | 12 | 28 | N.D. | 316
614 | 25
20 | 87
130 | | 1932-33 | 2190 | 152 | 1 "6" | 2022 | | 19 | 390 | '2 | 22 |
112
34 | 805 | 58 | 414 | | 1933-34 | 2603 | 322 | i ō | 2622 | l i | 1 | 800 ± | l il | ī | 400 | 695 | 54 | 231 | | 1934-35 | 3693 | 92 | 0.1 | 3585 | 4 | - 8 | 449 | 4 | 8 | 146 | 763 | 18 | 340 | | 1935-36 | 2480 | 84 | 0 | 2535 | 2 | 12 | 228 | 2 | 17-19 | 52 | 686 | 33 | *265 | | 1936-37
1937-38 | 8799
16594 | 192
1780 | 1.3 | 8616
16689 | 2 | 6
2 | 313
5140 | 2 3 | 14-15
2 | 140
5070 | 1022
1202 | 108 | 448 | | 1938-39 | 2726 | 74 | 0.4 | 2461 | 12 | 19 | 159 | 9 | 26 | 50 | 435 | | 265 | | 1939-40 | 2743 | 62 | 0.4 | 2664 | l ï | 8 | 378 | 2 | 4 | 73 | 573 | ŏ | *312 | | 1940-41 | 15225 | 239 | 0.4 | 15235 | 3 | 4 | 300 ± | VAR | R. TIMES | 260 | 512 | ō | 302 | | 1941-42 | 2070 | 25 | 0.6 | 2140 | 12 | 29 | 53 | 12 | 29 | 31 | 571 | 209 | 232 | | 1942-43 | 19371 | 1113 | 0.6 | 19440 | , 1
2 | 23 | 3100 | 1 | 23 | 3060 | 717 | 0 | 0 | | 1943-44
1944-45 | 7463
4147 | 514
101 | 1.3 | 7294
4133 | 11 | 22
11 | 813
303 | 2 VAR | 22
R. TIMES | 573
260 ± | 540
650 | 0 | 169
184 | | 1945-46 | 3426 | 149 | 0.8 | 3360 | 12 | 23 | 492 | 12 1 | 22 | 298 | 673 | 7.6
124 | 249 | | 1946-47 | 4489 | 122 | 0.7 | 4462 | 11 | 20 | 382 | 12 | 26 | 203 | 439 | 0 | 277 | | RECORD B | EGINS 3-3 | 1-27 | | , N | TE: 0 | IITEI AWS | DO NOT SHO | l l | I ATLON LO | eeee | | | 1 | | | 1 | | | | | | | | | | | • | | | | | | | | | | SAWPIT DA | \M | | | | | | | 1927-28 | 20.0 | N.D. | 1 0 | 0.0 | | | N.D. | | | N.D. | | N.D. | | | 1928-29** | 26 °
96•• | 5.3 | 0 | 39 0 | | Į. | N.D. | | | N.D. | 66
91 | N.D. | 27
16 | | 1929-30** | 219** | 8.0 | ŏ | 209** | | | N.D. | 9 | 30 | 3,1 | 195 | ŏ | 11 | | 1930-31** | 97** | 3.9 | 0 | 68** | | ĺ | N.D. | 5 | 16 | 3.0 | 87 | 0 | 29 | | 1931-32 | 710 | 56 | 0 | 726 | 2 | 9 | 76 | 2 | 17 | 16 | 234 | 12 | -12 | | 1932-33
1933-34 | 184
468 | 8.6
106 | 0 | 185
457 | 1 | 1 | N.D.
240 | 1 1 | 27
1 | 7.0
136 | 112
156 | 0 | 0 | | 1934-35 | 548 | 36 | l ő | 540 | 4 | 8 | 168 | 12 | 15 | 25 | 146 | 0 | 6 | | 1935-36 | 574 | 22 | ō | 574 | 2 | 11 | 72 | 2 | 15 | 22 | 91 | Ĭ | + 0 | | 1936-37 | 1434 | 36 | 0 | 1401 | ì | | N.D. | 2 | 14 | 34 | 93 | 0 | 33 | | 1937-38 | 2909 | 384 | 0 | 2868 | 3 | 2 | 1070 | 3 | 2 | 665 | 447 | 0 | * 0 | | 1938-39
1939-40 | 232
264 | 17
11 | 0 | 170
308 | 1 1 | 8 | N.D.
39 | 9 | 25
7 | 16
20 | 61
62 | 15 | 58
15 | | 1940-41 | 2180 | 63 | ő | 2195 | 3 | 4 | 109 | 3 | 5 | 59 | 114 | 1 0 | * 0 | | 1941-42 | 107 | 3.7 | 0 | 39 | 12 | 29 | 4.8 | 3 | 14 | 2.5 | 75 | 0 | 69 | | 1942-43 | 2966 | 162 | 0 | 2950 | i | 23 | 520 | 1 | 23 | 284 | 300 | 0 | 58 | | 1943-44
1944-45 | 747
316 | 73 | 0 | 743
319 | 11 | 22 | 138 | 11 | 22 | 70. | 133 | 0.2 | 62 | | 1944-45 | 250 | 16
24 | 0 | 245 | 12 | 23 | 59
85 | 12 | 12
23 | 18
36 | 65
78 | 16
8,6 | 59
58 | | 1946-47 | 362 | 23 | ŏ | 361 | 11 | 20 | 77 | 12 | 26 | 26 | 66 | 1.6 | 47 | | ° RECORD | BEGINS 3-5 | -28 | | | | İ | | | | | | | | | **RECORDS | INCOMPLET | E FOR YEAR | | | | L | | | L | L | | i | <u> </u> | | | | | | | | SAN GA | BRIEL DAM | NO. 2 | 2 | | | | | | 1934-35 ° | 3517 °
7154 | 54
265 | 0.1 | 3517 °. | | | N.D.
N.D. | 4 2 | 14 | 55 | 780 | 0 | 0 | | 1935-36 | 7154
32986 | 943 | 0.1 | 7138
32996 | 2 | 14 | 1240 | 2 | 17
14 | 43
752 | 2866
10611 | | 16
5. | | 1937-38 | 60336 | 7990 | 1.4 | 58799 | 3 | 2 | 24710 | 3 | 1 2 | 23430 | 14091 | 1 6 | *16 | | 1938-39 | 11560 | 673 | 0.9 | 11369 | 9 | 25 | 1360 | 9 | 25 | 1160 | 2141 | 0 | 20 | | 1939-40 | 9634 | 309 | 0.8 | 9569 | 1 | 8 | 2020 | 1 | 15 | 1240 | 1541 | o | * 3. | | 1940:41 | 61270 | 1400 | 0.5 | 59951 | 2 | 20 | 1640 | 2 | 20 | 1160 | 9847 | 2.7 | *1321 | | 1941-42
1942-43 | 6080
54700 | 108
4316 | 0.3 | 7331
53703 | 12 | 10 | 294
15000 | 11 | 1
23 | 90
7100 | 1252
8383 | 1.4 | 1. | | 1942-43 | 38150 | 2865 | 1.4 | 37460 | 2 | 23 | 4650 | 2 | 23 | 1160 | 9031 | 0 | 424 | | 1944-45 | 11887 | 424 | 1.4 | 10385 | 11 | 11 | 1600 | 10 | 31 | 420 | 3378 | l ŏ | 1719 | | 1945-46 | 14711 | 1255 | 0.8 | 16377 | 3 | 30 | 2790 | 3 | 30 | 810 | 1950 | 0 | 6. | | 1946-47 | 20135 | 1032 | 0.1 | 20135 | 12 | 25 | 2290 | 1 | 6 | 1300 | 2853 | 0 | 0 | | | - 1 | | | | 1 | 1 | | 1 | , | , | 1 | | | | | | | | | | SAN GA | RIEL DAM | NO. 1 | | | | | | |-----------|--------------|-------|----|----------|--------|---------|------------|----------|----------|-------|-------|-----------|-------| | 1./37-38° | 339155 ° | 30720 | 37 | 332893 ° | 3 | 2 | 89320 | 3 | 2 | 56700 | 58600 | 0 | *53 | | 1538-39 | 67231 | 1330 | 23 | 61655 | 12 | 19 | 2780 | 5 | 11 | 3050 | 5793 | 48 | 5793 | | 1939-40 | 58554 | 757 | 18 | 63386 | 1 | 8 | 2270 | 4 | 16 | 4200 | 12146 | 349 | *373 | | 1940-41 | 306801 | 3940 | 20 | 305515 | 2 | 20 | 5780 | 3 | 3 | 6300 | 43386 | 248 | 248 | | 1941-42 | 50285 | 297 | 20 | 49759 | 12 | 29 | 468 | 11 | 7 | 8880 | 6661 | 224 | 268 | | 1942-43 | 271286 | 17180 | 20 | 267085 | 1 | 23 | 46000 | 1 1 | 23 | 10360 | 31345 | 236 | 964 | | 1943-44 | 184923 | 5708 | 43 | 184622 | 2 | 2.2 | 9860 | 5 | 20 | 4970 | 32980 | SUMP | ONLY | | 1944-45 | 91961 | 1300 | 28 | 90131 | ×11 | 1.1 | 6440 | 3 | 26 | 9100 | 23055 | SUMP ONLY | 973 | | 1945~46 | 99531 | 2984 | 28 | 89502 | 12 | 21 | 5760 | 1 a 1 | 4 | 9200 | 30395 | 336 | *9739 | | 1946-47 | 107688 | 3337 | 18 | 104088 | 12 | 26 | 6520 | 12 | 28 | 7670 | 19253 | 2003 | 11970 | | RECORD | BEGINS 1-1: | 7-37 | | | | | | | | | 1 | 1 | | | | | , | | NOT | E: OUT | FLOWS D | O NOT SHOW | PERCOLAT | TION LOS | SES. | 1 | | | " RECORD BEGINS 4-18-35 LEĠEND N.D. NOT DETERMINED • STORAGE CORRECTED FOR DEBRIS LOSSES + 0.05 C.F.S. OR LESS ## YEARLY RESERVOIR OPERATION SUMMARY | YEAR | | INF | LOW | OUTFLOW | PI | EAK INFLOW | | PEAK O | JTFLOW | s | TORAGE A.F. | | |------|----------------|-------------------|-------------------|----------------|-------|------------|----|--------|---------|-----------|-------------|----------| | | ANNUAL
A.F. | MAX DAY
C.F.S. | MIN DAY
C.F.S. | ANNUAL
A.F. | мо. п | DAY C.F.S. | мо | DAY | C. F.5. | .MAX IMUM | MINIMUM | SEPT, 30 | | | | | | | | 81G | DALTON DA | М | | | | | | |---------|------------|-----|------|------|------|----------|------------|----------|----------|------|------|-------|-----| | 1929-30 | 52 | 3,2 | 1.8 | 52 | | | N.D. | 4 | 29 | 1.8 | 39 | 0 | 0 | | 1930-31 | 41 | 2.0 | 0 | 41 | 4 | 26 | 3.0 | 3 | 11 | 16 | 26 | 0 | 0 | | 1931-32 | 690 | 54 | 0 | 688 | 2 | 9 | 86 | 2 | 11 | 134 | 261 | 0 | 2.0 | | 1932-33 | 7 9 | 5-0 | 0 | 81 | 1 | 20 | 12 | 9 | 22 | 4.0 | 63 | 0 | 0 | | 1933-34 | 448 | 93 | 0 | 448 | 1 1 | 1 | 227 | . 1 | 18 | 9.5 | 319 | 0 | 0 | | 1934-35 | 593 | 21 | 0 | 575 | 4 | 8 | 49 | 9 | 23 | 6.0 | 577 | 0 | +19 | | 1935-36 | 360 | 12 | 0 | 369 | 2 | 11 | 72 | 7 | 29 | 3.5 | 353 | 7-0 | 9.0 | | 1936-37 | 1879 | 51 | 0 | 1868 | 2 | 6 | 98 | 2 | 16 | -20 | 1007 | 8.0 | 20 | | 1937-38 | 3271 | 415 | 0 | 3192 | 3 | 2 | 1320 | 3 | 2 | 739 | 1021 | 9-0 | 16 | | 1938-39 | 280 | 4.3 | 0 | 288 | 1 | 5 | 26 | 7 | 8 | 2.7 | 272 | 4-0 | 9.0 | | 1939-40 | 232 | 4-0 | 0 | 237 | 1 | 8 | 29 | 9 | 11 | 2.7 | 230 | 4.0 | 4.0 | | 1940-41 | 2767 | 56 | + | 2748 | 3 | 4 | 88 | 3 | 5 | 65 | 971 | 4 10 | 24 | | 1941-42 | 209 | 2.3 | 0.05 | 233 | 3 | 14 | 6.0 | 8 | | N.D. | 153 | 1 0 1 | 0 | | 1942-43 | 3143 | 160 | 0.1 | 3110 | 1 | 23 | 595 | 3 | 4-6 | 111 | 760 | 0 | 13 | | 1943-44 | 10a7 | 109 | 0.05 | 1085 | 2 | 22 | 226 | 2 | 23 | 55 | 603 | 13 | 15 | | 1944-45 | 734 | 19 | 0 | 729 | 11 | 11 | 47 | 8 | 27 | 3.9 | 706 | 15 | 20 | | 1945-46 | 525 | 40 | 0 | 509 | 12 | 23 | 148 | 8 | 3-5 | 3.0 | 547 | 20 | 36 | | 1946-47 | 492 | 16 | 0 | 512 | 11 | 20 | 56 | 12 | 30 | 12 | 358 | 14 | 16 | | | | | | | ļ | | | | l | I | | 1 1 | | | | | | | NOTE | :OUT | FLOWS DO | NOT SHOW F | PERCOL A | TION LOS | SES | l | 1 | | | | | | | | | SAN E | IMÁS DAM | | | | | | | |----------|-------|------|------|-------|-------|---------|------------|----------|------------|------|------|-----|------| | 1927-28 | N,D, | N.D. | N.D. | N.D. | | | N.Ď. | | | N.D. | 249 | 0 | 0 | | 1928-29 | N.D. | N.D. | 0 | N.D. | | | N.D. | 1 1 | | N.D. | 486 | 0 | 9.0 | | 1929-30 | 591 | 28 | 0 | 573 | | | N.D. | 1 1 | | N.D. | 535 | 0 | 27 | | 1930-31 | 485 | 23 | 0 | 466 | | | N.D. | 1 1 | | N.D. | 217 | 21 | 46 | | 1931-32 | 2502 | 162 | 0 | 2496 | | | N.D. | 2 | 10 | 69 | 775 | 25 | 51 | | 1932-33 | 652 | 50 | 0 | 648 | | | N.D. | 1 1 | 24 | . 17 | 269 | 21 | 56 | | 1933-34 | 1351 | 229 | 0 | 1357 | 1 | 1 | 422 | 1 1 | 4 | 120 | 500 | 39 | 50 | | 1934 -35 | 1753 | 60 | 0 | 1682 | 4 | 8 | 145 | VAR | | 14 | 1184 | 48 | 121 | | 1935-36 | 1094 | 35 | 0 | 1136 | 2 | 11 | 155 | 4 | 10 | 135 | 696 | 32 | *32 | | 1936-37 | 6316 | 154 | 0 | 6126 | 2 | 6 | 296 | 2 | 7 | 127 | 1301 | 27 | *222 | | 1937-38 | 12492 | 1600 | 0.4 | 12494 | 3 | 2 | 4920 | 3 | 2 | 4690 | 1704 | 0 | *0 | | 1938-39 | 2165 | 43 | 0.2 | 2024 | 1 | 5 | 81 | 12 | 19 | 23 | 560 | 0 | 141 | | 1939-40 | 1532 | 60 | 0 1 | 1600 | 1 | 8 | 302 | 2 | 4 | 36 | 778 | 23 | *68 | | 1940-41 | 9645 | 131 | 0.1 | 9240 | 3 | 4 | 235 | VAR | . TIMES | 145 | 1171 | 13 | *473 | | 1941-42 | 1603 | 16 | 0.2 | 1855 | 12 | 10 | 29 | 12 | 12 | 23 | 625 | 173 | 173 | | 1942-43 | 9271 | 573 | 0.5 | 9095 | 1 | 23 | 1700 | 1 1 | 23 | 1230 | 1153 | 58 | 276 | | 1943-44 | 5348 | 398 | 0.1 | 5423 | 2 | 22 | 785 | 2 | 22 | 555 | 1043 | 78 | 173 | | 1944-45 | 3747 | 97 | 0.9 | 3811 | 11 | 11 | 375 | 2 | 3 | 51 | 1042 | 36 | 109 | | 1945-46 | 2560 | 149 | 0,1 | 2368 | 12 | 23 | 519 | 12 | 23 | 154 | 845 | 74 | 302 | | 1946:47 | 2705 | 100 | 0.1 | 2982 | 11 | 20 | 340 | 111 | 20 | 60 | 387 | 17 | 25 | | | | 1 | | NOTE | . OUT | FIAME D | O NOT SHOW | DEDCOL 4 | T.ON . OFF | | | | l | | | | | | | PUD | DINGST | ONE DIVER | SION D | MA | | | | | |---------|-------|------|------|-------|-----|--------|-----------|--------|----|------|-----|-----|------| | 1931-32 | N.D. |
N.D. | N.D. | N.D. | | | N.D. | | | N.D. | 63 | 0 | 0 | | 1932-33 | N.D. | N.D. | N.D. | N.D. | 1 | | N.D. | 1 1 | | N,D. | 70 | 0 | 0 | | 1933-34 | N.D. | N.D. | N.D. | N.D. | 1 | | N.D. | | | N.D. | 70 | 0 | 0 | | 1934-35 | N.D. | N.D. | N.D. | N.D. | | | N.D. | | | N.D. | 18 | 0 | 0 | | 1935-36 | 304 | 48 | 0 | 304 | 4 | 10 | 85 | 4 | 10 | 1400 | 119 | 0 | *0 | | 1936-37 | 3434 | 82 | 0 | 3434 | 1 | | N.D. | 3 | 27 | 1660 | 111 | 0 | 0 | | 1937-38 | 11194 | 1620 | 0 | 11125 | 3 | 2 | 5760 | 3 | 2 | 5780 | 149 | 0 | *8.0 | | 1938-39 | 1288 | 28 | 0 | 1293 | 1 | 10 | 23 | 12 | 19 | 30 | 6.0 | 0 | 0 | | 1939-40 | 350 | 26 | 0 | 155 | 1 | 8 | 33 | 2 | 4 | 25 | 27 | 0 | •0 | | 1940-41 | 7213 | 133 | 0 | 6776 | 3 | 14 | 155 | 3 | 14 | 154 | 30 | 0 1 | 0 | | 1941-42 | 341 | 13 | 0 | 203 | 12 | 12 | 24 | 12 | 29 | 10 | 27 | 0 | 0 | | 1942-43 | 8593 | 970 | 0 | 7939 | 1 | 23 | 2045 | 1 | 23 | 2035 | 76 | 0 | 0 | | 1943-44 | 3406 | 357 | 0 | 3010 | 2 | 22 | 724 | 2 | 22 | 724 | 60 | 0 | 0 | | 1944-45 | 1719 | 64 | 0 | 1294 | 2 | 2 | 88 | 2 | 2 | 74 | 54 | 0 | 0 | | 1945-46 | 970 | 159 | 0 | 773 | 12 | 23 | 234 | 12 | 23 | 229 | 58 | 0 | 0 | | 1946-47 | 1400 | 55 | 0 | 1109 | 12 | 26 | 58 | 12 | 26 | 58 | 52 | 0 | 0 | | 1927-28 | N.D. | N.D. | N.D. | N.D. | | | N.D. | | | N.D. | 437 | N.D. | 211 | |---------|-------|------|------|------|----|----|------|------|-------|------|-------|------|-------| | 1928-29 | 114 | 12 | 0 | 151 | | | N.D. | 10 | 10 | 2.0 | 274 | 162 | 178 | | 1929-30 | 295 | 15 | 0 | 223 | | | N.D. | 9 | 11 | 4.5 | 431 | 145 | 250 | | 1930-31 | 73 | 8.5 | 0 | 119. | | | N.D. | 10 | 16 | 2,4 | 252 | 189 | 204 | | 1931-32 | 1547 | 162 | 0 | 1086 | | Ì | N.D. | VAR. | TIMES | 9.5 | 1732 | 192 | 665 | | 1932-33 | 314 | 30 | 0 | 906 | ĺ | | N.D. | 11 | 20 | 6.0 | 653 | 70 | 70 | | 1933-34 | 2669 | 596 | 0 | 1809 | | | N.D. | | TIMES | 6.0 | 2685 | 28 | 8541 | | 1934-35 | 610 | N.D. | N.D. | 846 | 1 | 15 | 205 | VAR. | TIMES | 6.0 | 1283 | 517 | 517 | | 1935-36 | 703 | 54 | 0 | 969 | 4 | 10 | 590 | 12 | | 5.3 | 943 | 250 | 250 | | 1936-37 | 5732 | 303 | 0 | 2173 | 2 | 6 | 1480 | VAR. | TIMES | 11 | 5838 | 147 | 3808 | | 1937-38 | 12221 | 2200 | 0 | 7544 | 3 | 2 | 5310 | 3 ! | 18 | 100 | 12881 | 3060 | 8486 | | 1938-39 | 1576 | 101 | 0 | 5305 | | | N.D. | 9 | 4-12 | 27 | 8486 | 4526 | 4756 | | 1939-40 | 646 | 54 | 0 | 2524 | 1 | 7 | 448 | 6 | 19 | 11 | 4756 | 2109 | 2109 | | 1940-41 | 12030 | 377 | 0 | 3308 | 3 | 4 | 1084 | 6 | 10 | 14 | 12739 | 1494 | *9668 | | 1941-42 | 475 | 30 | 0 | 4385 | 12 | 10 | 409 | 12 | 2 | 91 | 9668 | 4612 | 4612 | | 1942-43 | 10043 | 1126 | 0 | 4836 | 1 | 23 | 2300 | 3 | 4 | 287 | 11271 | 3925 | 8320 | | 1943-44 | 3408 | 525 | 0 | 3179 | 2 | 22 | 1030 | 3 | 2 | 49 | 9700 | 7022 | 7138 | | 1944-45 | 1615 | 139 | 0 | 2376 | 11 | 11 | 484 | 9 | 28 | 8.0 | 7866 | 5412 | 5412 | | 1945-46 | 1576 | 275 | 0 | 6009 | 12 | 23 | 929 | 8 | 25-31 | 32 | 5412 | 237 | 237 | | 1946-47 | 1414 | 96 | 0 | 788 | 11 | 13 | 445 | 8 | l al | 9.3 | 1576 | 236 | 543 | LEGEND N.D. NOT DETERMINED * STORAGE CORRECTED FOR DEBRIS LOSS + 0.05 C.F.S. OR LESS YEARLY RESERVOIR OPERATION SUMMARY | YEAR | | INFL | | OUTFLOW | | PEAK | INFLOW | | PEAK O | UTFLOW | | TORAGE A.F. | | |--|---|---|---|---|---------------------------------------|-----------------------------------|---|-------------|--------------|---|---|---|---| | | ANNUAL
A.F. | MAX DAY
C.F.S. | C.F.S. | ANNUAL
A.F. | MO. | DAY | C.F.S. | MQ. | DAY | C.F.S. | MAX (MUM | MINIMUM | SEPT. 3 | LIVE | OAK DAM | | | | | | | | 1931-32 | N.D. | N.D. | N.D. | N.D. | | | N.D | | | N. D. | 115 | 0 | ٥ | | 1932-33 | 0 | 0 | 0 | 0 | | | 0 | | | 0 | ' 0 | 0 | 0 | | 1933-34 | N.D. | N.D. | N.D. | 142 | | | N.D. | 1 | 2 | 9.0 | 160 | 0 | 0 | | 934-35 | 27 | 2.3 | 0 | 9.5 | 4 | 8 | 16 | 7 | 19 | 0.6 | 26 | 0. | 0 | | 1935-36 | 33+ | 4.1 | 0 | 0 | | 1 | N.D. | i | | 0 | 33 | 0 | *4.0 | | 936-37 | 494 | 35 | 0 | 413 | 2 | 6 | 139 | 2 | 6 | 36 | 97 | 0 | o | | 1937-38 | 800 | 147 | ا ہ | 785 | 3 | 2 | 339 | 3 | 2 | 200 | 217 | 0 ' | * .0 | | 1938-39 | 21 | 1.0 | | 3.0 | 3 | 2 | 1.4 | 9 | 16 | 8.0 | 21 | 0 | 0 | | 1939-40 | 16 | 1.2 | 0 | 1.0 | 1 | 8 | 11 | 5 | 31 | 10 | 16 | 0 | 0 | | 940-41 | 719 | 39 | ō | 718 | 3 | 4 | 90 | 3 | 13 | 28 | 139 | 0 | Ó | | 1941-42 | | + | + | | | | + | | | + | + | 0 | 0 | | 1942-43 | 827 | 78 | | 827 | 1 | 22 | 170 | 1 | 23 | 50 | 170 | 0 | 0 | | 1943-44 | 218 | 33 | 0 | 218 | 2 | 22 | 74 | 2 | 22 | 20 | 71 | 0 | 0 | | 1944-45 | 177 | 9.0 | 0 | 177 | 2 | 2 | 67 | 2 | 3 | 12 | 53 | . 0 | 0 | | 1045.45 | 104 | 22 | | 88 | 12 | 23 | 127 | 12 | 25 | 2.0 | 68 | 0 | 0 | | 1945-46 | | | | | | | | | | | | | | | 1945-46 | 64 | 7.5 | ō | 45 | - 11 | 20 | 25 | 12 | 30 (| 2.1 | 43 | 0 1 | 0 | | | | | | | | 20 | 25 | 12 | 30 | 2.1 | 43 | 0 | 0 | | | | | | 45 | 11 | | 25
HOW PERCOLA | | | 2.1 | 43 | 0 | ٥ | | | | | | 45 | 11 | OO NOT S | HOW PERCOLA | TION L | | 2.1 | 43 | 0 | 0 | | | | | | 45 | 11 | OO NOT S | • | TION L | | 2.1 | 43 | 0 | 0 | | 1946-47 | | | | 45 | 11 | OO NOT S | HOW PERCOLA | TION L | | 5.0 | 62 | 0 | 0 | | 931-32 | 64 | 7.5 | ō | A5 | LOWS | THOMP | HOW PERCOLA SON CREEK | TION L | osses. | 5.0 | 62
O | 0 | 0 0 | | 1946-47 | 64
EST 80 ± | 7.5
N.D. | 0
N.D. | NOTE: OUTF | LOWS | THOMP | SON CREEK | TION L | osses. | 5.0
0 | 62
0
112 | 0 0 | 0 0 0 + 0 | | 931-32
932-33 | 64
EST 80 ± | 7.5
N.D.
0 | N.D.
0
N.D.
N.D. | NOTE: OUTF | LOWS | THOMP | HOW PERCOLA SON CREEK 91 O N.D. N.D. | TION L | osses. | 5.0
0
0 | 62
0
112
1.0 | 0 0 0 | 0 0 * 0 0 | | 931-32
932-33
933-34 | 64
EST 80 ±
0 | N.D.
0 | N.D.
0
N.D. | NOTE: OUTF | LOWS | THOMP | SON CREEK 91 0 N.D. N.D. N.D. | TION L | osses. | 5.0
0
0 | 62
0
112
1.0 | 0 0 0 0 0 | 0 0 0 0 0 0 | | 931-32
932-33
933-34
934-35
935-36
936-37 | EST 80 ±
0
114 +
1.0 + | N.D.
0
N.D.
N.D.
N.D. | N.D.
0
N.D.
N.D. | EST 80 ± | 11
LOWS [| THOMP | SON CREEK 91 0 N.D. N.D. N.D. N.D. | TION L | a 8 | 5.0
0
0
0 | 62
0
112
1.0
1.0 | 0 0 0 0 0 0 | 0
0
* 0
0
0 | | 931-32
932-33
933-34
934-35
936-37
937-38 | EST 80 ± 0 114 + 1.0 + 274 1099 | N.D.
O
N.D.
N.D.
N.D.
24
259 | N.D.
N.D.
N.D.
N.D. | EST 80 ± 0 0 0 0 872.5 | 11 cows c | THOMP | HOW PERCOLA
SON CREEK
91
0
N.D.
N.D.
N.D.
N.D. | TION L | osses. | 5 0
0
0
0
0 | 62
0
112
1.0
1.0
204
632 | 0 | 0 | | 931-32
932-33
933-34
934-35
935-36
936-37
937-38
938-39 | EST 80 ± 0 114 + 1.0 + 274 1099 21 | N.D.
O
N.D.
N.D.
N.D.
24
259
0.6 | N.D.
0
N.D.
N.D.
N.D. | EST 80 ± 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2
3
1 | THOMP: | SON CREEK 91 0 N.D. N.D. N.D. N.D. 1.1 | TION L | a 8 | 5.0
0
0
0
0
0
120 | 62
0
112
1.0
1.0
204
632
8 | 0 | 0
0
0
0
0
4-0 | | 931-32
932-33
933-34
934-35
936-37
937-38
938-39
938-39
938-39 | EST 80 ± 0 114 + 1.0 + 1.0 + 274 1099 21 49 | N.D.
0
N.D.
N.D.
N.D.
24
259
0.6
4.5 | N.D.
N.D.
N.D.
N.D. | EST 80 ± 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2
2
3
1 | THOMP: | 91
0
N.D.
N.D.
N.D.
N.D.
1.1 | Z 2 | 8 8 9 a | 5.0
0
0
0
0
120
0 | 62
0
112
1.0
1.0
204
632
8
20 | 0 | 0
0
0
0
0
0
4-0 | | 931-32
932-33
933-34
934-35
935-36
936-37
937-38
938-39 | EST 80 ± 0 114 + 1.0 + 1.0 + 2.74 1099 21 49 640 | N.D.
O
N.D.
N.D.
24
259
O.6
4.5 | N.D.
0
N.D.
N.D.
N.D.
0
0 | EST 80 ± 0 0 0 0 872.5 0 0 2.8 | 2
3
1
1
3 | THOMP: 9 2 30 7 4 | 91 0
N.D.
N.D.
N.D.
N.D.
1.1
26 | 2
3 | 8 8 9 14 | 5.0
0
0
0
0
120
0
0
0
4.2 | 62
0
11.2
1.0
2.04
632
8
20
329 | 0 | 0
0
0
0
0
0
4-0
0
0
0
2.1 | | 931-32
932-33
933-34
934-35
936-37
937-38
938-39
938-39
938-39 | EST 80 ± 0 114 + 1.0 + 274 1099 21 49 640 0.3 | N.D.
N.D.
N.D.
N.D.
N.D.
24
259
0.6
4.5
46
0.05 | N.D.
N.D.
N.D.
N.D.
0 | EST 80 ± 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2
3
1
1
3 | 9 2 30 7 4 4 10 | 91
0
N.D.
N.D.
N.D.
N.D.
1.1
26
97
0.5 | 2
3
3 | 8 8 14 14 14 | 5.0
0
0
0
0
0
120
0
4.2
E 1.0 | 62
0
112
1.0
1.0
632
8
20
329
2.1 | 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 931-32
932-33
933-34
934-35
935-36
936-37
937-38
938-39
938-39
939-40
940-41
941-42 | EST 80 ± 0 114 + 1.0 + 274 1099 21 49 640 0.3 767 | N.D.
0
N.D.
N.D.
N.D.
24
259
0.6
4.5
46
0.05 | N.D.
N.D.
N.D.
N.D.
0 | EST B0 ± 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
2
3
1
1
3
12 | THOMP: 9 2 30 7 4 10 23 | 91
0
N.D.
N.D.
N.D.
N.D.
1.1
26
97
0.5 | 2
3 | 8 8 9 14 | 5 0
0
0
0
0
0
0
0
0
4.2
E 1.0 | 62
0
112
1.0
1.0
204
632
8
20
329
2.1
360 | 0 | 0
0
0
0
0
0
4-C
0
0
0 | | 931-32
932-33
933-34
934-35
935-36
937-38
938-39
939-40
940-41
941-42 | EST 80 ± 0 114 + 1.0 + 274 1099 21 49 640 0.3 | N.D.
N.D.
N.D.
N.D.
N.D.
24
259
0.6
4.5
46
0.05 | N.D.
N.D.
N.D.
N.D.
0
0
0 | EST 80 ± 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2
3
1
1
3
12
1
2 | 7 THOMP:
9 2 30 7 7 4 10 23 22 | 91
0
N.D.
N.D.
N.D.
N.D.
26
97
0.5 | 2
3
3 | 8 8 14 14 14 | 5.0
0
0
0
120
0
4.2
E 1.0 | 62
0
112
1.0
1.0
204
632
8
20
329
2,1
360
159 | 0 | 0
0
0
0
0
0
4.cc
2.l.
0 | | 931-32
932-33
933-34
934-35
935-36
936-37
937-38
938-39
938-39
939-40
940-41
941-42 | EST 80 ± 0 114 + 1.0 + 274 1099 21 49 640 0.3 767 | N.D. 0
N.D. N.D. N.D. N.D. N.D. 124
259 0.6 4.5 46 0.05 121 56 | N.D.
N.D.
N.D.
N.D.
N.D. | EST 80 # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2
3
1
1
3
12
1
2 | 9 2 30 7 4 10 23 22 12 12 | 91 0 N.D. N.D. N.D. N.D. 1.1 26 97 0.5 270 111 192 | 2
3
3 | 8 8 14 14 14 | 5.0
0
0
0
0
0
120
0
4.2
E 1.0 | 62
0
112
1.0
204
632
8
20
329
2.1
360
159
83 | 0 | 0
0
0
0
0
0
0
4.C
0
0
0
0
1.S | | 931-32
932-33
933-34
934-35
935-36
936-37
937-38
938-39
939-40
940-41
941-42
942-43 | EST 80 ± 0 114+ 1.0+ 274 1099 21 49 640 0.3 767 286 | N.D.
0
N.D.
N.D.
N.D.
N.D.
4.5
46
0.05 | N.D.
N.D.
N.D.
N.D.
0
0
0 | EST 80 ± 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2
3
1
1
3
12
1
2 | 7 THOMP:
9 2 30 7 7 4 10 23 22 | 91
0
N.D.
N.D.
N.D.
N.D.
26
97
0.5 | 2
3
3 | 8 8 14 14 14 | 5.0
0
0
0
120
0
4.2
E 1.0 | 62
0
112
1.0
1.0
204
632
8
20
329
2,1
360
159 | 0 | 0
0
0
0
0
0
4.cc
2.l.
0 | LEGEND NOTE: OUTFLOWS DO NOT SHOW PERCOLATION LOSSES N.D. NOT DETERMINED • STORAGE CORRECTED FOR DEBRIS LOSS + 0.05 C.F.S. OR LESS GROUND WATER & CONSERVATION # GROUND WATER AND WATER CONSERVATION ## FOREWORD The continuing increase in population and expansion of industry has very materially increased the draft upon the ground water supply and placed additional emphasis upon the necessity of unremitting study of changing conditions and of adapting conservation practices to such conditions. The principles, practices and objectives of water conservation and the physical characteristics of the principal ground water basins of the county were discussed in considerable detail in the Annual Report on Hydrologic Data for 1941-42, and reference may be made to that report for such information. ## SEASONAL DATA AND MAPS In order to determine to what extent the ground water basins were replenished or depleted during the 1945-46 and 1946-47 seasons numerous measurements of water table and pressure surface elevations were made or obtained from cooperating agencies; 1373 wells were measured in the fall and again in the spring of each season. 120 of these (designated as Key Wells, See Map V, page 391) were also measured at monthly intervals. A smaller number were measured more frequently, and a few were equipped with automatic recorders to provide continuous records of fluctuations. Of the 1373 wells, approximately 80, located in the westerly part of Antelope Valley, were measured by the District as its part in a cooperative agreement with the United States Geological Survey and the State Division of Water Resources, whereby the United States Geological Survey measured approximately 60 wells in the easterly part of the valley and the State Division of Water Resources made hydrographs of the key wells and ground water contour maps from fall measurements. See Maps XX and XXI, pages 417 and 418. Ground water maps were made for San Fernando Valley, San Gabriel Valley, and the Coastal Plain from the fall and spring measurements, and for Santa Clara Valley from the fall measurements. With a few exceptions the fall and spring maps show the seasonal low and high positions of the water tables or pressure surfaces by contour lines. See Maps VI to XIX, pages 403 to 416 inclusive. The more important key well measurements were reduced to hydrographs, 12 of which are included herein to show the fluctuations in the more important basins. See graphs on pages 393 to 401 inclusive. The depth to ground water was investigated and reported on for 545 subdivision tracts in 1945-46 and for 404 in 1946-47. Tables XII to XIV following show the amount of surface water conserved by percolation in the reservoirs and channels as well as spreading grounds, and the amount that flowed into the ocean as waste. With the flood control and conservation facilities now in operation, those under construction, and those contemplated in the Comprehensive Plan, it is expected that eventually the waste will be materially reduced. It never will be totally eliminated, however, because of the economic limits of conservation. During the 1945-46 and 1946-47 seasons the study of ground water pollution was continued. Samples of water for chemical analysis were taken from streams and from wells in industrial districts, oil fields, and the coastal area. In general, only partial analyses of samples were made; that is, only the carbonate, bicarbonate and chloride content were determined. About 339 such analyses were made in the District's testing laboratory in 1945-46 and 250 in 1946-47. Complete analyses were made upon samples of water from several San Gabriel Valley wells in order to establish a norm by which any future variations in the quality of the water may be determined. Investigations of possible ground water pollution from industrial wastes were made at the request of the County Engineer, Industrial Waste Committee, for consideration in the disposition of applications for permits to discharge industrial wastes into open channels or sumps. ## COOPERATIVE INVESTIGATIONS The United States Geological Survey, Water Resources Branch, the City of Long Beach Water Department, and the Orange County Flood Control and Water Districts have been cooperating in an investigation of the effectiveness of the structural barrier in the South Coastal Basin to prevent intrusion of sea water. The United States Geological Survey issued the final chapter of their comprehensive report entitled, "Hydrology of the Long Beach - Santa Ana Area, California, with Special Reference to the Watertightness of the Newport - Inglewood Structural Zone." The somewhat similar cooperative investigation of overdraft and resulting intrusion of sea water into the West Coastal Easin continued. West Coastal Basin differs from South Coastal Basin in that it lies entirely oceanward from the structural barrier. Its normal water table slope was toward the ocean, but heavy extractions during the past several years caused the slope to be reversed which started an intrusion of sea water. The purpose of the investigation is to determine the most feasible means of retarding the intrusion and possibly repelling it. The cooperating agencies in this latter investigation are the United States Geological Survey, the Los Angeles County Flood Control District, the municipalities of Redondo Beach, Hermosa Beach, Manhattan Beach, El Segundo, Gardena, Hawthorne, Inglewood, Culver City and the Palos Verdes Estates. ## NEW FACILITIES The final construction work on the conversion of Pacoima Spreading Grounds into a basin type spreading grounds was completed in October 1946. The construction of the Hansen Spreading Grounds was completed in December 1946. The 35 acre Tubbs extension to the south of Rio Hondo Coastal Basin Spreading Grounds was constructed in 1946. In 1947 plans were prepared for the development of the Atkinson and balance of the Simmons properties comprising 113 acres extending easterly from the area which was developed in 1938. Plans were prepared for spreading grounds on Eaton and Sawpit Washes. Small scale spreading tests were conducted on the Atkinson property in the proposed Rio Hondo Spreading Ground extension and in the Sawpit Spreading Ground site. ## **RESPONSIBILITY** All the work relative to ground water conservation was done under the immediate supervision of L. W. Jordan, except the analysis of water samples, which was done under the direction of S. R. Mitchell, Chief, Testing Division. ## TABLE XII RESERVOIR AND CHANNEL ABSORPTION EXCLUSIVE OF SPREADING GROUND ABSORPTION | STREAM | REACH OF STREAM WHERE ABSORPTION OCCURRED | ABSORPTIVE
CAPACITY
OF REACH
C.F.S. | TOTAL
RELEASE
TO REACH
A.F. | ABSORPTION IN CHANNELS, RESERVOIRS AND DIVERSIONS A.F. | EXCESS OF
RELEASE
OVER
ABSORPTION
A.F. | YEAR | |----------------|--|--|--------------------------------------|--|--|------------------------| | PACO IMA | DAM TO PARTHENIA AVENUE | 40-120
40-120 | 290 4
6026 | 2385
2123 | 519
3903 | 1945-46
1946-47 | | TUJUNGA | MOUTH OF CANYON TO HANSEN DAM | (1)
(1) | 17737
19666 | 11697
4865 | 6040
14801 | 1945-46
1946-47 | | ABAULUT |
HANSEN DAM TO MAGNOLIA BOULEVARD | 250-700
250-700 | 2820
6850 | 2520
6840 | 300
10 | 1945 • 46
1946 • 47 | | DEVIL'S GATE | RESERVOIR ONLY | | | 1578 (2)
169 (2) | | 1945-46
1946-47 | | EATON " | DAM TO RIO HGNDO | 13-40
13-40 | 265
507 | 491 (2)
668 (2) | 0 | 1945-46
1946-47 | | SANTA ANITA | DAM TO ARROW HIGHWAY | 40-100
40-100 | 3360
4462 | 4031
3412 | 671
1050 | 1945-46
1946-47 | | SAWPIT | U.S.G.S. GAGING STATION TO RIO HONDO | 12-20
12-20 | 366
422 | 330
414 | 36
B | 1945-46
1946-47 | | SAN GABRIEL | MOUTH OF SAN GABRIEL TO FOOTHILL BL. (CANYON BASIN) | VARIOUS
VARIOUS | 43680 -
48705 | 1620 (2)
1185 (2) | 42060
47520 | 1945-46
1946-47 | | SAN GABRIEL | FOOTHILL BL. TO SANTA FE DAM (MAIN BASIN) | VARIOUS
VARIOUS | 42060
47520 | 9500
8920 | 32560
38600 | 1945-46
1946-47 | | SAN GABRIEL | SANTA FE DAM TO VALLEY BL. (MAIN BASIN) | VARIOUS
VARIOUS | 9950
26400 | 1310
4460 | 8640
21940 | 1945•46
1946•47 | | SAN -GABRIEL | BELOW STANDEFER DITCH TO FLORENCE AVE. (COASTAL PLAIN) | VARIOUS
VARIOUS | 40596 (3)
41080 (3) | 24116
13430 | 16480
27650 | 1945-46
1946-47 | | SAN GABRIEL | FLORENCE AVENUE TO SPRING STREET (COASTAL BASIN) | VARIOUS
VARIOUS | 16480
27650 | 3890
3550 | 12590
24100 | 1945-46
1946-47 | | RIO HONDO | SANTA FE DAM TO LOWER AZUSA ROAD (MAIN BASIN) | VARIOUS
VARIOUS | 23281
12200 | 10251
3640 | 13030
8560 | 1945-46
1946-47 | | RIC HONDO | MISSION BRIDGE TO STEWART & GRAY RD. (COASTAL BASIN) | VARIOUS
VARIOUS | 59655 (3)
48420 (3) | 38596
32390 | 21059
16030 | 1945-46
1946-47 | | SAN DIMAS | DAM TO PUDDINGSTONE DIVERSION DAM AND PUDDINGSTONE
DIVERSION DAM TO GLENDORA AVENUE | 7-20
7-20 | 2650 (4)
3030 (4) | 2029
2703 | 621 (5)
327 (5) | 1945-46
1946-47 | | LIVE OAK | DAM TO FOOTHILL BOULEVARD | 4 4 | 88.7
44.6 | 105
64 | 0 | 1945-46
1946-47 | | THOMPSON CREEK | DAM TO FOOTHILL BOULEVARD | | 0 | 148 (2)
88 (2) | 0 | 1945-40
1946-47 | | | | | L | TOTAL 203518 | | | ### NOTES - (1) NOT DETERMINED. ABSORPTIVE CAPACITY DETERMINED FROM DIFFERENCE IN MEAN DAILY FLOWS. (2) INCLUDES EVAPORATION AND PERCOLATION LOSS IN RESERVOIR. (3) INCLUDES RISING WATER IN VICINITY OF WHITTIER NARROWS. (4) INCLUDES EVAPORATION AND PERCOLATION LOSS IN PUDDINGSTONE DIVERSION RESERVOIR. (5) DIVERTED TO PUDDINGSTONE RESERVOIR FOR IRRIGATION USE. ABOVE FIGURES INCLUDE WATER DIVERTED FOR USE. | | Т | ABLE XIII | - | |-----------------------|--|--|--------------------------------------| | | SPREADING G | ROUNDS ABSORPTION | | | | NAME | QUANTITY
ABSORBED,
1945-46 | | | II
III | PACOIMA HANSEN SAN GABRIEL RIVER (A) CANYON BASIN 1. EAST SIDE | 514
2267 | 3762
8725 | | | 2. WEST SIDE (B) MAIN BASIN 1, COVINA CANAL 2. AZUSA CANAL (C) COASTAL BASIN | 13488
9863
6110
6635
0 | 17674
6042
4289
4647
384 | | V
VI
VII | RIO HONDO (A) COASTAL BASIN LITTLE DALTON BIG DALTON THOMPSON CREEK | 9546
73
30
5 | 4844
89
180 | | VIII
IX
X
XI | SAN ANTONIO
SANTA ANITA+
SAWPIT+
KINGS CANYON++ | 3270.
0
0
750 | 5800
140
89
6500 | | | | TOTAL 52551 | 63165 | | ** | TEMPORARY EXPERIMENTAL TEST IN ANTELOPE VALLEY: OPERATED | BASINS
BY U.S. SOIL CONSERVATION SERV | ICE | | TABLE XIV
RUNOFF WASTE TO OCEAN
IN ACRE FEET | | | | | | | |--|---|--|---|--|-------------------------------|--| | YEAR | COYOTE CREEK
NEAR DEL AMO
*BELOW P. E.
BRIDGE
ARTESIA | SAN
GABRIEL
RIVER AT
SPRING ST. | L.A. RIVER
AT PACIFIC
COAST HWY.
**L.A. RIVER
AT WILLOW ST. | BALLONA CREEK
AT SAWTELLE
BOULEYARD
***AT CENTIN-
ELLA BLVD. | TOTAL
WASTE
TO
OCEAN | RAINFALI
INDEX-
MEAN FOI
COUNTY | | 1927-28 | | NO FLOW | | *** 3930. | | 66 | | 1928-29 | 1 | NO FLOW | ** 9340. INC. | ***14900- | 24240 | 69 | | 1929-30 | * 699. | NO FLOW | ** 12300. | ***13500- | 26500 | 78 | | 1930-31 | * 5681. | NO FLOW | ** 14400 | ***18500- | 33470 | 92 | | 1931-32 | * 2690. | 6560. | 51000. | ***21800+ | 82050 | 122 | | 1932-33 | * 457. | 809. | 22900. | ***15800 | 39970. | 73 | | 1933-34 | * 3890 | 12400. | 67900. | ***20600+ | 104800- | 68 | | 1934-35 | * 3850. | 2380- | 40500 • | ***24900. | 71630. | 131 | | 1935-36 | * 1150. | 1190. | 20500. | ***13300. | | | | 4000 00 | | | | 186. | 36330. | 68 | | 1936-37 | 13700 | 13500 | 91100. | 40680+ | 159000+ | 141 | | 1937-38 | 15100+ | 88020 | 408000- | 52500 | 599600+ | 147 | | 1938-39
1939-40 | 4250. | 1080- | 82750. | 28490. | 116600. | 118 | | 1940-41 | 3190. | 1460. | 65930 | 21110. | 91690 | 81 | | 1940-41 | 29500 | 65890. | 369500. | 67360 | 532200. | 215 | | 1941-42 | 1560- | 10830 | 93390. | 17250+ | 123000- | 80 | | 1942-45 | 12070 | 175100- | 264900 | 34240. | 486300. | 148 | | 1943-44 | 12060 | 72200- | 217400. | 33000 | 334660. | 158 | | 1944-45 | 3800 -
3540 - | 22280. | 100200+ | 24450. | 150730- | 90 | | 1946-47 | 2460. | 12590. | 91790 | 18380- | 126300. | 88 | | 1340-47 | 4400. | 24100. | 106000+ | 26300- | 158860- | 92 | REUTER, & ENGER No. N.Y. Ho. See Tweey Your In Manda MANAPEL A, COMER DL. R.Y., HO. SMO-EMA.